[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2017133282A - Steel device and load bearing wall - Google Patents

Steel device and load bearing wall Download PDF

Info

Publication number
JP2017133282A
JP2017133282A JP2016015348A JP2016015348A JP2017133282A JP 2017133282 A JP2017133282 A JP 2017133282A JP 2016015348 A JP2016015348 A JP 2016015348A JP 2016015348 A JP2016015348 A JP 2016015348A JP 2017133282 A JP2017133282 A JP 2017133282A
Authority
JP
Japan
Prior art keywords
axial force
force member
steel device
steel
bent portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016015348A
Other languages
Japanese (ja)
Inventor
綾那 伊藤
Ayana Ito
綾那 伊藤
佐藤 圭一
Keiichi Sato
圭一 佐藤
清水 信孝
Nobutaka Shimizu
信孝 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016015348A priority Critical patent/JP2017133282A/en
Publication of JP2017133282A publication Critical patent/JP2017133282A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Vibration Dampers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steel device capable of ensuring a stable energy absorption performance at a small manufacturing cost.SOLUTION: Disclosed steel device 1 is attached to an axial force member 2 on which a tensile load Pt or a compression load Pc acts. The steel device includes: an anchorage part 3 attached to a side face 25 of the axial force member 2; and a bent part 4 continuously formed from the anchorage part 3. The bent part 4 is formed protruding in an outward direction α from the side face 25 of the axial force member 2. When the tensile load Pt or compression load Pc is applied to the axial force member 2, the bent part telescopically deforms in an axial direction Z of the axial force member 2.SELECTED DRAWING: Figure 9

Description

本発明は、引張荷重又は圧縮荷重が作用する軸力部材に設けられる鋼製デバイス、及び、建築物の壁体として設けられる耐力壁に関する。   The present invention relates to a steel device provided on an axial force member on which a tensile load or a compressive load acts, and a load bearing wall provided as a wall of a building.

従来から、対向する方向に相対変位を生ずる構造部材間で効果的にエネルギー吸収して、また、構造部材間の偏心に伴う機能低下を解決するものとして、例えば、特許文献1、2に開示される鋼材ダンパー等が提案されている。   Conventionally, for example, Patent Documents 1 and 2 disclose that energy is effectively absorbed between structural members that cause relative displacement in opposite directions, and that functional degradation due to eccentricity between structural members is solved. Steel dampers have been proposed.

特許文献1に開示された鋼材ダンパーは、互いに切り離されて対向する方向に相対変位を生ずる構造部材間に跨設されて、構造部材間の相対変位時に軸方向力を受けて曲げ降伏するものである。特許文献1に開示された鋼材ダンパーは、各構造部材に接続されて同一軸線上で距離をおいて対向する軸部と、両軸部間にその軸線を迂回して跨ってその両端が各軸部に接合されて曲げモーメントを負担する曲げ材とからなる。   The steel damper disclosed in Patent Document 1 is straddled between structural members that are separated from each other and cause relative displacement in opposing directions, and undergoes a bending yield by receiving an axial force at the time of relative displacement between the structural members. is there. The steel damper disclosed in Patent Document 1 includes a shaft portion connected to each structural member and facing a distance on the same axis, and a shaft that bypasses the axis between both shaft portions and spans both ends. And a bending material that is bonded to the portion and bears a bending moment.

特許文献2に開示された接合部の制震装置は、軸組の接合部を形成する一方の軸組材と他方の軸組材にそれぞれ固定される両側の固定部と、この両側の固定部間に軸組の構面内方向又は構面外方向に屈曲した形状に設けられるとともに、軸組の構面内方向又は構面外方向に変形することで軸組の接合部の変位を吸収する変形部とから形成されてなる。   The vibration control device for a joint disclosed in Patent Document 2 includes a shaft assembly material that forms a joint of a shaft assembly, fixing portions on both sides that are respectively fixed to the other shaft assembly material, and fixing portions on the both sides. It is provided with a shape bent in the in-plane direction or out-of-plane direction of the shaft assembly in between and absorbs the displacement of the joint portion of the shaft assembly by deforming in the in-plane direction or out-of-plane direction of the shaft assembly It is formed from a deformation part.

特開平5−263549号公報JP-A-5-263549 特開2002−235457号公報JP 2002-235457 A

ここで、特許文献1に開示された鋼材ダンパーは、特に、軸力部材となる構造部材間に跨設されて、各々の構造部材の互いに対向する端面に、鋼材ダンパーの両軸部を接続することで設けられる。このとき、特許文献1に開示された鋼材ダンパーは、構造部材に接続するための軸部と曲げモーメントを負担する曲げ材とが別部材で構成されるため、各々の部材の製作コストや、軸部と曲げ材とを接合するための加工コストが増大する。   Here, in particular, the steel damper disclosed in Patent Document 1 is straddled between structural members serving as axial force members, and connects both shaft portions of the steel damper to end surfaces facing each other of the respective structural members. Is provided. At this time, in the steel damper disclosed in Patent Document 1, since the shaft portion for connecting to the structural member and the bending material bearing the bending moment are configured as separate members, the manufacturing cost of each member and the shaft The processing cost for joining a part and a bending material increases.

また、特許文献1に開示された鋼材ダンパーは、両軸部間の軸線を迂回させてコ字型の曲げ材が形成されて、コ字型の曲げ材が軸方向に変形し易いものとなることで、軸方向の剛性を十分に確保できないものとなる。さらに、特許文献1に開示された鋼材ダンパーは、コ字型の曲げ材が軸直交方向にも変形し易く、曲げ材に厚い鋼板を用いて軸直交方向の変形を抑制することが必要であるため、曲げ材の製作に必要となる鋼材量が多くなることで、曲げ材の材料コストが増大する。   In addition, the steel damper disclosed in Patent Document 1 is such that a U-shaped bending material is formed by bypassing the axis between both shaft portions, and the U-shaped bending material is easily deformed in the axial direction. Thus, sufficient axial rigidity cannot be ensured. Furthermore, in the steel damper disclosed in Patent Document 1, the U-shaped bending material is easily deformed in the axial orthogonal direction, and it is necessary to suppress the deformation in the axial orthogonal direction using a thick steel plate as the bending material. Therefore, the material cost of a bending material increases because the amount of steel materials required for manufacture of a bending material increases.

そして、特許文献2に開示された接合部の制震装置は、柱と梁とを互いに接合した軸組の接合部に設けられるものであり、特に、引張荷重又は圧縮荷重が作用するブレース材等の軸力部材に設けられるものではない。また、特許文献2に開示された接合部の制震装置は、変形部が変形することでエネルギー吸収性能を発揮するものの、軸組材に固定される固定部が補剛されていないため、エネルギー吸収性能が不安定となるおそれがある。   And the damping device of the junction part indicated by patent documents 2 is provided in the junction part of the axis set which joined the column and the beam mutually, especially the brace material etc. which tensile load or compression load acts on It is not provided in the axial force member. Moreover, although the vibration damping device of the junction part disclosed by patent document 2 exhibits energy absorption performance because a deformation | transformation part deform | transforms, since the fixing | fixed part fixed to a shaft assembly is not stiffened, energy Absorption performance may be unstable.

そこで、本発明は、上述した問題点に鑑みて案出されたものであって、その目的とするところは、安定したエネルギー吸収性能を確保しながら低廉な製造コストで製造することのできる鋼製デバイス及び耐力壁を提供することにある。   Therefore, the present invention has been devised in view of the above-described problems, and its object is to make steel that can be manufactured at a low manufacturing cost while ensuring stable energy absorption performance. It is to provide a device and a load bearing wall.

第1発明に係る鋼製デバイスは、引張荷重又は圧縮荷重が作用する軸力部材に設けられる鋼製デバイスであって、軸力部材の側面に取り付けられる定着部と、前記定着部から連続して設けられる折曲部とを備え、前記折曲部は、軸力部材の側面より面外方向に突出して形成されて、引張荷重又は圧縮荷重が軸力部材に作用したときに、軸力部材の軸方向に伸縮変形するものとなることを特徴とする。   A steel device according to a first aspect of the present invention is a steel device provided on an axial force member to which a tensile load or a compressive load acts, and a fixing portion attached to a side surface of the axial force member, and continuously from the fixing portion. A bent portion provided, and the bent portion is formed so as to protrude outward from the side surface of the axial force member, and when a tensile load or a compressive load acts on the axial force member, It is characterized in that it expands and contracts in the axial direction.

第2発明に係る鋼製デバイスは、第1発明において、前記定着部に取り付けられる補剛材をさらに備え、前記補剛材は、軸力部材の側面との間に前記定着部を挟み込んだ状態で設けられることを特徴とする。   A steel device according to a second invention further comprises a stiffener attached to the fixing portion in the first invention, wherein the stiffener sandwiches the fixing portion between a side surface of an axial force member. Is provided.

第3発明に係る鋼製デバイスは、第1発明又は第2発明において、前記定着部は、前記折曲部の軸方向の両側で一対となって設けられて、軸力部材の側面に一対の前記定着部の各々がボルト接合で取り付けられることを特徴とする。   A steel device according to a third invention is the steel device according to the first invention or the second invention, wherein the fixing portion is provided as a pair on both sides in the axial direction of the bent portion, and a pair of side surfaces of the axial force member is provided. Each of the fixing portions is attached by bolt joining.

第4発明に係る鋼製デバイスは、第1発明〜第3発明の何れかにおいて、前記定着部は、前記折曲部の軸方向の両側で一対となって設けられて、前記折曲部は、一対の前記定着部の各々から連続する2箇所、及び、一対の前記定着部の中間となる1箇所で、面外方向に折り曲げられた折り目が3箇所に形成されることを特徴とする。   A steel device according to a fourth invention is the steel device according to any one of the first to third inventions, wherein the fixing portion is provided as a pair on both sides in the axial direction of the bent portion, and the bent portion is The folds bent in the out-of-plane direction are formed at three places, two places continuous from each of the pair of fixing sections and one place between the pair of fixing sections.

第5発明に係る鋼製デバイスは、第4発明において、前記折曲部は、一対の前記定着部の各々から連続する2箇所の前記折り目で、軸力部材の軸直交方向に対して15°以上、43°以下の傾斜角度で傾斜して形成されることを特徴とする。   The steel device according to a fifth aspect of the present invention is the steel device according to the fourth aspect, wherein the bent portion is the two folds that are continuous from each of the pair of fixing portions, and is 15 ° with respect to the axial orthogonal direction of the axial force member. As described above, it is formed to be inclined at an inclination angle of 43 ° or less.

第6発明に係る鋼製デバイスは、第1発明〜第3発明の何れかにおいて、前記定着部は、前記折曲部の軸方向の両側で一対となって設けられて、前記折曲部は、一対の前記定着部の各々から連続する2箇所、及び、一対の前記定着部の中間となる2箇所で、面外方向に折り曲げられた折り目が4箇所に形成されることを特徴とする。   A steel device according to a sixth invention is the steel device according to any one of the first invention to the third invention, wherein the fixing portion is provided as a pair on both sides in the axial direction of the bent portion, and the bent portion is The folds that are bent in the out-of-plane direction are formed at four locations at two locations that are continuous from each of the pair of fixing portions and at two locations that are intermediate between the pair of fixing portions.

