[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2017208930A - モータ制御装置及び画像形成装置 - Google Patents

モータ制御装置及び画像形成装置 Download PDF

Info

Publication number
JP2017208930A
JP2017208930A JP2016099646A JP2016099646A JP2017208930A JP 2017208930 A JP2017208930 A JP 2017208930A JP 2016099646 A JP2016099646 A JP 2016099646A JP 2016099646 A JP2016099646 A JP 2016099646A JP 2017208930 A JP2017208930 A JP 2017208930A
Authority
JP
Japan
Prior art keywords
motor
phase
current
value
induced voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016099646A
Other languages
English (en)
Inventor
雄大 仁藤
Yuta Nito
雄大 仁藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2016099646A priority Critical patent/JP2017208930A/ja
Publication of JP2017208930A publication Critical patent/JP2017208930A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Or Security For Electrophotography (AREA)
  • Control Of Stepping Motors (AREA)

Abstract

【課題】 ローパスフィルタを用いることによって、実際の駆動電流の電流値の位相に比べて位置推定に用いられる駆動電流の電流値の位相が遅れ、実際の回転子の位置と推定位置とに誤差が生じてしまう。【解決手段】 ローパスフィルタが適用されていない駆動電流の電流値の位相とローパスフィルタが適用された誘起電圧の位相との位相差を決定し、前記位相差に基づいて、推定位置の補正を行うための補正値を決定する。前記補正値を用いて推定位置を補正し、補正された推定位置に基づいてモータの駆動制御を行う。【選択図】 図5

