[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2017139385A - Production method of rare-earth magnet - Google Patents

Production method of rare-earth magnet Download PDF

Info

Publication number
JP2017139385A
JP2017139385A JP2016020173A JP2016020173A JP2017139385A JP 2017139385 A JP2017139385 A JP 2017139385A JP 2016020173 A JP2016020173 A JP 2016020173A JP 2016020173 A JP2016020173 A JP 2016020173A JP 2017139385 A JP2017139385 A JP 2017139385A
Authority
JP
Japan
Prior art keywords
powder
rare earth
producing
hydrogenated
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016020173A
Other languages
Japanese (ja)
Inventor
前田 徹
Toru Maeda
前田  徹
繁樹 江頭
Shigeki Egashira
繁樹 江頭
一誠 嶋内
Kazumasa Shimauchi
一誠 嶋内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Sintered Alloy Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Sintered Alloy Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Sintered Alloy Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Sintered Alloy Ltd
Priority to JP2016020173A priority Critical patent/JP2017139385A/en
Publication of JP2017139385A publication Critical patent/JP2017139385A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rare-earth magnet production method allowing for production of a rare-earth magnet with an excellent magnet characteristic even with an increased relative density.SOLUTION: The rare-earth magnet production method is provided that comprises: a preparation step of preparing a base powder composed of a rare earth-iron-based alloy including a rare earth element and an iron group element; a hydrogenation step of producing hydrogenated powder by applying a hydrogenation processing to the base powder at a temperature of disproportionation temperature or higher in an atmosphere including hydrogen; a granulation step of producing granulated powder obtained by consolidating powder particles of the hydrogenated powder by plastic deformation; a molding step of producing a molded article by applying pressure molding to the granulated powder; and a dehydrogenation step of applying a dehydrogenation processing to the molded article at a temperature of a re-coupling temperature or higher in the inert atmosphere or a reduced pressure atmosphere thereby producing a re-coupled material.SELECTED DRAWING: Figure 1

Description

本発明は、永久磁石などに利用される希土類磁石を製造する希土類磁石の製造方法に関する。   The present invention relates to a method for producing a rare earth magnet for producing a rare earth magnet used for a permanent magnet or the like.

モータや発電機などに希土類磁石が利用されている。従来の希土類磁石は、磁石用粉末を焼結した焼結磁石や、磁石用粉末をバインダ樹脂で固化したボンド磁石が主流である。代表的には、NdFe14Bを主相とするNd−Fe−B系合金を用いたネオジム磁石がある。その他、ボンド磁石の磁石用粉末として、SmFe17を主相とするSm−Fe−N系合金が検討されている。 Rare earth magnets are used in motors and generators. Conventional rare earth magnets are mainly sintered magnets obtained by sintering magnet powder, and bonded magnets obtained by solidifying magnet powder with a binder resin. Typically, there is a neodymium magnet using an Nd—Fe—B alloy having Nd 2 Fe 14 B as a main phase. In addition, Sm—Fe—N alloys containing Sm 2 Fe 17 N 3 as a main phase have been studied as magnet powders for bonded magnets.

焼結磁石やボンド磁石以外の希土類磁石として、特許文献1に記載される圧粉磁石がある。圧粉磁石は、Nd−Fe−B系合金やSm−Fe系合金などからなる原料粉末に水素化(HD:Hydrogenation−Disproportionation)処理を施してFeを含む成分を分離し、得られた水素化粉末を金型で成形し、この成形体に脱水素(DR:Desorption−Recombination)処理を施して再結合する工程を経て製造される。Sm−Fe−N系磁石では、更に脱水素処理後に窒化する工程を経る。   As rare earth magnets other than sintered magnets and bonded magnets, there is a dust magnet described in Patent Document 1. The dust magnet is obtained by subjecting raw material powder made of Nd-Fe-B alloy, Sm-Fe alloy, etc. to hydrogenation (HD) to separate Fe-containing components, and to obtain the obtained hydrogenation. It is manufactured through a process in which powder is molded with a mold, and this molded body is subjected to a dehydrogenation (DR: Desorption-Recombination) treatment and recombined. In the Sm—Fe—N-based magnet, a nitriding step is further performed after the dehydrogenation treatment.

上述の水素化粉末は、軟質なFeを含む成分を含むため、塑性変形性に優れる。このような水素化粉末を用いれば、相対密度が大きい成形体を形成でき、最終的に緻密な圧粉磁石が得られる。   Since the above-mentioned hydrogenated powder contains a component containing soft Fe, it is excellent in plastic deformability. If such a hydrogenated powder is used, a compact with a large relative density can be formed, and finally a dense dust magnet can be obtained.

特開2011−241453号公報JP 2011-241453 A

保磁力などの磁石特性により優れる希土類磁石が望まれる。
理論的には、磁石成分の割合が大きいほど磁石特性に優れる。上述のように水素化粉末を用いれば、相対密度が大きい成形体を形成でき(特許文献1の実施形態1,2)、磁石成分の割合が大きい圧粉磁石が得られる。しかし、相対密度が大きい成形体、特に80%以上、更に90%以上である成形体に脱水素処理や窒化処理を施しても、相対密度がより小さい成形体を用いた低密度な圧粉磁石に比較して、保磁力などの磁石特性を十分に向上できないとの知見を得た。また、成形圧力をより大きくすると(例、980MPa(10ton/cm)超)、相対密度を短時間で高められて生産性に優れるものの、保磁力などの磁石特性を向上し難く、上述の低密度な圧粉磁石よりも保磁力が低い場合もある(後述の試験例参照)。
Rare earth magnets that are superior in magnet properties such as coercive force are desired.
Theoretically, the larger the ratio of the magnet component, the better the magnet characteristics. If hydrogenated powder is used as described above, a compact having a large relative density can be formed (Embodiments 1 and 2 of Patent Document 1), and a dust magnet having a large proportion of magnet components can be obtained. However, a compact magnet with a low density using a compact having a smaller relative density even if it is subjected to dehydrogenation or nitriding on a compact having a large relative density, particularly 80% or more, and even 90% or more. As a result, it was found that the magnetic properties such as coercive force could not be sufficiently improved. Further, when the molding pressure is increased (eg, more than 980 MPa (10 ton / cm 2 )), although the relative density can be increased in a short time and the productivity is excellent, it is difficult to improve the magnet characteristics such as the coercive force. In some cases, the coercive force is lower than that of a dense dust magnet (see test examples described later).

そこで、本発明の目的の一つは、相対密度を大きくしても、磁石特性に優れる希土類磁石を製造できる希土類磁石の製造方法を提供することにある。   Accordingly, one object of the present invention is to provide a method for producing a rare earth magnet that can produce a rare earth magnet having excellent magnet characteristics even when the relative density is increased.

本発明の一態様に係る希土類磁石の製造方法は、
希土類元素と鉄族元素とを含む希土類−鉄系合金から構成される原料粉末を準備する準備工程と、
前記原料粉末に、水素を含む雰囲気中、不均化温度以上の温度で水素化処理を施して、水素化粉末を作製する水素化工程と、
前記水素化粉末の粉末粒子同士を塑性変形によって固めた造粒粉を作製する造粒工程と、
前記造粒粉を加圧成形して成形体を作製する成形工程と、
前記成形体に、不活性雰囲気中又は減圧雰囲気中、再結合温度以上の温度で脱水素処理を施して、再結合材を作製する脱水素工程とを備える。
A method for producing a rare earth magnet according to an aspect of the present invention includes:
Preparing a raw material powder composed of a rare earth-iron alloy containing a rare earth element and an iron group element;
A hydrogenation step of producing a hydrogenated powder by subjecting the raw material powder to a hydrogenation treatment at a temperature equal to or higher than a disproportionation temperature in an atmosphere containing hydrogen;
A granulating step for producing a granulated powder obtained by hardening powder particles of the hydrogenated powder by plastic deformation;
A molding step of pressure-molding the granulated powder to produce a molded body;
A dehydrogenation step of producing a recombination material by subjecting the molded body to a dehydrogenation treatment at a temperature equal to or higher than a recombination temperature in an inert atmosphere or a reduced pressure atmosphere.

上記の希土類磁石の製造方法は、相対密度を大きくしても、磁石特性に優れる希土類磁石を製造できる。   The above-described method for producing a rare earth magnet can produce a rare earth magnet having excellent magnet characteristics even when the relative density is increased.

試験例1で作製した試料No.1−7の再結合材の断面を光学顕微鏡で観察した顕微鏡写真である。Sample No. produced in Test Example 1 It is the microscope picture which observed the cross section of the recombining material of 1-7 with the optical microscope. 試験例1で作製した試料No.1−107の再結合材の断面を光学顕微鏡で観察した顕微鏡写真である。Sample No. produced in Test Example 1 It is the microscope picture which observed the cross section of the recombining material of 1-107 with the optical microscope.

[本発明の実施形態の説明]
本発明者らは、上述の水素化粉末を用いて相対密度が大きい成形体、特に相対密度が80%以上、更に90%以上である成形体に脱水素処理や窒化処理を施した場合に、保磁力などの磁石特性を十分に向上できない原因を検討した。その結果、相対密度が大きい成形体では、水素化粉末が塑性変形し易いために、成形体表面を形成する粉末粒子が金型と擦れ合って延びることで成形体表面の気孔を塞いだり、成形体内部を形成する粉末粒子同士が互いに押し潰すように変形することで成形体内部の気孔を塞いだりし易いとの知見を得た。成形圧力を大きくするほど、上述の気孔を塞ぐ問題が生じ易いとの知見を得た。上記気孔を塞ぐ原因の一つとして、水素化粉末が流動性に劣ることが考えられる。金型による水素化粉末の圧縮動作に伴って、金型内の水素化粉末が十分に流動すれば、金型内の水素化粉末に金型のパンチの押圧力が均一的に作用できる。しかし、流動し難い場合、金型のパンチの押圧力が金型内の水素化粉末に局所的に作用して不均一に押圧され易くなる結果、成形体内部の気孔を潰し易くなると考えられる(後述の図2参照)。また、不均一な押圧によって粉末粒子間の間隔が局所的に狭くなることも考えられる。上記間隔が狭い状態で脱水素処理が施されると、脱水素処理後の熱収縮によっても上記気孔を押し潰し易くなると考えられる。更に、水素化粉末が流動し難いと、脱型時に金型との摩擦力が大きくなり、成形体表面の気孔を潰し易くなると考えられる。
[Description of Embodiment of the Present Invention]
When the present inventors performed dehydrogenation treatment or nitriding treatment on a molded article having a large relative density using the above-described hydrogenated powder, in particular, a molded article having a relative density of 80% or more, more preferably 90% or more, The reason why the magnetic properties such as coercive force cannot be improved sufficiently was investigated. As a result, in a compact with a large relative density, the hydrogenated powder is easily plastically deformed, so that the powder particles forming the surface of the compact rub against the mold to extend the pores on the surface of the compact. It has been found that the powder particles forming the inside of the body are deformed so as to crush each other, thereby easily closing the pores inside the molded body. It was found that as the molding pressure was increased, the problem of blocking the above-described pores was likely to occur. One of the reasons for plugging the pores may be that the hydrogenated powder is inferior in fluidity. If the hydrogenated powder in the mold sufficiently flows along with the compression operation of the hydrogenated powder by the mold, the pressing force of the mold punch can uniformly act on the hydrogenated powder in the mold. However, when it is difficult to flow, it is considered that the pressing force of the punch of the mold locally acts on the hydrogenated powder in the mold and is easily pressed nonuniformly, so that the pores inside the molded body are easily crushed ( (See FIG. 2 below). It is also conceivable that the spacing between the powder particles is locally narrowed due to uneven pressing. When the dehydrogenation process is performed in a state where the interval is narrow, it is considered that the pores are easily crushed even by the thermal contraction after the dehydrogenation process. Further, if the hydrogenated powder is difficult to flow, it is considered that the frictional force with the mold becomes large at the time of demolding and the pores on the surface of the molded body are easily crushed.

