JP2017139790A - Semiconductor device - Google Patents
Semiconductor device Download PDFInfo
- Publication number
- JP2017139790A JP2017139790A JP2017056864A JP2017056864A JP2017139790A JP 2017139790 A JP2017139790 A JP 2017139790A JP 2017056864 A JP2017056864 A JP 2017056864A JP 2017056864 A JP2017056864 A JP 2017056864A JP 2017139790 A JP2017139790 A JP 2017139790A
- Authority
- JP
- Japan
- Prior art keywords
- transistor
- mos transistor
- output
- type
- potential
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Electronic Switches (AREA)
Abstract
Description
本発明は、半導体装置に関し、特に、誘導性負荷を駆動するために好適に使用される半導体装置に関する。 The present invention relates to a semiconductor device, and more particularly to a semiconductor device suitably used for driving an inductive load.
負荷に電力を供給する半導体装置の一つとして、出力端子(負荷が接続される端子)と電源との間に出力トランジスタが接続された構成のハイサイドドライバが知られている。このような構成のハイサイドドライバは、出力トランジスタをスイッチングすることで、負荷への電力の供給が行われ、又は、負荷への電力の供給が遮断される。出力トランジスタとしては、例えば、MOS(metal oxide semiconductor)トランジスタやIGBT(insulated gate bipolar transistor)が用いられる。 As one of semiconductor devices that supply power to a load, a high-side driver having a configuration in which an output transistor is connected between an output terminal (terminal to which a load is connected) and a power supply is known. The high side driver having such a configuration supplies power to the load or cuts off supply of power to the load by switching the output transistor. As the output transistor, for example, a metal oxide semiconductor (MOS) transistor or an insulated gate bipolar transistor (IGBT) is used.
出力トランジスタとしてMOSトランジスタが用いられる場合(このようなMOSトランジスタを、以下、「出力MOSトランジスタ」という。)、ハイサイドドライバには、出力MOSトランジスタのゲートとソースの間に接続された短絡スイッチが設けられることがある(例えば、特開平3−198421号公報(引用文献1)参照)。この短絡スイッチは、出力MOSトランジスタのゲートとソースとを短絡して出力トランジスタを確実にオフ状態にするために用いられるものであり、出力MOSトランジスタをオフする場合にオンされる。短絡スイッチとしては、典型的には、MOSトランジスタが用いられる。短絡スイッチとして用いられるMOSトランジスタを、以下では、短絡MOSトランジスタという。 When a MOS transistor is used as the output transistor (such a MOS transistor is hereinafter referred to as an “output MOS transistor”), the high-side driver has a short-circuit switch connected between the gate and the source of the output MOS transistor. (See, for example, JP-A-3-198421 (Cited document 1)). This short-circuit switch is used for short-circuiting the gate and source of the output MOS transistor to reliably turn off the output transistor, and is turned on when the output MOS transistor is turned off. As the short-circuit switch, a MOS transistor is typically used. A MOS transistor used as a short-circuit switch is hereinafter referred to as a short-circuit MOS transistor.
発明者らは、上述されているような、出力トランジスタと短絡MOSトランジスタとを備えたハイサイドドライバについて検討している。 The inventors have studied a high side driver including an output transistor and a short-circuit MOS transistor as described above.
このような構成のハイサイドドライバにおいて発明者が見出した課題の一つは、出力端子の電位が電源電圧よりも高くなると、短絡MOSトランジスタの寄生バイポーラトランジスタがオンしてしまい、出力トランジスタをオンすることができなくなるという問題が発生し得るということである。ここで、例えば、出力端子に接続される負荷が誘導性負荷である場合には、出力端子の電位が電源電圧よりも高くなるという事態が発生し得るということに留意されたい。出力トランジスタをオンすることができなくなると、期待された電圧を出力端子から出力することができなくなり、これは、負荷への電力供給の制御の妨げになる。 One of the problems found by the inventors in the high-side driver configured as described above is that when the potential of the output terminal becomes higher than the power supply voltage, the parasitic bipolar transistor of the short-circuit MOS transistor is turned on, and the output transistor is turned on. The problem of being unable to do so can occur. Here, for example, when the load connected to the output terminal is an inductive load, it should be noted that a situation in which the potential of the output terminal becomes higher than the power supply voltage may occur. If the output transistor cannot be turned on, the expected voltage cannot be output from the output terminal, which hinders control of power supply to the load.
その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 Other problems and novel features will become apparent from the description of the specification and the accompanying drawings.
一実施形態では、半導体装置が、出力トランジスタと、短絡MOSトランジスタと、スイッチ素子とを具備している。出力トランジスタは、電源に接続される第1端子と、負荷に接続される出力端子に接続された第2端子とを備えている。短絡MOSトランジスタは、そのソースが出力端子に接続されている。スイッチ素子は、出力トランジスタの制御端子と短絡MOSトランジスタのドレインの間に接続されている。短絡MOSトランジスタは、該電源に接続される半導体基板に形成される。スイッチ素子は、該半導体基板に形成された半導体領域と、該半導体領域に形成され、出力トランジスタの制御端子に接続された第1拡散層と、該半導体領域に形成され、短絡MOSトランジスタのドレインに接続された第2拡散層とを含む。該スイッチ素子は、該半導体領域の電位によってオンオフするように構成されている。 In one embodiment, the semiconductor device includes an output transistor, a short-circuit MOS transistor, and a switch element. The output transistor includes a first terminal connected to the power supply and a second terminal connected to the output terminal connected to the load. The source of the short-circuit MOS transistor is connected to the output terminal. The switch element is connected between the control terminal of the output transistor and the drain of the short-circuit MOS transistor. The short-circuit MOS transistor is formed on a semiconductor substrate connected to the power source. The switch element is formed in the semiconductor region, a first diffusion layer formed in the semiconductor region and connected to the control terminal of the output transistor, and formed in the semiconductor region and connected to the drain of the short-circuit MOS transistor. And a connected second diffusion layer. The switch element is configured to be turned on / off by the potential of the semiconductor region.
他の実施形態では、半導体装置が、出力トランジスタと、短絡MOSトランジスタと、ディプレッション型のMOSトランジスタであるスイッチトランジスタとを具備している。出力トランジスタは、電源に接続される第1端子と、負荷に接続される出力端子に接続された第2端子とを有している。短絡MOSトランジスタは、そのソースが出力端子に接続されている。短絡MOSトランジスタとスイッチトランジスタとは、該電源に接続される半導体基板に形成される。スイッチトランジスタは、ドレインが出力トランジスタの制御端子に接続され、ソースとゲートとが短絡MOSトランジスタのドレインに接続されている。該スイッチトランジスタのバックゲートの電位は、出力トランジスタ及び短絡MOSトランジスタを制御する制御信号に応じて制御される。 In another embodiment, the semiconductor device includes an output transistor, a short-circuit MOS transistor, and a switch transistor that is a depletion type MOS transistor. The output transistor has a first terminal connected to the power supply and a second terminal connected to the output terminal connected to the load. The source of the short-circuit MOS transistor is connected to the output terminal. The short-circuit MOS transistor and the switch transistor are formed on a semiconductor substrate connected to the power source. The switch transistor has a drain connected to the control terminal of the output transistor, and a source and a gate connected to the drain of the short-circuit MOS transistor. The potential of the back gate of the switch transistor is controlled according to a control signal for controlling the output transistor and the short-circuit MOS transistor.
上記実施形態によれば、出力トランジスタと短絡MOSトランジスタとを備えた半導体装置において、短絡MOSトランジスタの寄生バイポーラトランジスタの動作に起因する不具合を防止することができる。 According to the above embodiment, in a semiconductor device including an output transistor and a short-circuit MOS transistor, it is possible to prevent problems caused by the operation of the parasitic bipolar transistor of the short-circuit MOS transistor.
以下では、本実施形態の技術的意義の理解を容易にするために、出力トランジスタと短絡MOSトランジスタとを備えるハイサイドドライバ、及び、このような構成のハイサイドドライバに生じ得る問題について詳細に説明する。 In the following, in order to facilitate understanding of the technical significance of the present embodiment, a high-side driver including an output transistor and a short-circuit MOS transistor and problems that may occur in the high-side driver having such a configuration will be described in detail. To do.