Description

本発明は、モータの駆動を制御する装置に関する。
従来、モータの駆動を制御する方法として、モータの回転子の回転位置又は回転速度のフィードバックを行い且つモータの回転子の回転位置を基準とした回転座標系の電流値に基づいてモータの駆動を制御する、ベクトル制御と称される制御方法が知られている。
ベクトル制御を用いると、モータの巻線に供給する駆動電流を、回転子が回転するためのトルクを発生させる電流成分(q軸電流)と、回転子の磁束強度に影響する電流成分(d軸電流)とに分けて制御することができる。この結果、回転子にかかる負荷トルクが変化しても、負荷トルクの変化に応じてq軸電流を制御することによって、回転に必要なトルクを効率的に発生させることができる。即ち、従来問題とされていた、回転子にかかる負荷トルクがモータの巻線に供給した駆動電流に対応した出力トルクを超えて、回転子が入力信号に同期しない制御不能な状態(脱調状態)になることを防止することができる。また、消費電力の増大や、余剰トルクに起因したモータ音の増大を抑制することができる。
ベクトル制御では、回転子の位置を推定する構成が必要となる。特許文献1では、モータの各相の巻線に供給された駆動電流の電流値を検出し、前記検出結果に基づいてモータの各相の巻線に発生する誘起電圧を演算する。前記誘起電圧の比の逆正接を演算して回転子の位置を推定し、前記位置推定結果に基づいてモータの駆動を制御する、という方法が述べられている。
特許5537565号
検出された電流値に基づいて誘起電圧を演算する際には、前記電流値に含まれる高周波成分のノイズを除去するためにローパスフィルタが用いられる場合がある。即ち、ローパスフィルタを用いて前記電流値に含まれる高周波成分のノイズを除去し、高周波成分のノイズが除去された電流値が誘起電圧の演算に用いられる。
しかし、ローパスフィルタを用いると、高周波成分のノイズが除去される前の電流値の位相に比べて、高周波成分のノイズが除去された後の電流値の位相が遅れてしまう。即ち、誘起電圧を演算する際に用いられる電流値の位相は、実際にモータの各相の巻線に供給された駆動電流の電流値の位相に比べて遅れてしまう。この結果、演算された誘起電圧の位相は、実際にモータの各相の巻線に発生している誘起電圧の位相に比べて遅れてしまう。実際にモータの各相の巻線に発生している誘起電圧よりも位相が遅れた誘起電圧に基づいて回転子の位置が推定されてしまうと、実際の回転子の位置と推定位置とに誤差が生じてしまう。前記推定位置に基づいてモータの駆動制御を行うと、モータの駆動制御が不安定になる可能性がある。そのため、実際の回転子の位置と推定位置とに生じる誤差を低減するための良い構成が求められていた。
本発明は、実際の回転子の位置に対して誤差が生じた推定位置に基づいてモータの駆動制御を行うことによってモータの駆動制御が不安定になることを抑制することを目的とする。
上記課題を解決するために、本発明は、
モータの駆動を制御するモータ制御装置において、
前記モータの回転子の回転位置又は回転速度のフィードバックを行い且つ前記モータの回転子の回転位置を基準とした回転座標系の電流値に基づいて前記モータの駆動を制御するモータ制御手段と、
前記モータの各相の巻線に供給された駆動電流の電流値を検出し、検出した電流値に応じた信号を出力する電流検出手段と、
前記電流検出手段から出力される信号から所定の周波数帯の成分を低減させるフィルタ回路と、
前記フィルタ回路が適用される前の信号の位相と前記フィルタ回路が適用された後の信号の位相との位相差を決定する位相差決定手段と、
前記フィルタ回路が適用された後の信号に基づいて前記モータの回転子の回転位置を推定する位置推定手段と、
前記位相差決定手段によって決定された位相差に基づいて、前記位置推定手段によって推定された回転位置を補正する位置補正値を決定する位置補正値決定手段と、
前記位置補正値決定手段によって決定された位置補正値に基づいて前記位置推定手段によって推定された回転位置を補正する位置補正手段と、
を有し、
前記モータ制御手段は、前記位置補正手段によって補正された回転位置に基づいて前記モータの駆動を制御することを特徴とする。
本発明によれば、実際の回転子の位置に対して誤差が生じた推定位置に基づいてモータの駆動制御を行うことによってモータの駆動制御が不安定になることを抑制することができる。
第1実施形態に係る画像形成装置を説明する断面図である。 前記画像形成装置の制御構成を示すブロック図である。 第1実施形態に係るモータ制御装置の構成を示すブロック図である。 A相及びB相から成る2相のモータと回転座標系のd軸及びq軸との関係を示す図である。 第1実施形態に係るモータ制御装置を用いたモータ駆動の制御方法を示すフローチャートである。 第2実施形態に係るモータ制御装置の構成を示すブロック図である。 第2実施形態に係るモータ制御装置を用いたモータ駆動の制御方法を示すフローチャートである。
以下に図面を参照して、本発明の好適な実施の形態を説明する。ただし、この実施の形態に記載されている構成部品の形状及びそれらの相対配置などは、この発明が適用される装置の構成や各種条件により適宜変更されるべきものであり、この発明の範囲を以下の実施の形態に限定する趣旨のものではない。なお、モータ制御装置が設けられるのは画像形成装置に限定されるわけではない。
〔第1実施形態〕
図1は、本実施形態で用いられている画像形成装置であるモノクロの電子写真方式の複写機(以下、画像形成装置と称する)100の構成を示す断面図である。なお、画像形成装置はモノクロの電子写真方式の複写機に限定されず、例えば、インクジェットプリンタ、ファクシミリ装置、印刷機、カラー画像形成装置等であっても良い。
以下に、図1を用いて、画像形成装置100の構成および機能について説明する。画像形成装置100には、原稿自動送り装置201、原稿読取装置202及び画像形成装置本体301が設けられている。
原稿自動送り装置201の原稿載置部203に載置された原稿は、給紙ローラ204によって1枚ずつ給紙され、搬送ガイド206に沿って原稿読取装置202の原稿ガラス台214上に搬送される。更に、原稿は、搬送ベルト208によって一定速度で搬送されて、排紙ローラ205によって原稿自動送り装置201の外部に設けられた不図示の排紙トレイへ排紙される。この間、原稿読取装置202の読取位置において照明209によって照明された原稿画像からの反射光は、反射ミラー210、211、212からなる光学系によって画像読取部101に導かれ、画像読取部101によって画像信号に変換される。画像読取部101は、レンズ、光電変換素子であるCCD、CCDの駆動回路等で構成される。画像読取部101から出力された画像信号は、ASIC等のハードウェアデバイスで構成される画像処理部112によって、各種補正処理が行われた後、画像形成装置本体301へ出力される。前述の如くして、原稿の読取が行われる。
また、読取装置202における原稿の読取モードとして、流し読みモードと固定読みモードがある。流し読みモードは、照明系209及び光学系を所定の位置に固定した状態で、原稿を一定速度で搬送しながら原稿の画像を読み取るモードである。固定読みモードは、読取装置202の原稿ガラス214上に原稿を載置し、照明系209及び光学系を一定速度で移動させながら、原稿ガラス214上に載置された原稿の画像を読み取るモードである。通常、シート状の原稿は流し読みモードで読み取られ、本や冊子等の綴じられた原稿は固定読みモードで読み取られる。
画像形成装置本体301の内部には、シート収納トレイ302、304が設けられている。シート収納トレイ302、304には、それぞれ異なる種類の記録媒体を収納することができる。例えば、シート収納トレイ302にはA4の普通紙が収納され、シート収納トレイ304にはA4の厚紙が収納される。なお、記録媒体とは、画像形成装置によって画像が形成されるものであって、例えば、用紙、樹脂シート、布、OHPシート、ラベル等が含まれる。
シート収納トレイ302に収納された記録媒体は、給紙ローラ303によって給送されて、搬送ローラ306によってレジストレーションローラ308へ送り出される。また、シート収納トレイ304に収納された記録媒体は、給紙ローラ305によって給送されて、搬送ローラ307及び306によってレジストレーションローラ308へ送り出される。
読取装置202から出力された画像信号は、半導体レーザ及びポリゴンミラーを含んでいる光走査装置311に入力される。また、感光ドラム309は、帯電器310によって外周面が帯電される。感光ドラム309の外周面が帯電された後、読取装置202から光走査装置311に入力された画像信号に応じたレーザ光が、光走査装置311からポリゴンミラー及びミラー312、313を経由し、感光ドラム309の外周面に照射される。この結果、感光ドラム309の外周面に静電潜像が形成される。なお、感光ドラムの帯電方法は、例えば、コロナ帯電器や帯電ローラを用いた帯電方法を用いる。
