JP2017132983A - Polyamide powder mixture - Google Patents
Polyamide powder mixture Download PDFInfo
- Publication number
- JP2017132983A JP2017132983A JP2016218921A JP2016218921A JP2017132983A JP 2017132983 A JP2017132983 A JP 2017132983A JP 2016218921 A JP2016218921 A JP 2016218921A JP 2016218921 A JP2016218921 A JP 2016218921A JP 2017132983 A JP2017132983 A JP 2017132983A
- Authority
- JP
- Japan
- Prior art keywords
- polyamide
- powder
- polyamide powder
- mass
- silica
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、粉末流動性に優れたポリアミド粉末混合物に関する。 The present invention relates to a polyamide powder mixture having excellent powder flowability.
ポリアミドは機械的特性に優れていることから、電気・電子部品、自動車部品等の成形部材として広く用いられている。ポリアミドは、ペレット形状や粉末の形状で製造されているが、特に粉末の形状の場合、原料投入口から成形機や混練機に供給する際に滞留が生じたり、成形機や混練機の供給口付近でブリッジが発生したりするという取扱上の問題がある。また、粉末は嵩密度が低く伝熱効率が低いため、成形機内や押出機内で融解しにくく、ペレットと対比して、操業安定性が悪いという問題がある。 Polyamide is widely used as a molded member for electric / electronic parts, automobile parts and the like because of its excellent mechanical properties. Polyamide is manufactured in the form of pellets or powders, but in the case of powders in particular, stagnation occurs when the material is supplied from the raw material input port to the molding machine or kneading machine, or the supply port of the molding machine or kneading machine. There is a problem in handling that a bridge occurs in the vicinity. In addition, since powder has a low bulk density and low heat transfer efficiency, it is difficult to melt in a molding machine or an extruder, and there is a problem that operation stability is poor compared to pellets.
上記のような問題を解決する方法としては、例えば、粉末粒子をシリコーン樹脂で覆い、表面状態を変えることにより粉末としての流動性(以下、「粉末流動性」という。)を改良する方法(特許文献1)や、粒子径の小さい粉末を予め除去して粉末流動性を改良する方法が知られている。しかしながら、このような方法は、粉末が得られた後に二次加工することが必要である。 As a method for solving the above problems, for example, a method of improving powder flowability (hereinafter referred to as “powder flowability”) by covering powder particles with a silicone resin and changing the surface state (patented). Document 1) and methods for improving powder flowability by removing powder with a small particle diameter in advance are known. However, such methods require secondary processing after the powder is obtained.
本発明は、かかる従来技術を鑑み、粉末流動性に優れたポリアミド粉末混合物を提供することを目的とする。 In view of the prior art, an object of the present invention is to provide a polyamide powder mixture having excellent powder flowability.
本発明者らは、上記問題を解決するために鋭意研究を重ねた結果、平均粒子径が細かいポリアミド粉末を多く含む場合であっても、特定のシリカ粉末を特定の割合で混合することにより、粉末流動性が格段に向上することを見出し、本発明に到達した。 As a result of intensive research to solve the above problems, the present inventors have mixed a specific silica powder at a specific ratio even when the average particle diameter contains a large amount of polyamide powder. The inventors have found that the powder flowability is remarkably improved and have reached the present invention.
すなわち、本発明の要旨は、以下のとおりである。(1)ポリアミド粉末(A)と疎水性シリカ粉末(B)とからなり、ポリアミド粉末(A)は、平均粒子径100μm未満のポリアミド粉末(A1)を10質量%以上含有し、(A1)に対する(B)の割合が0.15〜50質量%であることを特徴とするポリアミド粉末混合物。
(2)ポリアミド粉末(A)が、半芳香族ポリアミドの粉末であることを特徴とする(1)に記載のポリアミド粉末混合物。
That is, the gist of the present invention is as follows. (1) It consists of polyamide powder (A) and hydrophobic silica powder (B), and the polyamide powder (A) contains 10% by mass or more of polyamide powder (A1) having an average particle diameter of less than 100 μm, and is based on (A1) The polyamide powder mixture, wherein the proportion of (B) is 0.15 to 50% by mass.
(2) The polyamide powder mixture according to (1), wherein the polyamide powder (A) is a semi-aromatic polyamide powder.
本発明によれば、粉末流動性に優れたポリアミド粉末混合物を二次加工なしで提供することができる。また、本発明のポリアミド粉末混合物は操業安定性が高いため、より高品位な成形品を得ることができる。 According to the present invention, a polyamide powder mixture having excellent powder flowability can be provided without secondary processing. Moreover, since the polyamide powder mixture of the present invention has high operational stability, a higher-quality molded product can be obtained.