図1は、ハイサイドドライバ100の構成の一例を示す回路図である。図1のハイサイドドライバ100は、制御ロジック回路101と、チャージポンプ102と、ゲート抵抗103と、出力MOSトランジスタ104と、短絡MOSトランジスタ105と、インバータ106と、電源供給端子107と、出力端子108とを備えている。ここで、電源供給端子107は、電源(本実施形態では、バッテリ109)から電源電圧が供給される端子であり、出力端子108は、負荷110が接続される端子である。電源供給端子107の電位を、以下では、電位VCCと記載し、出力端子108の電位を、以下では、電位VOUTと記載する。
FIG. 1 is a circuit diagram showing an example of the configuration of the high-
制御ロジック回路101は、出力MOSトランジスタ104のオンオフを制御する制御信号SCTRLを生成する。
The
チャージポンプ102は、その出力がゲート抵抗103を介して出力MOSトランジスタ104のゲートに接続されており、制御信号SCTRLに応答して出力MOSトランジスタ104のゲートを駆動する駆動回路として動作する。詳細には、チャージポンプ102は、制御信号SCTRLがHighレベルのときに出力MOSトランジスタ104のゲートを電位VCCより高い電位(典型的には、電位VCCの2倍程度の電位)に駆動し、制御信号SCTRLがLowレベルのときには出力MOSトランジスタ104のゲートの駆動を停止する。
The output of the
出力MOSトランジスタ104は、電源供給端子107と出力端子108の間に接続されており、図1の構成では、出力MOSトランジスタ104としてNチャネルMOSトランジスタが用いられている。出力MOSトランジスタ104は、そのドレインが電源供給端子107に接続され、そのソースが出力端子108に接続されている。
The
短絡MOSトランジスタ105は、出力MOSトランジスタ104のゲートとソースを短絡する短絡スイッチとして用いられる。図1の構成では、短絡MOSトランジスタ105としてNチャネルMOSトランジスタが用いられている。短絡MOSトランジスタ105は、そのドレインが出力MOSトランジスタ104のゲートに接続され、ソースが出力MOSトランジスタ104のソース(又は、出力端子108)に接続されている。
The short-circuit MOS transistor 105 is used as a short-circuit switch that short-circuits the gate and source of the
インバータ106は、制御信号SCTRLの反転信号(相補の論理の信号)を生成して短絡MOSトランジスタ105のゲートに供給する。
The
このような構成のハイサイドドライバ100は、制御ロジック回路101によって制御信号SCTRLがHighレベルに設定されると、出力MOSトランジスタ104のゲート電位が、電位VCCよりも高い電位に設定されて出力MOSトランジスタ104がオン状態に設定される。出力MOSトランジスタ104がオン状態に設定されると、バッテリ109から負荷110に電圧が供給され、負荷110が駆動される。一方、制御信号SCTRLがLowレベルに設定されると、チャージポンプ102による出力MOSトランジスタ104のゲートの駆動が停止されると共に、短絡MOSトランジスタ105によって出力MOSトランジスタ104のソースとゲートがショートされる。これにより、出力MOSトランジスタ104がオフ状態に設定される。
Such a configuration of the high-
図1のハイサイドドライバ100において、出力MOSトランジスタ104と短絡MOSトランジスタ105とは、モノリシックに(即ち、同一の半導体基板に)集積化しても良いし、別々の半導体基板に形成しても良い。モノリシックに形成した構成は、ハイサイドドライバ100の部品数を減少させ、コストの低減に有用である。他方、出力MOSトランジスタの電気的特性を、(短絡MOSトランジスタを含む)制御回路と相違させるような場合には、出力MOSトランジスタを備えた第1のチップと、制御回路が形成された第2のチップとを備えたマルチチップ構成を採用することで、様々な性能のハイサイドドライバを提供しやすくなる。
In the high-
加えて、出願人は、誘導性負荷を駆動可能であるように、ハイサイドドライバ100を構成することを検討している。近年では、ハイサイドドライバ100は、様々な機器を駆動することが求められており、例えば、車載機器では、DC(直流)モータのような誘導性負荷を駆動することも求められることがある。
In addition, applicants are considering configuring the
図2は、このような構成のハイサイドドライバIC100Aの等価回路を示している。図2の構成では、ハイサイドドライバIC100Aに、制御ロジック回路101、チャージポンプ102、ゲート抵抗103、出力MOSトランジスタ104、短絡MOSトランジスタ105、インバータ106、電源供給端子107、及び、出力端子108がモノリシックに集積化されている。出力端子108に接続される負荷としては、DCモータ110Aが用いられている。DCモータ110Aは、等価回路としては、直列接続された、電機子インダクタンス111、電機子抵抗112、及び、誘導起電力を生成する電圧源113として表現できる。
FIG. 2 shows an equivalent circuit of the high-side driver IC 100A having such a configuration. In the configuration of FIG. 2, the
図3は、図2のハイサイドドライバIC100Aのうち、出力MOSトランジスタ104及び短絡MOSトランジスタ105の断面構造を概念的に示す図である。出力MOSトランジスタ104及び短絡MOSトランジスタ105は、いずれも、半導体基板121に形成されている。半導体基板121は、N+型基板122と、N+型基板122の上に形成されたN型エピタキシャル層123とを備えている。N+型基板122には、N型不純物が高濃度ドープ(heavily doped)されている。ここで、本明細書において「不純物が高濃度ドープされている」とは、縮退半導体が形成される程度の高い不純物濃度(典型的には、1020/cm3程度)で不純物がドープされていることを意味している。N+型基板122は、電源供給端子107に接続されている。N型エピタキシャル層123には、N型不純物がドープされている。N型エピタキシャル層123の表面部に、出力MOSトランジスタ104と短絡MOSトランジスタ105とが形成されている。
FIG. 3 is a diagram conceptually showing a cross-sectional structure of the
図3では、出力MOSトランジスタ104が、トレンチゲート構造を有するNチャネル縦型MOSFET(metal oxide semiconductor field effect transistor)として構成されている場合の構造を示す断面図が図示されている。詳細には、N型エピタキシャル層123の表面部に、P型不純物がドープされたP型ボディ領域124が形成されている。P型ボディ領域124を貫通するようにトレンチが形成され、そのトレンチを埋め込むようにゲート絶縁膜125及びゲート電極126が形成される。ここで、ゲート絶縁膜125はトレンチの内壁に沿って形成され、ゲート電極126は、ゲート絶縁膜125を挟んでP型ボディ領域124及びN型エピタキシャル層123に対向するように形成されている。加えて、P型ボディ領域124の表面部には、ゲート絶縁膜125に隣接する位置に、N型不純物が高濃度ドープされたN型拡散層127が形成されている。P型ボディ領域124の表面部には、更に、P型不純物が高濃度ドープされたP型拡散層128が形成されている。このような構成の出力MOSトランジスタ104では、N型拡散層127がソースとして機能し、半導体基板121及びN型エピタキシャル層123がドレインとして機能する。また、P型拡散層128がバックゲート端子として機能する。
FIG. 3 is a cross-sectional view showing a structure when the
一方、短絡MOSトランジスタ105は、横型NチャネルMOSFETとして構成されている。詳細には、N型エピタキシャル層123の表面部に、P型不純物がドープされたP型ボディ領域131が形成されている。P型ボディ領域131の表面部には、N型拡散層134及びN型拡散層135が形成されている。N型拡散層134及びN型拡散層135には、いずれも、N型不純物が高濃度ドープされている。P型ボディ領域131のN型拡散層134とN型拡散層135の間の領域(チャネル領域)を被覆するようにゲート絶縁膜132が形成され、そのゲート絶縁膜132の上側表面にゲート電極133が形成されている。加えて、P型ボディ領域131の表面部には、更に、P型不純物が高濃度ドープされたP型拡散層136が形成されている。このような構成の短絡MOSトランジスタ105では、N型拡散層134がソースとして機能し、N型拡散層135がドレインとして機能する。また、P型拡散層136が、バックゲート端子として機能する。
On the other hand, the short-circuit MOS transistor 105 is configured as a lateral N-channel MOSFET. Specifically, a P-
留意すべきことは、図3の構造においては、短絡MOSトランジスタ105に寄生バイポーラトランジスタ105aが形成されることである。より具体的には、N型拡散層135、P型ボディ領域131、及び、N型エピタキシャル層123は、それぞれ、NPN型寄生バイポーラトランジスタのコレクタ、ベース、及び、エミッタとして機能する。なお、図2の等価回路にも、寄生バイポーラトランジスタ105aが図示されている。
It should be noted that in the structure of FIG. 3, a parasitic
一つの問題は、出力端子108の電位VOUTが電源供給端子107の電位VCCよりも高い場合、制御信号SCTRLの信号レベルに関わらず、寄生バイポーラトランジスタ105aがオン状態になり得ることである。詳細には、P型ボディ領域131の電位は、概ね、出力端子108の電位VOUTに一致し、N型エピタキシャル層123の電位は、概ね、電源供給端子107の電位VCCに一致する。よって、出力端子108の電位VOUTが電源供給端子107の電位VCCよりも高い場合、P型ボディ領域131の電位がN型エピタキシャル層123の電位よりも高くなる。ここで、出力端子108に誘導性負荷(例えば、DCモータ110A)が接続されている場合には、誘導起電力により、出力端子108の電位VOUTが電源供給端子107の電位VCCよりも高くなるという事態が生じ得ることに留意されたい。出力端子108の電位VOUTが電源供給端子107の電位VCCよりも高い場合、NPN型の寄生バイポーラトランジスタ105aのベースの電位がエミッタの電位よりも高くなり、寄生バイポーラトランジスタ105aがオン状態になり得る。
One problem is, when the potential V OUT of the
寄生バイポーラトランジスタ105aがオン状態になると、出力MOSトランジスタ104のゲート電位が電位VCCになり、出力MOSトランジスタ104をオンすることができなくなる。これは、制御信号SCTRLによる出力MOSトランジスタ104の制御ができなくなることを意味しており、動作として好ましくない。以下では、短絡MOSトランジスタ105の寄生バイポーラトランジスタ105aの問題についての理解をより容易にするために、図4を参照しながら、図2、図3の構成のハイサイドドライバIC100Aの動作について説明する。
When the parasitic
期間T1:
期間T1(時刻t1〜t2)は、ハイサイドドライバIC100Aが初期状態にある期間である。期間T1において、DCモータ110Aが停止しており、電源供給端子107の電位VCC(即ち、バッテリ109からハイサイドドライバIC100Aに供給される電源電圧)が14Vであり、制御信号SCTRLがLowレベルであるとする。ここで、DCモータ110Aが停止している状態では、誘電起電力が発生せず、出力端子108の電位VOUTは接地電位GND(0V)になることに留意されたい。
Period T1:
A period T1 (time t1 to t2) is a period in which the high-side driver IC 100A is in an initial state. In the period T1, the DC motor 110A is stopped, the potential V CC of the power supply terminal 107 (that is, the power supply voltage supplied from the
期間T2:
期間T2(時刻t2〜t4)の開始時刻t2において、制御ロジック回路101により制御信号SCTRLがLowレベルからHighレベルにプルアップされたとする。このとき、チャージポンプ102によって出力MOSトランジスタ104のゲート電位VGが、電源供給端子107の電位VCCよりも高い電位(典型的には、2VCC)に駆動され、出力MOSトランジスタ104がオンされる。このとき、出力端子108の電位VOUTは、バッテリ109から供給される電源電圧(14V)にプルアップされ、(時刻t3)、バッテリ109からDCモータ110Aへの電力の供給が開始される。
Period T2:
Assume that the control signal S CTRL is pulled up from the Low level to the High level by the
期間T3:
期間T3(時刻t4〜t6)の開始時刻t4において、制御信号SCTRLがHighレベルからLowレベルにプルダウンされると、チャージポンプ102による出力MOSトランジスタ104のゲートの駆動が停止されると共に、短絡MOSトランジスタ105がオンされ、これにより、出力MOSトランジスタ104がオフされる。
Period T3:
When the control signal S CTRL is pulled down from the high level to the low level at the start time t4 of the period T3 (time t4 to t6), the drive of the gate of the
ここで、DCモータ110Aの回転子が慣性によって回転し続けると、誘導起電力により電機子に電圧が発生し、その電圧が出力端子108に印加される。よって、出力端子108の電位VOUTは、接地電位GNDには戻らず、ある程度の電位になることがある。図4では、誘電起電力により、時刻t5において出力端子108の電位VOUTが12Vになる場合が図示されている。このとき、短絡MOSトランジスタ105はオンされるので、出力MOSトランジスタ104のゲート電位VGも12Vになる。
Here, when the rotor of the DC motor 110 </ b> A continues to rotate due to inertia, a voltage is generated in the armature by the induced electromotive force, and the voltage is applied to the
期間T4:
その後、期間T4(時刻t6〜t8)の開始時刻t6において、バッテリ109の電圧が低下したとする。例えば、バッテリ109がハイサイドドライバIC100A以外の機器にも電力を供給している場合、その機器の消費電力によってはバッテリ109の電圧が低下することが起こり得ることに留意されたい。図4には、バッテリ109の電圧、即ち、電源供給端子107の電位VCCが時刻t7において10Vまで低下した場合の動作が図示されており、また、図5Aには、時刻t7におけるハイサイドドライバIC100Aの各ノードの電位も図示されている。
Period T4:
Thereafter, it is assumed that the voltage of the
図5Aに図示されているように、バッテリ109の電圧、即ち、電源供給端子107の電位VCCが低下し、出力端子108の電位VOUTの電位が電源供給端子107の電位VCCとPN接合の順方向電圧VF(N型エピタキシャル層123がシリコンの場合、約0.7V)の和よりも高くなると、短絡MOSトランジスタ105の寄生バイポーラトランジスタ105aがオンになる。寄生バイポーラトランジスタ105aがオンになると、P型ボディ領域131の電位が、電源供給端子107の電位VCCとPN接合の順方向電圧VFの和、即ち、10.7Vまで低下し、出力端子108の電位VOUTも10.7Vまで低下する。このとき、短絡MOSトランジスタ105がオンされて出力MOSトランジスタ104のソースとゲートが短絡されるため、出力MOSトランジスタ104のゲート電位も10.7Vまで低下する。ただし、制御信号SCTRLがLowレベルであり、元々、出力MOSトランジスタ104はオフ状態にあることが期待されているから、この段階では、寄生バイポーラトランジスタ105aがオンすることによる影響はない。
As shown in Figure 5A, the voltage of the
期間T5:
この状態で、期間T5(時刻t8以降)の開始時刻t8において、制御信号SCTRLがLowレベルからHighレベルにプルアップされたとする。図5Bには、期間T5におけるハイサイドドライバIC100Aの各ノードの電位が図示されている。制御信号SCTRLがHighレベルにプルアップされた場合、本来、チャージポンプ102によって出力MOSトランジスタ104のゲート電位VGが、電源供給端子107の電位VCCよりも高い電位(典型的には、2VCC)に駆動され、出力MOSトランジスタ104がオンされることが期待される。この場合、出力端子108の電位VOUTが10Vになるはずである。図5Bでは、チャージポンプ102から出力される電圧が、記号VG’として図示されている。
Period T5:
In this state, it is assumed that the control signal S CTRL is pulled up from the Low level to the High level at the start time t8 of the period T5 (after time t8). FIG. 5B shows the potential of each node of the high-side driver IC 100A in the period T5. When the control signal S CTRL is pulled up to the High level, inherently, the gate potential V G of the
しかしながら、寄生バイポーラトランジスタ105aがオン状態のままであるため、出力MOSトランジスタ104のゲート電位は10.7Vのままに維持され、したがって、出力MOSトランジスタ104をオン状態にすることはできない。このとき、出力端子108の電位VOUTも、(本来期待される10Vではなく)10.7Vになってしまう。これは、制御信号SCTRLによって出力MOSトランジスタ104のスイッチングを制御する機能が失われていることを意味しており、何らかの対処をすることが望ましい。
However, since the parasitic
上述の図3、図5A、図5Bは、出力MOSトランジスタ104と短絡MOSトランジスタ105がモノリシックに(即ち、同一の半導体基板に)集積化された例を図示しているが、出力MOSトランジスタ104と短絡MOSトランジスタ105との間でN+型基板122及びN型エピタキシャル層123が分断されている場合(つまり、出力MOSトランジスタ104と短絡MOSトランジスタ105が別々のチップに搭載されている場合)も動作は同じであるため、同様の対処が望まれる。
FIGS. 3, 5A, and 5B described above illustrate an example in which the
以下に述べられる本実施形態の半導体装置(ハイサイドドライバIC)では、このような問題に対処するための構成が採用される。 The semiconductor device (high-side driver IC) of the present embodiment described below employs a configuration for dealing with such a problem.
(第1の実施形態)
図6は、第1の実施形態のハイサイドドライバIC10の構成を示す回路図である。本実施形態のハイサイドドライバIC10は、DCモータ11を駆動する駆動システムに適用される。上述の通り、DCモータ11は、等価回路としては、直列接続された、電機子インダクタンス11a、電機子抵抗11b、及び、誘導起電力を生成する電圧源11cを備える誘導性負荷として表現できる。
(First embodiment)
FIG. 6 is a circuit diagram showing a configuration of the high-
本実施形態のハイサイドドライバIC10は、図2のハイサイドドライバIC100Aと同様に、制御ロジック回路1と、チャージポンプ2と、ゲート抵抗3と、出力MOSトランジスタ4と、短絡MOSトランジスタ5と、インバータ6と、電源供給端子7と、出力端子8とを備えている。ここで、電源供給端子7は、電源(本実施形態では、バッテリ9)から電源電圧が供給される端子であり、出力端子8は、負荷、本実施形態では、DCモータ11が接続される端子である。電源供給端子7の電位を、以下では、電位VCCと記載し、出力端子8の電位を、以下では、電位VOUTと記載する。
The high-
制御ロジック回路1は、出力MOSトランジスタ4のオンオフを制御する制御信号SCTRLを生成する。制御ロジック回路1が制御信号SCTRLを生成する動作は、例えば、ハイサイドドライバIC10を外部から制御するCPU(central processing unit)によって制御されても良い。
The control logic circuit 1 generates a control signal S CTRL that controls on / off of the
チャージポンプ2は、その出力がゲート抵抗3を介して出力MOSトランジスタ4のゲート(制御端子)に接続されており、制御信号SCTRLに応答して出力MOSトランジスタ4のゲートを駆動する駆動回路として動作する。詳細には、チャージポンプ2は、制御信号SCTRLがHighレベルのときに出力MOSトランジスタ4のゲートを電位VCCより高い電位(典型的には、電位VCCの2倍程度の電位)に駆動し、制御信号SCTRLがLowレベルのときには出力MOSトランジスタ4のゲートの駆動を停止する。
The output of the
ゲート抵抗3は、チャージポンプ2と出力MOSトランジスタ4のゲートの間で流れる充放電電流を抑制し、出力MOSトランジスタ4を保護する。
The
出力MOSトランジスタ4は、そのドレイン(第1端子)が電源供給端子7に接続され、そのソース(第2端子)が出力端子8に接続されており、そのゲート(制御端子)の電位に応じて、ドレイン(第1端子)とソース(第2端子)とを電気的に接続し、又は切り離す機能を有している。図6の構成では、出力MOSトランジスタ4としてNチャネルMOSトランジスタが用いられている。なお、出力MOSトランジスタ4のバックゲートは、ソースに接続されている。
The
短絡MOSトランジスタ5は、インバータ6から出力される制御信号SCTRLの反転信号に応答して出力MOSトランジスタ4のゲートとソースを短絡する短絡スイッチとして用いられる。図6の構成では、短絡MOSトランジスタ5としてNチャネルMOSトランジスタが用いられている。短絡MOSトランジスタ5は、そのドレインが(後述のスイッチトランジスタ12を介して)出力MOSトランジスタ4のゲートに接続され、ソースが出力MOSトランジスタ4のソース(又は、出力端子8)に接続されている。なお、短絡MOSトランジスタ5のバックゲートは、そのソースに接続されている。
The short-
インバータ6は、制御信号SCTRLの反転信号(相補の論理の信号)を生成して短絡MOSトランジスタ5のゲートに供給する。
The
加えて、本実施形態のハイサイドドライバIC10は、スイッチトランジスタ12と、負荷抵抗13と、バックゲート制御トランジスタ14とを備えている。
In addition, the high-
スイッチトランジスタ12は、出力MOSトランジスタ4のゲートと短絡MOSトランジスタ5のドレインの間に接続されたスイッチとして機能するMOSトランジスタである。本実施形態では、スイッチトランジスタ12として、ディプレッション型のNチャネルMOSトランジスタが用いられる。スイッチトランジスタ12のゲート及びソースは、短絡MOSトランジスタ5のドレインに共通に接続されており、スイッチトランジスタ12のドレインは、出力MOSトランジスタ4のゲートに接続されている。ここで、ディプレッション型のNチャネルMOSトランジスタはノーマリオン(normally ON)であり、且つ、スイッチトランジスタ12のソースとゲートは短絡されているから、スイッチトランジスタ12のオンオフは、バックゲートの電位(又は、P型ボディ領域の電位)を制御することによって制御されることに留意されたい。