続いて、その静電潜像が現像器314内のトナーによって現像され、感光ドラム309の外周面にトナー像が形成される。感光ドラム309に形成されたトナー像は、感光ドラム309と対向する位置(転写位置)に設けられた転写分離器315によって記録媒体に転写される。この際、レジストレーションローラ308は、トナー像にタイミングを合わせて、記録媒体を転写位置へ送り込む。
前述の如くして、トナー像が転写された記録媒体は、搬送ベルト317によって定着器318へ送り込まれ、定着器318によって加熱加圧されて、トナー像が記録媒体に定着される。このようにして、画像形成装置100によって記録媒体に画像が形成される。
片面印刷モードで画像形成が行われる場合は、定着器318を通過した記録媒体は、排紙ローラ319、324によって、不図示の排紙トレイへ排紙される。また、両面印刷モードで画像形成が行われる場合は、定着器318によって記録媒体の第1面に定着処理が行われた後に、記録媒体は、排紙ローラ319、搬送ローラ320、及び反転ローラ321によって、反転パス325へと搬送される。その後、記録媒体は、搬送ローラ322、323によって再度レジストレーションローラ308へと搬送され、前述した方法で記録媒体の第2面に画像が形成される。その後、記録媒体は、排紙ローラ319、324によって不図示の排紙トレイへ排紙される。
また、第1面に画像形成された記録媒体を、第1面が下向きになるように反転させて画像形成装置100の外部へ排紙する場合は、定着器318を通過した記録媒体を、排紙ローラ319を通って搬送ローラ320へ向かう方向へ搬送する。その後、記録媒体の後端が搬送ローラ320のニップ部を通過する直前に、搬送ローラ320の回転を反転させる。この結果、記録媒体の第1面が下向きになった状態で、記録媒体を排紙ローラ324へ向かう方向へ搬送し、画像形成装置100の外部へ排紙することができる。
以上が画像形成装置100の構成および機能についての説明である。
図2は、画像形成装置100の制御構成の例を示すブロック図である。システムコントローラ151は、図2に示すように、CPU(上位装置)151a、ROM151b、RAM151cを備えている。また、システムコントローラ151は、画像処理部102、操作部152、アナログ・デジタル(A/D)変換器153、高圧制御部155、モータ制御装置157(モータ制御装置及びモータ制御手段)、DC負荷制御部158、センサ類159、ACドライバ160と接続されている。システムコントローラ151は、接続された各ユニットとの間でデータやコマンドの送受信をすることが可能である。
CPU151aは、ROM151bに格納された各種プログラムを読み出して実行することによって、予め定められた画像形成シーケンスに関連する各種シーケンスを実行する。
RAM151cは記憶デバイスである。RAM151cには、例えば、高圧制御部155に対する設定値、モータ制御装置157に対する指令値及び操作部152から受信される情報等の各種データが格納される。
システムコントローラ151は、画像処理部102における画像処理に必要となる、画像形成装置100の内部に設けられた各種装置の設定値データを画像処理部102に送信する。更に、システムコントローラ151は、各種装置からの信号(センサ類159からの信号)を受信して、受信した信号に基づいて高圧制御部155の設定値を設定する。高圧制御部155は、システムコントローラ151によって設定された設定値に応じて、高圧ユニット156(帯電器310、現像器314、転写分離器315等)に必要な電圧を供給する。
A/D変換器153は、定着ヒータ161の温度を検出するためのサーミスタ154が検出した検出信号を受信し、前記検出信号をアナログ信号からデジタル信号に変換してシステムコントローラ151に送信する。システムコントローラ151は、A/D変換器153から受信したデジタル信号に基づいて、ACドライバ160の制御を行う。ACドライバ160は、定着ヒータ161の温度が定着処理を行うために必要な温度となるように定着ヒータ161を制御する。なお、定着ヒータ161は、定着処理に用いられるヒータであり、定着器318に含まれる。
システムコントローラ151は、使用する記録媒体の種類(以下、紙種と称する)等の設定をユーザが行うための操作画面を、操作部152に設けられた表示部に表示するように、操作部152を制御する。システムコントローラ151は、使用する紙種等のユーザが設定した情報を操作部152から受信し、前記ユーザが設定した情報に基づいて画像形成装置100の動作シーケンスを制御する。また、システムコントローラ151は、画像形成装置の状態を示す情報を操作部152に送信する。なお、画像形成装置の状態を示す情報とは、例えば、画像形成枚数、画像形成中か否か、ジャム発生及びその発生箇所等の情報である。操作部152は、システムコントローラ151から受信した情報を表示部に表示する。
前述の如くして、システムコントローラ151は、画像形成装置100の動作シーケンスを制御する。
次に、本実施形態におけるモータ制御装置について説明する。本実施形態におけるモータ制御装置は、ベクトル制御を用いてモータの駆動を制御する。ベクトル制御とは、モータの回転子の回転位置又は回転速度のフィードバックを行い且つモータの回転子の回転位置を基準とした回転座標系の電流値に基づいてモータの駆動を制御する制御方法である。
以下の説明においては、負荷を駆動するモータとしてステッピングモータが用いられているが、これに限定されるものではない。なお、負荷とはモータによって駆動される対象物である。例えば、給紙ローラ204、303、305、レジストレーションローラ308及び排紙ローラ319等の各種ローラ(搬送ローラ)や感光ドラム309、搬送ベルト208、317、照明系209及び光学系等は負荷に対応する。本実施形態のモータ制御装置は、これら負荷を駆動するモータに適用することができる。また、モータは2相モータであるとは限らない。更に、本実施形態におけるモータには、モータの回転子の回転位置を検出するためのロータリエンコーダなどのセンサは設けられていないものとする。
図3は、ステッピングモータ(以下、モータと称する)509の駆動を制御するモータ制御装置157の構成の例を示すブロック図である。
以下に、図3及び図4を用いて、本実施形態におけるモータ制御装置157がモータ509の駆動制御を行う方法について説明する。
図4は、A相(第1相)とB相(第2相)の2相から成るモータ509と回転座標系のd軸及びq軸との関係を示す図である。図4では、静止座標系において、A相の巻線に対応した軸をα軸、B相の巻線に対応した軸をβ軸と定義している。また、静止座標系におけるα軸と、回転子402に用いられている永久磁石の磁極によって作られる磁束の方向(d軸方向)との成す角度をθと定義している。回転子402の回転位置は、角度θによって表される。ベクトル制御では、回転子402の磁束方向に沿ったd軸と、d軸から反時計回りに90度進んだ方向に沿った(d軸と直交する)q軸とで表される、モータ509の回転子402の回転位置θを基準とした回転座標系が用いられる。
図3に示すように、本実施形態におけるモータ制御装置157には、位置制御器502、電流制御器503(電圧生成手段)、座標変換器505、511、PWMインバータ(電流供給手段)506等が設けられている。
座標変換器511は、モータ509のA相及びB相の巻線に流れる駆動電流に対応する電流ベクトルを、α軸及びβ軸で表される静止座標系から、q軸及びd軸で表される回転座標系に座標変換する。この結果、モータ509のA相及びB相の巻線に供給する駆動電流を、回転座標系において、q軸成分(第1の電流成分)の電流値及びd軸成分(第2の電流成分)の電流値を用いて表すことができる。なお、q軸成分の電流は、モータ509の回転子402にトルクを発生させるトルク電流に相当する。また、d軸成分の電流は、モータ509の回転子402の磁束強度に影響する励磁電流に相当し、回転子402のトルクの発生には寄与しない。モータ制御装置157は、q軸成分の電流及びd軸成分の電流をそれぞれ独立に制御することができる。即ち、回転子402が回転するために必要なトルクを、効率的に発生させることができる。
モータ制御装置157は、モータ509の回転子402の回転位置θを後述する方法により推定し、その推定結果に基づいてベクトル制御を行う。CPU151aは、モータ509の回転子402の回転位置の指令値(指令位置)θ_refを生成し、所定の時間周期で指令値θ_refをモータ制御装置157へ出力する。