本発明のポリアミド粉末混合物は、ポリアミド粉末(A)と、疎水性シリカ粉末(B)から構成される。 The polyamide powder mixture of the present invention comprises a polyamide powder (A) and a hydrophobic silica powder (B).
本発明に用いるポリアミド粉末(A)は、ポリアミドの粉末であれば特に限定されないが、例えば、脂肪族ポリアミドや脂環式ポリアミドや半芳香族ポリアミドの粉末が挙げられる。脂肪族ポリアミドとしては、例えば、ポリアミド612、ポリアミド610、ポリアミド66、ポリアミド46、ポリアミド12、ポリアミド10、ポリアミド6が挙げられ、脂環式ポリアミドとしては、例えば、ポリアミド12C、ポリアミド10C、ポリアミド9C、ポリアミド6Cが挙げられ(Cは1,4−シクロヘキサンジカルボン酸由来であることを表す。)、半芳香族ポリアミドとしては、例えば、ポリアミド12T、ポリアミド11T、ポリアミド10T、ポリアミド9T、ポリアミド8T、ポリアミド7T、ポリアミド6T、ポリアミド4T、ポリアミド12I、ポリアミド11I、ポリアミド10I、ポリアミド9I、ポリアミド8I、ポリアミド7I、ポリアミド6I、ポリアミド4I(Tはテレフタル酸、Iはイソフタル酸由来であることを表す。)が挙げられる。中でも、ジカルボン酸成分が芳香族ジカルボン酸であって、ジアミン成分が脂肪族ジアミンである半芳香族ポリアミドの粉末が、粉末流動性の向上効果が大きいため 、好ましい。また、半芳香族ポリアミドの粉末の方が、耐熱性が高く、成形や混練する際に熱劣化が起こりにくい。 The polyamide powder (A) used in the present invention is not particularly limited as long as it is a polyamide powder, and examples thereof include aliphatic polyamide, alicyclic polyamide, and semi-aromatic polyamide powder. Examples of the aliphatic polyamide include polyamide 612, polyamide 610, polyamide 66, polyamide 46, polyamide 12, polyamide 10, and polyamide 6. Examples of the alicyclic polyamide include polyamide 12C, polyamide 10C, polyamide 9C, Polyamide 6C is exemplified (C represents that it is derived from 1,4-cyclohexanedicarboxylic acid). Examples of the semi-aromatic polyamide include polyamide 12T, polyamide 11T, polyamide 10T, polyamide 9T, polyamide 8T, and polyamide 7T. , Polyamide 6T, polyamide 4T, polyamide 12I, polyamide 11I, polyamide 10I, polyamide 9I, polyamide 8I, polyamide 7I, polyamide 6I, polyamide 4I (T is terephthalic acid, I is isof Indicating that it is derived from Le acid.) And the like. Among them, a semi-aromatic polyamide powder in which the dicarboxylic acid component is an aromatic dicarboxylic acid and the diamine component is an aliphatic diamine is preferable because the powder fluidity improving effect is large. In addition, the semi-aromatic polyamide powder has higher heat resistance and is less susceptible to thermal degradation during molding and kneading.
本発明に用いるポリアミド粉末(A)は、平均粒子径が100μm以下のポリアミド粉末(以下、「ポリアミド微粒子(A1)」または「ポリアミド微粒子」という。)が10質量%以上含まれるものである。ポリアミド粉末中のポリアミド微粒子の含有量が10質量%未満の場合、ポリアミド粉末はそもそも粉末流動性が高いため、本発明を用いる必要がない。粉末流動性の向上効果は、(A)に含まれるポリアミド微粒子の含有量が高いほど、大きい傾向がある。具体的には、前記含有量が10質量%以上の場合よりも30質量%以上の場合の方が、粉末流動性の向上効果が大きく、前記含有量が30質量%以上の場合よりも60質量%以上の場合の方が、粉末流動性の向上効果がより大きい。また、粉末流動性の向上効果は、ポリアミド微粒子が、真球状である場合よりも、非球状の場合の方が、大きい傾向がある。 The polyamide powder (A) used in the present invention contains 10% by mass or more of polyamide powder having an average particle diameter of 100 μm or less (hereinafter referred to as “polyamide fine particles (A1)” or “polyamide fine particles”). When the content of the polyamide fine particles in the polyamide powder is less than 10% by mass, the polyamide powder has high powder flowability in the first place, so that it is not necessary to use the present invention. The effect of improving the powder fluidity tends to increase as the content of the polyamide fine particles contained in (A) increases. Specifically, the effect of improving the powder fluidity is larger when the content is 30% by mass or more than when the content is 10% by mass or more, and 60% by mass than when the content is 30% by mass or more. In the case of% or more, the effect of improving the powder fluidity is larger. Further, the effect of improving the powder fluidity tends to be greater when the polyamide fine particles are non-spherical than when they are spherical.
本発明に用いるシリカ粉末は、疎水性シリカ粉末(B)であることが必要である。疎水性シリカとは、シリカに対して10倍量の常温の水を加えて攪拌した場合に、系がスラリー状にならないシリカのこという。用いるシリカが疎水性シリカでない場合、粉末流動性が向上しないので好ましくない。 The silica powder used in the present invention needs to be a hydrophobic silica powder (B). Hydrophobic silica refers to silica in which the system does not become a slurry when 10 times the amount of normal temperature water is added to silica and stirred. When the silica to be used is not hydrophobic silica, the powder fluidity is not improved, which is not preferable.
本発明に用いる疎水性シリカ粉末(B)の平均粒子径は通常20μm以下であるが、中でも、15μm以下であることが好ましい。 The average particle diameter of the hydrophobic silica powder (B) used in the present invention is usually 20 μm or less, and among them, it is preferably 15 μm or less.
疎水性シリカ粉末(B)としては、例えば、富士シリシア化学社製の「サイロホービック」シリーズ(SH−100、SH−200、SH−603、SH−704等)、日本アエロジル社製の「AEROSIL」シリーズ(RY50、R504、R711、R812、R972、R202等)、東ソー・シリカ社製の「NIPSIL」シリーズ(SS50A、SS50F、SS70、SS178等)、トクヤマ社製の「レトロシール」シリーズ(MT−10、MT−10C、DM−10、DM−10C、HM−20L、PM−20L、KS−20S等)が挙げられる。 Examples of the hydrophobic silica powder (B) include “Silo Hovic” series (SH-100, SH-200, SH-603, SH-704, etc.) manufactured by Fuji Silysia Chemical Ltd., “AEROSIL” manufactured by Nippon Aerosil Co., Ltd. ”Series (RY50, R504, R711, R812, R972, R202, etc.),“ NIPSIL ”series (SS50A, SS50F, SS70, SS178, etc.) manufactured by Tosoh Silica Corporation,“ Retro Seal ”series (MT-) manufactured by Tokuyama Corporation 10, MT-10C, DM-10, DM-10C, HM-20L, PM-20L, KS-20S, etc.).
本発明のポリアミド粉末混合物において、ポリアミド微粒子(A1)に対する疎水性シリカ(B)の割合は、0.15〜50.0質量%であることが必要で、0.15〜10.0質量%であることが好ましく、0.20〜7.0質量%であることがより好ましい。前記割合が0.15質量%未満の場合、流動性の向上効果が小さいので好ましくない。一方、前記割合が10.0質量%を超えると、流動性の向上効果および操業安定性の向上効果が飽和する。前記割合が50.0質量%を超えると、フィラーとして物性面への影響が強まり、曲げ強度や密度が大きく上昇し、質感等も変化する。 In the polyamide powder mixture of the present invention, the ratio of the hydrophobic silica (B) to the polyamide fine particles (A1) needs to be 0.15 to 50.0% by mass, and 0.15 to 10.0% by mass. It is preferable that it is 0.20 to 7.0% by mass. When the ratio is less than 0.15% by mass, the effect of improving fluidity is small, which is not preferable. On the other hand, when the said ratio exceeds 10.0 mass%, the improvement effect of fluidity | liquidity and the improvement effect of operation stability will be saturated. When the ratio exceeds 50.0% by mass, the effect on the physical properties of the filler is increased, the bending strength and density are greatly increased, and the texture and the like are also changed.
本発明のポリアミド粉末混合物は、ポリアミド粉末(A)と疎水性シリカ粉末(B)を混合することにより作製することができる。混合方法は特に限定されないが、例えば、所定量のポリアミド粉末(A)と所定量の疎水性シリカ粉末(B)をドライブレンドする方法が挙げられる。 The polyamide powder mixture of the present invention can be prepared by mixing the polyamide powder (A) and the hydrophobic silica powder (B). The mixing method is not particularly limited, and examples thereof include a method of dry blending a predetermined amount of polyamide powder (A) and a predetermined amount of hydrophobic silica powder (B).
本発明のポリアミド粉末混合物には、必要に応じて添加剤を加えてもよい。添加剤としては、例えば、酸化チタン、カーボンブラック等の顔料、酸化防止剤、帯電防止剤が挙げられる。 You may add an additive to the polyamide powder mixture of this invention as needed. Examples of the additive include pigments such as titanium oxide and carbon black, antioxidants, and antistatic agents.
本発明のポリアミド粉体混合物は、粉末流動性に優れているため、後述するシリカ添加前後の安息角の減少率を10%以上とすることができ、好ましくは12%以上、より好ましくは15%以上とすることができる。 Since the polyamide powder mixture of the present invention is excellent in powder fluidity, the repose angle reduction rate before and after silica addition described later can be 10% or more, preferably 12% or more, more preferably 15%. This can be done.
また、本発明のポリアミド粉体混合物は、操業安定性に優れている。そのため、後述する混練時のトルクの最大値と最小値の差を20%以下とすることができ、好ましくは10%以下とすることができる。また、後述する連続操業可能時間を1.0時間以上、好ましくは2.5時間以上とすることができる。 Moreover, the polyamide powder mixture of the present invention is excellent in operational stability. Therefore, the difference between the maximum value and the minimum value of the torque at the time of kneading described later can be 20% or less, and preferably 10% or less. Moreover, the continuous operation possible time mentioned later can be 1.0 hour or more, Preferably it is 2.5 hours or more.
また、本発明のポリアミド粉体混合物は、物性面でのシリカの影響が小さいため、シリカ添加前後の曲げ強度の変化率を5%以下に抑制することができる。 In addition, since the polyamide powder mixture of the present invention is less affected by silica in terms of physical properties, the rate of change in bending strength before and after silica addition can be suppressed to 5% or less.
本発明のポリアミド粉末混合物は、混練や成形といった溶融加工にとどまらず、例えば、粉体塗料、3Dプリンタに使用される樹脂、化粧品、FRP用の樹脂、各種バインダー、各種充填材、各種改質材としても好適に用いることができる。 The polyamide powder mixture of the present invention is not limited to melt processing such as kneading and molding. For example, powder coatings, resins used in 3D printers, cosmetics, resins for FRP, various binders, various fillers, various modifiers Can also be suitably used.
以下、本発明を実施例によって具体的に説明するが、本発明はこれらによって限定されるものではない。 EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
A.評価方法
(1)ポリアミド粉末中の平均粒子径が100μm未満のポリアミド粉末と平均粒子径が100μ以上のポリアミド粉末の割合
振動篩機を用いて、目開き100μmの篩網でポリアミド粉末を十分に分級し、分級する前の樹脂の質量と篩網を通過した樹脂の質量から上記割合を求めた。
A. Evaluation method (1) Ratio of polyamide powder having an average particle diameter of less than 100 μm and polyamide powder having an average particle diameter of 100 μm or more in polyamide powder Using a vibrating sieve machine, the polyamide powder is sufficiently classified with a sieve mesh having an opening of 100 μm. And the said ratio was calculated | required from the mass of resin before classifying, and the mass of resin which passed the sieve net.
(2)粉末流動性
蔵持科学機器製作所製嵩比重測定器(JISK6721準拠)を用いて、水平面上に上方から100cm3のポリアミド粉末またはポリアミド粉末混合物を流出させて円錐状に堆積させた。堆積物の高さと底辺の長さを測定し、二等辺三角形を作図し、堆積物の表面の傾斜角として、二等辺三角形の底角を測定し、安息角を求めた。
シリカ添加前後の安息角の低減率=(シリカ添加前の安息角−シリカ添加後の安息角)/シリカ添加前の安息角×100
(2) Powder flowability Using a bulk specific gravity measuring instrument (based on JISK6721) manufactured by Kuramochi Scientific Instruments, 100 cm 3 of polyamide powder or polyamide powder mixture was allowed to flow out from above and deposited in a conical shape. The height of the deposit and the length of the base were measured, an isosceles triangle was drawn, and the angle of repose was determined by measuring the base angle of the isosceles triangle as the slope of the surface of the deposit.
Reduction rate of repose angle before and after silica addition = (repose angle before silica addition−repose angle after silica addition) / repose angle before silica addition × 100
(3)操業安定性
ポリアミド粉末混合物を、ロスインウェイト式連続定量供給装置CE−W−1型(クボタ社製)を用いて計量し、スクリュー径26mm、L/D50の同方向二軸押出機TEM26SS型(東芝機械社製)の主供給口に供給して、溶融混練をおこなった。ダイス内部には#40/♯100/♯40の順番でステンレス製スクリーンメッシュを装着した。ダイスからストランド状に引き取った後、水槽に通して冷却固化し、それをペレタイザーでカッティングしてポリアミド樹脂ペレットを得た。スクリュー回転数250rpm、吐出量25kg/時間とした。押出機のバレル温度設定は、実施例1〜8、11、比較例1〜5、参考例1は330℃、実施例9は320℃、実施例10は240℃とした。
混練開始から5分経過後〜25分経過後の20分間におけるトルクを10秒おきに読み取り、トルクの平均値と、トルクの最大値と最小値の差を求めた。なお、TEM26SSのスクリュー許容トルクは279N・mであり、この許容トルクに対するパーセンテージでトルクを表した。
また、混練開始以後、スクリーンメッシュ上流の樹脂圧力が3MPaに到達するまででの時間を連続操業可能時間とした。
(3) Operational stability Polyamide powder mixture is weighed using a loss-in-weight continuous quantitative feeder CE-W-1 (manufactured by Kubota Corporation), and is a twin screw extruder with a screw diameter of 26 mm and L / D50. The TEM26SS type (manufactured by Toshiba Machine Co., Ltd.) was supplied to the main supply port and melt kneaded. Stainless steel screen meshes were mounted in the die in the order of # 40 / # 100 / # 40. After taking out from the die in the form of a strand, it was cooled and solidified through a water tank, and was cut with a pelletizer to obtain polyamide resin pellets. The screw rotation speed was 250 rpm and the discharge rate was 25 kg / hour. The barrel temperature of the extruder was set to Examples 1 to 8, 11, Comparative Examples 1 to 5, Reference Example 1 was 330 ° C, Example 9 was 320 ° C, and Example 10 was 240 ° C.
The torque for 20 minutes after the lapse of 5 minutes to 25 minutes from the start of kneading was read every 10 seconds, and the average value of torque and the difference between the maximum value and the minimum value of torque were determined. The screw allowable torque of TEM26SS is 279 N · m, and the torque is expressed as a percentage with respect to this allowable torque.
In addition, after the start of kneading, the time until the resin pressure upstream of the screen mesh reaches 3 MPa was defined as the continuously operable time.
(4)機械物性
(3)で得られたポリアミド樹脂ペレットを、射出成形機S2000i−100B型(ファナック社製)を用いて射出成形し、試験片(ダンベル片)を作製した。得られた試験片を用いて、ISO178に準拠して曲げ強度を測定した。成形機のシリンダー温度設定は、実施例1〜8、11、比較例1〜5、参考例1は330℃、実施例9は320℃、実施例10は240℃とした。金型温度は、実施例1〜9、11、比較例1〜5、参考例1は140℃、実施例10は80℃とした。
(4) Mechanical properties The polyamide resin pellets obtained in (3) were injection molded using an injection molding machine S2000i-100B (manufactured by FANUC) to produce test pieces (dumbbell pieces). Using the obtained test piece, the bending strength was measured according to ISO178. The cylinder temperature of the molding machine was set to Examples 1 to 8, 11, Comparative Examples 1 to 5, Reference Example 1 was 330 ° C., Example 9 was 320 ° C., and Example 10 was 240 ° C. The mold temperatures were 140 ° C. for Examples 1 to 9, 11 and Comparative Examples 1 to 5, Reference Example 1 and 80 ° C. for Example 10.
B.使用原料
(1)ポリアミド粉末
・ポリアミド10T粉末
ジカルボン酸成分として粉末状のテレフタル酸4.70kgと、モノカルボン酸成分としてステアリン酸0.32kgと、重合触媒として次亜リン酸ナトリウム一水和物9.3gとを、リボンブレンダー式の反応装置に入れ、窒素密閉下、回転数30rpmで撹拌しながら170℃に加熱した。その後、温度を170℃に保ち、かつ回転数を30rpmに保ったまま、液注装置を用いて、ジアミン成分として100℃に加温した1,10−デカンジアミン4.98kgを、2.5時間かけて連続的(連続液注方式)に添加し反応物を得た。
続いて、得られた反応物を、同じ反応装置で、窒素気流下、250℃、回転数30rpmで8時間加熱して重合し、ポリアミド10Tの粉末を作製した。
得られたポリアミド10Tの粉末を、目開き100μmの篩を用いて、100μm未満の粉末と100μm以上の粉末に分級した。
B. Raw materials used (1) Polyamide powder / Polyamide 10T powder 4.70 kg of powdered terephthalic acid as the dicarboxylic acid component, 0.32 kg of stearic acid as the monocarboxylic acid component, and sodium hypophosphite monohydrate 9 as the polymerization catalyst .3 g was put into a ribbon blender type reactor and heated to 170 ° C. with stirring at a rotation speed of 30 rpm under nitrogen sealing. Then, while maintaining the temperature at 170 ° C. and maintaining the rotation speed at 30 rpm, using a liquid injection device, 4.98 kg of 1,10-decanediamine heated to 100 ° C. as a diamine component was added for 2.5 hours. And added continuously (continuous liquid injection method) to obtain a reaction product.