The
負荷抵抗13とバックゲート制御トランジスタ14は、制御信号SCTRLに応答してスイッチトランジスタ12のバックゲート(又は、P型ボディ領域)の電位を制御するバックゲート制御回路15を構成している。詳細には、負荷抵抗13は、スイッチトランジスタ12のバックゲートに接続された接続ノードN1と短絡MOSトランジスタ5のソース(即ち、出力端子8)の間に接続されている。
The
また、バックゲート制御トランジスタ14は、制御信号SCTRLに応答して接続ノードN1を接地端子16に接続し、又は、切り離すスイッチ素子として動作する。バックゲート制御トランジスタ14は、そのドレインが接続ノードN1に接続され、ソースが接地端子16に接続されている。バックゲート制御トランジスタ14のゲートには制御信号SCTRLが供給され、バックゲートは接地端子16に接続されている。このような構成のバックゲート制御回路15は、制御信号SCTRLがHighレベルの場合、スイッチトランジスタ12のバックゲートを接地電位GNDに設定する。一方、制御信号SCTRLがLowレベルの場合、バックゲート制御回路15は、スイッチトランジスタ12のバックゲートを出力端子8の電位VOUTと同一の電位に設定する動作を行う。
The back
上述の制御ロジック回路1、チャージポンプ2、ゲート抵抗3、出力MOSトランジスタ4、短絡MOSトランジスタ5、インバータ6、電源供給端子7、出力端子8、スイッチトランジスタ12、負荷抵抗13、バックゲート制御トランジスタ14は、モノリシックに(即ち、同一の半導体基板に)集積化される。なお、後述されるように、本実施形態の半導体装置に、マルチチップ構成が採用されてもよい。例えば、本実施形態の半導体装置が、ゲート抵抗3と出力MOSトランジスタ4を集積化した第1の半導体チップと、制御ロジック回路1、チャージポンプ2、短絡MOSトランジスタ5、インバータ6、スイッチトランジスタ12、負荷抵抗13、バックゲート制御トランジスタ14を集積化した第2の半導体チップとを備えていても良い。
Control logic circuit 1,
図7は、ハイサイドドライバIC10のうち、出力MOSトランジスタ4、短絡MOSトランジスタ5、スイッチトランジスタ12及びバックゲート制御トランジスタ14が形成された部分の断面構造を概念的に示した断面図である。出力MOSトランジスタ4、短絡MOSトランジスタ5、スイッチトランジスタ12、及び、バックゲート制御トランジスタ14は、いずれも、半導体基板21に形成されている。半導体基板21は、N+型基板22と、そのN+型基板22の上に形成されたN型エピタキシャル層23とを備えている。N+型基板22は、N型不純物が高濃度ドープ(heavily doped)された半導体で形成されており、電源供給端子7に接続されている。N+型基板22は、N型不純物が高濃度ドープされた半導体領域として機能する。N型エピタキシャル層23は、N型不純物がドープされた半導体領域(即ち、導電型がN型の半導体領域)であり、そのN型エピタキシャル層23の表面部に、出力MOSトランジスタ4、短絡MOSトランジスタ5、スイッチトランジスタ12及びバックゲート制御トランジスタ14が形成されている。
FIG. 7 is a cross-sectional view conceptually showing a cross-sectional structure of a portion of the high-
図7では、出力MOSトランジスタ4が、トレンチゲート構造を有するNチャネル縦型MOSFET(metal oxide semiconductor field effect transistor)として構成されている場合の構造を示す断面図が図示されている。詳細には、N型エピタキシャル層23の表面部に、P型ボディ領域24が形成されている。P型ボディ領域24は、P型不純物がドープされている半導体領域(即ち、導電型がP型である半導体領域)である。P型ボディ領域24を貫通するようにトレンチが形成され、そのトレンチを埋め込むようにゲート絶縁膜25及びゲート電極26が形成される。ここで、ゲート絶縁膜25はトレンチの内壁に沿って形成され、ゲート電極26は、ゲート絶縁膜25を挟んでP型ボディ領域24及びN型エピタキシャル層23に対向するように形成されている。
FIG. 7 is a cross-sectional view showing a structure when the
加えて、P型ボディ領域24の表面部には、ゲート絶縁膜25に隣接する位置に、N型不純物が高濃度ドープされたN型拡散層27が形成されている。P型ボディ領域24の表面部には、更に、P型不純物が高濃度ドープされたP型拡散層28が形成されている。このような構成の出力MOSトランジスタ4では、N型拡散層27がソース端子として機能し、半導体基板21及びN型エピタキシャル層23がドレイン端子として機能する。また、P型拡散層28がバックゲート端子として機能する。なお、出力MOSトランジスタ4は、トレンチゲート構造を有する縦型MOSFETに限定されず、プレーナゲート型縦型MOSFETや、横型MOSFETであっても良い。
In addition, an N-
短絡MOSトランジスタ5は、横型NチャネルMOSFETとして構成されている。詳細には、N型エピタキシャル層23の表面部に、P型ボディ領域31が形成されている。P型ボディ領域31は、P型不純物がドープされている半導体領域(即ち、導電型がP型である半導体領域)である。P型ボディ領域31の表面部には、N型拡散層34及びN型拡散層35が形成されている。N型拡散層34及びN型拡散層35は、いずれも、N型不純物が高濃度ドープされている拡散層である。P型ボディ領域31のN型拡散層34とN型拡散層35の間の領域(チャネル領域)を被覆するようにゲート絶縁膜32が形成され、そのゲート絶縁膜32の上側表面にゲート電極33が形成されている。加えて、P型ボディ領域31の表面部には、更に、P型不純物が高濃度ドープされた拡散層であるP型拡散層36が形成されている。このような構成の短絡MOSトランジスタ5では、N型拡散層34がソースとして機能し、N型拡散層35がドレインとして機能する。また、P型拡散層36が、バックゲート端子として機能する。
The short-
スイッチトランジスタ12は、ディプレッション型の横型NチャネルMOSFETとして構成されている。詳細には、N型エピタキシャル層23の表面部に、P型ボディ領域41が形成されている。P型ボディ領域41は、P型不純物がドープされている半導体領域(即ち、導電型がP型である半導体領域)である。P型ボディ領域41の表面部には、N型拡散層44及びN型ド拡散層45が形成されている。N型拡散層44及びN型ド拡散層45には、いずれも、N型不純物が高濃度ドープされている。P型ボディ領域41の表面近傍には、更に、N型拡散層44とN型ド拡散層45の間の位置にN型不純物がドープされたN型チャネル領域47が形成されている。本実施形態のスイッチトランジスタ12の構造では、N型チャネル領域47が、スイッチトランジスタ12をディプレッション型NチャネルMOSFETとして機能させるために重要である。N型チャネル領域47を被覆するようにゲート絶縁膜42が形成され、そのゲート絶縁膜42を挟んでN型チャネル領域47に対向するようにゲート電極43が形成されている。加えて、P型ボディ領域41の表面部には、P型不純物が高濃度ドープされたP型拡散層46が形成されている。このような構成のスイッチトランジスタ12では、N型拡散層44がソースとして機能し、N型ド拡散層45がドレインとして機能する。また、P型拡散層46が、バックゲート端子として機能する。
The
バックゲート制御トランジスタ14も、短絡MOSトランジスタ5と同様に、横型NチャネルMOSFETとして構成されている。詳細には、N型エピタキシャル層23の表面部に、P型ボディ領域51が形成されている。P型ボディ領域51は、P型不純物がドープされている半導体領域(即ち、導電型がP型である半導体領域)である。P型ボディ領域51の表面部には、N型拡散層54及びN型拡散層55が形成されている。N型拡散層54及びN型拡散層55には、いずれも、N型不純物が高濃度ドープされている。P型ボディ領域51のN型拡散層54とN型拡散層55の間の領域(チャネル領域)を被覆するようにゲート絶縁膜52が形成され、そのゲート絶縁膜52の上側表面にゲート電極53が形成されている。加えて、P型ボディ領域51の表面部には、更に、P型不純物が高濃度ドープされたP型拡散層56が形成されている。このような構成の短絡MOSトランジスタ5では、N型拡散層54がソース端子として機能し、N型拡散層55がドレイン端子として機能する。また、P型拡散層56が、バックゲート端子として機能する。
Similarly to the short-
図7に図示された構造においても、短絡MOSトランジスタ5、スイッチトランジスタ12及びバックゲート制御トランジスタ14のそれぞれについて、寄生バイポーラトランジスタ5a、12a、14aが形成されることに留意されたい。即ち、N型エピタキシャル層23は、寄生バイポーラトランジスタ5a、12a、14aのエミッタとして機能し、P型ボディ領域31、41、51がベースとして機能し、N型拡散層35、45、55がコレクタとして機能する。
It should be noted that also in the structure illustrated in FIG. 7, parasitic
しかしながら、以下に詳細に議論されるように、本実施形態のハイサイドドライバIC10では、寄生バイポーラトランジスタ5a、12a、14aは、いずれも、ハイサイドドライバIC10の動作を阻害しない。即ち、本実施形態のハイサイドドライバIC10では、出力端子8の電位VOUTが電源供給端子7の電位VCCよりも高くなって短絡MOSトランジスタ5の寄生バイポーラトランジスタ5aがオン状態になっても、出力MOSトランジスタ4のゲートがスイッチトランジスタ12によって寄生バイポーラトランジスタ5aから電気的に切り離される。このため、出力端子8の電位VOUTが電源供給端子7の電位VCCよりも高くなっても出力MOSトランジスタ4をオン状態にすることができる。
However, as will be discussed in detail below, in the high-
以下では、本実施形態のハイサイドドライバIC10の動作について詳細に説明する。なお、以下では、制御ロジック回路1が、前述の図4のタイミングチャートに示されている波形で制御信号SCTRLを生成する場合のハイサイドドライバIC10の動作について説明する。
Hereinafter, the operation of the high-
期間T1:
図4を参照して、期間T1(時刻t1〜t2)は、ハイサイドドライバIC10が初期状態にある期間である。期間T1において、DCモータ11が停止しており、電源供給端子7の電位VCC(即ち、バッテリ9からハイサイドドライバIC10に供給される電源電圧)が14Vであり、制御信号SCTRLがLowレベルであるとする。ここで、DCモータ11が停止している状態では、誘電起電力が発生しないため、出力端子8の電位VOUTが接地電位GNDになる。図8は、期間T1におけるハイサイドドライバIC10の動作を示す回路図であり、図9は、期間T1におけるハイサイドドライバIC10の状態を示す断面図である。
Period T1:
Referring to FIG. 4, a period T1 (time t1 to t2) is a period in which the high-
期間T1においては、制御信号SCTRLがLowレベルであり、チャージポンプ2は出力MOSトランジスタ4のゲートを駆動しない。加えて、インバータ6から出力される制御信号SCTRLの反転信号はHighレベルであるため、短絡MOSトランジスタ5はオンされる。
In the period T1, the control signal S CTRL is at the low level, and the
また、バックゲート制御回路15においては、バックゲート制御トランジスタ14がオフされるため、スイッチトランジスタ12のバックゲートの電位が、出力端子8の電位VOUT、即ち、接地電位GNDになる。スイッチトランジスタ12のソース及びゲートは、短絡MOSトランジスタ5を介して出力端子8に接続されるから、スイッチトランジスタ12のソース及びゲートの電位は、出力端子8の電位VOUT、即ち、接地電位GNDになる。よって、スイッチトランジスタ12はオンされる。
In the back