位置制御器(位置制御手段)502は、モータ509の回転子402の回転位置θと指令値θ_refとの偏差が小さくなるように、q軸電流指令値iq_ref及びd軸電流指令値id_refを生成して出力する。具体的には、位置制御器502は、モータ509の回転子402の回転位置θと指令値θ_refとの偏差が0になるように、q軸電流指令値iq_ref及びd軸電流指令値id_refを生成して出力する。また、本実施形態における位置制御器502は、比例(P)、積分(I)補償器から構成されているが、比例(P)、積分(I)、微分(D)補償器から構成されていても良い。また、回転子402に永久磁石を用いる場合、通常は回転子402の磁束強度に影響するd軸電流指令値id_refは0に設定されるが、これに限定されるものではない。
電流検出器(電流検出手段)507、508は、モータ509のA相及びB相(各相)の巻線に流れる駆動電流を検出し、検出した電流値に応じた信号をA/D変換器510に出力する。
電流検出器507、508から出力された信号は、A/D変換器510によってアナログ値からデジタル値へと変換されて、静止座標系における電流値iα及びiβとして、回転子402の回転位置θを用いて次式によって表される。
iα=I*cosθ (1)
iβ=I*sinθ (2)
これらの電流値iα及びiβは、座標変換器(座標変換手段)511、ローパスフィルタ(フィルタ回路)518に入力される。また、電流値iαは位相差決定器(位相差決定手段)514にも入力される。
ローパスフィルタ518は、電流値iα及びiβに含まれる高周波成分のノイズ(所定の周波数帯の成分)等を低減し、前記ノイズ等が低減された後の電流値iα´及びiβ´を誘起電圧演算器512(誘起電圧演算手段)に出力する。なお、本実施形態においてはローパスフィルタが用いられているが、これに限定されるものではない。例えば、バンドパスフィルタ等のフィルタが設けられていても良い。また、フィルタは誘起電圧演算器内部に設けられていても良い。
座標変換器511において、電流値iα及びiβは、次式によって回転座標系におけるq軸電流の電流値iq及びd軸電流の電流値idに座標変換される。
id= cosθ*iα+sinθ*iβ (3)
iq=−sinθ*iα+cosθ*iβ (4)
前述のように、座標変換器511は、モータ509のA相及びB相の巻線に流れる駆動電流に対応する電流ベクトルを、α軸及びβ軸で表される静止座標系から、q軸及びd軸で表される回転座標系に座標変換する。
続いて、座標変換器511による座標変換によって得られた前記電流値iqと位置制御器502から出力されたiq_refとの偏差及び前記電流値idと位置制御器502から出力されたid_refとの偏差が電流制御器503にそれぞれ出力される。電流制御器503は、前記偏差がそれぞれ小さくなるように電流値iq*及びid*を生成する。具体的には、電流制御器503は、前記偏差がそれぞれ0になるように電流値iq*及びid*を生成する。その後、電流制御器503は、それぞれの電流値iq*及びid*に対応した駆動電圧Vq及びVdを生成して座標変換器505に出力する。なお、本実施形態における電流制御器503は、位置制御器502と同様に比例(P)、積分(I)補償器から構成されているが、比例(P)、積分(I)、微分(D)補償器から構成されていても良い。
座標変換器505は、電流制御器503から出力された回転座標系における駆動電圧Vq及びVdを、次式によって、静止座標系における駆動電圧Vα及びVβに座標逆変換する。
Vα=cosθ*Vd−sinθ*Vq (5)
Vβ=sinθ*Vd+cosθ*Vq (6)
座標変換器505は、回転座標系における駆動電圧Vq及びVdを静止座標系における駆動電圧Vα及びVβに座標逆変換した後、Vα及びVβをPWMインバータ506とローパスフィルタ518に出力する。
ローパスフィルタ518に出力されたVα及びVβは、ローパスフィルタ518が適用された後、Vα´及びVβ´としてローパスフィルタ518から誘起電圧演算器512に出力される。
PWMインバータ506は、フルブリッジ回路を有している。フルブリッジ回路は座標変換器505から入力された駆動電圧Vα及びVβによって駆動される。その結果、PWMインバータ506は、駆動電圧Vα及びVβに応じた駆動電流iα及びiβを生成し、駆動電流iα及びiβをモータ509の各相の巻線に供給することによって、モータ509を駆動させる。なお、本実施形態においては、PWMインバータはフルブリッジ回路を有しているが、ハーフブリッジ回路等であっても良い。
次に、回転子402の回転位置θの推定方法について説明する。回転子402の回転位置θの推定には、回転子402の回転によってモータ509のA相及びB相の巻線に誘起される誘起電圧が用いられる。誘起電圧の値は誘起電圧演算器512によって算出される。具体的には、ローパスフィルタ518から誘起電圧演算器512に入力された電流値iα´及びiβ´と駆動電圧Vα´及びVβ´とから、次式によって、誘起電圧Eα´及びEβ´を演算する。
Eα´=Vα´−R*iα´−L*diα´/dt (7)
Eβ´=Vβ´−R*iβ´−L*diβ´/dt (8)
ここで、Rは巻線レジスタンス、Lは巻線インダクタンスである。R及びLの値は使用されているモータ509に固有の値であり、ROM151b又はモータ制御装置157に設けられたメモリ(不図示)等に予め格納されている。
誘起電圧演算器512によって演算された誘起電圧Eα´及びEβ´は、位置推定器(位置推定手段)513に入力される。また、誘起電圧Eα´は位相差決定器514、周期検出器(周期検出手段)515にも入力される。位置推定器513は、A相の誘起電圧Eα´とB相の誘起電圧Eβ´との比から、次式によってモータ509の回転子402の回転位置θ´を推定する。
θ´=tan^−1(−Eβ´/Eα´) (9)
前述の如くして得られた回転子402の回転位置θ´は、位置補正器517に入力される。また、本実施形態においては、モータの各相の巻線に誘起される誘起電圧の大きさを演算し、前記誘起電圧の大きさの比を演算することによって回転子の回転位置を推定したが、この限りではない。例えば、モータの各相の巻線に供給された駆動電流の電流値の比を演算することによって回転子の回転位置を推定する等の構成であっても良い。
前述のように、本実施形態においては、モータの各相の巻線に流れる電流の電流値を検出し、ローパスフィルタを用いて、検出された電流値に含まれる高周波成分のノイズ等を低減する。また、駆動電圧もローパスフィルタに入力される。その後、ローパスフィルタが適用された駆動電流及び駆動電圧に基づいてモータの各相の巻線に誘起される誘起電圧を演算し、演算された誘起電圧の大きさの比を演算することによって回転子の回転位置を推定する。なお、本実施形態においては、駆動電流及び駆動電圧にローパスフィルタを適用した後に誘起電圧の演算を行ったが、この限りではない。例えば、ローパスフィルタが適用される前の駆動電流及び駆動電圧を用いて誘起電圧の演算を行った後に、演算された誘起電圧にローパスフィルタを適用し、誘起電圧に含まれる高周波成分のノイズ等を低減するような構成であっても良い。
しかし、ローパスフィルタを用いると、ローパスフィルタが適用される前の信号の位相に比べて、ローパスフィルタが適用された後の信号の位相が遅れてしまう。即ち本実施形態における、ローパスフィルタが適用された後の駆動電圧Vα´及びVβ´、駆動電流iα´及びiβ´の位相は、ローパスフィルタが適用される前の駆動電圧Vα及びVβ、駆動電流iα及びiβの位相に比べて遅れてしまう。この結果、演算された誘起電圧Eα´及びEβ´の位相は、実際にモータの各相の巻線に発生している誘起電圧の位相に比べて遅れてしまう。実際にモータの各相の巻線に発生している誘起電圧よりも位相が遅れた誘起電圧に基づいて回転子の位置が推定されてしまうと、実際の回転子の位置と推定位置とに誤差が生じてしまう。この結果、モータの駆動制御が不安定になる可能性がある。そのため、実際の回転子の位置と推定位置とに生じる誤差を低減するための良い構成が求められている。なお、ローパスフィルタを用いることによって生じる位相の遅れ量は、常に一定値であるとは限らない。また、本実施形態における駆動電流、誘起電圧及び駆動電圧は周期的に正弦波状に時間変化する。
以下に、図3を用いて、実際の回転子の位置と推定位置とに生じた誤差を補正する方法について説明する。本実施形態のモータ制御装置157には、実際の回転子の位置と推定位置とに生じた誤差を補正する回路として、位相差決定器514、周期検出器515、位置補正値決定器(位置補正値決定手段)516、位置補正器(位置補正手段)517等が設けられている。