上述の成形体の気孔は、脱水素処理時には成形体から水素を排出する排出路に、窒化処理時には成形体に窒素を導入する導入路に利用される。上述のように成形体表面や成形体内部の気孔が塞がれると、上記水素や窒素といった気体の通路を十分に備えられず、脱水素処理時には水素の排出、窒化処理時には窒素の導入が行い難くなる。窒素原子の原子径が水素原子よりも大きいことからも、窒素の導入が行い難くなる。脱水素処理や窒化処理の加熱温度をより高くしたり、処理時間をより長くしたりすれば、脱水素・再結合や窒化を十分に行える。しかし、高温、長時間で脱水素処理を行うと、再結合合金の結晶が粒成長する。保磁力は結晶サイズに反比例するため、粗大な結晶組織を有することで、相対密度が大きく、磁石成分の割合が大きいにも関わらず、保磁力などの磁石特性が低くなる。   The pores of the molded body described above are used as a discharge path for discharging hydrogen from the molded body during the dehydrogenation process, and as an introduction path for introducing nitrogen into the molded body during the nitriding process. If the pores inside the molded body or inside the molded body are blocked as described above, the gas passages such as hydrogen and nitrogen are not sufficiently provided, and hydrogen is discharged during dehydrogenation and nitrogen is introduced during nitriding. It becomes difficult. Since the atomic diameter of the nitrogen atom is larger than that of the hydrogen atom, it is difficult to introduce nitrogen. Dehydrogenation, recombination, and nitridation can be sufficiently performed by increasing the heating temperature of the dehydrogenation treatment or nitriding treatment or by increasing the treatment time. However, when dehydrogenation is performed at a high temperature for a long time, crystals of the recombined alloy grow. Since the coercive force is inversely proportional to the crystal size, having a coarse crystal structure lowers the magnet characteristics such as the coercive force even though the relative density is large and the ratio of the magnet component is large.

そこで、造粒粉を作製して流動性の改善を図ったところ、特定の造粒粉とすれば、高い相対密度に応じた高い保磁力を有する希土類磁石が得られた。
本発明は、上記の知見に基づくものである。
最初に本発明の実施態様を列記して説明する。
Then, when granulated powder was produced and fluidity | liquidity was improved, if it was set as specific granulated powder, the rare earth magnet which has a high coercive force according to high relative density was obtained.
The present invention is based on the above findings.
First, embodiments of the present invention will be listed and described.

(1)本発明の一態様に係る希土類磁石の製造方法は、
希土類元素と鉄族元素とを含む希土類−鉄系合金から構成される原料粉末を準備する準備工程と、
前記原料粉末に、水素を含む雰囲気中、不均化温度以上の温度で水素化処理を施して、水素化粉末を作製する水素化工程と、
前記水素化粉末の粉末粒子同士を塑性変形によって固めた造粒粉を作製する造粒工程と、
前記造粒粉を加圧成形して成形体を作製する成形工程と、
前記成形体に、不活性雰囲気中又は減圧雰囲気中、再結合温度以上の温度で脱水素処理を施して、再結合材を作製する脱水素工程とを備える。
(1) A method for producing a rare earth magnet according to an aspect of the present invention includes:
Preparing a raw material powder composed of a rare earth-iron alloy containing a rare earth element and an iron group element;
A hydrogenation step of producing a hydrogenated powder by subjecting the raw material powder to a hydrogenation treatment at a temperature equal to or higher than a disproportionation temperature in an atmosphere containing hydrogen;
A granulating step for producing a granulated powder obtained by hardening powder particles of the hydrogenated powder by plastic deformation;
A molding step of pressure-molding the granulated powder to produce a molded body;
A dehydrogenation step of producing a recombination material by subjecting the molded body to a dehydrogenation treatment at a temperature equal to or higher than a recombination temperature in an inert atmosphere or a reduced pressure atmosphere.

上記の希土類磁石の製造方法は、以下の理由により、上記水素化粉末を用いて相対密度を大きくする場合でも、保磁力などの磁石特性に優れる希土類磁石を製造できる。   The method for producing a rare earth magnet can produce a rare earth magnet having excellent magnet characteristics such as coercive force even when the relative density is increased using the hydrogenated powder for the following reasons.

成形に供する粉末を、水素化粉末の粉末粒子同士の塑性変形で固められた造粒粉、いわば有機バインダなどのバインダを用いていないバインダレス造粒粉とする。造粒粉の各粒子(2次粒子)は水素化粉末の粉末粒子(1次粒子)よりも大きく、流動性に優れる。例えば成形圧力を980MPa超、更に1470MPa(15ton/mm)以上などの高圧にして、相対密度が大きい成形体、例えば相対密度が80%以上、更に90%以上の成形体を製造する場合でも良好に流動できる。
かつ、この成形体は、造粒粉の界面に沿って形成される気孔を有する。造粒粉の各粒子は水素化粉末の粉末粒子よりも大きいため、上記気孔の断面積も大きくなり易く、成形時や脱型時などでも完全に塞がれ難い。従って、この成形体は、その表面から内部に連続する開気孔を成形体全体に亘って十分に有することができる。これらの開気孔は、脱水素処理時の水素の排出路、窒化処理時の窒素の導入路に利用できる。これらの気体の通路を利用できるため、脱水素処理や窒化処理を処理対象の全体に亘って均一的にかつ十分に施せて、磁石成分(再結合合金や窒化された合金)の割合を高められ、保磁力などの磁気特性の向上を有効に行える。
このように上記水素や窒素などの気体の通路を十分に備える成形体であれば、脱水素処理時や窒化処理時に温度を過度に高めたり、処理時間を過度に長くしたりすることなく、脱水素・再結合や窒化を進行できる。そのため、高温、長時間の脱水素処理に起因する再結合合金の結晶の粗大化を抑制し、微細な結晶組織を有する再結合材を得られる。
上記の希土類磁石の製造方法では、上記再結合材を素材とすることで、磁石成分の割合に応じた保磁力などを有することができるからである。
The powder used for molding is a granulated powder hardened by plastic deformation between powder particles of hydrogenated powder, that is, a binderless granulated powder that does not use a binder such as an organic binder. Each particle (secondary particle) of the granulated powder is larger than the powder particle (primary particle) of the hydrogenated powder and has excellent fluidity. For example, the molding pressure is higher than 980 MPa, further high pressure such as 1470 MPa (15 ton / mm 2 ) or more, and it is good even when producing a molded article having a large relative density, for example, a molded article having a relative density of 80% or more and further 90% or more. Can flow into.
And this molded object has a pore formed along the interface of granulated powder. Since each particle of the granulated powder is larger than the powder particle of the hydrogenated powder, the cross-sectional area of the pores is likely to be large, and it is difficult to be completely blocked even during molding or demolding. Therefore, this molded object can fully have the open pores which continue from the surface inside to the whole molded object. These open pores can be used as a hydrogen discharge path during dehydrogenation and a nitrogen introduction path during nitriding. Since these gas passages can be used, the ratio of magnet components (recombined alloys and nitrided alloys) can be increased by uniformly and sufficiently performing dehydrogenation and nitriding over the entire object to be treated. In addition, magnetic properties such as coercive force can be effectively improved.
In this way, if the molded body has sufficient gas passages such as hydrogen and nitrogen, dehydration can be performed without excessively increasing the temperature or excessively increasing the processing time during the dehydrogenation process or the nitriding process. Elemental recombination and nitridation can proceed. Therefore, the recombination material having a fine crystal structure can be obtained by suppressing the coarsening of the crystal of the recombination alloy due to the dehydrogenation treatment at a high temperature for a long time.
This is because, in the above rare earth magnet manufacturing method, by using the recombination material as a raw material, it is possible to have a coercive force according to the ratio of the magnet component.

また、バインダレス造粒粉とすることで、バインダの含有による磁石成分の割合の低下、バインダの残滓に起因する磁石特性の低下を招くことが無いからである。   Moreover, it is because it does not cause the fall of the ratio of the magnet component by containing of a binder, and the fall of the magnet characteristic resulting from the binder residue by setting it as binderless granulated powder.

(2)上記の希土類磁石の製造方法の一例として、
前記造粒工程は、
前記水素化粉末を用いて粉末圧延を行って圧延材を作製する圧延工程と、
前記圧延材を粉砕して、所定の大きさの前記造粒粉を得る分級工程とを備える形態が挙げられる。
(2) As an example of the method for producing the rare earth magnet,
The granulation step includes
A rolling process for producing a rolled material by performing powder rolling using the hydrogenated powder;
And a classification step of pulverizing the rolled material to obtain the granulated powder having a predetermined size.

上記形態は、所望の大きさのバインダレス造粒粉を容易に量産できる。上記形態では、代表的には薄い板状片からなる造粒粉を形成できる。   The said form can mass-produce the binderless granulated powder of a desired magnitude | size easily. In the said form, the granulated powder which consists of a thin plate-shaped piece typically can be formed.

(3)上記粉末圧延を行う希土類磁石の製造方法の一例として、前記造粒粉のアスペクト比を3以下とする形態が挙げられる。
アスペクト比は、板状である造粒粉の各粒子における厚さ(圧延材の厚さに実質的に等しい)に対する最大長さの比、最大長さ/厚さとする。測定方法は後述する。
(3) As an example of the manufacturing method of the rare earth magnet which performs said powder rolling, the form which makes the aspect ratio of the said granulated powder 3 or less is mentioned.
The aspect ratio is the ratio of the maximum length to the thickness (substantially equal to the thickness of the rolled material) in each particle of the granulated powder that is plate-like, and the maximum length / thickness. The measuring method will be described later.

上記形態は、以下の理由により、保磁力などの磁石特性により優れる希土類磁石を製造できる。上記形態で用いる造粒粉は、最大長さが比較的小さい板状片といえる。このような造粒粉で形成される成形体は、造粒粉の界面が十分に多く、この界面に沿って形成される上述の気体の通路を十分に有することができる。また、造粒粉の各粒子は、水素化粉末の粉末粒子の界面に沿って形成される気孔を有し、この気孔も上述の気体の通路に利用できる。造粒粉の各粒子に備える気体の通路の最短距離を、造粒粉の各粒子の最大長さ程度にすることができる。このように上記気体の通路を十分に有するため、相対密度を大きくする場合でも、高温、長時間の条件とはせずに脱水素処理などを行えるからである。   The said form can manufacture the rare earth magnet which is excellent in magnet characteristics, such as a coercive force, for the following reasons. The granulated powder used in the above form can be said to be a plate-like piece having a relatively small maximum length. The molded body formed of such granulated powder has a sufficient number of interfaces of the granulated powder, and can sufficiently have the above-described gas passages formed along this interface. Each particle of the granulated powder has pores formed along the interface of the powder particles of the hydrogenated powder, and these pores can also be used for the above-described gas passage. The shortest distance of the gas passage provided for each particle of the granulated powder can be set to about the maximum length of each particle of the granulated powder. This is because the gas passage is sufficiently provided, so that even when the relative density is increased, the dehydrogenation process or the like can be performed without the conditions of high temperature and long time.

(4)上記の希土類磁石の製造方法の一例として、前記成形体の相対密度を90%以上とする形態が挙げられる。
上記成形体の相対密度は、成形体の真密度に対する成形体の実際の密度とする。具体的には(成形体の密度/成形体の真密度)×100(%)とする。
成形体の密度は、例えば、含油状態でアルキメデス法によって求めたり、単純な形状であれば寸法及び質量を測定して計算によって求めたりすることができる。
成形体の真密度は、例えば、成形体を形成する水素化合金の構成相の構成比率及び構成相の組成、結晶構造を分析することで求めたり、水素化合金を粉末状態でピクノメータ法などによって実測することで求めたりすることができる。
本発明に係る希土類磁石の製造方法において造粒は、バインダレスで実施するため、成形体における水素化合金以外の領域は実質的に空隙であり、成形体の相対密度は水素化合金の体積比率と相関する値である。
(4) As an example of the method for producing the rare earth magnet, there may be mentioned a form in which the relative density of the molded body is 90% or more.
The relative density of the molded body is the actual density of the molded body with respect to the true density of the molded body. Specifically, (density of molded body / true density of molded body) × 100 (%).
The density of the molded body can be obtained by, for example, the Archimedes method in an oil-impregnated state, or can be obtained by calculation by measuring the dimensions and mass if the shape is simple.
The true density of the compact is obtained, for example, by analyzing the composition ratio of the constituent phases of the hydrogenated alloy forming the compact, the composition of the constituent phases, and the crystal structure, or by measuring the hydrogenated alloy in the powder state by the pycnometer method, etc. It can be obtained by actual measurement.
In the method for producing a rare earth magnet according to the present invention, since granulation is performed without a binder, the region other than the hydrogenated alloy in the compact is substantially void, and the relative density of the compact is the volume ratio of the hydrogenated alloy. This value correlates with.