この結果、出力MOSトランジスタ4のゲートは、短絡MOSトランジスタ5及びスイッチトランジスタ12を介して出力MOSトランジスタ4のソースに短絡され、出力MOSトランジスタ4はオフされる。なお、短絡MOSトランジスタ5、スイッチトランジスタ12、及び、バックゲート制御トランジスタ14の寄生バイポーラトランジスタ5a、12a、14aは、いずれも、オフ状態である。
As a result, the gate of the
期間T2:
図4を参照して、期間T2(時刻t2〜t4)の開始時刻t2において、制御ロジック回路1により制御信号SCTRLがLowレベルからHighレベルにプルアップされたとする。図10は、期間T2におけるハイサイドドライバIC10の動作を示す回路図であり、図11は、期間T2におけるハイサイドドライバIC10の状態を示す断面図である。
Period T2:
Referring to FIG. 4, assume that control signal S CTRL is pulled up from Low level to High level by control logic circuit 1 at start time t2 of period T2 (time t2 to t4). FIG. 10 is a circuit diagram illustrating the operation of the high-
このとき、チャージポンプ2によって出力MOSトランジスタ4のゲート電位VGが、電源供給端子7の電位VCCよりも高い電位(典型的には、2VCC)に駆動され、出力MOSトランジスタ4がオンされる。このとき、出力端子8の電位VOUTは、バッテリ9から供給される電源電圧(14V)、即ち、電源供給端子7の電位VCCにプルアップされ、(時刻t3)、バッテリ9からDCモータ11への電力の供給が開始される。また、インバータ6から出力される制御信号SCTRLの反転信号はLowレベルであるため、短絡MOSトランジスタ5はオフされる。
At this time, the gate potential V G of the
また、短絡MOSトランジスタ5のP型ボディ領域31の電位は、出力端子8の電位VOUT、即ち、電位VCCになり、且つ、N型エピタキシャル層23の電位も電位VCCであるから、寄生バイポーラトランジスタ5aはオフされる。P型ボディ領域31が、NPN型の寄生バイポーラトランジスタ5aのベース、N型エピタキシャル層23がエミッタとして機能することに留意されたい。よって、出力MOSトランジスタ4のゲート電位が、寄生バイポーラトランジスタ5aによって低下する問題は起こらない。
The potential of the P-
また、バックゲート制御回路15においては、制御信号SCTRLがHighレベルであることに応答してバックゲート制御トランジスタ14がオンされるため、スイッチトランジスタ12のバックゲートの電位が接地電位GNDになる。その一方で、短絡MOSトランジスタ5及びその寄生バイポーラトランジスタ5aがいずれもオフされるので、スイッチトランジスタ12のゲートとソースは、フローティングになる。この結果、スイッチトランジスタ12はオン状態を維持する。スイッチトランジスタ12は、ノーマリオンであることに留意されたい。このとき、図11に図示されているように、スイッチトランジスタ12、及び、バックゲート制御トランジスタ14のP型ボディ領域41、51の電位、即ち、寄生バイポーラトランジスタ12a、14aのベースの電位は、いずれも接地電位GNDであり、寄生バイポーラトランジスタ12a、14aも、オフ状態になる。
In the back
期間T3:
その後、図4に示されているように、期間T3(時刻t4〜t6)の開始時刻t4において、制御信号SCTRLがHighレベルからLowレベルにプルダウンされたとする。図12は、期間T3におけるハイサイドドライバIC10の動作を示す回路図であり、図13は、期間T3におけるハイサイドドライバIC10の状態を示す断面図である。
Period T3:
After that, as shown in FIG. 4, it is assumed that the control signal S CTRL is pulled down from the High level to the Low level at the start time t4 of the period T3 (time t4 to t6). 12 is a circuit diagram illustrating the operation of the high-
制御信号SCTRLがLowレベルにプルダウンされたことに応答して、チャージポンプ2は出力MOSトランジスタ4のゲートの駆動を停止する。一方、インバータ6から出力される制御信号SCTRLの反転信号はHighレベルであるため、短絡MOSトランジスタ5はオンされる。
In response to the control signal S CTRL being pulled down to the low level, the
また、バックゲート制御トランジスタ14がオフされるため、スイッチトランジスタ12のバックゲートの電位が、出力端子8の電位VOUTになる。また、短絡MOSトランジスタ5はオンされるので、スイッチトランジスタ12のソース及びゲートの電位は、出力端子8の電位VOUTになる。この結果、スイッチトランジスタ12はオンされる。このとき、出力MOSトランジスタ4のゲートは、短絡MOSトランジスタ5及びスイッチトランジスタ12を介して出力MOSトランジスタ4のソースに短絡され、よって、出力MOSトランジスタ4はオフされる。
Since the back
ここで、DCモータ11の回転子が慣性によって回転し続けると、誘導起電力により電機子に電圧が発生し、その電圧が出力端子8に印加される。図4に図示されているように、誘電起電力によって出力端子8の電位VOUTが12Vになる場合、図12、図13に図示されているように、出力MOSトランジスタ4のゲート電位VGも12Vになる。
Here, when the rotor of the DC motor 11 continues to rotate due to inertia, a voltage is generated in the armature by the induced electromotive force, and the voltage is applied to the
このとき、図13に図示されているように、短絡MOSトランジスタ5及びスイッチトランジスタ12のP型ボディ領域31、41の電位は、いずれも、出力端子8の電位VOUT(12V)であり、バックゲート制御トランジスタ14のP型ボディ領域51の電位は接地電位GNDである。よって、寄生バイポーラトランジスタ5a、12a、14aは、オフ状態になる。
At this time, as shown in FIG. 13, the potentials of the P-
期間T4:
その後、図4に示されているように、期間T4(時刻t6〜t8)の開始時刻t6においてバッテリ9の電圧が低下し始め、時刻t7において10Vになったとする。図14は、時刻t7におけるハイサイドドライバIC10の動作を示す回路図であり、図15は、時刻t7におけるハイサイドドライバIC10の状態を示す断面図である。このとき、制御信号SCTRLはLowレベルにプルダウンされたままなので、短絡MOSトランジスタ5及びスイッチトランジスタ12はオン状態を維持する。よって、出力MOSトランジスタ4のソースとゲートが短絡され、出力MOSトランジスタ4もオフ状態に維持される。
Period T4:
Thereafter, as shown in FIG. 4, it is assumed that the voltage of the battery 9 starts to decrease at the start time t6 of the period T4 (time t6 to t8) and becomes 10 V at time t7. FIG. 14 is a circuit diagram illustrating the operation of the high-
その一方で、図14、図15に図示されているように、バッテリ9の電圧、即ち、電源供給端子7の電位VCCが低下することにより、出力端子8の電位VOUTの電位が電源供給端子7の電位VCCとPN接合の順方向電圧VF(N型エピタキシャル層23がシリコンの場合、約0.7V)の和よりも高くなると、短絡MOSトランジスタ5とスイッチトランジスタ12の寄生バイポーラトランジスタ5a、12aはオン状態になる。短絡MOSトランジスタ5、スイッチトランジスタ12のP型ボディ領域31、41の電位は、出力端子8の電位VOUTの電位に一致し、また、N型エピタキシャル層23の電位は、電源供給端子7の電位VCCに一致していることに留意されたい。寄生バイポーラトランジスタ5a、12aがオン状態になると、P型ボディ領域31、41の電位が、電源供給端子7の電位VCCとPN接合の順方向電圧VFの和、即ち、10.7Vまで低下し、出力端子8の電位VOUTも10.7Vまで低下する。このとき、短絡MOSトランジスタ5及びスイッチトランジスタ12がオンされて出力MOSトランジスタ4のソースとゲートが短絡されるため、出力MOSトランジスタ4のゲート電位も10.7Vまで低下する。
On the other hand, FIG. 14, as illustrated in Figure 15, the voltage of the battery 9, i.e., by the potential V CC of the
ただし、制御信号SCTRLがLowレベルであり、元々、出力MOSトランジスタ4はオフ状態にあることが期待されているから、寄生バイポーラトランジスタ5a、12aがオンすることによる影響はない。
However, since the control signal S CTRL is at the low level and the
期間T5:
この状態で、図4に示されているように、期間T5(時刻t8以降)の開始時刻t8において、制御信号SCTRLがLowレベルからHighレベルにプルアップされたとする。図16は、期間T5におけるハイサイドドライバIC10の動作を示す回路図であり、図17は、期間T5におけるハイサイドドライバIC10の状態を示す断面図である。以下に詳細に議論するように、本実施形態のハイサイドドライバIC10においては、期間T5において、スイッチトランジスタ12がオフされると共に、その寄生バイポーラトランジスタ12aがオフされ、出力MOSトランジスタ4のゲートをチャージポンプ2によって高電位(具体的には、2VCC程度の電位)に駆動できることが重要である。
Period T5:
In this state, it is assumed that the control signal S CTRL is pulled up from the Low level to the High level at the start time t8 of the period T5 (after time t8) as shown in FIG. 16 is a circuit diagram illustrating the operation of the high-
詳細には、制御信号SCTRLがHighレベルにプルアップされたことに応答して、出力MOSトランジスタ4のゲート電位VGが、チャージポンプ2によって電源供給端子7の電位VCCよりも高い電位(典型的には、2VCC)に駆動される。また、インバータ6から出力される制御信号SCTRLの反転信号はLowレベルであるため、短絡MOSトランジスタ5はオフされる。
Specifically, in response to the control signal S CTRL being pulled up to a high level, the gate potential V G of the
ただし、短絡MOSトランジスタ5の寄生バイポーラトランジスタ5aは、オン状態になる。詳細には、短絡MOSトランジスタ5のP型ボディ領域31の電位は、出力端子8の電位VOUT(即ち、12V)になり、且つ、N型エピタキシャル層23の電位は電位VCC(即ち10V)になるから、寄生バイポーラトランジスタ5aのベースの電位がエミッタの電位と順方向電圧VFの和よりも高くなる。このため、寄生バイポーラトランジスタ5aがオンされる。寄生バイポーラトランジスタ5aがオン状態になると、スイッチトランジスタ12のソース及びゲートの電位が、電位VCC(即ち10V)になる。
However, the parasitic