前述したように、位相差決定器514には、A/D変換器510から出力された電流値iα及び誘起電圧演算器512から出力された誘起電圧Eα´が入力される。位相差決定器514は、前記電流値iαが正の値から負の値へと変化するタイミングと前記誘起電圧Eα´の値が正の値から負の値へと変化するタイミングとの時間差(位相差)cnt_diffを決定して出力する。なお、本実施形態においては、時間差cnt_diffを決定する際に、A/D変換器510から出力された電流値iαと誘起電圧演算器512から出力された誘起電圧Eα´とを用いたがこの限りではない。例えば、ローパスフィルタが適用される前の電流値又は誘起電圧又は駆動電圧のいずれかとローパスフィルタが適用された後の電流値又は誘起電圧又は駆動電圧のいずれかとを用いる構成であればよい。例えば、A/D変換器510から出力された電流値iαとローパスフィルタ518から出力された電流値iα´とを用いる構成であっても良い。また、A/D変換器510から出力された電流値iαにローパスフィルタを適用せずに誘起電圧Eαを演算し、前記演算された誘起電圧Eαにローパスフィルタを適用する。ローパスフィルタを適用する前の誘起電圧Eαとローパスフィルタを適用した後の誘起電圧Eα´とを用いる構成であっても良い。更に、本実施形態では、A相の巻線における電流値又は誘起電圧又は駆動電圧を用いて時間差cnt_diffを決定しているが、この限りではない。例えば、B相の巻線における電流値又は誘起電圧又は駆動電圧を用いても良いし、A相の巻線とB相の巻線との両方を用いて時間差cnt_diffを決定しても良い。また、本実施形態においては、電流値iα及び誘起電圧Eα´が正の値から負の値へと変化するタイミングの時間差cnt_diffを決定しているがこの限りではない。例えば、電流値iα及び誘起電圧Eα´が、負の値から正の値へと変化するタイミングの時間差、又は、最大となるタイミングの時間差、又は、最小となるタイミングの時間差、のいずれかの時間差を決定する構成であれば良い。
周期検出器515は、誘起電圧演算器512から出力された誘起電圧Eα´の周期cnt_cycleを検出し、位置補正値決定器516に出力する。なお、本実施形態においては、誘起電圧Eα´の周期を検出したが、ローパスフィルタが適用される前後にかかわらず誘起電圧、駆動電流、駆動電圧の周期は同じであるため、いずれかの周期を検出し、周期cnt_cycleとして出力すれば良い。周期の検出方法には、例えば、誘起電圧Eα´が負の値から正の値へと変化したタイミングから再び誘起電圧Eα´が負の値から正の値へと変化するタイミングまでの時間を検出する方法がある。また、周期cnt_cycleは、モータの回転数から定まる値であるため、回転子の回転速度又は回転指令速度を用いて算出する方法であっても良い。
位置補正値決定器516は、位相差決定器514から出力された時間差cnt_diffを周期検出器515から出力された周期cnt_cycleで除算した値に基づいて回転子の回転位置の位置補正値θ_errを決定する。具体的には、以下の式(10)を用いて決定する。
θ_err=2π*cnt_diff/cnt_cycle (10)
なお、本実施形態においては、式(10)を用いて位置補正値θ_errを演算したが、この限りではない。例えば、時間差cnt_diffと周期cnt_cycleと位置補正値θ_errとの関係を示すテーブルを予めROM151b等に格納しておき、前記テーブルを用いて位置補正値θ_errを決定しても良い。
位置補正値決定器516は、前述の如くして得られた位置補正値θ_errを位置補正器517に出力する。
位置補正器517は、位置補正値θ_errを用いて、位置推定器513によって推定された回転位置θ´を補正し、補正された回転子の回転位置θを出力する。具体的には、次式(11)を用いて回転位置θ´を補正する。
θ=θ´+θ_err (11)
その後は、補正された回転位置θに基づいて前述の制御を繰り返し行う。即ち、モータ制御装置157は、ベクトル制御を用いてモータの駆動制御を行う。ベクトル制御を用いてモータの駆動を制御することによって、モータが脱調状態となることや、余剰トルクに起因してモータ音が増大すること及び消費電力が増大することを抑制することができる。なお、本実施形態におけるベクトル制御では、回転子402の回転位置θを基準とした回転座標系が用いられているが、これに限定されるものではない。即ち、回転位置の指令値θ_refを基準とした回転座標系が用いられても良い。また、本実施形態におけるベクトル制御では、回転子402の回転位置θをフィードバックしてモータ509の駆動を制御しているが、これに限定されるものではない。例えば、回転子402の回転速度ωをフィードバックしてモータ509の駆動を制御する構成であっても良い。具体的には、例えば、回転子402の回転位置θの時間変化に基づいて、次式を用いて回転子402の回転速度ωを演算する。
ω=dθ/dt (12)
更に、CPU151aは、モータ制御装置600に回転子402の回転指令速度ω_refを出力する。前記回転子402の回転速度ωと回転指令速度ω_refとの偏差に基づいてモータの各相の巻線に供給する駆動電流を決定する。以上のようにして、モータ509の駆動を制御する構成であっても良い。
以上のように、本実施形態におけるモータ制御装置157は、ローパスフィルタが適用されたことによって生じた位相の遅れを決定し、決定結果に基づいて推定位置の補正を行い、補正された推定位置に基づいてモータの駆動制御を行う。この結果、ローパスフィルタを用いることによって生じる、実際の回転位置と推定された回転位置との誤差を可能な限り低減することができる。また、実際の回転位置と推定された回転位置との誤差を可能な限り低減することによって、モータの駆動制御が不安定になることを抑制することができる。
図5は、モータ制御装置157を用いたモータ駆動の制御方法を示すフローチャートである。以下、図5を用いて、本実施形態におけるモータ509の駆動制御について説明する。このフローチャートの処理は、CPU151aからの指示を受けたモータ制御装置157によって実行される。
まず、CPU151aがモータ制御装置157にenable信号‘H’を出力することにより、モータ制御装置157はモータ509の駆動制御を開始する。enable信号とは、モータ509の稼働/停止を決定する信号であり、enable信号が‘L(ローレベル)’の場合はモータ駆動を停止状態にして、enable信号が‘H(ハイレベル)’の場合はモータ駆動を稼働状態にする。モータ制御装置157がベクトル制御を開始すると、S1001において、位置推定器513は、誘起電圧演算器512から出力された誘起電圧Eα´及びEβ´に基づいて回転位置θ´を推定し、モータ制御装置157は処理をS1002に進める。
S1002において、位相差決定器514は、電流値iαが正の値から負の値へと変化するタイミングと誘起電圧Eα´の値が正の値から負の値へと変化するタイミングとの時間差cnt_diffを決定し、処理はS1003に進む。S1003において、周期検出器515は、誘起電圧演算器512から出力された誘起電圧Eα´の周期cnt_cycleを検出する。
次に、S1004において、位置補正値決定器516は、位相差決定器514から出力された時間差cnt_diff、周期検出器515から出力された周期cnt_cycle及び式(10)を用いて回転子の回転位置の位置補正値θ_errを決定する。その後、S1005において、位置補正器517は、前記位置補正値θ_err及び式(11)を用いて、位置推定器513によって推定された回転位置θ´を補正する。モータ制御装置は、位置補正器517によって補正された回転位置θに基づいてモータの駆動制御を行う。
次に、S1006において、モータ制御装置がベクトル制御を続行する場合は、処理は再びS1001に戻る。S1006において、モータ制御装置がベクトル制御を終了する場合は、モータ制御装置157は処理を進めて、モータ制御装置はベクトル制御を終了する。
以上のように、本実施形態におけるモータ制御装置157は、ローパスフィルタが適用されたことによって生じた位相の遅れを決定し、決定結果に基づいて推定位置の補正を行い、補正された推定位置に基づいてモータの駆動制御を行う。具体的には、位相差決定器514は、A/D変換器510から出力された電流値iα及び誘起電圧演算器512から出力された誘起電圧Eα´の値が、正の値から負の値へと変化するタイミングとの時間差cnt_diffを決定する。また、誘起電圧演算器512から出力された誘起電圧Eα´の周期cnt_cycleを検出する。更に、時間差cnt_diffと周期cnt_cycleとを用いて回転子の回転位置の位置補正値θ_errを決定し、前記位置補正値θ_errを用いて、位置推定器513によって推定された回転位置θ´を補正する。モータ制御装置157は補正された推定位置θに基づいてモータの駆動制御を行う。この結果、ローパスフィルタを用いることによって生じる、実際の回転位置と推定された回転位置との誤差を可能な限り低減することができる。また、実際の回転位置と推定された回転位置との誤差を可能な限り低減することによって、モータの駆動制御が不安定になることを抑制することができる。