第7発明に係る鋼製デバイスは、第1発明〜第6発明の何れかにおいて、前記折曲部は、面外方向に湾曲して折り曲げられた折り目が形成されて、前記折り目の内周側の曲率半径を、前記折曲部の板厚と同一以上の大きさとすることを特徴とする。   The steel device according to a seventh aspect of the present invention is the steel device according to any one of the first to sixth aspects, wherein the bent portion is formed with a fold that is bent and bent in an out-of-plane direction, and the inner side of the fold. The curvature radius is set to be equal to or larger than the plate thickness of the bent portion.

第8発明に係る耐力壁は、建築物の壁体として設けられる耐力壁であって、引張荷重又は圧縮荷重が作用するブレース材となる軸力部材と、前記軸力部材の軸方向の一部に設けられる鋼製デバイスとを備え、前記鋼製デバイスは、前記軸力部材の側面に取り付けられる定着部と、前記定着部から連続して設けられる折曲部とを有し、前記折曲部が、前記軸力部材の側面より面外方向に突出して形成されて、引張荷重又は圧縮荷重が前記軸力部材に作用したときに、前記軸力部材の軸方向に伸縮変形するものとなることを特徴とする。   A bearing wall according to an eighth aspect of the present invention is a bearing wall provided as a wall of a building, which is an axial force member serving as a brace material on which a tensile load or a compressive load acts, and a part of the axial force member in the axial direction. The steel device has a fixing part attached to a side surface of the axial force member, and a bent part provided continuously from the fixing part, and the bent part. However, it is formed so as to protrude from the side surface of the axial force member in the out-of-plane direction, and when a tensile load or a compressive load acts on the axial force member, the axial force member expands and contracts in the axial direction. It is characterized by.

第9発明に係る耐力壁は、第8発明において、前記軸力部材は、軸方向に分断させた一対の端部が互いに離間して配置されて、一方の前記端部から他方の前記端部まで連続して内挿される芯材が設けられることを特徴とする。   A bearing wall according to a ninth aspect of the present invention is the load bearing wall according to the eighth aspect, wherein the axial force member is arranged such that a pair of end portions separated in the axial direction are spaced apart from each other and from the one end portion to the other end portion. A core material that is continuously inserted is provided.

第1発明〜第9発明によれば、地震又は風等の繰返し外力に起因して、軸力部材に引張荷重及び圧縮荷重が交互に作用したときに、軸力部材の軸方向で折曲部が伸縮変形することで、地震又は風等の繰返し外力に対して、安定したエネルギー吸収性能を確保することが可能となる。   According to 1st invention-9th invention, when a tensile load and a compressive load act on an axial force member alternately due to repeated external forces, such as an earthquake or a wind, it is a bending part in the axial direction of an axial force member. By expanding and contracting, it is possible to ensure stable energy absorption performance against repeated external forces such as earthquakes and winds.

第1発明〜第9発明によれば、鋼製デバイスの座屈、破断等による顕著な耐力劣化を抑制できるため、定着部が取り付けられる軸力部材への負担を軽減させることで、軸力部材の損傷を防止することが可能となる。   According to 1st invention-9th invention, since the remarkable proof stress deterioration by buckling, a fracture | rupture, etc. of a steel device can be suppressed, an axial force member is reduced by reducing the burden to the axial force member to which a fixing part is attached. It becomes possible to prevent damage.

第1発明〜第9発明によれば、温度依存性の高い粘弾性ダンパーが用いられることなく、面外方向への容易な折曲加工で折曲部が形成された鋼板等が用いられることで、低廉な製造コストで鋼製デバイスを製造することが可能となる。   According to 1st invention-9th invention, without using a viscoelastic damper with high temperature dependency, the steel plate etc. in which the bending part was formed by the easy bending process to an out-of-plane direction are used. It becomes possible to manufacture a steel device at a low manufacturing cost.

特に、第2発明によれば、折曲部を軸方向に伸縮変形させて、安定したエネルギー吸収性能を発揮させると同時に、軸力部材の側面との間に定着部を挟み込んだ状態で補剛材が設けられることで、定着部の面外変形を補剛材で抑制して、十分な耐力及び剛性を確保することが可能となる。   In particular, according to the second invention, the bending portion is expanded and contracted in the axial direction to exhibit stable energy absorption performance, and at the same time, the stiffening is performed with the fixing portion sandwiched between the side surfaces of the axial force member. By providing the material, it is possible to suppress the out-of-plane deformation of the fixing portion with the stiffening material and to ensure sufficient proof stress and rigidity.

特に、第3発明によれば、軸力部材の側面に一対の定着部の各々がボルト接合で取り付けられることで、折曲部が塑性変形等して損傷した古い鋼製デバイスを容易に取り外して、新しい鋼製デバイスへの交換を容易に実施することが可能となる。   In particular, according to the third aspect of the present invention, each of the pair of fixing portions is attached to the side surface of the axial force member by bolt joining so that the old steel device whose bent portion is damaged by plastic deformation or the like can be easily removed. Therefore, it is possible to easily replace the steel device with a new one.

特に、第4発明、第6発明によれば、略三角形状、略矩形状、略台形状又は略逆台形状の折曲部が、鋼板等の容易な折曲加工で形成されることで、鋼製デバイスの加工度を低減させることが可能となる。   In particular, according to the fourth invention and the sixth invention, the substantially triangular shape, the substantially rectangular shape, the substantially trapezoidal shape or the substantially inverted trapezoidal bent portion is formed by an easy bending process such as a steel plate, It becomes possible to reduce the workability of the steel device.

特に、第5発明によれば、軸直交方向に対して折曲部の傾斜角度を15°以上、43°以下とすることで、鋼製デバイスの製造を容易にすると同時に、引張荷重に対しては鋼製デバイスの耐力上昇を抑制し、圧縮荷重に対しては鋼製デバイスの所定の変形性能を確保することが可能となることで、安定したエネルギー吸収性能を発揮させることが可能となる。   In particular, according to the fifth aspect, by making the inclination angle of the bent portion 15 ° or more and 43 ° or less with respect to the direction perpendicular to the axis, the steel device can be easily manufactured and at the same time against the tensile load. Suppresses an increase in the yield strength of the steel device, and can secure a predetermined deformation performance of the steel device against a compressive load, so that a stable energy absorption performance can be exhibited.

特に、第7発明によれば、折り目の曲率半径を十分に大きくすることで、折曲部が変形するときの塑性化領域を大きくするとともに、折り目を折曲加工するときと折曲部を変形させたときとを併せた累積歪みを小さくできるため、加工硬化による耐力上昇の抑制や、低サイクル疲労に対する抵抗特性の強化を図ることが可能となる。   In particular, according to the seventh invention, by sufficiently increasing the radius of curvature of the fold, the plasticizing region when the fold is deformed is enlarged, and the fold is deformed when the fold is bent. Therefore, it is possible to reduce the accumulated strain in combination with the time when it is made to suppress the increase in yield strength due to work hardening and to enhance the resistance characteristics against low cycle fatigue.

特に、第8発明によれば、軸力部材となるブレース材に鋼製デバイスが設けられるため、引張荷重及び圧縮荷重が交互に作用するにもかかわらず、枠内空間のブレース材に安定したエネルギー吸収性能を発揮させて、耐震性能を向上させた建築物の壁体を提供することが可能となる。   In particular, according to the eighth aspect of the invention, since the steel device is provided on the brace material serving as the axial force member, stable energy is applied to the brace material in the space in the frame even though the tensile load and the compressive load act alternately. It is possible to provide a wall of a building with improved absorption performance and improved seismic performance.

特に、第9発明によれば、軸力部材の一方の端部から他方の端部まで連続させた芯材が設けられることで、幅方向又は奥行方向の鋼製デバイスの偏心した変形を抑制して、鋼製デバイス同士のずれを止めて、鋼製デバイスの全体座屈を抑制することが可能となる。   In particular, according to the ninth aspect, by providing a core material that is continuous from one end of the axial force member to the other end, the eccentric deformation of the steel device in the width direction or the depth direction is suppressed. Thus, it is possible to stop the deviation between the steel devices and suppress the overall buckling of the steel devices.

本発明を適用した鋼製デバイスが導入される耐力壁を示す斜視図である。It is a perspective view which shows the bearing wall in which the steel device to which this invention is applied is introduced. (a)は、本発明を適用した耐力壁に水平力が作用する前の状態を示す正面図であり、(b)は、そのA−A線断面図であり、(c)は、その水平力が作用した後の状態を示す正面図である。(A) is a front view which shows the state before a horizontal force acts on the bearing wall to which this invention is applied, (b) is the AA sectional view, (c) is the horizontal. It is a front view which shows the state after force acts. (a)は、本発明を適用した鋼製デバイスが設けられる閉断面形状の軸力部材を示す平面図であり、(b)は、その開断面形状の軸力部材を示す平面図である。(A) is a top view which shows the axial force member of the closed cross-sectional shape where the steel device to which this invention is applied is provided, (b) is a top view which shows the axial force member of the open cross-sectional shape. (a)は、本発明を適用した鋼製デバイスが設けられる平鋼の軸力部材を示す正面図であり、(b)は、端部を略平坦に潰して加工した鋼管の軸力部材を示す正面図であり、(c)は、接合金物の軸力部材を示す正面図である。(A) is a front view which shows the axial force member of the flat steel in which the steel device to which this invention is applied is provided, (b) is the axial force member of the steel pipe processed by crushing the edge part substantially flatly. It is a front view which shows, (c) is a front view which shows the axial force member of a metal joint. (a)は、本発明を適用した鋼製デバイスが設けられた軸力部材を示す正面図であり、(b)は、その側面図である。(A) is a front view which shows the axial force member provided with the steel device to which this invention is applied, (b) is the side view. (a)は、本発明を適用した鋼製デバイスで面外方向の外側に突出した折曲部を示す正面図であり、(b)は、その面外方向の内側に突出した折曲部を示す正面図である。(A) is a front view which shows the bending part which protruded to the outer side of the out-of-plane direction with the steel device to which this invention is applied, (b) is the bending part protruded to the inner side of the out-of-plane direction. FIG. 本発明を適用した鋼製デバイスで面外方向に湾曲して突出した折曲部を示す正面図である。It is a front view which shows the bending part which curved and protruded in the out-of-plane direction with the steel devices to which this invention is applied. (a)は、本発明を適用した鋼製デバイスで略矩形状の折曲部を示す正面図であり、(b)は、その略台形状の折曲部を示す正面図であり、(c)は、その略逆台形状の折曲部を示す正面図である。(A) is a front view which shows the substantially rectangular bending part with the steel devices to which this invention is applied, (b) is a front view which shows the substantially trapezoidal bending part, (c ) Is a front view showing the substantially inverted trapezoidal bent portion. (a)は、本発明を適用した鋼製デバイスで引張荷重で伸長する折曲部を示す正面図であり、(b)は、その圧縮荷重で縮長する折曲部を示す正面図である。(A) is a front view which shows the bending part extended | stretched by the tensile load with the steel device to which this invention is applied, (b) is a front view which shows the bending part contracted by the compression load. . 本発明を適用した鋼製デバイスが4面の側面に設けられた軸力部材を示す平面図である。It is a top view which shows the axial force member with which the steel device to which this invention was applied was provided in the side surface of 4 surfaces. 本発明を適用した鋼製デバイスの複数枚が互いに重ね合わされた状態を示す正面図である。It is a front view showing the state where a plurality of steel devices to which the present invention is applied are superimposed on each other. (a)は、本発明を適用した鋼製デバイスが設けられる軸力部材の端部に形成された縮径部を示す正面図であり、(b)は、その軸力部材の端部に形成された拡径部を示す正面図である。(A) is a front view which shows the reduced diameter part formed in the edge part of the axial force member with which the steel device to which this invention is applied is provided, (b) is formed in the edge part of the axial force member It is a front view which shows the made diameter-expanded part. 本発明を適用した鋼製デバイスが設けられる軸力部材の端部に内挿された芯材を示す正面図である。It is a front view which shows the core material inserted by the edge part of the axial force member with which the steel device to which this invention is applied is provided. 本発明を適用した鋼製デバイスのFEM解析結果で引張荷重載荷時及び圧縮荷重載荷時の折曲部の伸縮変形量を示すグラフである。It is a graph which shows the expansion-contraction deformation amount of the bending part at the time of tensile load loading and compression load loading by the FEM analysis result of the steel devices to which this invention is applied. 本発明を適用した鋼製デバイスのFEM解析結果で補剛材が設けられることで耐力及び剛性が向上することを示すグラフである。It is a graph which shows that a yield strength and rigidity improve by providing a stiffener by the FEM analysis result of the steel device to which this invention is applied. 本発明を適用した鋼製デバイスのFEM解析結果で折曲部の傾斜角度と耐力上昇率との関係を示すグラフである。It is a graph which shows the relationship between the inclination | tilt angle of a bending part, and a yield increase rate by the FEM analysis result of the steel device to which this invention is applied. (a)は、本発明を適用した鋼製デバイスが設けられる鉄骨材の軸力部材を示す正面図であり、(b)は、その木製材の軸力部材を示す正面図である。(A) is a front view which shows the axial force member of the steel frame material with which the steel device to which this invention is applied is provided, (b) is a front view which shows the axial force member of the wooden material.

以下、本発明を適用した鋼製デバイス1及び耐力壁7を実施するための形態について、図面を参照しながら詳細に説明する。   Hereinafter, the form for implementing the steel device 1 and the bearing wall 7 to which this invention is applied is demonstrated in detail, referring drawings.

本発明を適用した鋼製デバイス1は、図1に示すように、例えば、住宅、学校、事務所、病院施設等の建築物の軸力部材2に設けられる。また、本発明を適用した鋼製デバイス1は、プラント構造物、鉄塔等の建造物の軸力部材2に設けられてもよい。   As shown in FIG. 1, a steel device 1 to which the present invention is applied is provided on an axial force member 2 of a building such as a house, a school, an office, or a hospital facility. The steel device 1 to which the present invention is applied may be provided on an axial force member 2 of a building such as a plant structure or a steel tower.

本発明を適用した鋼製デバイス1は、特に、引張荷重Pt又は圧縮荷重Pcが作用する軸力部材2に設けられる。本発明を適用した鋼製デバイス1は、柱材、梁材又はブレース材20等の軸力部材2に設けられて、建築物の耐力壁7等に導入されるものとなる。   The steel device 1 to which the present invention is applied is particularly provided in the axial force member 2 on which a tensile load Pt or a compressive load Pc acts. A steel device 1 to which the present invention is applied is provided on an axial force member 2 such as a column member, a beam member, or a brace member 20 and is introduced into a bearing wall 7 or the like of a building.

本発明を適用した耐力壁7は、スチールハウス、鉄骨プレハブ又は木造住宅等の建築物の壁体として設けられる。本発明を適用した耐力壁7は、例えば、一対の縦枠71と一対の横枠72とで四方が取り囲まれて、所定の枠内空間70が形成されるものとなる。   The load bearing wall 7 to which the present invention is applied is provided as a wall of a building such as a steel house, a steel frame prefab, or a wooden house. The bearing wall 7 to which the present invention is applied is, for example, surrounded by a pair of vertical frames 71 and a pair of horizontal frames 72 to form a predetermined frame space 70.

本発明を適用した耐力壁7は、ブレース材20となる軸力部材2と、軸力部材2の一部に設けられる鋼製デバイス1とを備える。本発明を適用した耐力壁7は、図2に示すように、例えば、高さ寸法Hを3000mm程度、幅寸法Wを1000mm程度とする。   The bearing wall 7 to which the present invention is applied includes an axial force member 2 to be a brace material 20 and a steel device 1 provided on a part of the axial force member 2. As shown in FIG. 2, the bearing wall 7 to which the present invention is applied has, for example, a height dimension H of about 3000 mm and a width dimension W of about 1000 mm.

本発明を適用した耐力壁7は、図2(a)に示すように、例えば、枠内空間70の上部70a及び下部70bの各々に、ブレース材20となる軸力部材2が傾斜して設けられる。このとき、枠内空間70の上部70aでは、右上隅又は左上隅に向けてブレース材20が傾斜して設けられるとともに、枠内空間70の下部70bでは、右下隅又は左下隅に向けてブレース材20が傾斜して設けられる。   As shown in FIG. 2A, the bearing wall 7 to which the present invention is applied is provided, for example, with the axial force member 2 serving as the brace material 20 inclined at each of the upper portion 70 a and the lower portion 70 b of the in-frame space 70. It is done. At this time, the brace material 20 is inclined toward the upper right corner or the upper left corner in the upper portion 70a of the inner space 70, and the brace material is directed toward the lower right corner or the lower left corner in the lower portion 70b of the inner space 70. 20 is provided with an inclination.

本発明を適用した耐力壁7は、図2(c)に示すように、地震又は風等により水平力Fが作用することで、各々の縦枠71が横方向に傾倒するように変位するものとなる。このとき、本発明を適用した耐力壁7は、例えば、枠内空間70の上部70aではブレース材20に引張荷重Ptが作用するとともに、枠内空間70の下部70bではブレース材20に圧縮荷重Pcが作用するものとなる。   As shown in FIG. 2 (c), the bearing wall 7 to which the present invention is applied is displaced so that each vertical frame 71 tilts in the horizontal direction when a horizontal force F acts due to an earthquake or wind. It becomes. At this time, the load-bearing wall 7 to which the present invention is applied has, for example, a tensile load Pt acting on the brace material 20 in the upper portion 70a of the inner space 70 and a compressive load Pc on the brace material 20 in the lower portion 70b of the inner space 70. Will act.

ここで、本発明を適用した耐力壁7は、例えば、水平力Fを20kNとして、層間変形角を1/50とした場合に、各々のブレース材20の耐力を36kN以上、各々のブレース材20の変形性能を17mm以上確保する必要がある。このため、本発明を適用した耐力壁7は、各々のブレース材20で所定の耐力及び変形性能を確保するために、図3に示すように、ブレース材20となる軸力部材2の軸方向Zの一部に鋼製デバイス1が設けられる。   Here, the load bearing wall 7 to which the present invention is applied, for example, when the horizontal force F is 20 kN and the interlayer deformation angle is 1/50, each brace material 20 has a yield strength of 36 kN or more and each brace material 20. It is necessary to secure a deformation performance of 17 mm or more. For this reason, the load bearing wall 7 to which the present invention is applied has an axial direction of the axial force member 2 to be the brace material 20 as shown in FIG. 3 in order to ensure a predetermined yield strength and deformation performance in each brace material 20. A steel device 1 is provided in a part of Z.

軸力部材2は、図3(a)に示すように、断面略矩形状の閉断面形状に形成された角形鋼管が用いられる。また、軸力部材2は、略六角形状又は略八角形状等の断面略多角形状の閉断面形状に形成された角形鋼管が用いられてもよく、図3(b)に示すように、断面略C形状の開断面形状に形成された溝形鋼又はリップ付溝形鋼が用いられてもよい。   As shown in FIG. 3A, the axial force member 2 is a square steel pipe formed in a closed cross-sectional shape having a substantially rectangular cross section. In addition, the axial force member 2 may be a square steel pipe formed in a closed cross-sectional shape having a substantially polygonal cross section such as a substantially hexagonal shape or a substantially octagonal shape, as shown in FIG. A channel steel formed into a C-shaped open cross-sectional shape or a channel steel with a lip may be used.

軸力部材2は、例えば、角形鋼管等の板厚t2を1.0mm〜5.0mm程度、幅方向Xの外径D1を30mm〜90mm程度、奥行方向Yの外径D2を60mm〜180mm程度とする。軸力部材2は、幅方向Xの片側又は両側に幅方向Xの側面25aが配置されるとともに、奥行方向Yの片側又は両側に奥行方向Yの側面25bが配置されて、幅方向Xの側面25a及び奥行方向Yの側面25bに取り囲まれて中空部26が形成される。   The axial force member 2 has, for example, a square steel pipe thickness t2 of about 1.0 mm to 5.0 mm, an outer diameter D1 in the width direction X of about 30 mm to 90 mm, and an outer diameter D2 of the depth direction Y of about 60 mm to 180 mm. And The axial force member 2 has a side surface 25a in the width direction X disposed on one side or both sides in the width direction X, and a side surface 25b in the depth direction Y disposed on one side or both sides in the depth direction Y. A hollow portion 26 is formed by being surrounded by the side surface 25b in the depth direction Y.

軸力部材2は、幅方向Xの側面25aが奥行方向Yに延びて形成されるとともに、奥行方向Yの側面25bが幅方向Xに延びて形成される。軸力部材2は、幅方向Xの側面25a及び奥行方向Yの側面25bの各々と略直交する方向が、軸力部材2の側面25の面外方向αとなる。そして、軸力部材2の側面25は、軸力部材2の中空部26側が面外方向αの内側Aとなるとともに、軸力部材2の外部側が面外方向αの外側Bとなる。   The axial force member 2 is formed such that the side surface 25a in the width direction X extends in the depth direction Y, and the side surface 25b in the depth direction Y extends in the width direction X. In the axial force member 2, a direction substantially orthogonal to each of the side surface 25 a in the width direction X and the side surface 25 b in the depth direction Y is an out-of-plane direction α of the side surface 25 of the axial force member 2. And as for the side surface 25 of the axial force member 2, while the hollow part 26 side of the axial force member 2 becomes the inner side A of the out-of-plane direction α, the outer side of the axial force member 2 becomes the outer side B of the out-of-plane direction α.

なお、軸力部材2は、図4(a)に示すように、平鋼60等が用いられてもよく、又は、図4(b)に示すように、端部27を略平坦に潰して加工した鋼管が用いられてもよい。また、軸力部材2は、図4(c)に示すように、必要に応じて、枠材に取り付けられて軸力が作用する接合金物6等が用いられてもよい。   As shown in FIG. 4A, the axial force member 2 may be a flat steel 60 or the like, or as shown in FIG. A processed steel pipe may be used. Further, as shown in FIG. 4C, the axial force member 2 may be a metal fitting 6 or the like that is attached to a frame member and acts on an axial force as necessary.

本発明を適用した鋼製デバイス1は、軸力部材2の側面25に取り付けられる定着部3と、定着部3から連続して設けられる折曲部4とを備え、図5に示すように、軸力部材2の軸方向Zの一部に設けられるものとなる。そして、本発明を適用した鋼製デバイス1は、必要に応じて、定着部3に取り付けられる補剛材5をさらに備えるものとなる。   The steel device 1 to which the present invention is applied includes a fixing portion 3 attached to the side surface 25 of the axial force member 2 and a bent portion 4 provided continuously from the fixing portion 3, as shown in FIG. It is provided in a part of the axial direction Z of the axial force member 2. And the steel device 1 to which this invention is applied will further be provided with the stiffener 5 attached to the fixing | fixed part 3 as needed.

本発明を適用した鋼製デバイス1は、図5(a)に示すように、軸力部材2を軸方向Zに分断させて、軸力部材2を分断させた一対の端部27に架設される。本発明を適用した鋼製デバイス1は、軸力部材2を分断させた一対の端部27が軸方向Zで互いに対向して配置されて、軸力部材2の一方の端部27から他方の端部27まで連続して設けられる。   As shown in FIG. 5A, the steel device 1 to which the present invention is applied is constructed on a pair of end portions 27 in which the axial force member 2 is divided in the axial direction Z and the axial force member 2 is divided. The In the steel device 1 to which the present invention is applied, a pair of end portions 27 that divide the axial force member 2 are arranged to face each other in the axial direction Z, and from one end portion 27 of the axial force member 2 to the other. It is provided continuously up to the end 27.

本発明を適用した鋼製デバイス1は、軸力部材2の軸方向Zで互いに対向させた各々の端部27で、軸力部材2の各々の側面25に定着部3が取り付けられる。また、本発明を適用した鋼製デバイス1は、軸力部材2を分断させた一対の端部27が軸方向Zで互いに離間した離間部Sで、定着部3から軸方向Zに連続させた折曲部4が配置される。   In the steel device 1 to which the present invention is applied, the fixing unit 3 is attached to each side surface 25 of the axial force member 2 at each end portion 27 opposed to each other in the axial direction Z of the axial force member 2. Further, in the steel device 1 to which the present invention is applied, the pair of end portions 27 that divide the axial force member 2 are spaced apart from each other in the axial direction Z, and are continuous from the fixing unit 3 in the axial direction Z. A bent portion 4 is arranged.

定着部3は、折曲部4の軸方向Zの両側で一対となって設けられて、軸力部材2の一方の端部27に一方の定着部3が取り付けられるとともに、軸力部材2の他方の端部27に他方の定着部3が取り付けられる。定着部3は、軸力部材2の側面25に当接させた状態で、軸力部材2の側面25まで連続して貫通させたボルトナット31が設けられることで、軸力部材2の側面25に一対の定着部3の各々がボルト接合で取り付けられる。   The fixing unit 3 is provided as a pair on both sides in the axial direction Z of the bent unit 4, and one fixing unit 3 is attached to one end 27 of the axial force member 2, and the axial force member 2 The other fixing unit 3 is attached to the other end 27. The fixing unit 3 is provided with a bolt nut 31 that is continuously penetrated to the side surface 25 of the axial force member 2 in a state of being in contact with the side surface 25 of the axial force member 2. Each of the pair of fixing portions 3 is attached by bolt joining.

定着部3は、図5(b)に示すように、例えば、奥行方向Yで2列に亘って設けられたボルトナット31で、軸力部材2の幅方向Xの側面25に一対の定着部3の各々がボルト接合で取り付けられる。なお、定着部3は、軸力部材2の側面25に、ボルト接合で取り付けられるほか、ねじ接合、くぎ接合、ピン接合又は溶接接合等で取り付けられてもよい。定着部3は、必要に応じて、各々の定着部3とともに補剛材5がボルト接合等で取り付けられる。   As shown in FIG. 5B, the fixing unit 3 is a pair of fixing units on the side surface 25 in the width direction X of the axial force member 2 with, for example, bolt nuts 31 provided in two rows in the depth direction Y. Each of 3 is attached by bolt joint. The fixing unit 3 may be attached to the side surface 25 of the axial force member 2 by bolt joining, or by screw joining, nail joining, pin joining, welding joining, or the like. The fixing unit 3 is attached with a stiffener 5 together with each fixing unit 3 by bolting or the like as necessary.

なお、ボルトナット31は、閉断面形状に形成された軸力部材2又は開断面形状に形成された軸力部材2の何れにおいても、図3(a)に示すように、軸力部材2の一方の側面25から他方の側面25まで連続してボルトが設けられてもよい。そして、ボルトが連続して設けられる場合には、ボルトに張力を導入することができるように、一方の側面25と他方の側面25との間にスペーサーが設けられることが望ましい。また、ボルトナット31は、図3(b)に示すように、軸力部材2の各々の側面25に設けられてもよい。   As shown in FIG. 3 (a), the bolt nut 31 is either the axial force member 2 formed in a closed cross-sectional shape or the axial force member 2 formed in an open cross-sectional shape. Bolts may be provided continuously from one side surface 25 to the other side surface 25. And when a bolt is provided continuously, it is desirable to provide a spacer between one side surface 25 and the other side surface 25 so that tension can be introduced into the bolt. Moreover, the bolt nut 31 may be provided in each side surface 25 of the axial force member 2, as shown in FIG.3 (b).

折曲部4は、図5に示すように、軸力部材2の側面25より面外方向αに突出して形成される。折曲部4は、例えば、軸方向Zの縦寸法bを10mm〜50mm程度、面外方向αの突出高hを10mm〜50mm程度、幅方向X又は奥行方向Yの横寸法wを30mm〜180mm程度として、板厚t1を1.0mm〜5.0mm程度とする。   As shown in FIG. 5, the bent portion 4 is formed to protrude in the out-of-plane direction α from the side surface 25 of the axial force member 2. The bent portion 4 has, for example, a vertical dimension b in the axial direction Z of about 10 mm to 50 mm, a protrusion height h in the out-of-plane direction α of about 10 mm to 50 mm, and a horizontal dimension w in the width direction X or depth direction Y of 30 mm to 180 mm. The thickness t1 is set to about 1.0 mm to 5.0 mm.

折曲部4は、図6に示すように、面外方向αに折り曲げられて形成された折り目40が、一対の定着部3の間で3箇所以上の複数箇所に形成される。このとき、折曲部4は、図6(a)に示すように、軸力部材2の側面25より面外方向αの外側Bに向けて突出して形成されてもよく、また、図6(b)に示すように、軸力部材2の側面25より面外方向αの内側Aに向けて突出して形成されてもよい。   As shown in FIG. 6, the folding portion 4 is formed by bending in the out-of-plane direction α at a plurality of three or more locations between the pair of fixing portions 3. At this time, as shown in FIG. 6A, the bent portion 4 may be formed to protrude from the side surface 25 of the axial force member 2 toward the outer side B in the out-of-plane direction α. As shown in b), the axial force member 2 may be formed so as to protrude from the side surface 25 toward the inner side A in the out-of-plane direction α.

折曲部4は、折り目40で湾曲又は屈曲させて折り曲げられるものとなる。折曲部4は、折り目40で湾曲して折り曲げられる場合に、例えば、湾曲した折り目40の内周側の曲率半径r1を、折曲部4の板厚t1と同一以上の大きさとして、湾曲した折り目40の外周側の曲率半径r2を、折曲部4の板厚t1の2倍以上の大きさとする。   The bent part 4 is bent or bent at the crease 40. When the bent portion 4 is bent at the fold 40 and bent, for example, the radius of curvature r1 on the inner peripheral side of the bent fold 40 is set to be equal to or larger than the plate thickness t1 of the bent portion 4 and bent. The radius of curvature r2 on the outer peripheral side of the crease 40 is set to be twice or more the plate thickness t1 of the bent portion 4.

折曲部4は、主に、面外方向αに折り曲げられた折り目40が、一対の定着部3の間で3箇所に形成される。このとき、折曲部4は、一対の定着部3の各々から軸方向Zに連続する2箇所、及び、軸方向Zで一対の定着部3の中間となる1箇所で、面外方向αに折り曲げられた折り目40が3箇所に形成される。   In the bent portion 4, folds 40 that are bent in the out-of-plane direction α are mainly formed at three positions between the pair of fixing portions 3. At this time, the bent portion 4 has two locations that are continuous in the axial direction Z from each of the pair of fixing portions 3 and one location that is intermediate between the pair of fixing portions 3 in the axial direction Z in the out-of-plane direction α. Bent folds 40 are formed at three locations.

折曲部4は、特に、面外方向αに折り曲げられた折り目40が3箇所に形成される場合に、軸力部材2の側面25より面外方向αに突出して略三角形状に形成される。このとき、折曲部4は、一対の定着部3の各々から連続する2箇所の折り目40で、軸力部材2の側面25と直交する軸直交方向から略三角形状の傾斜面4aが傾斜することで、軸力部材2の軸直交方向に対して15°以上、43°以下の傾斜角度θで形成される。   The bent portion 4 is formed in a substantially triangular shape by projecting in the out-of-plane direction α from the side surface 25 of the axial force member 2 particularly when the folds 40 bent in the out-of-plane direction α are formed at three locations. . At this time, the bent portion 4 has two fold lines 40 that are continuous from each of the pair of fixing portions 3, and the substantially triangular inclined surface 4 a is inclined from the axis orthogonal direction orthogonal to the side surface 25 of the axial force member 2. Thereby, it forms with inclination-angle (theta) of 15 degrees or more and 43 degrees or less with respect to the axial orthogonal direction of the axial force member 2.

なお、折曲部4は、面外方向αに突出して略三角形状に形成されるもののほか、図7に示すように、面外方向αに湾曲して形成されてもよい。このとき、折曲部4は、面外方向αに折り曲げられた折り目40が2箇所に形成されて、これらの折り目40と折り目40との間で、略円弧状又は略楕円弧状等に湾曲して形成される。   The bent portion 4 may be formed to be curved in the out-of-plane direction α, as shown in FIG. At this time, the fold portion 4 is formed with two folds 40 that are bent in the out-of-plane direction α, and bends between the folds 40 and the folds 40 in a substantially arc shape, a substantially elliptic arc shape, or the like. Formed.

折曲部4は、図8に示すように、必要に応じて、面外方向αに折り曲げられた折り目40が、一対の定着部3の間で4箇所に形成されてもよい。このとき、折曲部4は、一対の定着部3の各々から軸方向Zに連続する2箇所、及び、軸方向Zで一対の定着部3の中間となる2箇所で、面外方向αに折り曲げられた折り目40が4箇所に形成される。   As shown in FIG. 8, the folding portion 4 may be formed with four folds 40 that are bent in the out-of-plane direction α at four locations between the pair of fixing portions 3 as necessary. At this time, the bent portion 4 has two locations that are continuous in the axial direction Z from each of the pair of fixing portions 3 and two locations that are intermediate between the pair of fixing portions 3 in the axial direction Z in the out-of-plane direction α. Bent folds 40 are formed at four locations.

折曲部4は、特に、面外方向αに折り曲げられた折り目40が4箇所に形成される場合に、図8(a)に示す略矩形状に形成されてもよく、また、図8(b)に示す略台形状に形成されて、又は、図8(c)に示す略逆台形状に形成されてもよい。このとき、折曲部4は、必要に応じて、略台形状等の傾斜面4aが、軸力部材2の軸直交方向に対して15°以上、43°以下の傾斜角度θで傾斜して形成されてもよい。   The bent portion 4 may be formed in a substantially rectangular shape shown in FIG. 8A, particularly when the folds 40 bent in the out-of-plane direction α are formed at four locations. It may be formed in a substantially trapezoidal shape shown in b) or a substantially inverted trapezoidal shape shown in FIG. At this time, the bent portion 4 has an inclined surface 4a having a substantially trapezoidal shape, for example, inclined at an inclination angle θ of 15 ° or more and 43 ° or less with respect to the direction orthogonal to the axis of the axial force member 2. It may be formed.

折曲部4は、図9に示すように、軸力部材2の側面25より面外方向αに突出して形成されて、軸方向Zの引張荷重Pt又は圧縮荷重Pcが軸力部材2に作用したときに、軸力部材2の軸方向Zに伸縮変形するものとなる。   As shown in FIG. 9, the bent portion 4 is formed to protrude in the out-of-plane direction α from the side surface 25 of the axial force member 2, and the tensile load Pt or the compressive load Pc in the axial direction Z acts on the axial force member 2. When this happens, the axial force member 2 expands and contracts in the axial direction Z.

ここで、定着部3は、図9(a)に示すように、引張荷重Ptが軸力部材2に作用したときに、軸力部材2を分断させた一対の端部27とともに、一対の定着部3が軸方向Zで互いに離間する方向に変位する。このとき、折曲部4は、軸直交方向に対する折り目40での傾斜角度θtが大きくなって、軸方向Zに伸長する変形をするものとなる。   Here, as shown in FIG. 9A, the fixing unit 3 has a pair of fixing portions together with a pair of end portions 27 that divide the axial force member 2 when a tensile load Pt is applied to the axial force member 2. The parts 3 are displaced in the direction away from each other in the axial direction Z. At this time, the bent portion 4 is deformed to extend in the axial direction Z because the inclination angle θt at the fold line 40 with respect to the direction perpendicular to the axis becomes large.

さらに、定着部3は、図9(b)に示すように、圧縮荷重Pcが軸力部材2に作用したときに、軸力部材2を分断させた一対の端部27とともに、一対の定着部3が軸方向Zで互いに接近する方向に変位する。このとき、折曲部4は、軸直交方向に対する折り目40での傾斜角度θcが小さくなって、軸方向Zに縮長する変形をするものとなる。   Further, as shown in FIG. 9B, the fixing unit 3 includes a pair of fixing units together with a pair of end portions 27 that divide the axial force member 2 when a compressive load Pc is applied to the axial force member 2. 3 are displaced in the axial direction Z so as to approach each other. At this time, the bending portion 4 is deformed so that the inclination angle θc at the fold line 40 with respect to the direction perpendicular to the axis is reduced and contracted in the axial direction Z.

補剛材5は、所定の板厚t5の平鋼等が、各々の定着部3とともにボルト接合等で軸力部材2の側面25に取り付けられる。補剛材5は、軸力部材2の側面25との間に定着部3を挟み込んで、各々の定着部3に当接させた状態で設けられる。補剛材5は、定着部3及び軸力部材2の側面25まで連続して貫通させたボルトナット31が設けられることで、一対の定着部3の各々にボルト接合で取り付けられるものとなる。   The stiffener 5 is made of flat steel or the like having a predetermined plate thickness t5 attached to the side surface 25 of the axial force member 2 by bolting together with the fixing portions 3. The stiffener 5 is provided in a state in which the fixing unit 3 is sandwiched between the axial force member 2 and the side surface 25 and is in contact with each fixing unit 3. The stiffener 5 is attached to each of the pair of fixing portions 3 by bolt joining by providing the bolt nuts 31 that are continuously penetrated to the fixing portion 3 and the side surface 25 of the axial force member 2.

補剛材5は、例えば、平鋼等の板厚t5を定着部3及び折曲部4の板厚t1の1.5倍〜5倍程度の大きさとして、各々の定着部3で折曲部4の近傍側に設けられる。補剛材5は、軸力部材2の側面25との間に定着部3を挟み込んだ状態とすることで、折曲部4が軸方向Zに伸縮変形するときに、軸力部材2の側面25から定着部3が面外方向αに離間しないように、所定の板厚t5の平鋼等で定着部3を拘束するものとなる。   For example, the stiffener 5 is bent at each fixing unit 3 with a plate thickness t5 of flat steel or the like being 1.5 to 5 times larger than the plate thickness t1 of the fixing unit 3 and the bending unit 4. Provided near the portion 4. The stiffener 5 is in a state in which the fixing portion 3 is sandwiched between the side surface 25 of the axial force member 2 and the side surface of the axial force member 2 when the bent portion 4 expands and contracts in the axial direction Z. The fixing unit 3 is restrained by a flat steel having a predetermined thickness t5 so that the fixing unit 3 is not separated from the fixing unit 3 in the out-of-plane direction α.

補剛材5は、必要に応じて、定着部3から離間して折曲部4の近傍となる部分で、平鋼等の角部が部分的に切り欠かれることで面取り5aが形成される。補剛材5は、折曲部4の近傍となる部分に面取り5aが形成されることで、折曲部4が軸方向Zに縮長する変形をしたときに、平鋼等の角部に折曲部4が干渉することを抑制することができる。   The stiffener 5 is a portion that is separated from the fixing portion 3 and is in the vicinity of the bent portion 4 as necessary, and a chamfer 5a is formed by partially cutting a corner portion of flat steel or the like. . The stiffener 5 has a chamfer 5a formed in the vicinity of the bent portion 4 so that when the bent portion 4 is deformed to contract in the axial direction Z, the corner portion of a flat steel or the like is formed. It can suppress that the bending part 4 interferes.

本発明を適用した鋼製デバイス1は、図3に示すように、軸力部材2の2面の側面25の各々に設けられる。このとき、本発明を適用した鋼製デバイス1は、特に、軸力部材2の幅方向X又は奥行方向Yに対向する2面の側面25の各々に設けられることで、2枚の鋼製デバイス1が左右対称又は前後対称となるように配置されることが望ましい。   The steel device 1 to which the present invention is applied is provided on each of the two side surfaces 25 of the axial force member 2 as shown in FIG. At this time, in particular, the steel device 1 to which the present invention is applied is provided on each of the two side surfaces 25 facing the width direction X or the depth direction Y of the axial force member 2 so that two steel devices are provided. It is desirable to arrange 1 so as to be bilaterally symmetric or longitudinally symmetric.

また、本発明を適用した鋼製デバイス1は、図10に示すように、軸力部材2の幅方向X及び奥行方向Yに対向する4面の側面25の各々に設けられて、4枚の鋼製デバイス1が左右対称及び前後対称となるように配置されてもよい。本発明を適用した鋼製デバイス1は、軸力部材2の幅方向X及び奥行方向Yの何れか一方又は両方で対称に配置されることで、折曲部4が伸縮変形するときの軸方向Zに対する偏心を抑制することができる。   Moreover, the steel device 1 to which the present invention is applied is provided on each of the four side surfaces 25 facing the width direction X and the depth direction Y of the axial force member 2 as shown in FIG. You may arrange | position so that the steel devices 1 may become left-right symmetric and front-back symmetric. The steel device 1 to which the present invention is applied is arranged in a symmetrical manner in either one or both of the width direction X and the depth direction Y of the axial force member 2, so that the bending portion 4 is expanded and contracted in the axial direction. Eccentricity with respect to Z can be suppressed.

さらに、本発明を適用した鋼製デバイス1は、図11に示すように、軸力部材2の各々の側面25で、複数枚の鋼製デバイス1が重ね合わせて設けられてもよい。このとき、互いに重ね合わせた複数枚の鋼製デバイス1は、図11(a)に示すように、各々の折曲部4をともに外側B又は内側Aに突出させてもよい。また、互いに重ね合わせた複数枚の鋼製デバイス1は、図11(b)に示すように、内側Aに突出した折曲部4同士が干渉しないように、内側Aに突出した折曲部4と外側Bに突出した折曲部4とを組み合わせてもよい。   Furthermore, in the steel device 1 to which the present invention is applied, a plurality of steel devices 1 may be provided on each side surface 25 of the axial force member 2 as shown in FIG. At this time, as shown in FIG. 11A, the plurality of steel devices 1 stacked on each other may project the respective bent portions 4 together to the outer side B or the inner side A. Moreover, as shown in FIG.11 (b), as for the several steel device 1 piled up mutually, the bending part 4 which protruded to the inner side A was prevented so that bending parts 4 which protruded to the inner side A might not interfere. And the bent portion 4 protruding outward B may be combined.

なお、本発明を適用した鋼製デバイス1は、偶数枚の鋼製デバイス1が用いられて左右対称又は前後対称となるように配置されることが望ましいが、奇数枚の鋼製デバイス1が用いられて左右対称又は前後対称とならないように配置されてもよい。本発明を適用した鋼製デバイス1は、左右対称又は前後対称とならないように配置されることで、軸力部材2の必要な側面25で重点的に鋼製デバイス1を設けることができる。   In addition, although the steel device 1 to which the present invention is applied is desirably arranged so that the even number of steel devices 1 are used and left-right symmetric or longitudinally symmetric, the odd number of steel devices 1 are used. And may be arranged so as not to be left-right symmetric or front-back symmetric. The steel device 1 to which the present invention is applied is arranged so as not to be left-right symmetric or back-and-forth symmetric, so that the steel device 1 can be provided mainly on the required side surface 25 of the axial force member 2.

本発明を適用した鋼製デバイス1は、図5に示すように、軸力部材2を分断させた一対の端部27が、軸方向Zで互いに離間して離間部Sが形成される。本発明を適用した鋼製デバイス1は、これに限らず、図12に示すように、軸力部材2を軸方向Zに分断させた何れかの端部27に、縮径部27a又は拡径部27bが形成されることで、軸力部材2の一対の端部27が軸方向Zで互いに離間しなくてもよい。   In the steel device 1 to which the present invention is applied, as shown in FIG. 5, the pair of end portions 27 obtained by dividing the axial force member 2 are separated from each other in the axial direction Z to form a separation portion S. The steel device 1 to which the present invention is applied is not limited to this, and as shown in FIG. 12, a reduced diameter portion 27 a or an enlarged diameter is provided at any end portion 27 obtained by dividing the axial force member 2 in the axial direction Z. By forming the portion 27 b, the pair of end portions 27 of the axial force member 2 may not be separated from each other in the axial direction Z.

本発明を適用した鋼製デバイス1は、図12(a)に示すように、軸力部材2の一方の端部27に形成された縮径部27aが、軸力部材2の他方の端部27に内挿された状態で、軸力部材2が軸方向Zに伸縮する。また、本発明を適用した鋼製デバイス1は、図12(b)に示すように、軸力部材2の一方の端部27に形成された拡径部27bに、軸力部材2の他方の端部27が内挿された状態で、軸力部材2が軸方向Zに伸縮する。   As shown in FIG. 12A, the steel device 1 to which the present invention is applied has a reduced diameter portion 27 a formed at one end portion 27 of the axial force member 2, and the other end portion of the axial force member 2. The axial force member 2 expands and contracts in the axial direction Z while being inserted into the shaft 27. In addition, as shown in FIG. 12B, the steel device 1 to which the present invention is applied has a diameter-enlarged portion 27 b formed on one end portion 27 of the axial force member 2 on the other end of the axial force member 2. The axial force member 2 expands and contracts in the axial direction Z in a state where the end portion 27 is inserted.

また、本発明を適用した鋼製デバイス1は、図13に示すように、軸力部材2を軸方向Zに分断させた一対の端部27が互いに離間して配置されて、一方の端部27から他方の端部27まで連続して内挿される芯材29が設けられてもよい。このとき、本発明を適用した鋼製デバイス1は、図12、図13に示すように、軸力部材2の一対の端部27が縮径部27a等で接続されて、又は、軸力部材2の一方の端部27から他方の端部27まで連続させた芯材29が設けられることで、幅方向X又は奥行方向Yの偏心した変形を抑制して、鋼製デバイス1の全体座屈を抑制することが可能となる。   In addition, as shown in FIG. 13, the steel device 1 to which the present invention is applied has a pair of end portions 27 obtained by dividing the axial force member 2 in the axial direction Z so as to be spaced apart from each other. A core material 29 inserted continuously from 27 to the other end 27 may be provided. At this time, as shown in FIGS. 12 and 13, the steel device 1 to which the present invention is applied has a pair of end portions 27 of the axial force member 2 connected by a reduced diameter portion 27 a or the like, or an axial force member. By providing the core material 29 that is continuous from one end 27 to the other end 27, the eccentric deformation in the width direction X or the depth direction Y is suppressed, and the overall buckling of the steel device 1 is performed. Can be suppressed.

本発明を適用した鋼製デバイス1は、図9に示すように、地震又は風等の繰返し外力に起因して、軸力部材2に引張荷重Pt及び圧縮荷重Pcが交互に作用したときに、折曲部4が弾性域及び塑性域で伸縮変形する。本発明を適用した鋼製デバイス1は、軸力部材2の軸方向Zで折曲部4が伸縮変形することで、地震又は風等の繰返し外力に対して、安定したエネルギー吸収性能を確保することが可能となる。   The steel device 1 to which the present invention is applied, as shown in FIG. 9, when the tensile load Pt and the compressive load Pc act alternately on the axial force member 2 due to repeated external forces such as earthquake or wind. The bent portion 4 expands and contracts in an elastic region and a plastic region. The steel device 1 to which the present invention is applied ensures stable energy absorption performance against repeated external forces such as earthquakes or winds by the bending portion 4 expanding and contracting in the axial direction Z of the axial force member 2. It becomes possible.

ここでは、本発明を適用した鋼製デバイス1の安定したエネルギー吸収性能を検証するために、図5に示す板厚t1を4.5mm、折曲部4の縦寸法bを30mm、突出高hを26mm、横寸法wを80mmとして、シェル要素モデルのFEM解析を実施した。なお、このFEM解析では、図14に示すように、鋼製デバイス1の設計耐力Ppを、板厚t1、突出高h、横寸法w、及び、降伏応力σyの関係で、下記(1)式から算出することで、FEM解析の結果と設計耐力Ppとを比較検討している。   Here, in order to verify the stable energy absorption performance of the steel device 1 to which the present invention is applied, the plate thickness t1 shown in FIG. 5 is 4.5 mm, the vertical dimension b of the bent portion 4 is 30 mm, and the protrusion height h. Was 26 mm and the lateral dimension w was 80 mm, and FEM analysis of the shell element model was performed. In this FEM analysis, as shown in FIG. 14, the design yield strength Pp of the steel device 1 is expressed by the following equation (1) in relation to the plate thickness t1, the protrusion height h, the lateral dimension w, and the yield stress σy. By calculating from the above, the results of the FEM analysis and the design strength Pp are compared.

Figure 2017133282
Figure 2017133282

図14では、軸力部材2に引張荷重Pt又は圧縮荷重Pcが作用する前の状態を基準として、折曲部4の軸方向Zの伸縮変形量が0mm〜±15mmとなる範囲で、このFEM解析の結果を図示している。ここでは、引張荷重Pt(縦軸の正方向)及び圧縮荷重Pc(縦軸の負方向)と、折曲部4の引張荷重Ptに対する伸縮変形量(横軸の正方向)及び圧縮荷重Pcに対する伸縮変形量(横軸の負方向)の関係を図示している。   In FIG. 14, the FEM is in a range in which the amount of expansion and contraction in the axial direction Z of the bent portion 4 is 0 mm to ± 15 mm with reference to the state before the tensile load Pt or the compressive load Pc is applied to the axial force member 2. The results of the analysis are illustrated. Here, the tensile load Pt (positive direction on the vertical axis) and the compressive load Pc (negative direction on the vertical axis), the amount of expansion / contraction deformation with respect to the tensile load Pt of the bent portion 4 (positive direction on the horizontal axis), and the compressive load Pc. The relationship of the amount of expansion / contraction deformation (the negative direction of the horizontal axis) is illustrated.

本発明を適用した鋼製デバイス1は、このFEM解析の結果により、軸力部材2に引張荷重Pt又は圧縮荷重Pcの何れが作用した場合であっても、伸縮変形量が増大する初期の段階で、設計耐力Pp以上の引張耐力又は圧縮耐力を確保できることがわかる。そして、本発明を適用した鋼製デバイス1は、引張荷重Pt又は圧縮荷重Pcが設計耐力Ppを上回った以降、折曲部4の伸縮変形量の増大にかかわらず、顕著な耐力上昇や座屈による耐力低下等は見られず、引張耐力又は圧縮耐力が漸増するに留まることがわかる。   According to the result of the FEM analysis, the steel device 1 to which the present invention is applied is an initial stage in which the amount of expansion and contraction deformation increases regardless of whether the tensile load Pt or the compression load Pc is applied to the axial force member 2. Thus, it can be seen that a tensile strength or compression strength greater than the design strength Pp can be secured. And after the tensile load Pt or the compressive load Pc exceeds the design yield strength Pp, the steel device 1 to which the present invention is applied has a remarkable yield strength increase or buckling regardless of an increase in the amount of expansion / contraction deformation of the bent portion 4. It can be seen that there is no decrease in yield strength due to, and the tensile strength or compression strength only increases gradually.

したがって、本発明を適用した鋼製デバイス1は、軸力部材2に要求される所定の引張耐力、圧縮耐力及び変形性能を確保しながら、引張耐力又は圧縮耐力の必要以上の増大を抑制できることがわかる。また、本発明を適用した鋼製デバイス1は、横軸の正方向及び負方向で引張荷重Pt及び圧縮荷重Pcの漸増傾向が類似するため、引張荷重Pt載荷時と圧縮荷重Pc載荷時とで伸縮変形の挙動差も小さいことがわかる。以上より、本発明を適用した鋼製デバイス1は、軸力部材2の軸方向Zで折曲部4が伸縮変形して、安定したエネルギー吸収性能が発揮されることがFEM解析の結果からも検証された。   Therefore, the steel device 1 to which the present invention is applied can suppress an increase in the tensile strength or the compression strength more than necessary while ensuring the predetermined tensile strength, compression strength and deformation performance required for the axial force member 2. Recognize. Further, the steel device 1 to which the present invention is applied has a similar tendency of increasing the tensile load Pt and the compressive load Pc in the positive direction and the negative direction of the horizontal axis, and therefore, when the tensile load Pt is loaded and when the compressive load Pc is loaded. It can be seen that the difference in behavior of expansion and contraction is small. From the results of the FEM analysis, the steel device 1 to which the present invention is applied is also capable of exhibiting stable energy absorption performance by the bending portion 4 expanding and contracting in the axial direction Z of the axial force member 2. Verified.

本発明を適用した鋼製デバイス1は、特に、図9に示す補剛材5が、軸力部材2の側面25との間に定着部3を挟み込んだ状態で設けられることが望ましい。ここでは、本発明を適用した鋼製デバイス1の補剛材5による効果を検証するために、図5に示す板厚t1を4.5mm、折曲部4の縦寸法bを30mm、突出高hを26mm、横寸法wを80mmとして、シェル要素モデルのFEM解析を実施した。   The steel device 1 to which the present invention is applied is particularly preferably provided with the stiffener 5 shown in FIG. 9 sandwiching the fixing portion 3 between the side surface 25 of the axial force member 2. Here, in order to verify the effect of the stiffener 5 of the steel device 1 to which the present invention is applied, the plate thickness t1 shown in FIG. 5 is 4.5 mm, the vertical dimension b of the bent portion 4 is 30 mm, and the protruding height. FEM analysis of the shell element model was performed with h being 26 mm and the lateral dimension w being 80 mm.

このFEM解析では、軸力部材2の側面25と補剛材5とで定着部3を挟み込んだ状態を、折曲部4との境界となる折り目40の位置で定着部3が面外方向αに拘束されるものと擬制した。そして、このFEM解析では、図15に示すように、定着部3が面外方向αに拘束されるものを「補剛材あり」(実線)として示すとともに、定着部3が面外方向αに拘束されないものを「補剛材なし」(破線)として示して、両者を比較検討している。   In this FEM analysis, the fixing unit 3 is in the out-of-plane direction α at the position of the crease 40 that becomes the boundary with the bent portion 4 with the fixing unit 3 sandwiched between the side surface 25 of the axial force member 2 and the stiffener 5. Pretending to be bound by In this FEM analysis, as shown in FIG. 15, the fixing portion 3 restrained in the out-of-plane direction α is shown as “with stiffener” (solid line), and the fixing portion 3 is in the out-of-plane direction α. What is not restrained is shown as “no stiffener” (broken line), and both are compared.

本発明を適用した鋼製デバイス1は、このFEM解析の結果により、軸力部材2に引張荷重Pt又は圧縮荷重Pcの何れが作用した場合であっても、鋼製デバイス1の初期剛性が40%程度上昇することがわかる。また、本発明を適用した鋼製デバイス1は、折曲部4の伸縮変形量が±5mmとなったときに、引張耐力又は圧縮耐力が20%程度上昇することがわかる。これにより、本発明を適用した鋼製デバイス1は、折曲部4を軸方向Zに伸縮変形させて、安定したエネルギー吸収性能を発揮させると同時に、定着部3の面外変形を補剛材5で抑制することで、十分な耐力及び剛性を確保することが可能となる。   According to the result of this FEM analysis, the steel device 1 to which the present invention is applied has an initial rigidity of the steel device 1 of 40 regardless of whether the tensile load Pt or the compressive load Pc is applied to the axial force member 2. It can be seen that it rises by about%. Further, it can be seen that the steel device 1 to which the present invention is applied has an increase in tensile strength or compression strength of about 20% when the amount of expansion / contraction deformation of the bent portion 4 becomes ± 5 mm. Thereby, the steel device 1 to which the present invention is applied causes the bent portion 4 to expand and contract in the axial direction Z to exhibit stable energy absorption performance, and at the same time, the out-of-plane deformation of the fixing portion 3 is a stiffener. By suppressing at 5, it becomes possible to ensure sufficient proof stress and rigidity.

本発明を適用した鋼製デバイス1は、特に、引張荷重Pt又は圧縮荷重Pcが作用する前の状態で、図6に示すように、軸直交方向に対して15°以上、43°以下の傾斜角度θで折曲部4が形成される。このとき、本発明を適用した鋼製デバイス1は、図5に示す板厚t1を4.5mm、折曲部4の縦寸法bを30mm、突出高hを26mm、横寸法wを80mmとして、シェル要素モデルのFEM解析を実施した結果が図16に示される。なお、図16では、表1の解析モデル一覧に示すように、様々な形状をパラメータにして解析をした結果が示される。   The steel device 1 to which the present invention is applied has an inclination of 15 ° or more and 43 ° or less with respect to the direction perpendicular to the axis, as shown in FIG. 6, particularly in a state before the tensile load Pt or the compressive load Pc is applied. A bent portion 4 is formed at an angle θ. At this time, the steel device 1 to which the present invention is applied has a thickness t1 shown in FIG. 5 of 4.5 mm, the vertical dimension b of the bent portion 4 is 30 mm, the protruding height h is 26 mm, and the horizontal dimension w is 80 mm. The result of FEM analysis of the shell element model is shown in FIG. In FIG. 16, as shown in the analysis model list in Table 1, the results of analysis using various shapes as parameters are shown.

Figure 2017133282
Figure 2017133282

図16では、折曲部4の伸縮変形量が±5mmとなったときの引張荷重Ptを圧縮荷重Pcで除した値を耐力上昇率(Pt/Pc)として縦軸に示すとともに、折曲部4の傾斜角度θを横軸に示す。ここで、折曲部4の傾斜角度θが43°超となるときは、図16に示すように、耐力上昇率が急激に増大することから、引張荷重Pt載荷時と圧縮荷重Pc載荷時とで伸縮変形の挙動差が著しく大きくなる。また、折曲部4の傾斜角度θが15°未満となるときは、傾斜角度θが小さすぎるため、鋼製デバイス1の製造が困難となる。   In FIG. 16, a value obtained by dividing the tensile load Pt when the expansion / contraction deformation amount of the bent portion 4 becomes ± 5 mm by the compressive load Pc is shown on the vertical axis as a yield rate increase rate (Pt / Pc), and the bent portion An inclination angle θ of 4 is shown on the horizontal axis. Here, when the inclination angle θ of the bent portion 4 exceeds 43 °, as shown in FIG. 16, the rate of increase in yield strength increases abruptly. Therefore, when the tensile load Pt is loaded and when the compression load Pc is loaded, Thus, the difference in behavior of expansion and contraction becomes remarkably large. In addition, when the inclination angle θ of the bent portion 4 is less than 15 °, the inclination angle θ is too small, so that it is difficult to manufacture the steel device 1.

このため、本発明を適用した鋼製デバイス1は、折曲部4の傾斜角度θが43°以下となることで、耐力上昇率を1.2程度以下の範囲で維持して、引張荷重Pt載荷時と圧縮荷重Pc載荷時とで伸縮変形の挙動差が大きくなることを回避することができる。これにより、本発明を適用した鋼製デバイス1は、折曲部4の傾斜角度θを15°以上、43°以下とすることで、鋼製デバイス1の製造を容易にすると同時に、引張荷重Ptに対しては鋼製デバイス1の耐力上昇を抑制し、圧縮荷重Pcに対しては鋼製デバイス1の所定の変形性能を確保することが可能となることで、安定したエネルギー吸収性能を発揮させることが可能となる。   For this reason, in the steel device 1 to which the present invention is applied, the yield angle increase rate is maintained in the range of about 1.2 or less by the inclination angle θ of the bent portion 4 being 43 ° or less, and the tensile load Pt It is possible to avoid an increase in the difference in behavior of expansion and contraction between loading and compression loading Pc loading. Thereby, the steel device 1 to which the present invention is applied makes it easy to manufacture the steel device 1 by setting the inclination angle θ of the bent portion 4 to 15 ° or more and 43 ° or less, and at the same time, the tensile load Pt. In contrast, the increase in the yield strength of the steel device 1 is suppressed, and the predetermined deformation performance of the steel device 1 can be secured for the compressive load Pc, thereby exhibiting stable energy absorption performance. It becomes possible.

本発明を適用した鋼製デバイス1は、引張耐力又は圧縮耐力が必要以上に増大することを抑制できるため、定着部3が取り付けられる軸力部材2への負担が軽減する。このため、本発明を適用した鋼製デバイス1は、軸力部材2の側面25に先行させて、折曲部4を塑性変形等させることで、軸力部材2の損傷を防止することが可能となる。   Since the steel device 1 to which the present invention is applied can suppress an increase in the tensile strength or compression strength more than necessary, the burden on the axial force member 2 to which the fixing unit 3 is attached is reduced. For this reason, the steel device 1 to which the present invention is applied can prevent the axial force member 2 from being damaged by plastically deforming the bent portion 4 in advance of the side surface 25 of the axial force member 2. It becomes.

本発明を適用した鋼製デバイス1は、特に、図5に示すように、軸力部材2の側面25に一対の定着部3の各々がボルト接合で取り付けられる。これにより、本発明を適用した鋼製デバイス1は、軸力部材2の側面25に先行させて、折曲部4が塑性変形等して損傷した場合であっても、損傷した鋼製デバイス1を容易に取り外して、新しい鋼製デバイス1への交換を容易に実施することが可能となる。   In the steel device 1 to which the present invention is applied, in particular, as shown in FIG. 5, each of the pair of fixing portions 3 is attached to the side surface 25 of the axial force member 2 by bolt joining. Thereby, even if the steel device 1 to which the present invention is applied is preceded by the side surface 25 of the axial force member 2 and the bent portion 4 is damaged by plastic deformation or the like, the damaged steel device 1 is used. Can be easily removed, and replacement with a new steel device 1 can be easily performed.

本発明を適用した鋼製デバイス1は、温度依存性の高い粘弾性ダンパー等を用いることなく、面外方向αに折り曲げて加工した鋼板等が用いられて、軸力部材2に安定したエネルギー吸収性能を付与することができる。これにより、本発明を適用した鋼製デバイス1は、鋼板等の折曲加工によって容易に折曲部4を形成することができるため、低廉な製造コストで鋼製デバイス1を製造することが可能となる。   The steel device 1 to which the present invention is applied uses a steel plate or the like bent and processed in the out-of-plane direction α without using a temperature-dependent viscoelastic damper or the like, so that the axial force member 2 can stably absorb energy. Performance can be imparted. Thereby, since the steel device 1 to which the present invention is applied can easily form the bent portion 4 by bending a steel plate or the like, the steel device 1 can be manufactured at a low manufacturing cost. It becomes.

本発明を適用した鋼製デバイス1は、特に、図6に示すように、折曲部4が折り目40で湾曲させて折り曲げられることで、折曲部4が変形するときの塑性化領域が大きくなる。また、本発明を適用した鋼製デバイス1は、折曲加工するときの歪みと折曲部4が変形するときの歪みとを併せた累積歪みが小さくなることで、加工硬化による耐力上昇を抑制するとともに、低サイクル疲労に対する抵抗特性を強化することが可能となる。   As shown in FIG. 6, the steel device 1 to which the present invention is applied has a large plasticization region when the bent portion 4 is deformed by bending the bent portion 4 at the fold 40 and bending it. Become. Moreover, the steel device 1 to which the present invention is applied suppresses an increase in yield strength due to work hardening by reducing a cumulative strain that is a combination of the strain when bending and the strain when the bent portion 4 is deformed. In addition, it is possible to enhance the resistance characteristic against low cycle fatigue.

本発明を適用した耐力壁7は、図2に示すように、スチールハウス、鉄骨プレハブ又は木造住宅等の建築物の壁体として設けられて、軸力部材2となるブレース材20に本発明を適用した鋼製デバイス1が設けられる。このため、本発明を適用した耐力壁7は、引張荷重Pt及び圧縮荷重Pcが交互に作用するにもかかわらず、枠内空間70のブレース材20に安定したエネルギー吸収性能を発揮させて、耐震性能を向上させた建築物の壁体を提供することが可能となる。   As shown in FIG. 2, the bearing wall 7 to which the present invention is applied is provided as a wall body of a building such as a steel house, a steel frame prefab, or a wooden house, and the present invention is applied to the brace material 20 that becomes the axial force member 2. An applied steel device 1 is provided. For this reason, the bearing wall 7 to which the present invention is applied allows the brace material 20 in the inner space 70 to exhibit a stable energy absorption performance, despite the fact that the tensile load Pt and the compressive load Pc act alternately, and is seismic resistant. It becomes possible to provide a wall of a building with improved performance.

本発明を適用した鋼製デバイス1は、スチールハウスの耐力壁7に導入される場合には、薄板軽量形鋼等の軸力部材2に設けられるものとなる。また、本発明を適用した鋼製デバイス1は、鉄骨プレハブの耐力壁7に導入される場合には、図17(a)に示すように、軸力部材2として角形鋼管、溝形鋼又はH形鋼等の鉄骨材21が用いられてもよい。さらに、本発明を適用した鋼製デバイス1は、木造住宅の耐力壁7に導入される場合には、図17(b)に示すように、軸力部材2として木製材24が用いられてもよい。   When the steel device 1 to which the present invention is applied is introduced into the load-bearing wall 7 of the steel house, the steel device 1 is provided on the axial force member 2 such as a thin lightweight steel plate. When the steel device 1 to which the present invention is applied is introduced into the load-bearing wall 7 of the steel prefab, as shown in FIG. 17 (a), the axial force member 2 is a square steel pipe, channel steel or H A steel frame material 21 such as a shape steel may be used. Furthermore, when the steel device 1 to which the present invention is applied is introduced into the load-bearing wall 7 of a wooden house, as shown in FIG. 17 (b), a wooden member 24 is used as the axial force member 2. Good.

このとき、本発明を適用した鋼製デバイス1は、図17(a)に示すように、H形鋼等の鉄骨材21に設けられる場合に、鉄骨材21のフランジ22の側面25又はウェブ23の側面25に、定着部3が取り付けられる。そして、本発明を適用した鋼製デバイス1は、図17(b)に示すように、木製材24に設けられる場合に、木製材24の端部27で外側の側面25に定着部3が取り付けられるほか、木製材24の端部27で部分的に切り欠いた切欠溝28等の内側の側面25に、定着部3が取り付けられてもよい。   At this time, as shown in FIG. 17A, when the steel device 1 to which the present invention is applied is provided on a steel frame 21 such as an H-shaped steel, the side surface 25 of the flange 22 of the steel frame 21 or the web 23. The fixing unit 3 is attached to the side surface 25 of the lens. When the steel device 1 to which the present invention is applied is provided on the wooden material 24 as shown in FIG. 17B, the fixing unit 3 is attached to the outer side surface 25 at the end portion 27 of the wooden material 24. In addition, the fixing unit 3 may be attached to the inner side surface 25 such as the cutout groove 28 partially cut out at the end portion 27 of the wooden material 24.

以上、本発明の実施形態の例について詳細に説明したが、上述した実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならない。   As mentioned above, although the example of embodiment of this invention was demonstrated in detail, all the embodiment mentioned above showed only the example of actualization in implementing this invention, and these are the technical aspects of this invention. The range should not be interpreted in a limited way.

1 :鋼製デバイス
2 :軸力部材
20 :ブレース材
21 :鉄骨材
22 :フランジ
23 :ウェブ
24 :木製材
25 :側面
26 :中空部
27 :端部
27a :縮径部
27b :拡径部
28 :切欠溝
29 :芯材
3 :定着部
31 :ボルトナット
4 :折曲部
4a :傾斜面
40 :折り目
5 :補剛材
5a :面取り
6 :接合金物
60 :平鋼
7 :耐力壁
70 :枠内空間
70a :上部
70b :下部
71 :縦枠
72 :横枠
X :幅方向
Y :奥行方向
Z :軸方向
1: Steel device 2: Axial force member 20: Brace material 21: Steel frame material 22: Flange 23: Web 24: Wooden material 25: Side surface 26: Hollow portion 27: End portion 27a: Reduced diameter portion 27b: Expanded diameter portion 28 : Notch groove 29: Core material 3: Fixing part 31: Bolt nut 4: Bending part 4a: Inclined surface 40: Crease 5: Stiffening material 5a: Chamfering 6: Joint metal 60: Flat steel 7: Bearing wall 70: Frame Inner space 70a: Upper part 70b: Lower part 71: Vertical frame 72: Horizontal frame X: Width direction Y: Depth direction Z: Axial direction

Claims (9)

引張荷重又は圧縮荷重が作用する軸力部材に設けられる鋼製デバイスであって、
軸力部材の側面に取り付けられる定着部と、前記定着部から連続して設けられる折曲部とを備え、
前記折曲部は、軸力部材の側面より面外方向に突出して形成されて、引張荷重又は圧縮荷重が軸力部材に作用したときに、軸力部材の軸方向に伸縮変形するものとなること
を特徴とする鋼製デバイス。
A steel device provided on an axial force member on which a tensile load or a compressive load acts,
A fixing portion attached to a side surface of the axial force member, and a bent portion provided continuously from the fixing portion,
The bent portion is formed so as to protrude in the out-of-plane direction from the side surface of the axial force member, and when the tensile load or the compressive load acts on the axial force member, the bending portion expands and contracts in the axial direction of the axial force member. A steel device characterized by that.
前記定着部に取り付けられる補剛材をさらに備え、
前記補剛材は、軸力部材の側面との間に前記定着部を挟み込んだ状態で設けられること
を特徴とする請求項1記載の鋼製デバイス。
Further comprising a stiffener attached to the fixing unit,
The steel device according to claim 1, wherein the stiffener is provided in a state where the fixing portion is sandwiched between a side surface of an axial force member.
前記定着部は、前記折曲部の軸方向の両側で一対となって設けられて、軸力部材の側面に一対の前記定着部の各々がボルト接合で取り付けられること
を特徴とする請求項1又は2記載の鋼製デバイス。
2. The fixing unit is provided as a pair on both sides in the axial direction of the bent portion, and each of the pair of fixing units is attached to a side surface of an axial force member by bolt joining. Or the steel device of 2.
前記定着部は、前記折曲部の軸方向の両側で一対となって設けられて、
前記折曲部は、一対の前記定着部の各々から連続する2箇所、及び、一対の前記定着部の中間となる1箇所で、面外方向に折り曲げられた折り目が3箇所に形成されること
を特徴とする請求項1〜3の何れか1項記載の鋼製デバイス。
The fixing portion is provided as a pair on both sides in the axial direction of the bent portion,
The bent portion is formed at two locations that are continuous from each of the pair of fixing portions and at one location that is intermediate between the pair of fixing portions, and three folds that are bent in the out-of-plane direction are formed. The steel device according to any one of claims 1 to 3.
前記折曲部は、一対の前記定着部の各々から連続する2箇所の前記折り目で、軸力部材の軸直交方向に対して15°以上、43°以下の傾斜角度で傾斜して形成されること
を特徴とする請求項4記載の鋼製デバイス。
The bent portion is formed at two folds that are continuous from each of the pair of fixing portions, and is inclined at an inclination angle of 15 ° or more and 43 ° or less with respect to the axial orthogonal direction of the axial force member. The steel device according to claim 4.
前記定着部は、前記折曲部の軸方向の両側で一対となって設けられて、
前記折曲部は、一対の前記定着部の各々から連続する2箇所、及び、一対の前記定着部の中間となる2箇所で、面外方向に折り曲げられた折り目が4箇所に形成されること
を特徴とする請求項1〜3の何れか1項記載の鋼製デバイス。
The fixing portion is provided as a pair on both sides in the axial direction of the bent portion,
The bent portion is formed at two locations that are continuous from each of the pair of fixing portions and at two locations that are intermediate between the pair of fixing portions, and four folds that are bent in the out-of-plane direction are formed. The steel device according to any one of claims 1 to 3.
前記折曲部は、面外方向に湾曲して折り曲げられた折り目が形成されて、前記折り目の内周側の曲率半径を、前記折曲部の板厚と同一以上の大きさとすること
を特徴とする請求項1〜6の何れか1項記載の鋼製デバイス。
The bent portion is formed with a fold that is bent in an out-of-plane direction, and a radius of curvature on an inner peripheral side of the fold is set to be equal to or larger than a plate thickness of the bent portion. The steel device according to any one of claims 1 to 6.
建築物の壁体として設けられる耐力壁であって、
引張荷重又は圧縮荷重が作用するブレース材となる軸力部材と、前記軸力部材の軸方向の一部に設けられる鋼製デバイスとを備え、
前記鋼製デバイスは、前記軸力部材の側面に取り付けられる定着部と、前記定着部から連続して設けられる折曲部とを有し、前記折曲部が、前記軸力部材の側面より面外方向に突出して形成されて、引張荷重又は圧縮荷重が前記軸力部材に作用したときに、前記軸力部材の軸方向に伸縮変形するものとなること
を特徴とする耐力壁。
It is a load-bearing wall provided as a wall of a building,
An axial force member to be a brace material on which a tensile load or a compressive load acts, and a steel device provided in a part of the axial direction of the axial force member,
The steel device has a fixing portion attached to a side surface of the axial force member, and a bent portion provided continuously from the fixing portion, and the bent portion is a surface from a side surface of the axial force member. A load bearing wall, characterized by being formed to protrude outwardly, and to be expanded and contracted in the axial direction of the axial force member when a tensile load or a compressive load is applied to the axial force member.
前記軸力部材は、軸方向に分断させた一対の端部が互いに離間して配置されて、一方の前記端部から他方の前記端部まで連続して内挿される芯材が設けられること
を特徴とする請求項8記載の耐力壁。
The axial force member is provided with a core material in which a pair of end portions divided in the axial direction are spaced apart from each other and continuously inserted from one end portion to the other end portion. The load-bearing wall according to claim 8.
JP2016015348A 2016-01-29 2016-01-29 Steel device and load bearing wall Pending JP2017133282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016015348A JP2017133282A (en) 2016-01-29 2016-01-29 Steel device and load bearing wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016015348A JP2017133282A (en) 2016-01-29 2016-01-29 Steel device and load bearing wall

Publications (1)

Publication Number Publication Date
JP2017133282A true JP2017133282A (en) 2017-08-03

Family

ID=59502311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016015348A Pending JP2017133282A (en) 2016-01-29 2016-01-29 Steel device and load bearing wall

Country Status (1)

Country Link
JP (1) JP2017133282A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018025036A (en) * 2016-08-10 2018-02-15 新日鐵住金株式会社 Damper structure and load-bearing wall
IT201800005053A1 (en) * 2018-05-03 2019-11-03 BRACING BODY FOR BUILDINGS AND BUILDING STRUCTURE EQUIPPED WITH THIS BRACING BODY
IT201900004075A1 (en) * 2019-03-20 2020-09-20 Bequadro S R L DEVICE FOR CONNECTION OF STRUCTURAL ELEMENTS OF A PREFABRICATED BUILDING
WO2021019633A1 (en) * 2019-07-29 2021-02-04 株式会社ティ・カトウ Vibration control device and building material comprising same
CN114065544A (en) * 2021-11-24 2022-02-18 昆明理工大学 Damper reduced scale model equivalent method
CN114197676A (en) * 2021-12-23 2022-03-18 安徽理工大学 Combined arc-shaped steel plate damper

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001207679A (en) * 2000-01-28 2001-08-03 Tatsuji Ishimaru Damper
JP2005233367A (en) * 2004-02-23 2005-09-02 Kawaguchi Metal Industries Co Ltd Connection member of structure
JP2006052826A (en) * 2004-08-16 2006-02-23 Tatsuji Ishimaru Double damper and manufacturing method of damper
JP2010285850A (en) * 2009-06-15 2010-12-24 Toko Go Frame structure with deformation part for vibration reduction, and vibration reducing device used for frame structure
EP2696011A2 (en) * 2012-08-08 2014-02-12 Edilmatic S.R.L. Earthquake-proof connecting device for connecting structural elements

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001207679A (en) * 2000-01-28 2001-08-03 Tatsuji Ishimaru Damper
JP2005233367A (en) * 2004-02-23 2005-09-02 Kawaguchi Metal Industries Co Ltd Connection member of structure
JP2006052826A (en) * 2004-08-16 2006-02-23 Tatsuji Ishimaru Double damper and manufacturing method of damper
JP2010285850A (en) * 2009-06-15 2010-12-24 Toko Go Frame structure with deformation part for vibration reduction, and vibration reducing device used for frame structure
EP2696011A2 (en) * 2012-08-08 2014-02-12 Edilmatic S.R.L. Earthquake-proof connecting device for connecting structural elements

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018025036A (en) * 2016-08-10 2018-02-15 新日鐵住金株式会社 Damper structure and load-bearing wall
IT201800005053A1 (en) * 2018-05-03 2019-11-03 BRACING BODY FOR BUILDINGS AND BUILDING STRUCTURE EQUIPPED WITH THIS BRACING BODY
IT201900004075A1 (en) * 2019-03-20 2020-09-20 Bequadro S R L DEVICE FOR CONNECTION OF STRUCTURAL ELEMENTS OF A PREFABRICATED BUILDING
WO2021019633A1 (en) * 2019-07-29 2021-02-04 株式会社ティ・カトウ Vibration control device and building material comprising same
JP6878757B1 (en) * 2019-07-29 2021-06-02 株式会社ティ・カトウ Vibration damping device and building materials equipped with it
CN114065544A (en) * 2021-11-24 2022-02-18 昆明理工大学 Damper reduced scale model equivalent method
CN114197676A (en) * 2021-12-23 2022-03-18 安徽理工大学 Combined arc-shaped steel plate damper

Similar Documents

Publication Publication Date Title
JP2017133282A (en) Steel device and load bearing wall
TWI399473B (en) Metal joint, vibration-damping structure, and architecture
JP2004340301A (en) Seismic isolator
JP4842755B2 (en) Seismic walls using corrugated steel plates made of ultra high strength steel
JP5822203B2 (en) Brace damper
JP5179429B2 (en) Energy absorbing member
JP5798359B2 (en) Seismic device with built-in damper with deformation limiting function
JP6707992B2 (en) Damper structure and damper manufacturing method
JP5179390B2 (en) Energy absorbing member
JP6589477B2 (en) Shaped steel connection structure
US11346121B2 (en) Member-to-member laminar fuse connection
JP6447227B2 (en) Damper structure
JP6838877B2 (en) Buckling restraint brace damper
JP2017166123A (en) Steel beam and column-beam joint structure
JP6803661B2 (en) Rod-shaped damping member
MX2012010636A (en) Reinforcement structure of rectangular flat metal plate.
JP5551652B2 (en) Bending-yield elastic-plastic damper
JP2018025036A (en) Damper structure and load-bearing wall
US11203862B2 (en) Member-to-member laminar fuse connection
JP6677480B2 (en) Hysteretic damper and vibration control structure of building
JP6417997B2 (en) Shear panel
JP6682903B2 (en) Buckling stiffening structure and steel structure of H-shaped cross-section member
JP5559073B2 (en) Shear deformation type elastic-plastic damper
JP7262518B2 (en) Stud type steel damper
JP7495309B2 (en) Ladder-type load-bearing wall structure and portal structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200128