ここで、本実施形態では、バックゲート制御回路15においては、制御信号SCTRLがHighレベルであることに応答してバックゲート制御トランジスタ14がオンされるため、スイッチトランジスタ12のバックゲート、即ちP型ボディ領域41の電位が接地電位GNDになる。よって、スイッチトランジスタ12のN型拡散層44とP型ボディ領域41の間に逆バイアスが印加されることになり、スイッチトランジスタ12がオフされる。また、スイッチトランジスタ12の寄生バイポーラトランジスタ12aについても、ベースとして機能するP型ボディ領域41の電位が、エミッタとして機能するN型エピタキシャル層23の電位よりも低くなるから、寄生バイポーラトランジスタ12aがオフされる。
Here, in the present embodiment, in the back
この結果、短絡MOSトランジスタ5の寄生バイポーラトランジスタ5aがオン状態になっても、出力MOSトランジスタ4のゲートを高電位に駆動することができ、出力MOSトランジスタ4をオンさせることができるようになる。この結果、出力端子8の電位VOUTは、バッテリ9から供給される電源電圧、即ち、電源供給端子7の電位VCCと同一の電位(10V)になる。
As a result, even if the parasitic
なお、出力端子8の電位VOUTが、電源供給端子7の電位VCCと同一の電位(10V)になった後は、短絡MOSトランジスタ5のP型ボディ領域31の電位も電源供給端子7の電位VCCと同一の電位になり、よって、寄生バイポーラトランジスタ5aは、オフ状態に戻る。寄生バイポーラトランジスタ5aがオフ状態になった後でも、出力MOSトランジスタ4のゲートを高電位に駆動することができることは、変わらないことに留意されたい。
Incidentally, the
以上に説明されているように、本実施形態のハイサイドドライバIC10においては、バッテリ9の電圧が低下して電源供給端子7の電位VCCが出力端子8の電位VOUTよりも低くなったときに短絡MOSトランジスタ5の寄生バイポーラトランジスタ5aが生じさせ得る問題を回避することができる。詳細には、電源供給端子7の電位VCCが出力端子8の電位VOUTよりも低くなったときに制御信号SCTRLがHighレベルにプルアップされると、バックゲート制御回路15の動作によってスイッチトランジスタ12がオフされると共に、その寄生バイポーラトランジスタ12aがオフされる。このため、電源供給端子7の電位VCCの低下によって短絡MOSトランジスタ5の寄生バイポーラトランジスタ5aがオンされても、出力MOSトランジスタ4のゲートが短絡MOSトランジスタ5から電気的に切り離される。よって、出力MOSトランジスタ4のゲートを高電位に駆動し、出力MOSトランジスタ4をオン状態にすることができる。
As described above, in the high-side driver IC10 of this embodiment, when the voltage of the battery 9 becomes lower than the potential V OUT of the potential V CC output terminal 8 of the
なお、上記の実施形態では、スイッチトランジスタ12としてディプレッション型のNチャネルMOSトランジスタが用いられているが、スイッチトランジスタ12の代わりに、下記のような条件を満たす他の構造のスイッチ素子を用いても良い:
(1)バッテリ9(即ち、電源)に接続された半導体基板に形成された半導体領域を有している。
(2)当該半導体領域に、短絡MOSトランジスタ5のドレインに接続された拡散層(不純物が高濃度ドープされた領域)と、出力MOSトランジスタ4のゲートに接続された拡散層とが形成されている。
(3)該半導体領域の電位をバックゲート制御回路15によって制御することで、短絡MOSトランジスタ5のドレインと出力MOSトランジスタ4のゲートの間を電気的に接続し、又は、切り離すことができる。
In the above embodiment, a depletion type N-channel MOS transistor is used as the
(1) It has a semiconductor region formed on a semiconductor substrate connected to the battery 9 (ie, power source).
(2) A diffusion layer connected to the drain of the short-circuit MOS transistor 5 (a region heavily doped with impurities) and a diffusion layer connected to the gate of the
(3) By controlling the potential of the semiconductor region by the back
図18は、上記の条件(1)〜(3)を満たす構造のスイッチ素子の他の例を示す断面図である。図18には、短絡MOSトランジスタ5のドレインと出力MOSトランジスタ4のゲートの間に接続されたスイッチトランジスタ(図18では、符号12Aによって参照)としてJFET(junction field effect transistor)が用いられた構造を示している。JFETも、ノーマリオンのトランジスタであることに留意されたい。詳細には、N型エピタキシャル層23の表面部に、P型不純物がドープされたP型半導体領域61が形成され、その内部に、N型不純物がドープされたN型ボディ領域62が形成されている。N型ボディ領域62の表面部には、P型不純物が高濃度ドープされたP型拡散層63と、N型不純物が高濃度ドープされたN型拡散層64、65とが形成されている。このような構成のスイッチトランジスタ12Aでは、P型拡散層63がゲート端子として機能し、N型拡散層64がソース端子として機能し、N型拡散層65がドレイン端子として機能する。
FIG. 18 is a cross-sectional view showing another example of a switch element having a structure satisfying the above conditions (1) to (3). FIG. 18 shows a structure in which a JFET (junction field effect transistor) is used as a switch transistor (referred to by reference numeral 12A in FIG. 18) connected between the drain of the short-
図18の構成においても、負荷抵抗13とバックゲート制御トランジスタ14で構成されるバックゲート制御回路15によってスイッチトランジスタ12AのN型拡散層64の電位、即ち、N型ボディ領域62の電位を制御することで、スイッチトランジスタ12Aを、上述のスイッチトランジスタ12と同様に動作させることができる。即ち、詳細には、電源供給端子7の電位VCCが出力端子8の電位VOUTよりも低くなったときに制御信号SCTRLがHighレベルにプルアップされると、バックゲート制御回路15の動作によってスイッチトランジスタ12Aがオフされる。このため、電源供給端子7の電位VCCの低下によって短絡MOSトランジスタ5の寄生バイポーラトランジスタ5aがオンされても、出力MOSトランジスタ4のゲートが短絡MOSトランジスタ5から電気的に切り離される。よって、出力MOSトランジスタ4のゲートを高電位に駆動し、出力MOSトランジスタ4をオン状態にすることができる。
In the configuration of FIG. 18 as well, the potential of the N-
上述の図7、図9、図11、図13、図15、図17、図18では、出力MOSトランジスタ4、短絡MOSトランジスタ5、スイッチトランジスタ(12又は12A)及びバックゲート制御トランジスタ14が、モノリシックに(即ち、同一の半導体基板に)集積化されている例を示した。しかし、後に詳細に説明するように、本実施形態の半導体装置は、例えば、出力MOSトランジスタ4が形成された半導体チップと、スイッチトランジスタ(12又は12A)、バックゲート制御トランジスタ14が集積化された半導体チップとを備える、マルチチップ構成の半導体装置として構成しても良い。
In FIGS. 7, 9, 11, 13, 15, 17, and 18, the
(第2の実施形態)
スイッチトランジスタ12としてディプレッション型のNチャネルMOSトランジスタを用いる第1の実施形態のハイサイドドライバIC10に起こり得る一つの問題は、出力端子8の電位VOUTが負電位になると、制御信号SCTRLがLowレベルであっても出力MOSトランジスタ4がオンする可能性があることである。制御信号SCTRLがLowレベルの場合、出力MOSトランジスタ4はオフ状態であることが期待されることに留意されたい。図19は、この問題について説明する図である。
(Second Embodiment)
One problem that may occur in the high-
NチャネルMOSトランジスタであるバックゲート制御トランジスタ14には、ソースからドレインに順方向電流を流すことができるボディダイオードが形成される。また、スイッチトランジスタ12においては、バックゲートからソースに順方向電流を流すことができる寄生ダイオードが形成され、また、バックゲートからドレインに順方向電流を流すことができる寄生ダイオードが形成される。このため、出力端子8の電位VOUTが−2VFよりも低くなると(ここで、VFは、ダイオードの順方向電圧)、図19の矢印18で示された経路、即ち、接地端子16から、バックゲート制御トランジスタ14、スイッチトランジスタ12、短絡MOSトランジスタ5を通過して出力端子8に到達する経路で電流が流れる。このとき、スイッチトランジスタ12はオン状態であるから、出力MOSトランジスタ4のゲートの電位は、スイッチトランジスタ12のソースの電位、即ち、−2VFになる。
The back
ここで、出力端子8の電位VOUTが、−2VF−VTH(ここで、VTHは、出力MOSトランジスタ4の閾値電圧)よりも低い場合には、出力MOSトランジスタ4のソース−ゲート電圧が閾値電圧VTHよりも高くなり、出力MOSトランジスタ4がオンしてしまう。第2の実施形態では、このような問題に対処するためのハイサイドドライバIC10Aの構成が提示される。
Here, when the potential V OUT of the
図20は、第2の実施形態のハイサイドドライバIC10Aの構成を示す回路図である。第2の実施形態では、接続ノードN1(スイッチトランジスタ12のバックゲートに接続されたノード)と接地端子16の間に、バックゲート制御トランジスタ14と直列にダイオード17が接続される。ダイオード17は、接地端子16から接続ノードN1に向かう電流を阻止するように(即ち、接地端子16から接続ノードN1から向かう方向がダイオード17の逆方向であるように)接続される。より具体的には、図20の構成では、ダイオード17のアノードが接続ノードN1に接続され、カソードがバックゲート制御トランジスタ14のドレインに接続されている。
FIG. 20 is a circuit diagram illustrating a configuration of a high-side driver IC 10A according to the second embodiment. In the second embodiment, a diode 17 is connected in series with the back
このような構成によれば、図19に図示されているような、接地端子16からバックゲート制御トランジスタ14、スイッチトランジスタ12、短絡MOSトランジスタ5を通過して出力端子8に到達する経路で流れる電流を阻止することができる。よって、本実施形態のハイサイドドライバIC10Aの構成によれば、出力端子8の電位VOUTが負電位である場合に、制御信号SCTRLがLowレベルであっても出力MOSトランジスタ4がオンする可能性があるという問題を解消することができる。
According to such a configuration, as shown in FIG. 19, the current flowing through the path from the
なお、バックゲート制御トランジスタ14とダイオード17の位置は、交換されても良い。この場合、バックゲート制御トランジスタ14のドレインが接続ノードN1に接続され、ソースがダイオード17のアノードに接続され、カソードが接地端子16に接続される。
The positions of the back