なお、本実施形態における、ローパスフィルタが適用されたことによって生じた位相の遅れに基づいて推定位置の補正を行う方法は、誘起電圧を用いて位置を推定する場合に限らず、他の推定方法においても適用することができる。また、本実施形態における、ローパスフィルタが適用されたことによって生じた位相の遅れに基づいて推定位置の補正を行う方法は、ローパスフィルタに限らず、バンドパスフィルタ等の他のフィルタにも適用することができる。
〔第2実施形態〕
画像形成装置の構成は第1実施形態と同様である。
第1実施形態においては、フィルタを用いることによって生じる、実際の回転位置と推定された回転位置との誤差を補正する方法として、回転位置θ´を推定した後に位置補正値θ_errを用いて回転位置の補正を行う方法について説明した。
本実施形態では、位置推定を行う前に、位置推定に用いられる信号(誘起電圧、駆動電流、駆動電圧等)の位相を補正し、補正した信号に基づいて位置推定を行う。
図6は、本実施形態に係るモータ制御装置158の構成の例を示すブロック図である。図6に示すように、本実施形態に係るモータ制御装置158には、位相補正器(位相補正手段)520等が設けられている。
以下、図6を用いて、本実施形態に係るモータ制御装置158を用いてモータ509の駆動を制御する制御方法について説明する。なお、制御方法が第1実施形態における制御方法と同様の部分については説明を省略する。
位相差決定器514は、第1実施形態と同様にして、時間差cnt_diffを決定して出力する。なお、本実施形態においては、時間差cnt_diffを決定する際に、A/D変換器510から出力された電流値iαと誘起電圧演算器512から出力された誘起電圧Eα´とを用いたがこの限りではない。例えば、ローパスフィルタが適用される前の電流値又は誘起電圧又は駆動電圧とローパスフィルタが適用された後の電流値又は誘起電圧又は駆動電圧とを用いる構成であればよい。また、A/D変換器510から出力された電流値iαとローパスフィルタ518から出力された電流値iα´とを用いる構成であっても良い。また、A/D変換器510から出力された電流値iαにローパスフィルタを適用せずに誘起電圧Eαを演算し、前記演算された誘起電圧Eαにローパスフィルタを適用する。ローパスフィルタを適用する前の誘起電圧Eαとローパスフィルタを適用した後の誘起電圧Eα´とを用いる構成であっても良い。更に、本実施形態では、A相の巻線における電流値又は誘起電圧又は駆動電圧を用いて時間差cnt_diffを決定しているが、この限りではない。例えば、B相の巻線における電流値又は誘起電圧又は駆動電圧を用いても良いし、A相の巻線とB相の巻線との両方を用いて時間差cnt_diffを決定しても良い。また、本実施形態においては、電流値iα及び誘起電圧Eα´が正の値から負の値へと変化するタイミングの時間差cnt_diffを決定しているがこの限りではない。例えば、電流値iα及び誘起電圧Eα´が、負の値から正の値へと変化するタイミングの時間差、又は、最大となるタイミングの時間差、又は、最小となるタイミングの時間差、のいずれかを決定する構成であっても良い。
位相差決定器514によって決定された時間差cnt_diffは位相補正器520に出力される。また、位相補正器520には誘起電圧演算器512から出力された誘起電圧Eα´及びEβ´が入力される。
位相補正器520は、時間差cnt_diffに基づいて誘起電圧Eα´及びEβ´の位相を補正する。即ち、位相補正器520は、時間差cnt_diffを用いて、ローパスフィルタ518によって生じた位相の遅れを補正し、位相が補正された誘起電圧Eα及びEβを位置推定器513に出力する。位置推定器513は、式(9)を用いて回転位置θを推定する。なお、本実施形態においては、時間差cnt_diffを用いて誘起電圧Eα´及びEβ´の位相を補正したがこれに限定されるものではない。即ち、時間差cnt_diffを用いて、誘起電圧を演算する際に用いられる駆動電圧Vα´及びVβ´、駆動電流iα´及びiβ´の位相を補正し、位相が補正された駆動電圧及び駆動電流を用いて誘起電圧を演算する。その後、演算された誘起電圧を用いて回転位置θを推定する構成であっても良い。
その後は、第1実施形態で説明した方法で、モータ制御装置158はモータ509の駆動を制御する。即ち、モータ制御装置158は、ベクトル制御を用いてモータの駆動制御を行う。ベクトル制御を用いてモータの駆動を制御することによって、モータが脱調状態となることや、余剰トルクに起因してモータ音が増大すること及び消費電力が増大することを抑制することができる。
以上のように、本実施形態におけるモータ制御装置158は、ローパスフィルタが適用されたことによって生じた位相の遅れを決定し、決定結果に基づいて誘起電圧の位相の補正を行い、位相が補正された誘起電圧を用いて回転子の位置を推定する。その後、推定された位置に基づいてモータの駆動制御を行う。この結果、ローパスフィルタを用いることによって生じる、実際の回転位置と推定された回転位置との誤差を可能な限り低減することができる。また、実際の回転位置と推定された回転位置との誤差を可能な限り低減することによって、モータの駆動制御が不安定になったり、制御不能な状態となったりすることを抑制することができる。
図7は、本実施形態におけるモータ制御装置158を用いたモータ駆動の制御方法を示すフローチャートである。以下、図7を用いて、本実施形態におけるモータ509の駆動制御について説明する。このフローチャートの処理は、CPU151aからの指示を受けたモータ制御装置158によって実行される。
まず、CPU151aがモータ制御装置158にenable信号‘H’を出力することにより、モータ制御装置158はモータ509の駆動制御を開始する。モータ制御装置158がベクトル制御を開始すると、S1001において、誘起電圧演算器512は、ローパスフィルタ518から出力された駆動電圧Vα´及びVβ´、駆動電流iα´及びiβ´に基づいて誘起電圧Eα´及びEβ´を演算する。その後、モータ制御装置158は処理をS1002に進める。
S1002において、位相差決定器514は、電流値iαが正の値から負の値へと変化するタイミングと誘起電圧Eα´の値が正の値から負の値へと変化するタイミングとの時間差cnt_diffを決定し、処理はS1003に進む。
S1003において、位相補正器520は、位相差決定器514から出力された時間差cnt_diffを用いて誘起電圧演算器512から出力された誘起電圧Eα´及びEβ´の位相を補正して、補正された誘起電圧Eα及びEβを出力する。その後、S1004において、位置推定器513は、式(9)を用いて位相補正器520から出力された誘起電圧Eα及びEβに基づいて回転位置θを推定し、処理はS1005に進む。
次に、S1005において、モータ制御装置がベクトル制御を続行する場合は、処理は再びS1001に戻る。S1005において、モータ制御装置がベクトル制御を終了する場合は、モータ制御装置158は処理を進めて、モータ制御装置はベクトル制御を終了する。
以上のように、本実施形態では、位置推定を行う前に、位置推定に用いられる信号(誘起電圧、駆動電流、駆動電圧等)の位相を補正し、位相が補正された信号に基づいて位置推定を行う。具体的には、ローパスフィルタが適用された駆動電圧Vα´及びVβ´、駆動電流iα´及びiβ´を用いて誘起電圧Eα´及びEβ´を演算する。また、ローパスフィルタが適用されていない電流値iαと誘起電圧演算器によって演算された誘起電圧Eα´との位相差を決定する。前記位相差に基づいて、誘起電圧Eα´及びEβ´の位相を補正し、位相が補正された誘起電圧Eα及びEβを用いて回転位置θを推定する。その後、推定された位置θに基づいてモータの駆動制御を行う。この結果、ローパスフィルタを用いることによって生じる、実際の回転位置と推定された回転位置との誤差を可能な限り低減することができる。また、実際の回転位置と推定された回転位置との誤差を可能な限り低減することによって、モータの駆動制御が不安定になったり、制御不能な状態となったりすることを抑制することができる。
なお、前述のような、位置推定に用いられる信号(誘起電圧、駆動電流、駆動電圧等)の位相を補正し、位相が補正された信号に基づいて位置推定を行う方法は、誘起電圧を用いて位置を推定する場合に限らず、他の推定方法においても適用することができる。例えば、モータの各相の巻線に供給する駆動電流に高周波成分の電流を重畳し、前記高周波成分の電流のみをバンドパスフィルタ等で抽出し、抽出された前記高周波成分の電流に基づいて位置推定を行う等の方法にも適用できる。
151a CPU
402 回転子
157 モータ制御装置
507、508 電流検出器
509 ステッピングモータ
518 ローパスフィルタ
513 位置推定器
514 位相差決定器
516 位置補正値決定器
517 位置補正器

Claims (15)

  1. モータの駆動を制御するモータ制御装置において、
    前記モータの回転子の回転位置又は回転速度のフィードバックを行い且つ前記モータの回転子の回転位置を基準とした回転座標系の電流値に基づいて前記モータの駆動を制御するモータ制御手段と、
    前記モータの各相の巻線に供給された駆動電流の電流値を検出し、検出した電流値に応じた信号を出力する電流検出手段と、
    前記電流検出手段から出力される信号から所定の周波数帯の成分を低減させるフィルタ回路と、
    前記フィルタ回路が適用される前の信号の位相と前記フィルタ回路が適用された後の信号の位相との位相差を決定する位相差決定手段と、
    前記フィルタ回路が適用された後の信号に基づいて前記モータの回転子の回転位置を推定する位置推定手段と、
    前記位相差決定手段によって決定された位相差に基づいて、前記位置推定手段によって推定された回転位置を補正する位置補正値を決定する位置補正値決定手段と、
    前記位置補正値決定手段によって決定された位置補正値に基づいて前記位置推定手段によって推定された回転位置を補正する位置補正手段と、
    を有し、
    前記モータ制御手段は、前記位置補正手段によって補正された回転位置に基づいて前記モータの駆動を制御することを特徴とするモータ制御装置。
  2. モータの駆動を制御するモータ制御装置において、
    前記モータの回転子の回転位置又は回転速度のフィードバックを行い且つ前記モータの回転子の回転位置を基準とした回転座標系の電流値に基づいて前記モータの駆動を制御するモータ制御手段と、
    前記モータの各相の巻線に供給された駆動電流の電流値を検出し、検出した電流値に応じた信号を出力する電流検出手段と、
    前記電流検出手段から出力される信号から所定の周波数帯の成分を低減させるフィルタ回路と、
    前記フィルタ回路が適用される前の信号の位相と前記フィルタ回路が適用された後の信号の位相との位相差を決定する位相差決定手段と、
    前記位相差決定手段によって決定された位相差に基づいて、前記フィルタ回路が適用された後の信号の位相を補正する位相補正手段と、
    前記位相補正手段によって補正された信号に基づいて前記モータの回転子の回転位置を推定する位置推定手段と、
    を有し、
    前記モータ制御手段は、前記位置推定手段によって推定された回転位置に基づいて前記モータの駆動を制御することを特徴とするモータ制御装置。
  3. 前記フィルタ回路は、前記電流検出手段から出力される信号から高周波成分のノイズを低減することを特徴とする請求項1又は2に記載のモータ制御装置。
  4. 前記モータ制御装置は、
    前記モータを駆動する駆動電流を前記モータの第1相の巻線及び第2相の巻線それぞれに供給する駆動電流を生成する電流供給手段と、
    前記電流供給手段を駆動する駆動電圧を生成する電圧生成手段と、
    前記電圧生成手段によって生成された駆動電圧と前記フィルタ回路が適用された後の駆動電流の電流値に応じた信号とから、前記モータの回転子の回転によって前記第1相の巻線及び第2相の巻線に発生する誘起電圧を演算する誘起電圧演算手段と、
    を有し、
    前記位相差決定手段は、前記フィルタ回路が適用される前の信号の位相と前記誘起電圧演算手段によって演算された誘起電圧の位相との位相差を決定することを特徴とする請求項1乃至3のいずれか一項に記載のモータ制御装置。
  5. 前記モータの第1相の巻線及び第2相の巻線に発生する誘起電圧の大きさ、及び、前記モータの第1相の巻線及び第2相の巻線それぞれに供給された駆動電流の電流値、及び、前記電圧生成手段によって生成される駆動電圧は、周期的に正弦波状に時間変化することを特徴とする請求項4に記載のモータ制御装置。
  6. 前記位相差決定手段は、前記誘起電圧演算手段によって演算された誘起電圧の値が正の値から負の値に変化するタイミングと前記電流検出手段から出力された信号が正の値から負の値に変化するタイミングとの時間差、又は、前記誘起電圧演算手段によって演算された誘起電圧の値が負の値から正の値に変化するタイミングと前記電流検出手段から出力された信号が負の値から正の値に変化するタイミングとの時間差、又は、前記誘起電圧演算手段によって演算された誘起電圧の値が最大となるタイミングと前記電流検出手段から出力された信号が最大となるタイミングとの時間差、又は、前記誘起電圧演算手段によって演算された誘起電圧の値が最小となるタイミングと前記電流検出手段から出力された信号が最小となるタイミングとの時間差、のいずれかを決定することを特徴とする請求項4又は5に記載のモータ制御装置。
  7. 前記モータ制御装置は、前記誘起電圧演算手段によって演算された、周期的に変化する誘起電圧の周期、又は、前記電流検出手段から出力された、周期的に変化する信号の周期、のいずれかを検出する周期検出手段を有し、
    前記位置補正値決定手段は、前記位相差決定手段によって決定された時間差を前記周期検出手段によって検出された周期で除算した値に基づいて前記位置補正値を決定することを特徴とする請求項1を引用する請求項5又は6に記載のモータ制御装置。
  8. 前記位置推定手段は、前記誘起電圧演算手段によって演算された前記第1相の誘起電圧の大きさと前記第2相の誘起電圧の大きさとの比から前記モータの回転子の回転位置を推定し、
    前記位置補正手段は、前記位置補正値決定手段によって決定された位置補正値に基づいて前記位置推定手段によって推定された前記モータの回転子の回転位置を補正し、
    前記モータ制御手段は、前記位置補正手段によって補正された回転位置に基づいて前記モータの駆動を制御することを特徴とする請求項1を引用する請求項4乃至7のいずれか一項に記載のモータ制御装置。
  9. 前記モータ制御装置は、
    上位装置から出力された指令位置と前記位置補正手段によって補正された回転位置との偏差が小さくなるように前記回転座標系における駆動電流の電流値を生成して出力する位置制御手段と、
    前記位置補正手段によって補正された回転位置に基づいて、前記電流検出手段によって検出された静止座標系の電流値を前記回転座標系の電流値へと座標変換する座標変換手段と、
    を有し、
    前記モータ制御手段は、前記位置制御手段から出力された電流値と前記座標変換手段によって座標変換された電流値との偏差が小さくなるように前記モータの第1相の巻線及び第2相の巻線に供給する駆動電流の電流値を制御することによって、前記モータの駆動を制御することを特徴とする請求項8に記載のモータ制御装置。
  10. 前記位相補正手段は、前記位相差決定手段によって決定された位相差に基づいて、前記誘起電圧演算手段によって演算された第1相及び第2相の誘起電圧の位相を補正し、
    前記位置推定手段は、前記位相補正手段によって位相が補正された第1相の誘起電圧の大きさと第2相の誘起電圧の大きさとの比から前記モータの回転子の回転位置を推定し、
    前記モータ制御手段は、前記位置推定手段によって推定された回転位置に基づいて前記モータの駆動を制御することを特徴とする請求項2を引用する請求項4乃至6のいずれか一項に記載のモータ制御装置。
  11. 前記モータ制御装置は、
    上位装置から出力された指令位置と前記位置推定手段によって推定された回転位置との偏差が小さくなるように前記回転座標系における駆動電流の電流値を生成して出力する位置制御手段と、
    前記位置推定手段によって推定された回転位置に基づいて、前記電流検出手段によって検出された静止座標系の電流値を前記回転座標系の電流値へと座標変換する座標変換手段と、
    を有し、
    前記モータ制御手段は、前記位置制御手段から出力された電流値と前記座標変換手段によって座標変換された電流値との偏差が小さくなるように前記モータの第1相の巻線及び第2相の巻線に供給する駆動電流の電流値を制御することによって、前記モータの駆動を制御することを特徴とする請求項10に記載のモータ制御装置。
  12. 前記駆動電流は、前記回転座標系において、前記モータの回転子にトルクを発生させる第1の電流成分と、前記モータの回転子の磁束強度に影響する第2の電流成分とを用いて表され、
    前記モータ制御手段は、前記第2の電流成分の値を0になるように制御し、前記第1の電流成分の値を制御することによって、前記モータの駆動を制御することを特徴とする請求項1乃至11のいずれか一項に記載のモータ制御装置。
  13. モータの駆動を制御するモータ制御装置において
    前記モータを駆動する駆動電流を前記モータの第1相の巻線及び第2相の巻線それぞれに供給する駆動電流を生成する電流供給手段と、
    前記電流供給手段を駆動する駆動電圧を生成する電圧生成手段と、
    前記電流供給手段によって前記モータの第1相の巻線及び第2相の巻線それぞれに供給された駆動電流の電流値を検出し、検出した電流値に応じた信号を出力する電流検出手段と、
    前記電流検出手段から出力される信号から高周波成分のノイズを低減するフィルタ回路と、
    前記電圧生成手段によって生成された駆動電圧と前記フィルタ回路が適用された後の駆動電流の電流値に応じた信号とから、前記モータの回転子の回転によって前記第1相の巻線及び第2相の巻線に発生する誘起電圧を演算する誘起電圧演算手段と、
    前記誘起電圧演算手段によって演算された前記第1相の誘起電圧の大きさと前記第2相の誘起電圧の大きさとの比から前記モータの回転子の回転位置を推定する位置推定手段と、
    前記誘起電圧演算手段によって演算された前記第1相の巻線の誘起電圧の値が正の値から負の値に変化するタイミングと前記電流検出手段から出力された信号が正の値から負の値に変化するタイミングとの時間差を決定する位相差決定手段と、
    前記誘起電圧演算手段によって演算された、周期的に正弦波状に時間変化する前記第1相の巻線の誘起電圧の周期を検出する周期検出手段と、
    前記位相差決定手段によって決定された時間差を前記周期検出手段によって検出された周期で除算した値に基づいて前記位置推定手段によって推定された回転位置を補正する位置補正値を決定する位置補正値決定手段と、
    前記位置補正値決定手段によって決定された位置補正値に基づいて前記位置推定手段によって推定された前記モータの回転子の回転位置を補正する位置補正手段と、
    上位装置から出力された指令位置と前記位置補正手段によって補正された回転位置との偏差が小さくなるように前記回転座標系における駆動電流の電流値を生成して出力する位置制御手段と、
    前記位置補正手段によって補正された回転位置に基づいて、前記電流検出手段によって検出された静止座標系の電流値を前記回転座標系の電流値へと座標変換する座標変換手段と、
    前記位置制御手段から出力された電流値と前記座標変換手段によって座標変換された電流値との偏差が小さくなるように前記モータの第1相の巻線及び第2相の巻線に供給する駆動電流の電流値を制御することによって、前記モータの駆動を制御することを特徴とするモータ制御装置。
  14. 記録媒体に画像を形成する画像形成装置であって、
    負荷を駆動するモータと、
    請求項1乃至13のいずれか一項に記載のモータ制御装置と、
    を有し、
    前記モータ制御装置は、前記負荷を駆動するモータの駆動を制御することを特徴とする画像形成装置。
  15. 前記負荷は、前記記録媒体を搬送する搬送ローラであることを特徴とする請求項14に記載の画像形成装置。
JP2016099646A 2016-05-18 2016-05-18 モータ制御装置及び画像形成装置 Pending JP2017208930A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016099646A JP2017208930A (ja) 2016-05-18 2016-05-18 モータ制御装置及び画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016099646A JP2017208930A (ja) 2016-05-18 2016-05-18 モータ制御装置及び画像形成装置

Publications (1)

Publication Number Publication Date
JP2017208930A true JP2017208930A (ja) 2017-11-24

Family

ID=60415099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016099646A Pending JP2017208930A (ja) 2016-05-18 2016-05-18 モータ制御装置及び画像形成装置

Country Status (1)

Country Link
JP (1) JP2017208930A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021010256A (ja) * 2019-07-02 2021-01-28 株式会社日立ハイテク ステッピングモータ制御装置、ステッピングモータ制御方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021010256A (ja) * 2019-07-02 2021-01-28 株式会社日立ハイテク ステッピングモータ制御装置、ステッピングモータ制御方法
JP7294917B2 (ja) 2019-07-02 2023-06-20 株式会社日立ハイテク ステッピングモータ制御装置、ステッピングモータ制御方法

Similar Documents

Publication Publication Date Title
JP6557512B2 (ja) モータ制御装置、シート搬送装置、原稿読取装置及び画像形成装置
JP6505155B2 (ja) モータ制御装置、シート搬送装置及び画像形成装置
JP6341950B2 (ja) シート搬送装置及び画像形成装置
JP6465848B2 (ja) モータ制御装置、シート搬送装置及び画像形成装置
JP6647262B2 (ja) モータ制御装置、シート搬送装置、原稿読取装置及び画像形成装置
JP6328172B2 (ja) モータ制御装置、シート搬送装置及び画像形成装置
JP2018007467A (ja) モータ制御装置及び画像形成装置
JP6643388B2 (ja) モータ制御装置、シート搬送装置、及び画像形成装置
JP6498227B2 (ja) シート搬送装置及び画像形成装置
JP2018207733A (ja) モータ制御装置、シート搬送装置、原稿給送装置、原稿読取装置及び画像形成装置
JP2017195761A (ja) モータ制御装置、シート搬送装置、原稿給送装置、原稿読取装置及び画像形成装置
JP6980555B2 (ja) モータ制御装置、シート搬送装置及び画像形成装置
JP2017208930A (ja) モータ制御装置及び画像形成装置
JP6900444B2 (ja) モータ制御装置、シート搬送装置、及び画像形成装置
JP6752871B2 (ja) モータ制御装置、シート搬送装置、原稿給送装置、原稿読取装置及び画像形成装置
JP2018019510A (ja) モータ制御装置及び画像形成装置
JP6720046B2 (ja) モータ制御装置、シート搬送装置、原稿読取装置及び画像形成装置
JP7208351B2 (ja) モータ制御装置、シート搬送装置、及び画像形成装置
JP7005733B2 (ja) モータ制御装置、シート搬送装置、及び画像形成装置
JP2020010581A (ja) モータ制御装置、シート搬送装置及び画像形成装置
JP2018033268A (ja) モータ制御装置及び画像形成装置
JP2018076154A (ja) 画像形成装置
JP6801065B2 (ja) モータ制御装置、シート搬送装置、原稿読取装置及び画像形成装置
JP2019101190A (ja) 画像形成装置
JP2018087076A (ja) シート搬送装置