上記形態は、相対密度が十分に大きく、磁石成分の割合を大きくできるため、保磁力などの磁石特性により優れる希土類磁石を製造できる。   In the above embodiment, since the relative density is sufficiently large and the ratio of the magnet component can be increased, it is possible to manufacture a rare earth magnet that is superior in magnet characteristics such as coercive force.

[本発明の実施形態の詳細]
以下、本発明の実施の形態を詳細に説明する。
[Details of the embodiment of the present invention]
Hereinafter, embodiments of the present invention will be described in detail.

[希土類磁石の製造方法]
実施形態に係る希土類磁石の製造方法は、水素化粉末を成形した後に脱水素処理を行って再結合材を製造する工程を経て、圧粉磁石を製造する。実施形態の希土類磁石の製造方法は、成形に供する粉末を水素化粉末のままとせず、水素化粉末を用いて作製した特定の造粒粉とする点を特徴の一つとする。特定の造粒粉で成形体を形成すると、相対密度が大きく、保磁力や残留磁化などの磁気特性にも優れる希土類磁石を製造できる。
[Rare earth magnet manufacturing method]
The manufacturing method of the rare earth magnet according to the embodiment manufactures a dust magnet through a process of forming a hydrogenated powder and then performing a dehydrogenation process to manufacture a recombined material. One feature of the method for producing a rare earth magnet of the embodiment is that the powder to be molded is not a hydrogenated powder, but is a specific granulated powder produced using the hydrogenated powder. When a compact is formed from a specific granulated powder, a rare earth magnet having a large relative density and excellent in magnetic properties such as coercive force and remanent magnetization can be produced.

実施形態の希土類磁石の製造方法の概略を述べると、原料粉末を準備する準備工程と、原料粉末に水素化処理を施す水素化工程と、水素化粉末を用いて上記特定の造粒粉を作製する造粒工程と、造粒粉を成形する成形工程と、成形体に脱水素処理を施す脱水素工程とを備える。以下、工程ごとに詳細に説明する。   The outline of the method for producing a rare earth magnet of the embodiment is described. A preparation step for preparing raw material powder, a hydrogenation step for subjecting the raw material powder to a hydrogenation treatment, and the above-mentioned specific granulated powder is produced using the hydrogenated powder. A granulating step, a molding step for molding the granulated powder, and a dehydrogenation step for subjecting the compact to a dehydrogenation process. Hereinafter, each process will be described in detail.

(準備工程)
準備工程では、希土類元素と鉄族元素とを含む希土類−鉄系合金から構成される原料粉末を準備する。
(Preparation process)
In the preparation step, a raw material powder composed of a rare earth-iron alloy containing a rare earth element and an iron group element is prepared.

・希土類−鉄系合金
希土類元素は、スカンジウム(Sc)、イットリウム(Y)、ランタノイド及びアクチノイドから選択される1種以上の元素が挙げられる。希土類元素として、ネオジム(Nd)、サマリウム(Sm)、プラセオジム(Pr)、セリウム(Ce)、ジスプロシウム(Dy)、及びYから選択される少なくとも1種の元素を含むと、磁石特性に優れる希土類磁石が得られて好ましい。Nd又はSmを含むと、磁石特性により優れる希土類磁石が得られる。
-Rare earth-iron-based alloy The rare earth element includes one or more elements selected from scandium (Sc), yttrium (Y), lanthanoids and actinoids. A rare earth magnet having excellent magnet characteristics when it contains at least one element selected from neodymium (Nd), samarium (Sm), praseodymium (Pr), cerium (Ce), dysprosium (Dy), and Y as the rare earth element Is preferable. When Nd or Sm is contained, a rare earth magnet having excellent magnet characteristics can be obtained.

希土類元素の含有量は、10質量%以上40質量%未満が挙げられる。Ndを含む組成では、Ndの含有量は25質量%以上(更に28質量%以上)35質量%以下が挙げられる。Smを含む組成では、Smの含有量は24質量%以上26.5質量%以下が挙げられる。Nd又はSmの含有量が上記の範囲内であれば、化学量論組成がNdFe14B又はSmFe17などの希土類−鉄系合金とすることができる。 The rare earth element content may be 10 mass% or more and less than 40 mass%. In the composition containing Nd, the content of Nd is 25% by mass or more (further 28% by mass or more) and 35% by mass or less. In the composition containing Sm, the Sm content is 24 mass% or more and 26.5 mass% or less. When the content of Nd or Sm is within the above range, a rare earth-iron alloy such as Nd 2 Fe 14 B or Sm 2 Fe 17 can be obtained as the stoichiometric composition.

鉄族元素は、鉄(Fe)、コバルト(Co)、及びニッケル(Ni)から選択される1種以上の元素が挙げられる。具体的には、Feを希土類−鉄系合金の主体(50質量%超)とする形態、FeとCoとの双方を含む形態などが挙げられる。FeとCoとを含む形態では、保磁力の更なる向上が望める。   Examples of the iron group element include one or more elements selected from iron (Fe), cobalt (Co), and nickel (Ni). Specifically, a form in which Fe is a main component of the rare earth-iron alloy (more than 50% by mass), a form containing both Fe and Co, and the like can be given. In the form containing Fe and Co, the coercive force can be further improved.

Ndを含む組成では、上述の希土類元素及び鉄族元素以外に、ホウ素(B)、炭素(C)、及び窒素(N)から選択される少なくとも1種の元素を含むことが挙げられる。BやC、Nの含有量は、0.1質量%以上5.0質量%以下、更に0.5質量%以上1.5質量%以下が挙げられる。   The composition containing Nd includes at least one element selected from boron (B), carbon (C), and nitrogen (N) in addition to the rare earth element and the iron group element described above. Examples of the content of B, C, and N include 0.1% by mass or more and 5.0% by mass or less, and further 0.5% by mass or more and 1.5% by mass or less.

希土類−鉄系合金は、更に、遷移金属元素、ガリウム(Ga)、アルミニウム(Al)、及び珪素(Si)から選択される1種以上の元素を含むことができる。遷移金属元素は、銅(Cu)、チタン(Ti)、マンガン(Mn)、ニオブ(Nb)などが挙げられる。これらの添加元素の含有量(複数の場合には合計含有量)は、0.1質量%以上20質量%以下、更に0.1質量%以上5質量%以下が挙げられる。これらの元素を含有すれば、保磁力の向上(例、Gaなど)などの効果が望める。これらの添加元素は、例えばFeの一部に置換されて存在する。
その他、希土類−鉄系合金は、不可避不純物の含有を許容する。
The rare earth-iron-based alloy can further include one or more elements selected from a transition metal element, gallium (Ga), aluminum (Al), and silicon (Si). Examples of the transition metal element include copper (Cu), titanium (Ti), manganese (Mn), niobium (Nb), and the like. The content of these additive elements (the total content in the case of plural elements) is 0.1% by mass or more and 20% by mass or less, and further 0.1% by mass or more and 5% by mass or less. If these elements are contained, effects such as improvement in coercive force (eg, Ga) can be expected. These additive elements are present, for example, by being replaced with part of Fe.
In addition, rare earth-iron alloys allow the inclusion of inevitable impurities.

希土類−鉄系合金の具体的な組成として、例えば以下が挙げられる。
〔Ndを含む組成〕
Nd−Fe−B系化合物(例、NdFe14B)を主相とするNd−Fe−B系合金、Nd−Fe−C系化合物(例、NdFe14C)を主相とするNd−Fe−C系合金、Nd−Fe−Co−B系化合物(例、Nd(Fe13Co)B)を主相とするNd−Fe−Co−B系合金、Nd−Fe−Co−C化合物(例、Nd(Fe13Co)C)を主相とするNd−Fe−Co−C系合金など
〔Smを含む組成〕
Sm−Fe系化合物(例、SmFe17,SmTiFe11)を主相とするSm−Fe系合金など
Specific examples of the rare earth-iron alloy include the following.
[Composition containing Nd]
Nd—Fe—B based alloy having Nd—Fe—B based compound (eg, Nd 2 Fe 14 B) as main phase, Nd—Fe—C based compound (eg, Nd 2 Fe 14 C) as main phase Nd-Fe-C-based alloys, Nd-Fe-Co-B-based alloys having Nd-Fe-Co-B-based compounds (eg, Nd 2 (Fe 13 Co 1 ) B) as the main phase, Nd-Fe-Co Nd—Fe—Co—C based alloys having a main phase of a —C compound (eg, Nd 2 (Fe 13 Co 1 ) C) [composition containing Sm]
Sm-Fe based alloys having Sm—Fe based compounds (eg, Sm 2 Fe 17 , Sm 1 Ti 1 Fe 11 ) as the main phase

・原料粉末
上記希土類−鉄系合金から構成される原料粉末の大きさは適宜選択できる。例えば、原料粉末の粉末粒子の最大径を10μm以上0.5mm以下とすることができる。最大径がこの範囲であれば、水素化処理を施したり、造粒粉を形成したりし易い。最大径が上記範囲で小さいほど、水素化処理を短時間でより確実に行い易いため、最大径を0.4mm以下、更に0.3mm以下、0.15mm(150μm)以下とすることができる。最大径が上記範囲で大きいほど取り扱い易く作業性に優れるため、最大径を30μm以上、更に40μm以上、50μm以上とすることができる。
原料粉末の最大径は、粉末の製造条件を調整したり、別途粉砕したりするなどして調整することができる。粉砕は、ArやNなどの不活性ガス雰囲気で行うと、希土類−鉄系合金の酸化を防止できる。
原料粉末の最大径とは、原料粉末の粉末粒子を任意の方向から平面視したときに最も長い部分の長さとする。
-Raw material powder The magnitude | size of the raw material powder comprised from the said rare earth-iron type alloy can be selected suitably. For example, the maximum diameter of the powder particles of the raw material powder can be 10 μm or more and 0.5 mm or less. If the maximum diameter is within this range, it is easy to perform a hydrogenation treatment or to form granulated powder. The smaller the maximum diameter is in the above range, the easier it is to perform the hydrogenation process in a shorter time, so the maximum diameter can be 0.4 mm or less, further 0.3 mm or less, and 0.15 mm (150 μm) or less. Since the larger the maximum diameter in the above range, the easier the handling and the better the workability, the maximum diameter can be set to 30 μm or more, further 40 μm or more, 50 μm or more.
The maximum diameter of the raw material powder can be adjusted by adjusting the powder production conditions or separately pulverizing. When the pulverization is performed in an inert gas atmosphere such as Ar or N 2 , oxidation of the rare earth-iron alloy can be prevented.
The maximum diameter of the raw material powder is the length of the longest portion when the powder particles of the raw material powder are viewed in plan from an arbitrary direction.

原料粉末の形状は、特に問わない。球状、棒状、薄片状などの種々の形状とすることができる。   The shape of the raw material powder is not particularly limited. Various shapes such as a spherical shape, a rod shape, and a flake shape can be used.

原料粉末の製造方法は、組成などに応じて選択することができる。具体的な方法として、急冷凝固法、還元拡散法、溶解鋳造法、ガスアトマイズ法などが挙げられる。急冷凝固法は、ストリップキャスト法、メルトスパン法などが挙げられる。   The manufacturing method of raw material powder can be selected according to a composition etc. Specific methods include a rapid solidification method, a reduction diffusion method, a melt casting method, a gas atomizing method, and the like. Examples of the rapid solidification method include a strip cast method and a melt span method.

(水素化工程)
水素化工程では、上述の原料粉末に、水素を含む雰囲気中、不均化温度以上の温度で水素化処理を施して水素化粉末を作製する。
(Hydrogenation process)
In the hydrogenation step, the above-mentioned raw material powder is subjected to hydrogenation treatment at a temperature equal to or higher than the disproportionation temperature in an atmosphere containing hydrogen to produce hydrogenated powder.

水素化粉末は、希土類−鉄系合金が希土類元素の水素化合物の相と、鉄を含有する鉄含有物の相とに相分解した組織を有する水素化合金によって構成される。希土類元素の水素化合物は、NdH、SmHなどが挙げられる。鉄含有物は、純鉄(Fe)が挙げられる。原料粉末が上述のNdを含む組成などである場合には、代表的には、純鉄と、FeBやFeCなどの鉄化合物とを含む。水素化合金は、相分解前の希土類−鉄系合金よりも柔らかく、かつ希土類元素の水素化合物の相よりも柔らかい純鉄の相が存在するため、塑性変形性に優れる。このような水素化粉末を造粒工程や成形工程で加圧すると、粉末粒子同士を塑性変形によって結合できる。 The hydrogenated powder is composed of a hydrogenated alloy having a structure in which a rare earth-iron-based alloy is phase-decomposed into a phase of a rare earth element hydrogen compound and a phase of an iron-containing material containing iron. Examples of the rare earth element hydrogen compound include NdH 2 and SmH 2 . Examples of the iron-containing material include pure iron (Fe). When the raw material powder has the above-described composition containing Nd, typically, pure iron and an iron compound such as Fe 2 B or Fe 2 C are included. Since the hydrogenated alloy has a pure iron phase that is softer than the rare earth-iron-based alloy before phase decomposition and softer than the phase of the rare earth element hydrogen compound, it is excellent in plastic deformability. When such hydrogenated powder is pressurized in the granulation process or the molding process, the powder particles can be bonded together by plastic deformation.

水素化合金は、10体積%以上40体積%未満の希土類元素の水素化合物の相と、残部が鉄を含有する鉄含有物の相とからなる組織を有すると、鉄含有物の相が主成分(60体積%以上90体積%以下)であるため、塑性変形性、成形性に優れて好ましい。   When the hydrogenated alloy has a structure composed of a rare earth element hydrogen compound phase of 10 volume% or more and less than 40 volume% and the iron-containing material phase containing iron, the iron-containing material phase is the main component. Since it is (60 volume% or more and 90 volume% or less), it is excellent in plastic deformability and a moldability, and is preferable.

水素化処理の条件は、例えば、以下が挙げられる。
(雰囲気)Hガス雰囲気、HガスとArやNなどの不活性ガスとの混合ガス雰囲気
(温度)水素化処理に供する希土類−鉄系合金の水素不均化温度以上、上記希土類−鉄系合金が溶融固着しない温度以下
組成にもよるが、例えば600℃以上1100℃以下
(保持時間)30分以上300分以下
Examples of the conditions for the hydrogenation treatment include the following.
(Atmosphere) H 2 gas atmosphere, mixed gas atmosphere of H 2 gas and inert gas such as Ar or N 2 (Temperature) Above the hydrogen disproportionation temperature of the rare earth-iron alloy used for the hydrogenation treatment, Below the temperature at which the iron-based alloy does not melt and fix Depending on the composition, for example, 600 ° C. or higher and 1100 ° C. or lower (holding time) 30 minutes or longer and 300 minutes or shorter

水素化粉末の形状、大きさは、原料粉末の形状、大きさを実質的に維持する。従って、水素化粉末が所望の形状、大きさなどとなるように原料粉末の形状、大きさなどを調整するとよい。   The shape and size of the hydrogenated powder substantially maintain the shape and size of the raw material powder. Therefore, the shape and size of the raw material powder may be adjusted so that the hydrogenated powder has a desired shape and size.

水素化粉末を製造するまでの工程は、公知の技術を適宜参照できる。   A known technique can be appropriately referred to for the steps until the hydrogenated powder is produced.

(造粒工程)
造粒工程では、上述の塑性変形性に優れる水素化粉末を用いて、水素化粉末の粉末粒子同士を塑性変形によって固めた造粒粉を作製する。
(Granulation process)
In the granulation step, using the above-described hydrogenated powder excellent in plastic deformability, a granulated powder is produced by solidifying the powder particles of the hydrogenated powder by plastic deformation.

即ち、バインダを用いないバインダレス造粒粉を作製する。この造粒粉によって成形体を形成することで、バインダ含有に起因する成形体の相対密度の低下が実質的に生じず、相対密度が十分に大きい成形体を製造できる。例えば、相対密度が80%以上、更に90%以上である成形体を製造できる。また、バインダを除去する工程も不要である。   That is, a binderless granulated powder that does not use a binder is prepared. By forming a molded body from the granulated powder, a decrease in the relative density of the molded body due to the binder content does not substantially occur, and a molded body having a sufficiently large relative density can be manufactured. For example, a molded body having a relative density of 80% or more and further 90% or more can be produced. Moreover, the process of removing a binder is also unnecessary.

・粉末圧延法
上記のバインダレス造粒粉を製造するには、水素化粉末を集めて塑性加工を施すことが挙げられる。特に、粉末圧延を好適に利用できる。粉末圧延を利用すれば、水素化合金から構成される帯材を連続して容易に製造でき、長尺な帯材も製造できる。得られた(長い)帯材を適宜粉砕した後、分級すれば、水素化粉末よりも大きい粉末を容易に製造でき、この粉末を造粒粉とすることができる。以上の点から、粉末圧延は、バインダレス造粒粉を容易に量産できる。そこで、造粒工程は、水素化粉末を用いて粉末圧延を行って圧延材を作製する圧延工程と、この圧延材を粉砕して、所定の大きさの造粒粉を得る分級工程とを備えることができる。
-Powder rolling method In order to produce the binderless granulated powder, it is possible to collect hydrogenated powder and perform plastic working. In particular, powder rolling can be suitably used. If powder rolling is used, a strip composed of a hydrogenated alloy can be easily manufactured continuously, and a long strip can also be manufactured. If the obtained (long) strip is appropriately pulverized and then classified, a powder larger than the hydrogenated powder can be easily produced, and this powder can be used as a granulated powder. From the above points, powder rolling can easily mass-produce binderless granulated powder. Therefore, the granulation step includes a rolling step of performing powder rolling using hydrogenated powder to produce a rolled material, and a classification step of pulverizing the rolled material to obtain a granulated powder of a predetermined size. be able to.

・・圧延工程
粉末圧延とは、一対の圧延ロールの軸が平行するように配置され、圧延ロール間の間隔を狭める方向に所定の圧力が印加された状態で、圧延ロール間に粉末を供給することで、粉末粒子同士が塑性変形によって結合された帯材や帯片(長さが比較的短いもの)を製造可能な塑性加工法である。粉末圧延には、市販の装置を利用できる。粉末圧延の雰囲気は適宜選択できるが、不活性雰囲気とすると、水素化粉末や圧延材の酸化を防止できて好ましい。
..Rolling process Powder rolling is a process in which the axes of a pair of rolling rolls are arranged parallel to each other, and powder is supplied between the rolling rolls in a state where a predetermined pressure is applied in a direction to narrow the interval between the rolling rolls. Thus, this is a plastic working method capable of producing a strip or a strip (having a relatively short length) in which powder particles are bonded by plastic deformation. A commercially available apparatus can be used for powder rolling. Although the powder rolling atmosphere can be selected as appropriate, an inert atmosphere is preferable because oxidation of the hydrogenated powder and the rolled material can be prevented.

粉末圧延で作製する圧延材の相対密度(圧延材の密度/圧延材の真密度)をある程度低くすることが好ましい。具体的には、相対密度を35%以上75%以下とすることが挙げられる。相対密度を35%以上とすれば、粉末粒子同士が十分に結合できて圧延材を製造可能であり、かつ粉砕時に造粒状態を維持できる程度の強度を有する圧延材が得られる。この圧延材を粉砕、分級することで、所望の大きさの造粒粉が得られる。相対密度を75%以下とすれば、粉末粒子が過度に押し潰されて加工硬化による硬さの増大を低減でき、成形性に優れる造粒粉を得易い。強度、成形性などを考慮すると、相対密度を40%以上70%以下、更に45%以上65%以下とすることができる。相対密度が上記範囲を満たすように圧延条件(圧延時の印加圧力など)を調整するとよい。この圧延材は、代表的には、圧延材の厚さ方向に複数の水素化粉末の粉末粒子が積層され、かつ圧延材の厚さ方向に交差する方向(例、直交方向である圧延材の長手方向)に各粉末粒子が塑性変形して延びた構造を有する。圧延材の相対密度の測定は、上述の成形体の相対密度の測定方法と同様にすることができる。   It is preferable to lower the relative density of the rolled material produced by powder rolling (the density of the rolled material / the true density of the rolled material) to some extent. Specifically, the relative density is 35% or more and 75% or less. When the relative density is 35% or more, a rolled material having sufficient strength that powder particles can be sufficiently bonded to each other to produce a rolled material and can maintain a granulated state during pulverization can be obtained. By pulverizing and classifying the rolled material, a granulated powder having a desired size can be obtained. When the relative density is 75% or less, the powder particles are excessively crushed, the increase in hardness due to work hardening can be reduced, and a granulated powder having excellent moldability can be easily obtained. Considering strength, moldability, and the like, the relative density can be 40% or more and 70% or less, and further 45% or more and 65% or less. The rolling conditions (such as applied pressure during rolling) may be adjusted so that the relative density satisfies the above range. This rolled material typically has a direction in which a plurality of powder particles of hydrogenated powder are stacked in the thickness direction of the rolled material and intersects the thickness direction of the rolled material (for example, the direction of the rolled material in the orthogonal direction). (Longitudinal direction) each powder particle has a structure extended by plastic deformation. The relative density of the rolled material can be measured in the same manner as the above-described method for measuring the relative density of the formed body.

圧延材の厚さは、水素化粉末の大きさにもよるが、例えば、100μm以上2000μm以下程度が挙げられる。上記厚さを100μm以上程度とすれば、水素化粉末よりも十分に大きい造粒粉を製造し易い。また、圧延材の厚さが薄いほど、粉末粒子が押し潰されて加工硬化し易くなるが、上記厚さが100μm以上程度であれば、粉末粒子の塑性変形量が過度に多くならず、水素化粉末の柔らかさを維持でき、成形性に優れる造粒粉を得易い。上記厚さを更に200μm以上、300μm以上とすることができる。上記厚さが2000μm以下程度であれば、圧延ロール間に粉末を噛み込み易く、圧延材の製造性に優れる。上記厚さを1000μm以下、800μm、600μm以下とすることができる。   Although the thickness of a rolling material is based also on the magnitude | size of hydrogenation powder, about 100 micrometers or more and 2000 micrometers or less are mentioned, for example. If the thickness is about 100 μm or more, it is easy to produce a granulated powder that is sufficiently larger than the hydrogenated powder. In addition, the thinner the rolled material, the more easily the powder particles are crushed and work hardened. However, if the thickness is about 100 μm or more, the amount of plastic deformation of the powder particles is not excessively increased, and hydrogen The softness of the powdered powder can be maintained, and it is easy to obtain a granulated powder excellent in moldability. The thickness can be further set to 200 μm or more and 300 μm or more. If the said thickness is about 2000 micrometers or less, it will be easy to bite a powder between rolling rolls, and it is excellent in the productivity of a rolling material. The said thickness can be 1000 micrometers or less, 800 micrometers, and 600 micrometers or less.

・・分級工程
上述の粉末圧延では、ある程度長い圧延材を製造できる。長いままでは成形工程で成形し難いため、成形し易いように粉砕して、所定の大きさに分級する。粉砕には、ジェットミル、ボールミル、ハンマーミル、ブラウンミル、ピンミル、ディスクミル、ジョークラッシャーなどの公知の粉砕装置を用いることができる。
..Classification process In the above-mentioned powder rolling, a long rolled material can be produced to some extent. Since it is difficult to mold in the molding process as long as it is long, it is pulverized so as to be easily molded and classified into a predetermined size. For the pulverization, a known pulverization apparatus such as a jet mill, a ball mill, a hammer mill, a brown mill, a pin mill, a disk mill, or a jaw crusher can be used.

上記圧延材を粉砕すると、代表的には、圧延材の厚さに実質的に等しい厚さを有する板状片が得られる。この板状片のうち、少なくとも水素化粉末以下の小さいものを除去し、水素化粉末よりも大きいものを抽出して造粒粉とすると、流動性に優れる造粒粉を成形に供することができる。また、造粒粉がある程度大きいと、造粒粉の界面に沿って形成される上述の気体の通路が成形時や脱型時などに押し潰され難く、上記気体の通路を維持し易い。このことから、上記板状片のうち、例えばその厚さの1倍以上程度の最大長さを有するものを抽出することが好ましい。一方、造粒粉が大き過ぎると、造粒粉の各粒子に備える気体の通路の最短距離が長くなり、高温、長時間の条件で脱水素処理や窒化処理を行う必要があり、再結合合金の結晶粗大化を招き、ひいては磁石特性が低下し得る。このことから、上記板状片のうち、例えばその厚さの4倍未満程度の最大長さを有するものを抽出することが好ましい。   When the rolled material is pulverized, a plate-like piece having a thickness substantially equal to the thickness of the rolled material is typically obtained. Of these plate-like pieces, at least the small powder below the hydrogenated powder is removed, and when the larger powder than the hydrogenated powder is extracted to form a granulated powder, the granulated powder having excellent fluidity can be used for molding. . When the granulated powder is large to some extent, the gas passage formed along the interface of the granulated powder is not easily crushed during molding or demolding, and the gas passage is easily maintained. From this, it is preferable to extract the plate-like piece having a maximum length of about 1 or more times its thickness, for example. On the other hand, if the granulated powder is too large, the shortest distance of the gas passage provided in each particle of the granulated powder becomes long, and it is necessary to perform dehydrogenation treatment or nitriding treatment under conditions of high temperature and long time. As a result, the crystal characteristics become coarse, and as a result, the magnet characteristics may be deteriorated. From this, it is preferable to extract the plate-shaped piece having a maximum length of, for example, less than about 4 times its thickness.

より具体的には、造粒粉の各粒子の厚さに対する造粒粉の各粒子の最大長さの比であるアスペクト比を1以上3以下とすることが好ましい。この範囲でアスペクト比が大きいほど、上述のように造粒粉の界面に沿って形成される気体の通路を確保し易く、アスペクト比を1.2以上、更に1.5以上とすることができる。この範囲でアスペクト比が小さいほど、上述のように造粒粉の各粒子に備える気体の通路を短くし易く、アスペクト比を2.8以下、更に2.5以下とすることができる。アスペクト比が上記範囲を満たす板状片を抽出するとよい。この抽出には、公知の分級機などを利用できる。   More specifically, the aspect ratio, which is the ratio of the maximum length of each particle of the granulated powder to the thickness of each particle of the granulated powder, is preferably 1 or more and 3 or less. The larger the aspect ratio in this range, the easier it is to secure the gas passage formed along the interface of the granulated powder as described above, and the aspect ratio can be 1.2 or more, and more preferably 1.5 or more. . The smaller the aspect ratio in this range, the easier it is to shorten the gas passage provided in each particle of the granulated powder as described above, and the aspect ratio can be 2.8 or less, and further 2.5 or less. A plate-like piece having an aspect ratio that satisfies the above range may be extracted. A known classifier or the like can be used for this extraction.

抽出した板状片は、代表的には、上述の圧延材の構造を実質的に維持しており、板状片の厚さ方向に複数の水素化粉末の粉末粒子が積層され、かつ板状片の厚さ方向に交差する方向(例、直交方向)に各粉末粒子が塑性変形して延びた状態である。   Typically, the extracted plate-like piece substantially maintains the structure of the rolled material described above, and a plurality of powder particles of hydrogenated powder are laminated in the thickness direction of the plate-like piece, and the plate-like piece Each powder particle extends in a plastically deformed direction in a direction intersecting the thickness direction of the piece (eg, orthogonal direction).

・その他の方法
別の方法として、水素化粉末を用いて、相対密度が上述のようにある程度低い疎な予備成形体を作製する予備成形工程と、この予備成形体を粉砕して、所定の大きさの造粒粉を得る分級工程とを備えることができる。予備成形体の成形には、一般的な一軸のプレス成形や、静水圧プレスなどを利用できる。分級工程では、上述の粉末圧延法を利用する場合と同様に板状片となるように予備成形体を粉砕し、この板状片の厚さに対する板状片の最大長さの比が1以上3以下を満たす板状片を抽出することが挙げられる。
Other methods As another method, a preforming step for producing a sparse preform with a relatively low relative density as described above using hydrogenated powder, and pulverizing the preform to a predetermined size And a classification step for obtaining the granulated powder. For forming the preform, general uniaxial press molding, isostatic pressing, or the like can be used. In the classification step, the preform is crushed so as to be a plate-like piece as in the case of using the powder rolling method described above, and the ratio of the maximum length of the plate-like piece to the thickness of this plate-like piece is 1 or more. Extracting a plate-shaped piece satisfying 3 or less is mentioned.

(成形工程)
成形工程では、上述の造粒粉を加圧成形して、所定の形状、大きさの成形体を作製する。
(Molding process)
In the molding step, the granulated powder is pressure-molded to produce a molded body having a predetermined shape and size.

成形工程で作製する成形体の相対密度は、脱水素処理後の再結合材、窒化処理後の窒化材に実質的に維持される。そのため、この成形体の相対密度が大きいほど、磁石成分の割合を大きくすることができ、保磁力が高いなどといった磁石特性に優れる希土類磁石を製造できる。磁石特性の向上を考慮すると、成形体の相対密度は、80%以上、更に82%以上、84%以上、特に90%以上とすることが好ましい。造粒粉が流動性に優れることから、成形体の相対密度を91%以上、更に92%以上とすることができる。一方、成形体は、脱水素処理や窒化処理を良好に施せるように、上述の気体の通路に利用する気孔をある程度有する必要がある。そのため、成形体の相対密度は、97%以下、更に95%以下とすることが好ましい。   The relative density of the molded body produced in the molding process is substantially maintained by the recombination material after the dehydrogenation treatment and the nitride material after the nitriding treatment. Therefore, the higher the relative density of this molded body, the larger the ratio of the magnet component, and the more rare earth magnets having excellent magnet characteristics such as high coercive force can be produced. In consideration of improvement in magnet characteristics, the relative density of the compact is preferably 80% or more, more preferably 82% or more, 84% or more, and particularly preferably 90% or more. Since granulated powder is excellent in fluidity | liquidity, the relative density of a molded object can be 91% or more, and also 92% or more. On the other hand, the molded body needs to have a certain amount of pores used for the above-described gas passage so that the dehydrogenation process and the nitriding process can be performed satisfactorily. Therefore, the relative density of the molded body is preferably 97% or less, more preferably 95% or less.

成形圧力を大きくするほど、相対密度が大きい成形体を短時間で成形でき、製造性にも優れる。成形に供する造粒粉は、上述のように流動性に優れるため、成形圧力を大きくしても、造粒粉の界面に沿って形成される気孔を塞ぎ難く、上述の気体の通路を十分に備える成形体を形成できる。例えば、成形圧力は、980MPa(10ton/cm)超、更に1176MPa(12ton/cm)以上、1470MPa(15ton/cm)以上とすることができる。 As the molding pressure is increased, a molded article having a large relative density can be molded in a short time, and the productivity is excellent. Since the granulated powder used for molding is excellent in fluidity as described above, even if the molding pressure is increased, it is difficult to block pores formed along the interface of the granulated powder, and the above-described gas passage is sufficiently provided. A molded body can be formed. For example, the molding pressure is, 980MPa (10ton / cm 2), greater than can be further 1176MPa (12ton / cm 2) or more, 1470MPa (15ton / cm 2) or more.

成形は、酸素濃度が5体積%以下、更に1体積%以下の低酸素雰囲気で行うと、造粒粉の酸化を抑制できる。低酸素雰囲気は、Arなどの不活性ガス雰囲気、減圧雰囲気(例、10Pa以下の真空雰囲気)などとすることができる。   When the molding is performed in a low oxygen atmosphere having an oxygen concentration of 5% by volume or less, and further 1% by volume or less, oxidation of the granulated powder can be suppressed. The low oxygen atmosphere can be an inert gas atmosphere such as Ar, a reduced pressure atmosphere (eg, a vacuum atmosphere of 10 Pa or less), and the like.

成形には、所望の形状の金型を利用するとよい。金型は、代表的には、貫通孔を有するダイと、ダイの内周面と共に成形空間を形成し、上記貫通孔に挿入して粉末(ここでは造粒粉)を加圧圧縮する一対の上下パンチとを備えるものが挙げられる。金型の内面に潤滑剤を塗布しておくと、造粒粉や成形体と金型との摩擦を低減でき、金型との摺動に伴う気孔の閉塞を低減できる。   For molding, a mold having a desired shape may be used. The mold typically includes a die having a through-hole and a pair of die that forms a molding space together with the inner peripheral surface of the die and inserts into the through-hole to compress and compress powder (here, granulated powder). A thing provided with an up-and-down punch is mentioned. When a lubricant is applied to the inner surface of the mold, the friction between the granulated powder or molded body and the mold can be reduced, and the blockage of pores due to sliding with the mold can be reduced.

造粒粉として、上述の粉末圧延を用いて作製したものを用いる場合、成形体の少なくとも一部に造粒粉の構造に類似する部分を含み得る。具体的には、複数の水素化粉末の粉末粒子が積層され、かつその積層方向に交差する方向(例、直交方向)に各粉末粒子が塑性変形して延びた状態の構造を有する。   When using what was produced using the above-mentioned powder rolling as granulated powder, the part similar to the structure of granulated powder may be included in at least one part of a molded object. Specifically, it has a structure in which powder particles of a plurality of hydrogenated powders are stacked and each powder particle extends in a plastically deformed direction in a direction intersecting the stacking direction (eg, orthogonal direction).

(脱水素工程)
脱水素工程では、上述の特定の造粒粉を用いて作製した成形体に、不活性雰囲気中又は減圧雰囲気中、再結合温度以上の温度で脱水素処理を施して、再結合材を作製する。
(Dehydrogenation process)
In the dehydrogenation step, a recombination material is produced by subjecting a molded body produced using the above-mentioned specific granulated powder to a dehydrogenation treatment at a temperature equal to or higher than the recombination temperature in an inert atmosphere or a reduced pressure atmosphere. .

再結合材は、上述の水素化処理によって希土類元素の水素化合物の相と鉄含有物の相とに相分解された水素化合金が脱水素処理によって再結合されて、原料粉末と同じ希土類−鉄系化合物を主相とする希土類−鉄系合金で形成される。   The recombination material is obtained by recombining a hydrogenated alloy phase-decomposed into a rare earth element hydrogen compound phase and an iron-containing material phase by the above-mentioned hydrogenation treatment, and the same rare earth-iron as the raw material powder. It is formed of a rare earth-iron alloy having a main compound as a main phase.

脱水素処理の条件は、例えば、以下が挙げられる。
(雰囲気)非水素雰囲気
具体的には、ArやNといった不活性ガス雰囲気、又は減圧雰囲気(例、標準の大気圧よりも圧力が低い真空雰囲気)
(温度)上記水素化合金の再結合温度以上
組成にもよるが、例えば600℃以上1000℃以下
(保持時間)10分以上600分以下
減圧雰囲気は、特に真空度が100Pa以下、最終真空度が10Pa以下、更に1Pa以下の雰囲気とすると、希土類元素の水素化合物が残存し難い。また、上記の温度範囲とすると、再結合合金の結晶の成長を抑制して、微細な結晶組織とすることができる。
Examples of the dehydrogenation conditions include the following.
(Atmosphere) Non-hydrogen atmosphere Specifically, an inert gas atmosphere such as Ar or N 2 or a reduced-pressure atmosphere (eg, a vacuum atmosphere whose pressure is lower than the standard atmospheric pressure)
(Temperature) Recombination temperature of the hydrogenated alloy or higher Depending on the composition, for example, 600 ° C. or higher and 1000 ° C. or lower (holding time) of 10 minutes or longer and 600 minutes or shorter. When the atmosphere is 10 Pa or less, and further 1 Pa or less, the rare earth element hydrogen compound hardly remains. Moreover, if it is said temperature range, the growth of the crystal | crystallization of a recombination alloy can be suppressed and it can be set as a fine crystal structure.

(窒化工程)
再結合材の組成に応じて、再結合材に、窒素含有雰囲気中、再結合材の窒化温度以上の温度で窒化処理を施すことができる。例えば、再結合材がSm−Fe系合金で構成される場合、上記窒化処理によって、Sm−Fe系合金をSm−Fe−N系合金にすることができる。この場合の希土類磁石の製造方法は、再結合材に上記窒化処理を施して、窒化材を作製する窒化工程を備える。
(Nitriding process)
Depending on the composition of the recombination material, the recombination material can be subjected to nitriding treatment in a nitrogen-containing atmosphere at a temperature equal to or higher than the nitriding temperature of the recombination material. For example, when the recombination material is composed of an Sm—Fe based alloy, the Sm—Fe based alloy can be changed to an Sm—Fe—N based alloy by the nitriding treatment. In this case, the method for producing a rare earth magnet includes a nitriding step in which the recombination material is subjected to the nitriding treatment to produce a nitride material.

窒化処理の条件は、例えば、以下が挙げられる。
(雰囲気)窒素含有雰囲気とは、窒素元素を含む雰囲気であって、窒素(N)及びアンモニア(NH)の少なくとも一方を含む雰囲気とする。
具体的には、NHガス雰囲気、NHガスとHガスとの混合ガス雰囲気、Nガス雰囲気、NガスとHガスとの混合ガス雰囲気
(温度)200℃以上550℃以下、好ましくは300℃以上450℃以下
(保持時間)10分以上1000分以下、好ましくは30分以上800分以下
Examples of the nitriding conditions include the following.
(Atmosphere) The nitrogen-containing atmosphere is an atmosphere containing a nitrogen element and an atmosphere containing at least one of nitrogen (N 2 ) and ammonia (NH 3 ).
Specifically, NH 3 gas atmosphere, mixed gas atmosphere of NH 3 gas and H 2 gas, N 2 gas atmosphere, mixed gas atmosphere of N 2 gas and H 2 gas (temperature) 200 ° C. or more and 550 ° C. or less, Preferably it is 300 degreeC or more and 450 degrees C or less (holding time) 10 minutes or more and 1000 minutes or less, Preferably it is 30 minutes or more and 800 minutes or less

(効果)
実施形態の希土類磁石の製造方法では、水素化粉末によって特定の造粒粉を作製し、この造粒粉を成形するため、成形体の相対密度を大きくしても、特に90%以上としても、脱水素処理時や窒化処理時に気体の通路となる開気孔を十分に有する成形体を製造できる。このような成形体であれば、脱水素処理や窒化処理を高温、長時間の条件とすることなく行えて、再結合合金の結晶を微細に維持できる。従って、実施形態の希土類磁石の製造方法は、相対密度が大きく、保磁力などの磁石特性に優れる希土類磁石を製造できる。この効果を後述の試験例で具体的に説明する。
(effect)
In the method for producing a rare earth magnet of the embodiment, a specific granulated powder is produced with a hydrogenated powder, and this granulated powder is molded. Therefore, even if the relative density of the molded body is increased, particularly 90% or more, A molded body having sufficient open pores that serve as gas passages during dehydrogenation or nitriding can be produced. With such a molded body, dehydrogenation treatment and nitriding treatment can be performed without high temperature and long time conditions, and the crystals of the recombined alloy can be maintained finely. Therefore, the method for producing a rare earth magnet of the embodiment can produce a rare earth magnet having a large relative density and excellent magnet characteristics such as coercive force. This effect will be specifically described in test examples described later.

[希土類磁石]
上述の再結合材や上述の窒化材を着磁することで、希土類磁石が得られる。この希土類磁石は、主として希土類−鉄系合金によって構成される。希土類磁石を形成する希土類−鉄系合金の具体的な組成は、Ndを含む組成では上述した原料の希土類−鉄系合金の組成と同様であり、Smを含む組成ではSm−Fe−N系合金(主相の例、SmFe17)、Sm−Ti−Fe−N系合金(主相の例、SmTiFe11)、Sm−Mn−Fe−N系合金などが挙げられる。上述の再結合材や上述の窒化材が、上述の相対密度が大きい成形体、特に相対密度が90%以上の成形体を用いて製造されることで、磁石成分の割合に応じた高い保磁力や高い残留磁化などを有して、磁石特性に優れる希土類磁石となる。
[Rare earth magnet]
A rare earth magnet can be obtained by magnetizing the recombination material or the nitride material. This rare earth magnet is mainly composed of a rare earth-iron alloy. The specific composition of the rare earth-iron-based alloy forming the rare earth magnet is the same as that of the above-mentioned raw rare earth-iron-based alloy in the composition containing Nd, and the composition containing Sm is the Sm-Fe-N-based alloy. (Example of main phase, Sm 2 Fe 17 N 3 ), Sm—Ti—Fe—N alloy (example of main phase, Sm 1 Ti 1 Fe 11 N 2 ), Sm—Mn—Fe—N alloy, etc. Can be mentioned. The above-mentioned recombination material and the above-mentioned nitride material are manufactured using the above-mentioned molded body having a large relative density, in particular, a molded body having a relative density of 90% or more, so that a high coercive force according to the ratio of the magnet component is obtained. It has a high remanent magnetization and is a rare earth magnet with excellent magnet characteristics.

[試験例1]
希土類磁石として、種々の製造条件で圧粉磁石を作製し、磁石特性を調べた。
[Test Example 1]
As rare earth magnets, dust magnets were produced under various production conditions, and the magnet characteristics were examined.

≪試料の作製≫
この試験では、Nd−Fe−Co−B系合金から構成される圧粉磁石(試料No.1−1〜No.1−7,No.1−101〜No.1−107)と、Sm−Fe−N系合金から構成される圧粉磁石(試料No.1−11〜No.1−14,No.1−111〜No.1−114)とを作製する。
≪Sample preparation≫
In this test, a dust magnet (sample No. 1-1 to No. 1-7, No. 1-101 to No. 1-107) composed of an Nd—Fe—Co—B alloy, and Sm— The dust magnets (samples No. 1-11 to No. 1-14, No. 1-111 to No. 1-114) made of Fe—N alloy are prepared.

着磁前の磁石用素材の製造過程は以下のとおりである。
造粒工程を備える試料において造粒工程では、粉末圧延を行って圧延材を作製し、この圧延材を粉砕して板状片とし、分級して所定の大きさのものを抽出することを行う。
〔Nd系〕
(試料No.1−1〜No.1−7、粉末圧延/分級有り)
準備工程→水素化工程→造粒工程→成形工程→脱水素工程
(試料No.1−101〜No.1−107、粉末圧延/分級なし)
準備工程→水素化工程→成形工程→脱水素工程
〔Sm系〕
(試料No.1−11〜No.1−14、粉末圧延/分級有り)
準備工程→水素化工程→造粒工程→成形工程→脱水素工程→窒化工程
(試料No.1−111〜No.1−114、粉末圧延/分級なし)
準備工程→水素化工程→成形工程→脱水素工程→窒化工程
The manufacturing process of the magnet material before magnetization is as follows.
In a granulation process in a sample having a granulation process, powder rolling is performed to produce a rolled material, and the rolled material is pulverized into plate-like pieces and classified to extract a predetermined size. .
[Nd system]
(Sample No. 1-1 to No. 1-7, with powder rolling / classification)
Preparation process-> hydrogenation process-> granulation process-> molding process-> dehydrogenation process (sample No. 1-101-No. 1-107, no powder rolling / classification)
Preparation process → Hydrogenation process → Molding process → Dehydrogenation process (Sm system)
(Sample No. 1-11 to No. 1-14, with powder rolling / classification)
Preparation process-> hydrogenation process-> granulation process-> molding process-> dehydrogenation process-> nitriding process (sample No. 1-111-No. 1-114, no powder rolling / classification)
Preparation process → Hydrogenation process → Molding process → Dehydrogenation process → Nitriding process

〔Nd系〕
ストリップキャスト法によって、30.5質量%Nd−5.0質量%Co−1.0質量%B−残部がFe及び不可避不純物からなり、厚さ300μmの薄帯を作製し、この薄帯を粗粉砕する。この薄帯は、Nd(Fe13Co)Bを主相とするNd−Fe−Co−B系合金から構成される。粗粉砕は、不活性雰囲気下で市販の粉砕機を用いて行う。ここでは、粉砕後の薄片を適宜な篩目によって分級する。そして、薄片のうち、その最大径が106μm以上355μm以下を満たすものを抽出して、原料粉末とする。
[Nd system]
By strip casting, 30.5% by mass Nd-5.0% by mass Co-1.0% by mass B-the balance is made of Fe and inevitable impurities, and a 300 μm thick ribbon is produced. Smash. This thin ribbon is composed of an Nd—Fe—Co—B alloy having Nd 2 (Fe 13 Co 1 ) B as a main phase. The coarse pulverization is performed using a commercially available pulverizer under an inert atmosphere. Here, the crushed flakes are classified by an appropriate sieve. Then, among the flakes, those having a maximum diameter of 106 μm or more and 355 μm or less are extracted and used as raw material powder.

(水素化工程)
原料粉末に水素化処理を施して、水素化粉末を作製する。水素化処理の条件は、水素雰囲気、850℃×150分とする。
(Hydrogenation process)
The raw material powder is subjected to a hydrogenation treatment to produce a hydrogenated powder. The conditions for the hydrogenation treatment are a hydrogen atmosphere and 850 ° C. × 150 minutes.

(造粒工程)
造粒工程を備える試料No.1−1〜No.1−7については、市販の粉末圧延機を用いて、相対密度が40%以上55%以下を満たし、厚さ350μmの圧延材を作製する。ここでは、印加圧力を5ton、圧延速度を0.5m/minとすることで、上記の相対密度を満たす圧延材を作製する。
(Granulation process)
Sample No. with a granulation step. 1-1-No. For 1-7, a commercial powder rolling mill is used to produce a rolled material having a relative density of 40% to 55% and a thickness of 350 μm. Here, the rolling material which satisfy | fills said relative density is produced by making an applied pressure into 5 tons and rolling speed into 0.5 m / min.

得られた圧延材は、ある程度長さがある連続した帯材である(例、長さ50cm弱)。市販の粉砕機を用いて上記圧延材を粉砕した後、以下の条件で分級する。
〈分級条件α〉圧延材の厚さの1倍程度の篩目(355μm)以上、圧延材の厚さの2倍程度の篩目(710μm)以下
この分級条件によって抽出した、厚さ350μm、最大長さが355μm超710μm未満の板状片を造粒粉とする。
〈分級条件β〉圧延材の厚さの1倍程度の篩目(355μm)以上、圧延材の厚さの3倍程度の篩目(1180μm)以下
この分級条件によって抽出した、厚さ350μm、最大長さ355μm超1180μm未満の板状片を造粒粉とする。
〈分級条件γ〉圧延材の厚さの1倍程度の篩目(355μm)以上、圧延材の厚さの5倍程度の篩目(1700μm)以下
この分級条件によって抽出した、厚さ350μm、最大長さ355μm超1700μm未満の板状片を造粒粉とする。
作製した造粒粉のアスペクト比を表1に示す。アスペクト比は、100個以上の造粒粉の各粒子について、アスペクト比=(最大長さ/厚さ)を求め、100個以上の平均値とする。
The obtained rolled material is a continuous strip having a certain length (eg, a length of less than 50 cm). The rolled material is pulverized using a commercially available pulverizer and then classified under the following conditions.
<Classification condition α> More than about 1 times the mesh thickness (355 μm) of the rolled material, less than about 2 times the mesh thickness (710 μm) of the rolled material, 350 μm in thickness, maximum extracted by this classification condition A plate-like piece having a length of more than 355 μm and less than 710 μm is used as granulated powder.
<Classification condition β> More than about 1 times the mesh thickness of rolled material (355 μm) and less than about 3 times the mesh thickness of rolled material (1180 μm) Thickness 350 μm extracted by this classification condition, maximum A plate-like piece having a length of more than 355 μm and less than 1180 μm is used as granulated powder.
<Classification condition γ> More than about 1 times the mesh thickness of rolled material (355 μm) and less than about 5 times the thickness of rolled material (1700 μm) Thickness 350 μm extracted by this classification condition, maximum A plate-like piece having a length of more than 355 μm and less than 1700 μm is used as granulated powder.
Table 1 shows the aspect ratio of the prepared granulated powder. As for the aspect ratio, the aspect ratio = (maximum length / thickness) is obtained for each particle of 100 or more granulated powders, and the average value is 100 or more.

(成形工程)
上述の造粒粉、又は造粒していない水素化粉末を金型で加圧成形して成形体を作製する。ここでは、成形圧力を980MPa〜1961MPa(10ton/cm〜20ton/cm)から選択される大きさとし、直径10mm、高さ10mmの円柱状に形成する。表1に成形圧力(ton/cm)を示す。ここでは金型内に潤滑剤を塗布している。
(Molding process)
The above-mentioned granulated powder or non-granulated hydrogenated powder is pressure-molded with a mold to produce a compact. Here, the size Satoshi selected molding pressure from 980MPa~1961MPa (10ton / cm 2 ~20ton / cm 2), is formed with a diameter 10mm, a height of 10mm cylindrical. Table 1 shows the molding pressure (ton / cm 2 ). Here, a lubricant is applied in the mold.

作製した円柱状の成形体の相対密度を表1に示す。成形体の相対密度(%)は、(成形体の密度/成形体の真密度)×100とする。成形体の密度は、成形体のサイズ(直径、高さ、mm)と質量(g)とから算出する。算出した値を成形密度(g/cm)として表1に示す。成形体をX線回折して、水素化合金の構成相と原子構成比とから成形体の真密度を求める。NdH(真密度=5.96g/cm)、α−FeCo合金(同7.93g/cm)、FeB(同7.31g/cm)で構成され、原子構成比=NdH:FeCo:FeB=2:12:1とすると、成形体の真密度は、7.10g/cmと計算される。 Table 1 shows the relative density of the produced cylindrical molded body. The relative density (%) of the molded body is (density of molded body / true density of molded body) × 100. The density of the molded body is calculated from the size (diameter, height, mm) and mass (g) of the molded body. The calculated value is shown in Table 1 as the molding density (g / cm 3 ). The compact is X-ray diffracted, and the true density of the compact is determined from the constituent phase of the hydrogenated alloy and the atomic constituent ratio. NdH 2 (true density = 5.96 g / cm 3 ), α-FeCo alloy (7.93 g / cm 3 ), Fe 2 B (7.31 g / cm 3 ), and atomic composition ratio = NdH 2 : FeCo: Fe 2 B = 2: 12: 1, the true density of the compact is calculated to be 7.10 g / cm 3 .

(脱水素工程)
作製した円柱状の成形体に脱水素処理を施して、再結合材(磁石用素材の一例)を作製する。脱水素処理の条件は、真空雰囲気、850℃×250分とする。得られた再結合材の相対密度を、成形体と同様にして測定したところ、成形体の相対密度を実質的に維持している。
(Dehydrogenation process)
The produced cylindrical shaped body is subjected to dehydrogenation treatment to produce a recombination material (an example of a magnet material). The conditions for the dehydrogenation treatment are a vacuum atmosphere and 850 ° C. × 250 minutes. When the relative density of the obtained recombined material was measured in the same manner as the molded body, the relative density of the molded body was substantially maintained.

〔Sm系〕
還元拡散法によって、24.5質量%Sm−残部がFe及び不可避不純物からなり、平均粒径50μmの球状の粉末を作製する。平均粒径は、市販のレーザ回折式粒度分布測定装置を用いて体積基準の粒度分布を求め、小径側からの累積が50%となる粒径値とする。この粉末は、SmFe17を主相とするSm−Fe系合金から構成される。
[Sm system]
By reductive diffusion, a spherical powder having an average particle size of 50 μm is prepared with 24.5 mass% Sm—the balance being Fe and inevitable impurities. The average particle size is determined by obtaining a volume-based particle size distribution using a commercially available laser diffraction particle size distribution measuring device, and the particle size value is 50% cumulative from the small diameter side. This powder is composed of an Sm—Fe based alloy having Sm 2 Fe 17 as a main phase.

(水素化工程)
原料粉末に水素化処理を施して、水素化粉末を作製する。水素化処理の条件は、水素雰囲気、850℃×150分とする。
(Hydrogenation process)
The raw material powder is subjected to a hydrogenation treatment to produce a hydrogenated powder. The conditions for the hydrogenation treatment are a hydrogen atmosphere and 850 ° C. × 150 minutes.

(造粒工程)
造粒工程を備える試料No.1−11〜No.1−14については、試料No.1−1などと同様に、市販の粉末圧延機を用いて、相対密度が40%以上55%以下を満たし、厚さ250μmの圧延材を作製する。ここでは、印加圧力を5ton、圧延速度を1m/minとすることで、上記の相対密度を満たす圧延材を作製する。
(Granulation process)
Sample No. with a granulation step. 1-11-No. For sample No. 1-14, sample no. Similarly to 1-1 etc., a commercially available powder rolling machine is used to produce a rolled material having a relative density of 40% to 55% and a thickness of 250 μm. Here, the rolling material which satisfy | fills said relative density is produced by making an applied pressure into 5 tons and rolling speed into 1 m / min.

試料No.1−1などと同様に、市販の粉砕機を用いて上記圧延材を粉砕した後、以下の条件で分級する。
〈分級条件χ〉圧延材の厚さの1倍程度の篩目(250μm)以上、圧延材の厚さの2倍程度の篩目(500μm)以下
この分級条件によって抽出した、厚さ250μm、最大長さが250μm超500μm未満の板状片を造粒粉とする。
〈分級条件ψ〉圧延材の厚さの1倍程度の篩目(250μm)以上、圧延材の厚さの3倍程度の篩目(850μm)以下
この分級条件によって抽出した、厚さ250μm、最大長さ250μm超850μm未満の板状片を造粒粉とする。
〈分級条件ω〉圧延材の厚さの1倍程度の篩目(250μm)以上、圧延材の厚さの5倍程度の篩目(1400μm)以下
この分級条件によって抽出した、厚さ250μm、最大長さ250μm超1400μm未満の板状片を造粒粉とする。
作製した造粒粉のアスペクト比を表1に示す。アスペクト比は、試料No.1−1などと同様にして求める。
Sample No. Similar to 1-1, etc., the rolled material is pulverized using a commercially available pulverizer and then classified under the following conditions.
<Classification condition χ> More than about 1 times as large as the thickness of rolled material (250 μm) and less than about twice as large as the thickness of rolled material (500 μm) Max. A plate-like piece having a length of more than 250 μm and less than 500 μm is used as granulated powder.
<Classification condition ψ> A mesh (250 μm) or more that is about 1 times the thickness of the rolled material, and a mesh (850 μm) or less that is about 3 times the thickness of the rolled material. A plate-like piece having a length of more than 250 μm and less than 850 μm is used as granulated powder.
<Classification condition ω> More than about 1 times as large as the thickness of the rolled material (250 μm), and less than about 5 times as large as the thickness of the rolled material (1400 μm). A plate-like piece having a length of more than 250 μm and less than 1400 μm is used as granulated powder.
Table 1 shows the aspect ratio of the prepared granulated powder. The aspect ratio is the sample number. Obtained in the same manner as 1-1.

(成形工程)
試料No.1−1などと同様にして、上述の造粒粉、又は造粒していない水素化粉末を金型で加圧成形して、直径10mm、高さ10mmの円柱状の成形体を作製する。成形圧力(ton/cm)を表1に示す。
(Molding process)
Sample No. In the same manner as in 1-1, the above-mentioned granulated powder or non-granulated hydrogenated powder is pressure-molded with a mold to produce a cylindrical molded body having a diameter of 10 mm and a height of 10 mm. The molding pressure (ton / cm 2 ) is shown in Table 1.

作製した円柱状の成形体の相対密度、成形密度を表1に示す。成形体の相対密度(%)、成形密度(g/cm)は、試料No.1−1などと同様にして求める。成形体の真密度は、7.32g/cmと計算される。 Table 1 shows the relative density and molding density of the produced cylindrical molded body. The relative density (%) and the molding density (g / cm 3 ) of the molded body are the same as those of Sample No. Obtained in the same manner as 1-1. The true density of the compact is calculated to be 7.32 g / cm 3 .

(脱水素工程)
作製した円柱状の成形体に脱水素処理を施して、再結合材を作製する。脱水素処理の条件は、真空雰囲気、750℃×250分とする。
(Dehydrogenation process)
The produced cylindrical shaped body is subjected to dehydrogenation treatment to produce a recombining material. The dehydrogenation conditions are a vacuum atmosphere and 750 ° C. × 250 minutes.

(窒化工程)
作製した再結合材に窒化処理を施して、窒化材(磁石用素材の一例)を作製する。窒化処理の条件は、NHガスとHガスとの混合ガス雰囲気(アンモニアガスと水素ガスとの混合比は、体積比で1:1)、400℃×720分とする。得られた窒化材の相対密度を、成形体と同様にして測定したところ、成形体の相対密度を実質的に維持している。
(Nitriding process)
The produced recombination material is subjected to nitriding treatment to produce a nitride material (an example of a magnet material). The nitriding conditions are a mixed gas atmosphere of NH 3 gas and H 2 gas (a mixture ratio of ammonia gas and hydrogen gas is 1: 1 by volume), and 400 ° C. × 720 minutes. When the relative density of the obtained nitride material was measured in the same manner as the molded body, the relative density of the molded body was substantially maintained.

≪磁気特性の評価≫
各試料の磁石用素材に磁界の強さ4777kA/m、磁束密度5Tのパルス磁場を印加して着磁する。着磁には、市販の着磁装置(日本電磁測器株式会社製、高圧コンデンサ式SR型)を用いる。着磁した各試料について、BHトレーサ(理研電子株式会社製DCBHトレーサ)を用いてB−H曲線を測定して、残留磁化及び保磁力を求める。残留磁化(T)及び保磁力(kA/m)を表1に示す。
≪Evaluation of magnetic properties≫
Each sample magnet material is magnetized by applying a pulse magnetic field having a magnetic field strength of 4777 kA / m and a magnetic flux density of 5T. A commercially available magnetizing device (manufactured by Nippon Electromagnetic Instrument Co., Ltd., high voltage capacitor SR type) is used for magnetization. For each magnetized sample, the BH curve is measured using a BH tracer (DCBH tracer manufactured by Riken Denshi Co., Ltd.) to determine the residual magnetization and coercive force. Table 1 shows the remanent magnetization (T) and the coercive force (kA / m).

表1に示すように、成形圧力を大きくするほど相対密度を大きくできることが分かる。この理由の一つとして、水素化粉末は塑性変形性に優れることが考えられる。しかし、試料No.1−101〜No.1−103,No.1−111,No.1−112をみれば、水素化粉末をそのまま成形して相対密度を高めると、相対密度が増加しているにも関わらず、保磁力や残留磁化が低下する傾向にあることが分かる。   As shown in Table 1, it can be seen that the relative density can be increased as the molding pressure is increased. One reason for this is that the hydrogenated powder is excellent in plastic deformability. However, sample no. 1-101-No. 1-103, no. 1-111, no. As can be seen from 1-112, when the relative density is increased by molding the hydrogenated powder as it is, the coercive force and the residual magnetization tend to decrease despite the increase in the relative density.

これに対し、特定の造粒粉を用いた試料No.1−1〜No.1−6(以下、Nd系造粒試料と呼ぶことがある)、No.1−11〜No.1−14(以下、Sm系造粒試料と呼ぶことがある)はいずれも、成形圧力を大きくして相対密度が80%以上の成形体(最終的には希土類磁石)を作製しているものの、造粒を行っていない同一の組成の試料No.1−101〜No.1−103、No.1−111,No.1−112(以下、比較試料群と呼ぶことがある)に比較して、保磁力が高く、飽和磁化も高いことが分かる。
定量的には、Nd系造粒試料は、相対密度が80%以上という高密度である場合に、保磁力が1114kA/m(≒14kOe)以上、飽和磁化が0.65T以上を満たす。特に、相対密度が88%以上である試料は、飽和磁化が更に高く、0.70T以上であり、磁石特性により優れる。
Sm系造粒試料は、相対密度が80%以上という高密度である場合に、保磁力が796kA/m(≒10kOe)以上、飽和磁化が0.57T以上を満たす。特に、相対密度が90%以上である試料は、飽和磁化が更に高く0.60T以上であり、磁石特性により優れる。
In contrast, sample No. using a specific granulated powder. 1-1-No. 1-6 (hereinafter sometimes referred to as Nd-based granulated sample), No. 1-6. 1-11-No. 1-14 (hereinafter, sometimes referred to as Sm-based granulated sample), although the molding pressure was increased to produce a molded body (finally a rare earth magnet) having a relative density of 80% or more. Sample No. of the same composition not granulated. 1-101-No. 1-103, no. 1-111, no. It can be seen that the coercive force is high and the saturation magnetization is also high compared to 1-112 (hereinafter sometimes referred to as a comparative sample group).
Quantitatively, the Nd-based granulated sample satisfies a coercive force of 1114 kA / m (≈14 kOe) or higher and a saturation magnetization of 0.65 T or higher when the relative density is as high as 80% or higher. In particular, a sample having a relative density of 88% or more has a higher saturation magnetization, 0.70 T or more, and is excellent in magnet characteristics.
When the relative density is as high as 80% or more, the Sm-based granulated sample satisfies a coercive force of 796 kA / m (≈10 kOe) or more and a saturation magnetization of 0.57 T or more. In particular, a sample having a relative density of 90% or more has a higher saturation magnetization of 0.60 T or more, and is excellent in magnet characteristics.

この試験からは、粉末圧延を行って造粒粉を製造する場合、アスペクト比が特定の範囲を満たす造粒粉を用いることが好ましいといえる。詳しくは、Nd系造粒試料No.1−1〜No.1−6とNo.1−104〜No.1−106との比較、Sm系造粒試料No.1−11〜No.1−14とNo.1−113,No.1−114との比較を行うと、Nd系造粒試料ではアスペクト比が4.5未満、Sm系造粒試料ではアスペクト比が4.3未満、好ましくはいずれの試料も3以下であると、保磁力及び飽和磁化が高い希土類磁石を製造し易いことが分かる。   From this test, it can be said that when the granulated powder is produced by performing powder rolling, it is preferable to use the granulated powder whose aspect ratio satisfies a specific range. Specifically, Nd-based granulated sample No. 1-1-No. 1-6 and No. 1 1-104-No. Comparison with 1-106, Sm granulation sample No. 1-11-No. 1-14 and No.1. 1-113, no. In comparison with 1-114, the Nd-based granulated sample has an aspect ratio of less than 4.5, the Sm-based granulated sample has an aspect ratio of less than 4.3, and preferably any sample is 3 or less. It can be seen that it is easy to produce a rare earth magnet having high coercive force and saturation magnetization.

試料No.1−7,No.1−107はそれぞれ、成形圧力15ton/cmとした試料No.1−2,1−102に対して、脱水素処理の条件を825℃×6時間に変えた試料である。図1,図2は、脱水素処理を施して得られた円柱状の再結合材について、軸方向の中間位置で、軸方向に直交する平面で切断した横断面(断面形状が円形にみえる切断面)を光学顕微鏡で観察した観察像である。図1は、試料No.1−7の顕微鏡写真、図2は、試料No.1−107の顕微鏡写真である。図1,図2において、円形状の部分が再結合材であり、再結合材の内部に複数分散する黒い粒は気孔である。 Sample No. 1-7, No. 1 Sample Nos. 1 to 107 each had a molding pressure of 15 ton / cm 2 . In this sample, the dehydrogenation conditions were changed to 825 ° C. × 6 hours for 1-2 and 1-102. 1 and 2 are cross-sections of a cylindrical recombination material obtained by performing dehydrogenation treatment, cut along a plane orthogonal to the axial direction at an intermediate position in the axial direction. It is the observation image which observed the surface) with the optical microscope. FIG. The photomicrograph of 1-7, FIG. It is a micrograph of 1-107. 1 and 2, the circular portion is a recombination material, and a plurality of black particles dispersed inside the recombination material are pores.

図1に示すように、特定の造粒粉を用いた試料No.1−7は、横断面の全域に亘って、比較的大きな黒い粒が均一的に存在し、気孔が均一的に存在することが分かる。これに対し、特定の造粒粉を用いていない試料No.1−107は、横断面における表層側には比較的大きな黒い粒が存在するものの中央部には黒い粒が少なく、気孔が閉塞されていることが分かる。特定の造粒粉を用いずに、成形圧力を大きくして相対密度を高めると、表面側から中央部に向かうにつれて気孔が潰されるなどして少なくなることで、脱水素処理時に水素の排出が行い難かったと考えられる。   As shown in FIG. 1, sample No. using a specific granulated powder. As for 1-7, it turns out that a comparatively big black grain exists uniformly and the pore exists uniformly over the whole region of a cross section. On the other hand, sample No. which does not use specific granulated powder. 1-107 shows that although relatively large black particles exist on the surface layer side in the cross section, there are few black particles in the center, and the pores are blocked. Without using specific granulated powder, if the molding pressure is increased to increase the relative density, the pores are crushed from the surface side toward the central part, and the amount of hydrogen is reduced during the dehydrogenation process. It is thought that it was difficult to do.

これらのことから、特定の造粒粉を用いたNd系造粒試料は、相対密度を大きくしても、成形体の全体に亘って均一的に気孔を有しており、この気孔を気体の通路に利用できることで脱水素処理を良好に行えて、高い相対密度に応じて、高い保磁力や高い飽和磁化を有することができた、と考えられる。また、特定の造粒粉を用いることで、成形工程での加圧圧縮時や脱型時、脱水素工程などの熱処理時などによって閉塞され難い程度の大きさの気孔を有する成形体を形成できる、といえる。Sm系造粒粉試料についても同様に考えられる。   Therefore, even if the relative density is increased, the Nd-based granulated sample using specific granulated powder has pores uniformly throughout the molded body. It can be considered that the dehydrogenation treatment can be satisfactorily performed by being used for the passage, and that it has a high coercive force and a high saturation magnetization according to a high relative density. In addition, by using a specific granulated powder, it is possible to form a molded body having pores of a size that is difficult to be blocked by pressure compression in the molding process, at the time of demolding, or at the time of heat treatment such as a dehydrogenation process. It can be said. The same applies to the Sm-based granulated powder sample.

以上のことから、相対密度が大きい圧粉磁石を製造する場合に、粉末圧延などによって水素化粉末の粉末粒子同士を塑性変形によって固めた造粒粉を用いることで、保磁力などの磁石特性に優れる希土類磁石が製造できることが示された。   From the above, when producing a compacted magnet with a large relative density, by using granulated powder obtained by hardening powder particles of hydrogenated powder by plastic deformation by powder rolling or the like, magnet characteristics such as coercive force can be obtained. It has been shown that excellent rare earth magnets can be produced.

本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。例えば、試験例1の原料粉末の製造方法、組成、大きさ、水素化処理・脱水処理・窒化処理の条件、造粒粉の大きさ、成形条件(成形圧力など)、成形体の相対密度、造粒方法などを適宜変更できる。   The present invention is not limited to these exemplifications, but is defined by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims. For example, the raw material powder manufacturing method, composition, size, conditions of hydrogenation treatment / dehydration treatment / nitriding treatment, granulated powder size, molding conditions (molding pressure, etc.), relative density of the compact, The granulation method can be changed as appropriate.

本発明の希土類磁石の製造方法は、永久磁石などに利用される希土類磁石の製造に利用できる。製造した希土類磁石は、永久磁石、例えば、各種のモータ、特にハイブリッド自動車やハードディスクドライブなどに具備される高速モータに用いられる永久磁石に利用できる。   The method for producing a rare earth magnet of the present invention can be used for producing a rare earth magnet used for a permanent magnet or the like. The manufactured rare earth magnet can be used as a permanent magnet, for example, a permanent magnet used in various motors, particularly in a high-speed motor provided in a hybrid vehicle or a hard disk drive.

Claims (4)

希土類元素と鉄族元素とを含む希土類−鉄系合金から構成される原料粉末を準備する準備工程と、
前記原料粉末に、水素を含む雰囲気中、不均化温度以上の温度で水素化処理を施して、水素化粉末を作製する水素化工程と、
前記水素化粉末の粉末粒子同士を塑性変形によって固めた造粒粉を作製する造粒工程と、
前記造粒粉を加圧成形して成形体を作製する成形工程と、
前記成形体に、不活性雰囲気中又は減圧雰囲気中、再結合温度以上の温度で脱水素処理を施して、再結合材を作製する脱水素工程とを備える希土類磁石の製造方法。
Preparing a raw material powder composed of a rare earth-iron alloy containing a rare earth element and an iron group element;
A hydrogenation step of producing a hydrogenated powder by subjecting the raw material powder to a hydrogenation treatment at a temperature equal to or higher than a disproportionation temperature in an atmosphere containing hydrogen;
A granulating step for producing a granulated powder obtained by hardening powder particles of the hydrogenated powder by plastic deformation;
A molding step of pressure-molding the granulated powder to produce a molded body;
A method for producing a rare earth magnet comprising: a dehydrogenation step of producing a recombination material by subjecting the molded body to a dehydrogenation treatment at a temperature equal to or higher than a recombination temperature in an inert atmosphere or a reduced pressure atmosphere.
前記造粒工程は、
前記水素化粉末を用いて粉末圧延を行って圧延材を作製する圧延工程と、
前記圧延材を粉砕して、所定の大きさの前記造粒粉を得る分級工程とを備える請求項1に記載の希土類磁石の製造方法。
The granulation step includes
A rolling process for producing a rolled material by performing powder rolling using the hydrogenated powder;
A method for producing a rare earth magnet according to claim 1, further comprising a classification step of pulverizing the rolled material to obtain the granulated powder having a predetermined size.
前記造粒粉のアスペクト比を3以下とする請求項2に記載の希土類磁石の製造方法。   The method for producing a rare earth magnet according to claim 2, wherein the granulated powder has an aspect ratio of 3 or less. 前記成形体の相対密度を90%以上とする請求項1から請求項3のいずれか1項に記載の希土類磁石の製造方法。   The method for producing a rare earth magnet according to any one of claims 1 to 3, wherein a relative density of the compact is 90% or more.
JP2016020173A 2016-02-04 2016-02-04 Production method of rare-earth magnet Pending JP2017139385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016020173A JP2017139385A (en) 2016-02-04 2016-02-04 Production method of rare-earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016020173A JP2017139385A (en) 2016-02-04 2016-02-04 Production method of rare-earth magnet

Publications (1)

Publication Number Publication Date
JP2017139385A true JP2017139385A (en) 2017-08-10

Family

ID=59566109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016020173A Pending JP2017139385A (en) 2016-02-04 2016-02-04 Production method of rare-earth magnet

Country Status (1)

Country Link
JP (1) JP2017139385A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019087663A1 (en) * 2017-11-02 2019-05-09 住友電気工業株式会社 Rare-earth magnet material, magnet powder, method for producing rare-earth magnet material, and method for producing magnet powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019087663A1 (en) * 2017-11-02 2019-05-09 住友電気工業株式会社 Rare-earth magnet material, magnet powder, method for producing rare-earth magnet material, and method for producing magnet powder

Similar Documents

Publication Publication Date Title
JP5218869B2 (en) Rare earth-iron-nitrogen alloy material, method for producing rare earth-iron-nitrogen alloy material, rare earth-iron alloy material, and method for producing rare earth-iron alloy material
JP2012253247A (en) Composite magnetic material and method for manufacturing the same
JP2009260290A (en) Method of manufacturing r-fe-b system anisotropic bulk magnet
JP6598700B2 (en) Rare earth magnet manufacturing method and rare earth magnet
JP2016044352A (en) Method for producing powder for magnet, and method for producing rare earth magnet
JP2018186255A (en) Manufacturing method of rare-earth magnet
JP4449900B2 (en) Method for producing rare earth alloy powder and method for producing rare earth sintered magnet
JP4282016B2 (en) Manufacturing method of rare earth sintered magnet
WO2017090635A1 (en) Rare earth magnet, and method of producing rare earth magnet
JP2016100519A (en) Production method of magnetic powder, production method of dust magnet member, and dust magnet member
JP6471594B2 (en) Rare earth magnet material and method for producing rare earth magnet material
JP2017139385A (en) Production method of rare-earth magnet
JP6691667B2 (en) Method for manufacturing RTB magnet
JP2015026795A (en) Powder for magnets, rare earth magnet, method for manufacturing powder for magnets, and method for manufacturing rare earth magnet
JP2020155740A (en) Method for producing rare earth magnet
JP2014192460A (en) Method of manufacturing r-t-x based powder-compacted magnet, and r-t-x based powder-compacted magnet
JP2015007275A (en) Method of producing powder for magnet, powder for magnet, molding for magnet, magnetic member, and compressed powder magnet
JPH1197223A (en) R-fe-b sintered permanent magnet
JP6447804B2 (en) Method for manufacturing magnet compact
JP6331982B2 (en) Magnet molded body, magnetic member, method for manufacturing magnet molded body, and method for manufacturing magnetic member
JP2015135855A (en) Rare earth magnet and method for producing rare earth magnet
JP2021009862A (en) Rare earth magnet material
JP2017216298A (en) Rare earth magnet material and method for manufacturing rare earth magnet material
JP6613117B2 (en) Rare earth magnet and method for producing rare earth magnet
WO2019049691A1 (en) Method for producing rare earth magnet