ダイオード17は、図21に図示されているように、出力MOSトランジスタ4、短絡MOSトランジスタ5、スイッチトランジスタ12及びバックゲート制御トランジスタ14と共に半導体基板21に集積化されても良い。図21は、ダイオード17がハイサイドドライバIC10Aが集積化された場合の、好適なダイオード17の構造を示す断面図である。好適な実施形態では、ダイオード17は、N型エピタキシャル層23の上に形成された絶縁層71の上に形成された、ポリシリコンのPN接合ダイオードとして形成される。具体的には、ダイオード17は、P型半導体領域72及びN型半導体領域73を含んでいる。P型半導体領域72は、P型不純物が高濃度ドープされたポリシリコンで形成され、N型半導体領域73は、N型不純物が高濃度ドープされたポリシリコンで形成される。このようなダイオード17の構造は、不所望な寄生素子が形成されない点で好適である。ダイオード17をN型エピタキシャル層23にP型不純物及びN型不純物を拡散することで形成すると、不所望な寄生素子が形成される可能性がある。ダイオード17をポリシリコンのPN接合ダイオードとして形成することで、不所望な寄生素子が形成される懸念を排除することができる。
The diode 17 may be integrated on the
なお、上記の実施形態では、制御ロジック回路1、チャージポンプ2、ゲート抵抗3、出力MOSトランジスタ4、短絡MOSトランジスタ5、インバータ6、電源供給端子7、出力端子8、スイッチトランジスタ12、負荷抵抗13、バックゲート制御トランジスタ14及び(存在する場合には)ダイオード17が同一の半導体基板に集積化されている例を図示して説明しているがハイサイドドライバIC10、10Aの構成は、このような構成に限定されない。上述の実施形態による利点(即ち、寄生バイポーラトランジスタ5aによる問題の解消)は、少なくとも、短絡MOSトランジスタ5とスイッチトランジスタ12が形成された半導体基板が、出力MOSトランジスタ4のドレインと共通にバッテリ9(即ち、電源)に接続された構成について得ることができることに留意されたい。
In the above embodiment, the control logic circuit 1, the
図22は、第1の実施形態の半導体装置(ハイサイドドライバIC)をマルチチップ構成に変更した構成のハイサイドドライバ10Bの構成の一例を示す回路図である。図22のハイサイドドライバ10Bは、出力トランジスタチップ20Aと、制御回路チップ20Bとを備えている。出力トランジスタチップ20Aには、ゲート抵抗3と、出力MOSトランジスタ4とが集積化されている。出力MOSトランジスタ4のドレインは、バッテリ9(即ち、電源)に接続された電源供給端子7Aに接続され、出力MOSトランジスタ4のソースは、出力端子8に接続されている。制御回路チップ20Bには、制御ロジック回路1、チャージポンプ2、短絡MOSトランジスタ5、インバータ6、スイッチトランジスタ12、負荷抵抗13及びバックゲート制御トランジスタ14が集積化されている。制御回路チップ20Bは、電源供給端子7Bを有しており、電源供給端子7Bは、バッテリ9に接続されている。制御回路チップ20Bに集積化された各回路は、バッテリ9から供給される電源電圧、又は、該電源電圧から発生した内部電源電圧の供給を受けて動作する。
FIG. 22 is a circuit diagram illustrating an example of a configuration of a high-side driver 10B having a configuration in which the semiconductor device (high-side driver IC) of the first embodiment is changed to a multichip configuration. The high-side driver 10B of FIG. 22 includes an
図23は、ハイサイドドライバ10Bの出力トランジスタチップ20A及び制御回路チップ20Bの構造を部分的に示す断面図である。出力トランジスタチップ20Aは、半導体基板21Aを備えている。半導体基板21Aは、N+型基板22Aと、そのN+型基板22Aの上に形成されたN型エピタキシャル層23Aとを備えている。N+型基板22Aは、N型不純物が高濃度ドープ(heavily doped)された半導体で形成されており、電源供給端子7Aに接続されている。N型エピタキシャル層23Aは、N型不純物がドープされた半導体領域であり、そのN型エピタキシャル層23Aの表面部に、出力MOSトランジスタ4が形成されている。
FIG. 23 is a cross-sectional view partially showing the structures of the
制御回路チップ20Bは、半導体基板21Bを備えている。半導体基板21Bは、N+型基板22Bと、そのN+型基板22Bの上に形成されたN型エピタキシャル層23Bとを備えている。N+型基板22Bは、N型不純物が高濃度ドープ(heavily doped)された半導体で形成されており、電源供給端子7Bに接続されている。N型エピタキシャル層23Bは、N型不純物がドープされた半導体領域であり、そのN型エピタキシャル層23Bの表面部に、短絡MOSトランジスタ5、スイッチトランジスタ12及びバックゲート制御トランジスタ14が形成されている。
The
一方、図24は、第2の実施形態の半導体装置(ハイサイドドライバIC)をマルチチップ構成に変更した構成のハイサイドドライバ10Cの構成の一例を示す回路図である。図24のハイサイドドライバ10Bは、図22及び図23に図示された構造の出力トランジスタチップ20Aと、制御回路チップ20Cとを備えている。制御回路チップ20Cは、制御回路チップ20Bに、ダイオード17を追加した構造を有している。
On the other hand, FIG. 24 is a circuit diagram showing an example of a configuration of a high-side driver 10C having a configuration in which the semiconductor device (high-side driver IC) of the second embodiment is changed to a multichip configuration. The high side driver 10B of FIG. 24 includes an
図25は、ハイサイドドライバ10Cの出力トランジスタチップ20A及び制御回路チップ20Cの構造を部分的に示す断面図である。図25の出力トランジスタチップ20Aの構造は、図23に図示されている出力トランジスタチップ20Aと同様である。また、制御回路チップ20Cの構造は、N型エピタキシャル層23Bの上に形成された絶縁層71の上に、ダイオード17が形成されている点を除けば、図24に図示された制御回路チップ20Cの構造と同様である。図25の構造では、ダイオード17は、P型半導体領域72と:N型半導体領域73とを備える、ポリシリコンのPN接合ダイオードとして形成されている。
FIG. 25 is a cross-sectional view partially showing the structure of the
また、マルチチップ構成が採用される場合には、出力トランジスタチップ20Aに設けられる出力トランジスタとして、出力MOSトランジスタ4の代わりにIGBT(insulated gate bipolar transistor)が用いられてもよい。当業者には周知であるように、IGBTは、MOSトランジスタにコレクタ領域を追加的に設けた構造を採用することで電子と正孔の両方をキャリアとして使用可能なデバイスである。したがって、出力トランジスタとして、MOSトランジスタ4の代わりにIGBTを用いても、本質的な動作は変わらない。
When a multi-chip configuration is adopted, an insulated gate bipolar transistor (IGBT) may be used instead of the
図26は、図23に図示されたハイサイドドライバ10Bにおいて、出力トランジスタチップ20Aに設けられる出力トランジスタとして出力IGBT4Aが用いられる場合の構成を示す断面図である。出力トランジスタチップ20Aは、半導体基板81を備えている。半導体基板81は、P型コレクタ領域82と、N型ドレイン領域83(N型バッファ領域ともいう)と、N型エピタキシャル層84とを備えている。P型コレクタ領域82は、P型不純物が高濃度ドープされた半導体で形成されており、N型ドレイン領域83は、N型不純物が高濃度ドープされた半導体で形成されている。P型コレクタ領域82は、バッテリ9(即ち、電源)に接続された電源供給端子7Aに接続されており、コレクタ(第1端子)として機能する。N型ドレイン領域83は、P型コレクタ領域82の上に形成されており、ドレインとして機能する。N型エピタキシャル層84は、N型不純物がドープされた半導体領域であり、N型ドレイン領域83の上に形成されている。なお、N型ドレイン領域83は、必ずしも必要というわけではなく、なくても構わない。
FIG. 26 is a cross-sectional view showing a configuration in the case where the
N型エピタキシャル層84には、複数のP型ベース領域85が形成されており、該P型ベース領域85のそれぞれにはN型拡散層86が形成されている。P型ベース領域85は、P型不純物がドープされた半導体領域であり、また、N型拡散層86は、N型不純物が高濃度ドープされた半導体領域である。P型ベース領域85の表面部には、更に、P型不純物が高濃度ドープされたP型拡散層87が形成されている。P型ベース領域85は、離間的に設けられており、N型エピタキシャル層84は、隣接するP型ベース領域85の間を通って半導体基板81の表側主面81aに到達している。また、P型拡散層87及びN型拡散層86は、出力IGBT4Aのエミッタ(第2端子)として機能し、出力端子8に接続される。
A plurality of P-
更に、P型ベース領域85、及び、N型エピタキシャル層84の上面を部分的に被覆するようにゲート絶縁膜88が形成され、そのゲート絶縁膜88の上にゲート電極89が形成される。ゲート電極89は、P型ベース領域85の上面の一部に対向していると共に、N型エピタキシャル層84の上面の一部に対向するように設けられている。なお、ゲート絶縁膜88及びゲート電極89は、図3等のようなトレンチゲート構造であっても良い。
Further, a
当業者には周知であるように、IGBTは、MOSトランジスタにコレクタ領域を追加的に設けた構造を採用することで電子と正孔の両方をキャリアとして使用可能なデバイスである。したがって、出力トランジスタチップ20Aの出力トランジスタとして、出力MOSトランジスタ4の代わりに出力IGBT4Aを用いても、本質的な動作は変わらない。
As is well known to those skilled in the art, an IGBT is a device that can use both electrons and holes as carriers by adopting a structure in which a collector region is additionally provided in a MOS transistor. Therefore, even if the
図25に図示されたハイサイドドライバ10Bにおいても、出力トランジスタチップ20Aに設けられる出力トランジスタとして出力IGBT4Aが用いてもよい。図27は、図25に図示されたハイサイドドライバ10Bの出力トランジスタチップ20Aに出力IGBT4Aを設けた場合のハイサイドドライバ10Bの構成を示す断面図である。図27に図示されている出力トランジスタチップ20Aの出力IGBT4Aの構造は、図26に図示されている構造と同一である。
Also in the high side driver 10B illustrated in FIG. 25, the
なお、上記の図22〜図27には、マルチチップ構造の半導体装置が図示されているが、出力MOSトランジスタ4、短絡MOSトランジスタ5、スイッチトランジスタ12及びそれらを制御する回路群(上記の実施形態では、制御ロジック回路1、チャージポンプ2、ゲート抵抗3、インバータ6、負荷抵抗13、バックゲート制御トランジスタ14及び(存在する場合には)ダイオード17)が同一の半導体基板に集積化される構成は、部品点数を低減するために好適であることに留意されたい。
22 to 27 show a multi-chip semiconductor device, the
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。 As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.