Subsequently, the obtained reaction product was polymerized by heating at 250 ° C. and a rotation speed of 30 rpm for 8 hours under a nitrogen stream in the same reaction apparatus to prepare polyamide 10T powder.
The obtained polyamide 10T powder was classified into a powder of less than 100 μm and a powder of 100 μm or more using a sieve having an opening of 100 μm.
・ポリアミド9T粉末
ジカルボン酸として粉末状のテレフタル酸3.73kgと、モノカルボン酸成分として安息香酸0.11kgと、ジアミン成分として1,9−ノナンジアミン3.08kgおよび2−メチル−1,8−オクタンジアミン0.54kgと、重合触媒として次亜リン酸ナトリウム7.3gと、水2.52kgとを、加熱混合反応装置に入れ、窒素置換した。さらに、80℃で0.5時間、毎分28回転で撹拌した後、230℃に昇温した。その後、230℃で3時間加熱し、反応物を得た。
続いて、得られた反応物を粉砕した後、乾燥機中で、窒素気流下、220℃で5時間加熱し重合し、ポリアミド9Tの粉末を得た。
得られたポリアミド9Tの粉末を、目開き100μmの篩を用いて、100μm未満の粉末と100μm以上の粉末に分級した。
・ポリアミド6粉末
ユニチカナイロン6 A1030CP(ユニチカ社製、パウダーグレード)
Polyamide 9T powder 3.73 kg of powdered terephthalic acid as dicarboxylic acid, 0.11 kg of benzoic acid as monocarboxylic acid component, 3.08 kg of 1,9-nonanediamine and 2-methyl-1,8-octane as diamine component 0.54 kg of diamine, 7.3 g of sodium hypophosphite as a polymerization catalyst, and 2.52 kg of water were put into a heating and mixing reactor and purged with nitrogen. Further, the mixture was stirred at 80 ° C. for 0.5 hour and 28 revolutions per minute, and then heated to 230 ° C. Then, it heated at 230 degreeC for 3 hours, and obtained the reaction material.
Subsequently, after the obtained reaction product was pulverized, it was polymerized by heating at 220 ° C. for 5 hours under a nitrogen stream in a dryer to obtain a polyamide 9T powder.
The obtained polyamide 9T powder was classified into a powder of less than 100 μm and a powder of 100 μm or more using a sieve having an opening of 100 μm.
・ Polyamide 6 powder Unitika nylon 6 A1030CP (Unitika Ltd., powder grade)
(2)シリカ
・サイロホービックSH−100(富士シリシア社製、疎水性、不定形状、平均粒子径2.7μm)
・アエロジルR202(ダイセルエボニック製、疎水性、不定形状、平均粒子径14nm)
・サイリシア310P(富士シリシア社製、親水性、不定形状、平均粒子径2.7μm)
・サイロスフェアC1504(富士シリシア社製、親水性、真球状、平均粒子径4.0μm)
(2) Silica silo hovic SH-100 (manufactured by Fuji Silysia Co., Ltd., hydrophobic, irregular shape, average particle size 2.7 μm)
Aerosil R202 (manufactured by Daicel Evonik, hydrophobic, irregular shape, average particle size 14 nm)
・ Silysia 310P (manufactured by Fuji Silysia Co., Ltd., hydrophilic, irregular shape, average particle size 2.7 μm)
・ Pyrosphere C1504 (manufactured by Fuji Silysia Co., Ltd., hydrophilic, spherical, average particle size 4.0 μm)
実施例1
ポリアミド10Tの100μm未満の粉末15質量部と、ポリアミド10Tの100μm以上の粉末85質量部と、サイロホービックSH−100 0.15質量部とを、ドライブレンドし、ポリアミド粉末混合物を得た。
Example 1
A polyamide powder mixture was obtained by dry blending 15 parts by mass of polyamide 10T powder less than 100 μm, 85 parts by mass of polyamide 10T powder of 100 μm or more, and 0.15 parts by mass of Silo Hovic SH-100.
実施例2〜11、比較例1〜5
用いる粉末と使用量を表1のように変更した以外は、実施例1と同様の操作をおこなってポリアミド粉末混合物を得た。
Examples 2-11, Comparative Examples 1-5
A polyamide powder mixture was obtained in the same manner as in Example 1 except that the powder used and the amount used were changed as shown in Table 1.
参考例1
ポリアミド10Tの100μm未満の粉末15質量部と、ポリアミド10Tの100μm以上の粉末85質量部とを、ドライブレンドし、ポリアミド粉末混合物を得た。
Reference example 1
15 parts by mass of polyamide 10T powder less than 100 μm and 85 parts by mass of polyamide 10T powder of 100 μm or more were dry blended to obtain a polyamide powder mixture.
実施例1〜11、比較例1〜5、参考例1で得られたポリアミド粉末混合物の組成およびその特性値を表1に示す。 Table 1 shows the compositions and characteristic values of the polyamide powder mixtures obtained in Examples 1 to 11, Comparative Examples 1 to 5, and Reference Example 1.
実施例1〜11のポリアミド粉末混合物は、いずれも、シリカ添加前後の安息角の低減率が10%以上であった。また、混練時のトルクの最大値と最小値の差がいずれも20%以下であって、連続操業可能時間が1.0時間以上であった。
実施例1〜8、11と参考例1の対比より、シリカ添加前後の曲げ強度の変化率は、5%以下に抑制されていることがわかる。
実施例4、5の対比より、100μm未満のポリアミド粉末に対するシリカ粉末の割合を高くしても、粉末流動性の向上効果や操業安定性の向上効果が飽和していることがわかる。
The polyamide powder mixtures of Examples 1 to 11 all had a repose angle reduction rate of 10% or more before and after silica addition. Further, the difference between the maximum value and the minimum value of the torque during kneading was 20% or less, and the continuous operation possible time was 1.0 hour or more.
From the comparison between Examples 1 to 8 and 11 and Reference Example 1, it can be seen that the rate of change in bending strength before and after addition of silica is suppressed to 5% or less.
From the comparison of Examples 4 and 5, it can be seen that even if the ratio of the silica powder to the polyamide powder of less than 100 μm is increased, the effect of improving the powder fluidity and the effect of improving the operation stability are saturated.
比較例1のポリアミド粉末混合物は、疎水性シリカの添加量が少なかったため、シリカ添加前後の安息角の低減率が小さかった。また、混練時のトルクの最大値と最小値の差が20%を超えており、連続操業可能時間が1.0時間未満であった。
比較例2のポリアミド粉末混合物は、疎水性シリカの添加量が多かったため、曲げ強度の変化率が5%を超えていた。
比較例3、4のポリアミド粉末混合物は、用いるシリカが疎水性でなかったため、シリカ添加前後の安息角の低減率が小さかった。また、混練時のトルクの最大値と最小値の差が20%を超えており、連続操業可能時間が1.0時間未満であった。
比較例5のポリアミド粉末混合物は、100μm以下のポリアミド粉末を含まないポリアミドを用いたため、シリカ添加前後の安息角の低減率が小さかった。
In the polyamide powder mixture of Comparative Example 1, since the amount of hydrophobic silica added was small, the repose angle reduction rate before and after silica addition was small. Further, the difference between the maximum value and the minimum value of the torque during kneading exceeded 20%, and the continuous operation time was less than 1.0 hour.
In the polyamide powder mixture of Comparative Example 2, since the amount of hydrophobic silica added was large, the rate of change in bending strength exceeded 5%.
In the polyamide powder mixtures of Comparative Examples 3 and 4, since the silica used was not hydrophobic, the repose angle reduction rate before and after silica addition was small. Further, the difference between the maximum value and the minimum value of the torque during kneading exceeded 20%, and the continuous operation time was less than 1.0 hour.
Since the polyamide powder mixture of Comparative Example 5 used a polyamide that does not contain a polyamide powder of 100 μm or less, the reduction rate of the angle of repose before and after silica addition was small.
Claims (2)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016013408 | 2016-01-27 | ||
JP2016013408 | 2016-01-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017132983A true JP2017132983A (en) | 2017-08-03 |
Family
ID=59503585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016218921A Pending JP2017132983A (en) | 2016-01-27 | 2016-11-09 | Polyamide powder mixture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017132983A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PL423772A1 (en) * | 2017-12-07 | 2019-06-17 | Grupa Azoty Spółka Akcyjna | Method for obtaining polyphthalamide composites with silica nanofiller |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002512645A (en) * | 1997-03-18 | 2002-04-23 | デー エス エム エヌ.ヴェー. | Laser sinterable thermoplastic powder |
JP2007217627A (en) * | 2006-02-20 | 2007-08-30 | Idemitsu Technofine Co Ltd | Powder composition for powder sintering laminating technique, and molded product thereof |
JP2007246718A (en) * | 2006-03-16 | 2007-09-27 | Sumitomo Seika Chem Co Ltd | Method for producing spherical thermoplastic resin particle |
JP2010514876A (en) * | 2006-12-28 | 2010-05-06 | アルケマ フランス | Method for producing polyamide powder by anionic polymerization |
JP2011514420A (en) * | 2008-03-14 | 2011-05-06 | ヴァルスパー・ソーシング・インコーポレーテッド | Powder composition and method for producing an article from the powder composition |
JP2015061918A (en) * | 2008-02-15 | 2015-04-02 | アルケマ フランス | Fine powder of polyamide from renewable materials and method for making the same |
-
2016
- 2016-11-09 JP JP2016218921A patent/JP2017132983A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002512645A (en) * | 1997-03-18 | 2002-04-23 | デー エス エム エヌ.ヴェー. | Laser sinterable thermoplastic powder |
JP2007217627A (en) * | 2006-02-20 | 2007-08-30 | Idemitsu Technofine Co Ltd | Powder composition for powder sintering laminating technique, and molded product thereof |
JP2007246718A (en) * | 2006-03-16 | 2007-09-27 | Sumitomo Seika Chem Co Ltd | Method for producing spherical thermoplastic resin particle |
JP2010514876A (en) * | 2006-12-28 | 2010-05-06 | アルケマ フランス | Method for producing polyamide powder by anionic polymerization |
JP2015061918A (en) * | 2008-02-15 | 2015-04-02 | アルケマ フランス | Fine powder of polyamide from renewable materials and method for making the same |
JP2011514420A (en) * | 2008-03-14 | 2011-05-06 | ヴァルスパー・ソーシング・インコーポレーテッド | Powder composition and method for producing an article from the powder composition |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PL423772A1 (en) * | 2017-12-07 | 2019-06-17 | Grupa Azoty Spółka Akcyjna | Method for obtaining polyphthalamide composites with silica nanofiller |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
MX2012015225A (en) | Reforming agent combinations. | |
CN101679638A (en) | Cross-linked silicone particles and method of manufacturing thereof | |
JPWO2018012371A1 (en) | Liquid crystalline resin composition | |
JP5617410B2 (en) | Zinc oxide particles, resin composition, grease, coating composition and cosmetics | |
JP2017132983A (en) | Polyamide powder mixture | |
JPWO2013121756A1 (en) | Granule flake glass and resin composition using the same | |
He et al. | Preparation and properties of styrene ethylene butylene styrene/polypropylene thermoplastic elastomer powder for selective laser sintering 3D printing | |
JP2015530472A (en) | Composite materials used in injection molding | |
TWI755359B (en) | Process for preparing a polymer composition, and polymer composition obtainable by said process | |
CN101133111B (en) | Use of silicon oxide compounds as free-flowing agents in the production of solid polyvinyl acetate resins | |
KR20190112319A (en) | Compressed particulate composition, preparation method thereof and use thereof | |
JP2019199540A5 (en) | ||
CN113228707B (en) | Resin composition for acoustic matching layer | |
JP2021109825A (en) | Heat-conductive filler and heat-conductive composition containing the same | |
JP6282802B2 (en) | Semi-aromatic polyamide powder and method for producing the same | |
JP2019218518A (en) | Thermal storage material particle-containing resin pellet, and manufacturing method of thermal storage material particle-containing resin pellet | |
JPS5942700B2 (en) | Olefin resin composition containing inorganic filler | |
CN105238036A (en) | Chemical corrosion-resistant thermoplastic polyamide elastomer/p-polyphenylene/polydicyclopentadiene composite material and preparation method thereof | |
JP2000239398A (en) | Master batch comprising thermoplastic organic resin and silicone powder | |
CN109705570A (en) | A kind of Particular thermoplastic's composite material and preparation method suitable for 3D printing | |
JP2020063179A (en) | Boron nitride coated particle material, its manufacturing method, and heat conductive material | |
JPS61254661A (en) | Surface part composition for clock | |
JP3096374B2 (en) | Mixed granulated product of synthetic resin powder and filler and method for producing the same | |
JPS6046135B2 (en) | Sponge-like elastic body | |
JPS6176529A (en) | Granular polyarylene sulfide and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191021 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200629 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200707 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20210105 |