100 :ハイサイドドライバ
100A :ハイサイドドライバIC
101 :制御ロジック回路
102 :チャージポンプ
103 :ゲート抵抗
104 :出力MOSトランジスタ
105 :短絡MOSトランジスタ
105a :寄生バイポーラトランジスタ
106 :インバータ
107 :電源供給端子
108 :出力端子
109 :バッテリ
110 :負荷
110A :DCモータ
111 :電機子インダクタンス
112 :電機子抵抗
113 :電圧源
121 :半導体基板
122 :N+型基板
123 :N型エピタキシャル層
124 :P型ボディ領域
125 :ゲート絶縁膜
126 :ゲート電極
127 :N型拡散層
128 :P型拡散層
131 :P型ボディ領域
132 :ゲート絶縁膜
133 :ゲート電極
134、135:N型拡散層
135 :N型拡散層
136 :P型拡散層
10 :ハイサイドドライバIC
1 :制御ロジック回路
2 :チャージポンプ
3 :ゲート抵抗
4 :出力MOSトランジスタ
5 :短絡MOSトランジスタ
5a :寄生バイポーラトランジスタ
6 :インバータ
7、7A、7B:電源供給端子
8 :出力端子
9 :バッテリ
10、10A:ハイサイドドライバIC
10B、10C:ハイサイドドライバ
11 :DCモータ
11a :電機子インダクタンス
11b :電機子抵抗
11c :電圧源
12、12A:スイッチトランジスタ
12a :寄生バイポーラトランジスタ
13 :負荷抵抗
14 :バックゲート制御トランジスタ
15 :バックゲート制御回路
16 :接地端子
17 :ダイオード
18 :矢印
21、21A、21B:半導体基板
22、22A、22B :N+型基板
23、23A、23B :N型エピタキシャル層
24 :P型ボディ領域
25 :ゲート絶縁膜
26 :ゲート電極
27 :N型拡散層
28 :P型拡散層
31 :P型ボディ領域
32 :ゲート絶縁膜
33 :ゲート電極
34、34:N型拡散層
36 :P型拡散層
41 :P型ボディ領域
42 :ゲート絶縁膜
43 :ゲート電極
44、45:N型拡散層
46 :P型拡散層
47 :N型チャネル領域
51 :P型ボディ領域
52 :ゲート絶縁膜
53 :ゲート電極
54、55:N型拡散層
56 :P型拡散層
61 :P型半導体領域
62 :N型ボディ領域
63 :P型拡散層
64、65:N型拡散層
71 :絶縁層
72 :P型半導体領域
73 :N型半導体領域
81 :半導体基板
81a :表側主面
82 :P型コレクタ領域
83 :N型ドレイン領域
84 :N型エピタキシャル層
85 :P型ベース領域
86 :N型拡散層
87 :P型拡散層
88 :ゲート絶縁膜
89 :ゲート電極
100: High-side driver 100A: High-side driver IC
DESCRIPTION OF SYMBOLS 101: Control logic circuit 102: Charge pump 103: Gate resistance 104: Output MOS transistor 105: Short
1: Control logic circuit 2: Charge pump 3: Gate resistor 4: Output MOS transistor 5: Short-
10B, 10C: High side driver 11: DC motor 11a: Armature inductance 11b: Armature resistor 11c: Voltage source 12, 12A: Switch transistor 12a: Parasitic bipolar transistor 13: Load resistor 14: Back gate control transistor 15: Back gate Control circuit 16: Ground terminal 17: Diode 18: Arrows 21, 21A, 21B: Semiconductor substrates 22, 22A, 22B: N + type substrates 23, 23A, 23B: N type epitaxial layer 24: P type body region 25: Gate insulation Film 26: Gate electrode 27: N type diffusion layer 28: P type diffusion layer 31: P type body region 32: Gate insulating film 33: Gate electrode 34, 34: N type diffusion layer 36: P type diffusion layer 41: P type Body region 42: Gate insulating film 43: Gate electrode 44, 45: N-type expansion Layer 46: P-type diffusion layer 47: N-type channel region 51: P-type body region 52: Gate insulating film 53: Gate electrode 54, 55: N-type diffusion layer 56: P-type diffusion layer 61: P-type semiconductor region 62: N type body region 63: P type diffusion layer 64, 65: N type diffusion layer 71: Insulating layer 72: P type semiconductor region 73: N type semiconductor region 81: Semiconductor substrate 81a: Front side main surface 82: P type collector region 83 : N-type drain region 84: N-type epitaxial layer 85: P-type base region 86: N-type diffusion layer 87: P-type diffusion layer 88: Gate insulating film 89: Gate electrode
Claims (5)
ゲート電極に入力された駆動電圧に基づく電源電圧を、出力端子に供給する出力トランジスタと、
前記出力トランジスタの前記ゲート電極と、前記出力端子とを接続する短絡トランジスタと、
前記出力トランジスタの前記ゲート電極と、前記短絡トランジスタのドレイン電極との間に直列に接続されたスイッチトランジスタと、
を具備し、
前記スイッチトランジスタは、前記スイッチトランジスタのバックゲートに印加された電圧によって制御される、
半導体装置。 A semiconductor device including a high-side driver,
An output transistor that supplies a power supply voltage based on the drive voltage input to the gate electrode to the output terminal;
A short-circuit transistor connecting the gate electrode of the output transistor and the output terminal;
A switch transistor connected in series between the gate electrode of the output transistor and a drain electrode of the short-circuit transistor;
Comprising
The switch transistor is controlled by a voltage applied to a back gate of the switch transistor;
Semiconductor device.
制御ロジック回路と、
バックゲート制御回路と、
をさらに含み、
前記制御ロジック回路は、前記出力トランジスタと、前記短絡トランジスタと、前記バックゲート制御回路とを制御し、
前記バックゲート制御回路は、前記電源電圧に基づいて、前記スイッチトランジスタのバックゲートを制御する、
半導体装置。 The semiconductor device according to claim 1,
A control logic circuit;
A back gate control circuit;
Further including
The control logic circuit controls the output transistor, the short circuit transistor, and the back gate control circuit,
The back gate control circuit controls a back gate of the switch transistor based on the power supply voltage;
Semiconductor device.
前記駆動電圧は、前記電源電圧より高い、
半導体装置。 The semiconductor device according to claim 1,
The drive voltage is higher than the power supply voltage;
Semiconductor device.
前記出力トランジスタは、半導体基板において縦型構造を有する、
半導体装置。 The semiconductor device according to claim 1,
The output transistor has a vertical structure in a semiconductor substrate.
Semiconductor device.
前記バックゲート制御回路は、前記出力トランジスタがオン状態にある時に、前記スイッチトランジスタのバックゲートに接地電圧を供給し、前記出力トランジスタがオフ状態にある時に、前記スイッチトランジスタのバックゲートに、前記出力端子から出力される出力電圧を供給する、
半導体装置。 The semiconductor device according to claim 2,
The back gate control circuit supplies a ground voltage to the back gate of the switch transistor when the output transistor is in an on state, and the output to the back gate of the switch transistor when the output transistor is in an off state. Supply the output voltage output from the terminal,
Semiconductor device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017056864A JP6370952B2 (en) | 2017-03-23 | 2017-03-23 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017056864A JP6370952B2 (en) | 2017-03-23 | 2017-03-23 | Semiconductor device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013150647A Division JP6117640B2 (en) | 2013-07-19 | 2013-07-19 | Semiconductor device and drive system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017139790A true JP2017139790A (en) | 2017-08-10 |
JP6370952B2 JP6370952B2 (en) | 2018-08-08 |
Family
ID=59566908
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017056864A Active JP6370952B2 (en) | 2017-03-23 | 2017-03-23 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6370952B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020047705A (en) * | 2018-09-18 | 2020-03-26 | 富士電機株式会社 | Semiconductor device and control method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006086507A (en) * | 2004-08-20 | 2006-03-30 | Nec Electronics Corp | Semiconductor device |
JP2012109937A (en) * | 2010-10-25 | 2012-06-07 | Renesas Electronics Corp | Power semiconductor device and method of operating the same |
WO2012137651A1 (en) * | 2011-04-04 | 2012-10-11 | ルネサスエレクトロニクス株式会社 | Power semiconductor device |
-
2017
- 2017-03-23 JP JP2017056864A patent/JP6370952B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006086507A (en) * | 2004-08-20 | 2006-03-30 | Nec Electronics Corp | Semiconductor device |
JP2012109937A (en) * | 2010-10-25 | 2012-06-07 | Renesas Electronics Corp | Power semiconductor device and method of operating the same |
WO2012137651A1 (en) * | 2011-04-04 | 2012-10-11 | ルネサスエレクトロニクス株式会社 | Power semiconductor device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020047705A (en) * | 2018-09-18 | 2020-03-26 | 富士電機株式会社 | Semiconductor device and control method thereof |
JP7206728B2 (en) | 2018-09-18 | 2023-01-18 | 富士電機株式会社 | SEMICONDUCTOR DEVICE AND SEMICONDUCTOR DEVICE CONTROL METHOD |
Also Published As
Publication number | Publication date |
---|---|
JP6370952B2 (en) | 2018-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6117640B2 (en) | Semiconductor device and drive system | |
JP5882407B2 (en) | Electronic circuit having reverse conducting IGBT and gate driver circuit | |
US7777279B2 (en) | Semiconductor device capable of avoiding latchup breakdown resulting from negative variation of floating offset voltage | |
US9412732B2 (en) | Semiconductor device | |
JPH04343476A (en) | Metallic-oxide semiconductor field-effect type transistor circuit | |
JPH10200102A (en) | Semiconductor device | |
US20180019742A1 (en) | Semiconductor device for high-voltage circuit | |
CN110556371A (en) | Rectifier device | |
JPH09129762A (en) | Semiconductor device | |
JP2928285B2 (en) | Active diode that can be integrated | |
US10192870B2 (en) | Semiconductor device | |
US9093523B2 (en) | Switching element and a diode being connected to a power source and an inductive load | |
US6972475B2 (en) | Semiconductor device | |
US7071516B2 (en) | Semiconductor device and driving circuit for semiconductor device | |
US10217765B2 (en) | Semiconductor integrated circuit | |
JP6370952B2 (en) | Semiconductor device | |
JP4023276B2 (en) | Driving circuit | |
US20030122149A1 (en) | Complex semiconductor device and electric power conversion appratus using it | |
EP1075029A1 (en) | Composite semiconductor device | |
JP2001068663A (en) | Mos thyristor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171227 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180221 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20180221 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180627 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180711 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6370952 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |