[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2017120728A - All-solid battery - Google Patents

All-solid battery Download PDF

Info

Publication number
JP2017120728A
JP2017120728A JP2015257030A JP2015257030A JP2017120728A JP 2017120728 A JP2017120728 A JP 2017120728A JP 2015257030 A JP2015257030 A JP 2015257030A JP 2015257030 A JP2015257030 A JP 2015257030A JP 2017120728 A JP2017120728 A JP 2017120728A
Authority
JP
Japan
Prior art keywords
solid electrolyte
alkaline compound
particles
hydrogen sulfide
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015257030A
Other languages
Japanese (ja)
Other versions
JP6735096B2 (en
Inventor
知之 辻村
Tomoyuki Tsujimura
知之 辻村
清太郎 伊藤
Seitaro Ito
清太郎 伊藤
直毅 鈴木
Naoki Suzuki
直毅 鈴木
相原 雄一
Yuichi Aihara
雄一 相原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2015257030A priority Critical patent/JP6735096B2/en
Publication of JP2017120728A publication Critical patent/JP2017120728A/en
Application granted granted Critical
Publication of JP6735096B2 publication Critical patent/JP6735096B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an all-solid battery having a solid electrolyte layer which can suppress the production of hydrogen sulfide, and the reduction in ion conductivity.SOLUTION: An all-solid battery according to the present invention comprises: a positive electrode; a negative electrode; and a solid electrolyte layer including a solid electrolyte as a primary component between the positive and negative electrodes. The solid electrolyte is a sulfide-based solid electrolyte. In the solid electrolyte layer, an alkaline compound is mixed in the solid electrolyte. The ratio of an amount of an alkaline metal included in the alkaline compound to an amount of Li included in the solid electrolyte on a mole basis is 1/1000 to 1/25.SELECTED DRAWING: Figure 1

Description

本発明は、硫化物固体電解質、全固体電池および硫化物固体電解質の製造方法に関するものである。   The present invention relates to a sulfide solid electrolyte, an all-solid battery, and a method for producing a sulfide solid electrolyte.

電解質を固体電解質とし、電池を全固体化したリチウム電池は、電池内に可燃性の有機溶媒を用いないため、安全性に優れると考えられており、現在ポストリチウムイオン電池として検討が行われている。このような固体電解質に用いられる固体電解質材料として、硫化物系固体電解質が知られている(例えば特許文献1−7)。   Lithium batteries with solid electrolytes and solidified batteries do not use flammable organic solvents in the batteries, and are considered to be excellent in safety, and are currently being investigated as post lithium ion batteries. Yes. A sulfide-based solid electrolyte is known as a solid electrolyte material used for such a solid electrolyte (for example, Patent Documents 1-7).

硫化物系固体電解質は、水と接触すると硫化水素が発生してしまうので、それを抑止するため数多くの研究がなされている。例えば特許文献1には、LiS、および第14族または第15族の元素の硫化物を、両者の合計に対するLiSの割合が、オルト組成を得るLiSの割合未満となるように混合してなる原料組成物を、第一ガラス化処理によりガラス化することにより、LiSを有さず、架橋硫黄を有する中間体を形成する第一ガラス化工程と、中間体に、架橋硫黄の結合を切断する結合切断用化合物としてLiOを混合してなる中間体含有組成物を、第二ガラス化処理によりガラス化することにより、架橋硫黄を消失させる第二ガラス化工程と、を有することを特徴とする硫化物固体電解質材料の製造方法が開示されている。 Since sulfide-based solid electrolytes generate hydrogen sulfide when they come into contact with water, many studies have been made to suppress them. For example, Patent Document 1 discloses that Li 2 S and sulfides of elements of Group 14 or Group 15 have a ratio of Li 2 S to the total of both less than the ratio of Li 2 S to obtain an ortho composition. By vitrifying the raw material composition formed by mixing with the first vitrification treatment, the first vitrification step of forming an intermediate having no cross-linked sulfur without Li 2 S, and the intermediate, A second vitrification step for eliminating the cross-linked sulfur by vitrifying the intermediate-containing composition formed by mixing Li 2 O as a bond-breaking compound for cleaving the cross-linked sulfur bond with the second vitrification treatment; A method for producing a sulfide solid electrolyte material is disclosed.

特開2011−129312号公報JP 2011-129312 A 特開2012−54212号公報JP 2012-54212 A 特開2014−93263号公報JP 2014-93263 A 特開2013−37897号公報JP 2013-37897 A 特開2011−113720号公報JP 2011-113720 A WO2011/118799WO2011 / 118799 特開2011−165650号公報JP 2011-165650 A

しかしながら、上記の特許文献に開示されているような添加物により硫化水素の発生を抑止する技術においては、硫化水素の発生を抑えることができてもイオン伝導度が大きく低下してしまい、実際の電池には使用することが困難であるという問題があった。   However, in the technique for suppressing the generation of hydrogen sulfide by the additive as disclosed in the above patent document, the ionic conductivity is greatly reduced even if the generation of hydrogen sulfide can be suppressed. The battery has a problem that it is difficult to use.

本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、硫化水素の発生を抑制するとともにイオン伝導度の低下も抑制できる固体電解質層を備えた全固体電池を提供することにある。   This invention is made | formed in view of this point, The place made into the objective provides the all-solid-state battery provided with the solid electrolyte layer which can suppress generation | occurrence | production of hydrogen sulfide and can also suppress the fall of ion conductivity. There is.

本発明の全固体電池は、正極と、負極と、前記正極および前記負極の間に固体電解質を主成分とする固体電解質層とを備え、前記固体電解質は硫化物系固体電解質であり、前記固体電解質層では、前記固体電解質にアルカリ性化合物が混合されており、前記固体電解質に含まれるLiのモル量に対する前記アルカリ性化合物に含まれるアルカリ金属のモル量の比が1/1000以上1/25以下である構成を備えている。なお、固体電解質を主成分とする固体電解質層とは、固体電解質層中の固体電解質の含有量が70質量%以上である固体電解質層のことである。   The all solid state battery of the present invention includes a positive electrode, a negative electrode, and a solid electrolyte layer mainly composed of a solid electrolyte between the positive electrode and the negative electrode, and the solid electrolyte is a sulfide-based solid electrolyte, In the electrolyte layer, an alkaline compound is mixed in the solid electrolyte, and a ratio of a molar amount of the alkali metal contained in the alkaline compound to a molar amount of Li contained in the solid electrolyte is 1/1000 or more and 1/25 or less. It has a certain configuration. In addition, the solid electrolyte layer which has a solid electrolyte as a main component is a solid electrolyte layer whose content of the solid electrolyte in a solid electrolyte layer is 70 mass% or more.

前記固体電解質は、Li−P−S−X系(XはCl、Br及びIのうちの少なくとも一種)の硫化物系固体電解質であることが好ましい。   The solid electrolyte is preferably a Li—P—S—X-based (X is at least one of Cl, Br, and I) sulfide-based solid electrolyte.

前記固体電解質に含まれるSの含有量が45モル%以下であることが好ましい。   The content of S contained in the solid electrolyte is preferably 45 mol% or less.

前記アルカリ性化合物は、Li、Na及びKの少なくとも一種を含み、さらにOを含むことが好ましい。   The alkaline compound contains at least one of Li, Na and K, and preferably further contains O.

前記アルカリ性化合物及び前記固体電解質は粒子であり、前記アルカリ性化合物の粒子は、前記固体電解質の粒子の表面において分散しており、且つ最近接粒子間距離の分散度が0.0050mm以下であることが好ましい。 The alkaline compound and the solid electrolyte are particles, the particles of the alkaline compound are dispersed on the surface of the particles of the solid electrolyte, and the dispersity of the distance between the nearest particles is 0.0050 mm 2 or less. Is preferred.

本発明の全固体電池は、固体電解質に含まれるLiのモル量に対するアルカリ性化合物に含まれるアルカリ金属のモル量の比が1/1000以上1/25以下となるアルカリ性化合物を固体電解質に混合しているので、硫化水素の発生を抑制でき、かつイオン伝導度の低下も抑えることができる。   In the all solid state battery of the present invention, an alkaline compound in which the ratio of the molar amount of alkali metal contained in the alkaline compound to the molar amount of Li contained in the solid electrolyte is 1/1000 or more and 1/25 or less is mixed in the solid electrolyte. Therefore, generation of hydrogen sulfide can be suppressed and a decrease in ionic conductivity can also be suppressed.

実施例1に係る試料からの硫化水素の発生量を示すグラフである。3 is a graph showing the amount of hydrogen sulfide generated from a sample according to Example 1. 実施例2に係る試料からの硫化水素の発生量を示すグラフである。6 is a graph showing the amount of hydrogen sulfide generated from a sample according to Example 2. 実施例3に係る試料からの硫化水素の発生量を示すグラフである。6 is a graph showing the amount of hydrogen sulfide generated from a sample according to Example 3. 実施例4に係る試料からの硫化水素の発生量を示すグラフである。6 is a graph showing the amount of hydrogen sulfide generated from a sample according to Example 4. 実施例5に係る試料からの硫化水素の発生量を示すグラフである。6 is a graph showing the amount of hydrogen sulfide generated from a sample according to Example 5. 実施例6に係る試料からの硫化水素の発生量を示すグラフである。10 is a graph showing the amount of hydrogen sulfide generated from a sample according to Example 6. 比較例1に係る試料からの硫化水素の発生量を示すグラフである。5 is a graph showing the amount of hydrogen sulfide generated from a sample according to Comparative Example 1. 実施例7と比較例2の硫化水素の発生量を示すグラフである。6 is a graph showing the amount of hydrogen sulfide generated in Example 7 and Comparative Example 2. 実施例8と比較例3の硫化水素の発生量を示すグラフである。6 is a graph showing the amount of hydrogen sulfide generated in Example 8 and Comparative Example 3.

以下、本発明の実施形態を図面に基づいて詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The following description of the preferred embodiments is merely exemplary in nature and is not intended to limit the invention, its application, or its use.

(実施形態1)
実施形態1に係る全固体電池は、正極と、負極と、正極および負極の間に固体電解質を主成分とする固体電解質層とを備えている。この固体電解質は硫化物系固体電解質であって、固体電解質層では、固体電解質にアルカリ性化合物が混合されている。そして、固体電解質に含まれるLiのモル量に対するアルカリ性化合物に含まれるアルカリ金属のモル量の比(以下、この比をカチオン比という)が1/1000以上1/25以下である。カチオン比が1/1000よりも小さいと硫化水素の発生を抑制する効果が不十分となるおそれがある。一方カチオン比が1/25を超えると固体電解質層のイオン伝導度が大きく低下してしまうおそれがある。なお、このような固体電解質層を構成する物質が正極にも含有されている場合もある。固体電解質層に含まれる固体電解質の量は、固体電解質層の70質量%以上であり、好ましくは80質量%以上であり、より好ましくは90質量%以上である。
(Embodiment 1)
The all solid state battery according to Embodiment 1 includes a positive electrode, a negative electrode, and a solid electrolyte layer mainly composed of a solid electrolyte between the positive electrode and the negative electrode. This solid electrolyte is a sulfide-based solid electrolyte, and in the solid electrolyte layer, an alkaline compound is mixed with the solid electrolyte. The ratio of the molar amount of alkali metal contained in the alkaline compound to the molar amount of Li contained in the solid electrolyte (hereinafter, this ratio is referred to as cation ratio) is 1/1000 or more and 1/25 or less. If the cation ratio is less than 1/1000, the effect of suppressing the generation of hydrogen sulfide may be insufficient. On the other hand, if the cation ratio exceeds 1/25, the ionic conductivity of the solid electrolyte layer may be greatly reduced. In addition, the substance which comprises such a solid electrolyte layer may be contained also in the positive electrode. The amount of the solid electrolyte contained in the solid electrolyte layer is 70% by mass or more of the solid electrolyte layer, preferably 80% by mass or more, and more preferably 90% by mass or more.

固体電解質は、具体的にはLi−P−S−X系(XはCl、Br及びIのうちの少なくとも一種)の硫化物系固体電解質である。すなわち、LiとPとSとX(ハロゲン、具体的にはCl、Br及びIのうちの少なくとも一種)とからなる硫化物系固体電解質である。この固体電解質に含まれるSの含有量は45モル%以下である。   The solid electrolyte is specifically a Li—P—S—X-based (X is at least one of Cl, Br, and I) sulfide-based solid electrolyte. That is, a sulfide-based solid electrolyte composed of Li, P, S, and X (halogen, specifically, at least one of Cl, Br, and I). The content of S contained in this solid electrolyte is 45 mol% or less.

本実施形態において固体電解質に混合されるアルカリ性化合物は、Li、Na及びKの少なくとも一種を含み、さらにOを含むものである。   In this embodiment, the alkaline compound mixed with the solid electrolyte contains at least one of Li, Na, and K, and further contains O.

本実施形態においては、アルカリ性化合物及び固体電解質は粒子であって、アルカリ性化合物の粒子が、固体電解質の粒子の表面において分散している。本実施形態において「アルカリ性化合物の粒子が、固体電解質の粒子の表面において分散している」とは、アルカリ性化合物の粒子が固体電解質の粒子の表面に配置及びまぶされた状態を含む概念であり、比較的均一に分散しており、均一の度合は最近接粒子間距離の分散度が0.0050mm以下である。この分散度が0.0050mmよりも大きいと硫化水素の発生を抑制する効果が不十分となるおそれがある。 In this embodiment, the alkaline compound and the solid electrolyte are particles, and the particles of the alkaline compound are dispersed on the surfaces of the solid electrolyte particles. In this embodiment, “the particles of the alkaline compound are dispersed on the surface of the solid electrolyte particles” is a concept including a state in which the particles of the alkaline compound are arranged and coated on the surfaces of the solid electrolyte particles. The particles are relatively uniformly dispersed, and the degree of uniformity is such that the distance between the closest particles is 0.0050 mm 2 or less. If the degree of dispersion is greater than 0.0050 mm 2, the effect of suppressing the generation of hydrogen sulfide may be insufficient.

本実施形態に係る全固体電池の正極は、例えば、コバルト酸リチウム(以下、LCOと称する)、ニッケル酸リチウム、ニッケルコバルト酸リチウム、ニッケルコバルトアルミニウム酸リチウム(以下、NCAと称する)、ニッケルコバルトマンガン酸リチウム(以下、NCMと称する)、マンガン酸リチウム、リン酸鉄リチウム等のリチウム塩、硫化ニッケル、硫化銅、硫黄、酸化鉄、または酸化バナジウム等を用いて形成することができる。これらの正極活物質は、それぞれ単独で用いられてもよく、また2種以上を組み合わせて用いられてもよい。また、正極活物質粒子の形状としては、例えば、真球状、楕円球状等の粒子形状を挙げることができる。また、正極活物質粒子の平均粒子径は、例えば、0.1μm以上50μm以下であることが好ましい。なお、「平均粒子径」とは、散乱法等によって求められた粒子の粒度分布における個数平均径を表し、粒度分布計等により測定することができる。なお、正極における正極活物質粒子の含有量は、例えば、10質量%以上99質量%以下であることが好ましく、20質量%以上90質量%以下であることがより好ましい。また、電池性能を向上させる目的で、正極活物質粒子の表面を被覆処理した正極活物質を使用してもよい。特に、リチウムイオン伝導性の高いリチウム含有化合物にて被覆処理することで、正極活物質粒子と固体電解質との反応を抑制し、電池性能を向上させることができる。   The positive electrode of the all solid state battery according to the present embodiment includes, for example, lithium cobaltate (hereinafter referred to as LCO), lithium nickelate, lithium nickel cobaltate, lithium nickel cobaltaluminate (hereinafter referred to as NCA), nickel cobalt manganese. It can be formed using lithium acid (hereinafter referred to as NCM), lithium salts such as lithium manganate and lithium iron phosphate, nickel sulfide, copper sulfide, sulfur, iron oxide, or vanadium oxide. These positive electrode active materials may be used alone or in combination of two or more. In addition, examples of the shape of the positive electrode active material particles include particle shapes such as a true sphere and an oval sphere. Moreover, it is preferable that the average particle diameter of positive electrode active material particle is 0.1 micrometer or more and 50 micrometers or less, for example. The “average particle diameter” represents the number average diameter in the particle size distribution of particles obtained by a scattering method or the like, and can be measured by a particle size distribution meter or the like. In addition, the content of the positive electrode active material particles in the positive electrode is preferably 10% by mass or more and 99% by mass or less, and more preferably 20% by mass or more and 90% by mass or less. Moreover, you may use the positive electrode active material which coat | covered the surface of the positive electrode active material particle for the purpose of improving battery performance. In particular, by coating with a lithium-containing compound having high lithium ion conductivity, the reaction between the positive electrode active material particles and the solid electrolyte can be suppressed, and the battery performance can be improved.

このようなリチウム含有化合物としては、具体的には、リチウム含有酸化物、またはリチウム含有リン酸化物が好ましい。リチウム含有酸化物としては、例えば、リチウムジルコニウム酸化物(Li−Zr−O)、リチウムニオブ酸化物(Li−Nb−O)、リチウムチタン酸化物(Li−Ti−O)、リチウムアルミニウム酸化物(Li−Al−O)などが挙げられる。また、リチウム含有リン酸化物としては、例えば、リチウムチタンリン酸化物(Li−Ti−PO)、リチウムジルコニウムリン酸化物(Li−Zr−PO)などが挙げられる。これら被覆層は、正極活物質粒子に対するLi−M−Oの割合が0.1mol%以上2.0mol%以下となるように、正極活物質粒子を被覆することが好ましい。また被覆層の厚みは、1nm以上500nm以下であることが好ましい。被覆層の厚みが上述の範囲に含まれる場合、リチウムイオンの伝導性を低下させることなく、正極活物質粒子と固体電解質との反応をさらに抑制することができる。 Specifically, such a lithium-containing compound is preferably a lithium-containing oxide or a lithium-containing phosphorus oxide. Examples of the lithium-containing oxide include lithium zirconium oxide (Li—Zr—O), lithium niobium oxide (Li—Nb—O), lithium titanium oxide (Li—Ti—O), lithium aluminum oxide ( Li-Al-O). Examples of the lithium-containing phosphorus oxide include lithium titanium phosphorus oxide (Li—Ti—PO 4 ) and lithium zirconium phosphorus oxide (Li—Zr—PO 4 ). These coating layers preferably cover the positive electrode active material particles so that the ratio of Li-MO to the positive electrode active material particles is 0.1 mol% or more and 2.0 mol% or less. Moreover, it is preferable that the thickness of a coating layer is 1 nm or more and 500 nm or less. When the thickness of the coating layer is included in the above range, the reaction between the positive electrode active material particles and the solid electrolyte can be further suppressed without reducing the lithium ion conductivity.

また、正極層には、上述した正極粒子、固体電解質および被覆材料に加えて、例えば、導電剤、結着材、フィラー(filler)、分散剤、イオン導電剤等の添加物が適宜配合されていてもよい。   In addition to the positive electrode particles, the solid electrolyte, and the coating material described above, additives such as a conductive agent, a binder, a filler, a dispersant, and an ionic conductive agent are appropriately blended in the positive electrode layer. May be.

正極層に配合可能な導電剤としては、例えば、黒鉛、カーボンブラック(carbon black)、アセチレンブラック(acetylene black)、ケッチェンブラック(ketjen black)、炭素繊維、金属粉等を挙げることができる。また、正極層に配合可能な結着剤としては、例えば、ポリテトラフルオロエチレン(polytetrafluoroethylene)、ポリフッ化ビニリデン(polyvinylidene fluoride)、ポリエチレン(polyethylene)等を挙げることができる。さらに、正極層に配合可能なフィラー、分散剤、イオン導電剤等としては、一般にリチウムイオン二次電池の電極に用いられる公知の材料を用いることができる。   Examples of the conductive agent that can be blended in the positive electrode layer include graphite, carbon black, acetylene black, ketjen black, carbon fiber, and metal powder. Examples of the binder that can be blended in the positive electrode layer include polytetrafluoroethylene, polyvinylidene fluoride, and polyethylene. Furthermore, as a filler, a dispersing agent, an ionic conductive agent, and the like that can be blended in the positive electrode layer, known materials generally used for electrodes of lithium ion secondary batteries can be used.

本実施形態に係る全固体電池の負極は、正極活物質粒子に含まれる正極活物質と比較して充放電電位が低く、リチウムとの合金化、またはリチウムの可逆的な吸蔵および放出が可能な負極活物質材料にて構成される。例えば、負極活物質として、金属活物質またはカーボン(carbon)活物質等を挙げることができる。金属活物質としては、例えば、リチウム(Li)、インジウム(In)、アルミニウム(Al)、スズ(Sn)、ケイ素(Si)等の金属やこれらの合金等を挙げることができる。また、カーボン活物質としては、例えば、人造黒鉛、黒鉛炭素繊維、樹脂焼成炭素、熱分解気相成長炭素、コークス(coke)、メソカーボンマイクロビーズ(MCMB)、フルフリルアルコール(furfuryl alcohol)樹脂焼成炭素、ポリアセン(polyacene)、ピッチ(pitch)系炭素繊維、気相成長炭素繊維、天然黒鉛、難黒鉛化性炭素等を挙げることができる。これらの負極活物質は、単独で用いられてもよく、また2種以上を組み合わせて用いられてもよい。   The negative electrode of the all solid state battery according to this embodiment has a lower charge / discharge potential than the positive electrode active material contained in the positive electrode active material particles, and can be alloyed with lithium or reversibly occluded and released from lithium. Consists of negative electrode active material. For example, as the negative electrode active material, a metal active material, a carbon active material, or the like can be given. Examples of the metal active material include metals such as lithium (Li), indium (In), aluminum (Al), tin (Sn), and silicon (Si), and alloys thereof. Examples of the carbon active material include artificial graphite, graphite carbon fiber, resin-fired carbon, pyrolytic vapor-grown carbon, coke, mesocarbon microbeads (MCMB), and furfuryl alcohol (furfuryl alcohol) resin. Examples thereof include carbon, polyacene, pitch-based carbon fiber, vapor-grown carbon fiber, natural graphite, and non-graphitizable carbon. These negative electrode active materials may be used independently and may be used in combination of 2 or more type.

また、負極層には、上述した負極粒子および固体電解質に加えて、例えば、導電剤、結着材、フィラー、分散剤、イオン導電剤等の添加物が適宜配合されていてもよい。   In addition to the above-described negative electrode particles and solid electrolyte, for example, additives such as a conductive agent, a binder, a filler, a dispersant, and an ionic conductive agent may be appropriately blended in the negative electrode layer.

なお、負極層に配合する添加剤としては、上述した正極層に配合される添加剤と同様のものを用いることができる。   In addition, as an additive mix | blended with a negative electrode layer, the thing similar to the additive mix | blended with the positive electrode layer mentioned above can be used.

本実施形態に係る全固体電池の固体電解質は硫化物固体電解質材料にて形成され、より具体的には、例えば、LiS−P、LiS−P−LiX(Xはハロゲン元素、LiS−P−LiO、LiS−P−LiO−LiI、LiS−SiS、LiS−SiS−LiI、LiS−SiS−LiBr、LiS−SiS−LiCl、LiS−SiS−B−LiI、LiS−SiS−P−LiI、LiS−B、LiS−P−Z(m、nは正の数、ZはGe、ZnまたはGaのいずれか)、LiS−GeS、LiS−SiS−LiPO、LiS−SiS−LiMO(p、qは正の数、MはP、Si、Ge、B、Al、GaまたはInのいずれか)等を挙げることができる。 The solid electrolyte of the all-solid battery according to this embodiment is formed of a sulfide solid electrolyte material. More specifically, for example, Li 2 S—P 2 S 5 , Li 2 S—P 2 S 5 —LiX ( X is a halogen element, Li 2 S-P 2 S 5 -Li 2 O, Li 2 S-P 2 S 5 -Li 2 O-LiI, Li 2 S-SiS 2, Li 2 S-SiS 2 -LiI, Li 2 S-SiS 2 -LiBr, Li 2 S-SiS 2 -LiCl, Li 2 S-SiS 2 -B 2 S 3 -LiI, Li 2 S-SiS 2 -P 2 S 5 -LiI, Li 2 S-B 2 S 3, Li 2 S- P 2 S 5 -Z m S n (m, n is a positive number, either Z is Ge, and Zn, or Ga), Li 2 S-GeS 2, Li 2 S-SiS 2 -Li 3 PO 4, Li 2 S-SiS 2 -Li p MO q (p and q are positive numbers, M is any of P, Si, Ge, B, Al, Ga, or In).

また、固体電解質では、上記の硫化物固体電解質材料のうち、少なくとも構成元素として硫黄(S)、リン(P)およびリチウム(Li)を含むものを用いることが好ましく、少なくともLiS−Pを含むものを用いることがより好ましい。 In the solid electrolyte, it is preferable to use a material containing at least sulfur (S), phosphorus (P) and lithium (Li) as constituent elements among the above-mentioned sulfide solid electrolyte materials, and at least Li 2 S—P 2. it is more preferable to use those containing S 5.

ここで、固体電解質を形成する硫化物固体電解質材料としてLiS−Pを含むものを用いる場合、LiSとPとの混合モル比は、例えば、LiS:P=50:50〜90:10の範囲で選択される。 Here, the case of using those containing Li 2 S-P 2 S 5 as a sulfide solid electrolyte material to form a solid electrolyte, the mixing molar ratio of Li 2 S and P 2 S 5, for example, Li 2 S: P 2 S 5 = 50: 50 to 90:10 is selected.

また、固体電解質の形状としては、例えば、真球状、楕円球状等の粒子形状を挙げることができる。また、固体電解質の粒子径は、特に限定されないが、固体電解質の平均粒子径は、0.01μm以上30μm以下であることが好ましく、0.1μm以上20μm以下であることがより好ましい。なお、平均粒子径とは、上述したように、散乱法等によって求められた粒子の粒度分布における個数平均径のことを表す。   In addition, examples of the shape of the solid electrolyte include particle shapes such as a true sphere and an oval sphere. Further, the particle diameter of the solid electrolyte is not particularly limited, but the average particle diameter of the solid electrolyte is preferably 0.01 μm or more and 30 μm or less, and more preferably 0.1 μm or more and 20 μm or less. The average particle diameter represents the number average diameter in the particle size distribution of particles obtained by a scattering method or the like as described above.

本実施形態に係る固体電解質に混合するアルカリ性化合物は、より具体的にはNaCO、LiCO、KCO、NaHCO、LiHCO、KHCO、NaOH、LiOH、KOH、Ca(OH)、Mg(OH)、Mn(OH)、Sr(OH)、Fe(OH)、Fe(OH)、Zn(OH)、Ba(OH)、Cu(OH)、La(OH)、Al(OH)、CuS、LiO、CuOからなる群から選ばれる少なくとも1種の塩基性材料であることが好ましい。また、固体電解質に含まれるLiのモル量に対するアルカリ性化合物に含まれるアルカリ金属のモル量の比(以下、この比をカチオン比という)が1/1000以上1/20以下であることが好ましい。また、アルカリ性化合物の形状としては、特に限定されないが、粒子状の無機化合物粒子を使用してもよいが、固体電解質表面にアルカリ性化合物材料が被覆された被膜状態のものが、より硫化水素抑制効果が認められるため好ましい。 More specifically, the alkaline compound to be mixed in the solid electrolyte according to the present embodiment is Na 2 CO 3 , Li 2 CO 3 , K 2 CO 3 , NaHCO 3 , LiHCO 3 , KHCO 3 , NaOH, LiOH, KOH, Ca (OH) 2 , Mg (OH) 2 , Mn (OH) 2 , Sr (OH) 2 , Fe (OH) 2 , Fe (OH) 3 , Zn (OH) 2 , Ba (OH) 2 , Cu (OH ) 2 , La (OH) 3 , Al (OH) 3 , CuS 2 , Li 2 O, CuO, and preferably at least one basic material. Further, the ratio of the molar amount of alkali metal contained in the alkaline compound to the molar amount of Li contained in the solid electrolyte (hereinafter, this ratio is referred to as cation ratio) is preferably 1/1000 or more and 1/20 or less. Further, the shape of the alkaline compound is not particularly limited, but particulate inorganic compound particles may be used. However, a film in which an alkaline compound material is coated on the surface of the solid electrolyte is more effective in suppressing hydrogen sulfide. Is preferable.

被覆は溶液状態のアルカリ性化合物前駆体、例えば金属アルコキシド(M(OMe)、M(OEt)、M(OPr)等)を表面に被覆し、溶媒除去後に熱処理を行うことで目的の状態を得る。そのため、性能への影響が少なければ前駆体の一部もしくは全部が表面に存在していても構わない。 The coating is performed by coating the surface with a solution-like alkaline compound precursor, such as a metal alkoxide (M (OMe) n , M (OEt) n , M (OPr) n, etc.), and performing a heat treatment after removing the solvent. Get. Therefore, as long as there is little influence on performance, a part or all of the precursor may be present on the surface.

ここで特許文献7と本実施形態との比較を行う。   Here, the comparison between Patent Document 7 and the present embodiment is performed.

特許文献7では、硫化水素の発生を抑制するために硫化物系固体電解質に塩基性物質を添加している(請求項1)が、実施例では特定の塩基性物質を大量添加したもののみに硫化水素の発生抑制効果が見られている。具体的には、実施例1ではNaCOを固体電解質Li11100mgに対し75mg加えており、固体電解質に含まれるLiのモル量に対する塩基性物質に含まれる金属のモル量の比(以下カチオン比という)が1.00である。実施例2ではNaCOを固体電解質Li1150mgに対して75mg加えており、カチオン比は2.00である。実施例3ではCuOを固体電解質75LiS・25Pガラス40mgに対して10mg加えており、カチオン比は0.19である。実施例4ではLiOを固体電解質75LiS・25Pガラス40mgに対して10mg加えており、カチオン比は1.00である。実施例5ではCuSを固体電解質75LiS・25Pガラス40mgに対して10mg加えており、カチオン比は0.19である。この添加量は、本実施形態でのアルカリ性化合物の添加上限のカチオン比1/25=0.04を大幅に超えている。 In Patent Document 7, a basic substance is added to a sulfide-based solid electrolyte in order to suppress the generation of hydrogen sulfide (Claim 1). However, in Examples, only a specific basic substance is added in large quantities. The effect of suppressing the generation of hydrogen sulfide has been observed. Specifically, in Example 1, 75 mg of Na 2 CO 3 is added to 100 mg of the solid electrolyte Li 7 P 3 S 11, and the molar amount of the metal contained in the basic substance with respect to the molar amount of Li contained in the solid electrolyte. Ratio (hereinafter referred to as cation ratio) is 1.00. In Example 2, 75 mg of Na 2 CO 3 is added to 50 mg of the solid electrolyte Li 7 P 3 S 11, and the cation ratio is 2.00. In Example 3, 10 mg of CuO was added to 40 mg of the solid electrolyte 75Li 2 S · 25P 2 S 5 glass, and the cation ratio was 0.19. In Example 4, 10 mg of Li 2 O was added to 40 mg of the solid electrolyte 75Li 2 S · 25P 2 S 5 glass, and the cation ratio was 1.00. In Example 5, 10 mg of CuS 2 was added to 40 mg of the solid electrolyte 75Li 2 S · 25P 2 S 5 glass, and the cation ratio was 0.19. This addition amount greatly exceeds the cation ratio 1/25 = 0.04 of the upper limit of addition of the alkaline compound in the present embodiment.

一般に固体電解質にそれ以外の物質(ここでは塩基性物質)を添加すると、添加量が多いほど全体のイオン伝導度が下がるが、特許文献7では実施例1,2のみイオン伝導度が開示されていて他の例には記載されていない。イオン伝導度は、実施例1では無添加の場合の1/2に、実施例2では1/4になっており、これはアルカリ性化合物の添加によりイオン伝導度が低下していることを示している。   In general, when other substances (basic substances in this case) are added to the solid electrolyte, the total ionic conductivity decreases as the amount added increases. However, Patent Document 7 discloses ionic conductivity only in Examples 1 and 2. It is not described in other examples. The ionic conductivity is 1/2 in the case of no addition in Example 1 and ¼ in Example 2, which indicates that the ionic conductivity is lowered by the addition of the alkaline compound. Yes.

また、図4に比較例1と実施例1,2の硫化水素の発生量の比較データが示されているが、比較例1の測定試料は硫化物系固体電解質のみ100mgから作成されているのに対して、実施例1測定試料は硫化物系固体電解質100mgにNaCOを75mg加えたものから100mgを取り出して作成されているので、含まれている硫化物系固体電解質の量は57mgである。また、実施例2の測定試料は硫化物系固体電解質50mgにNaCOを75mg加えたものから100mgを取り出して作成されているので、含まれている硫化物系固体電解質の量は40mgである。図4では実施例1の硫化水素発生量は比較例1の40%の発生量であるが、元々硫化物系固体電解質の量が57%であるため発生量の抑止効果は非常に小さいものである。また実施例2は比較例1の25%の発生量であるが、元々硫化物系固体電解質の量が40%であるため発生量の抑止効果はやはり非常に小さいものである。 FIG. 4 shows comparison data of the amount of hydrogen sulfide generated in Comparative Example 1 and Examples 1 and 2. The measurement sample of Comparative Example 1 is prepared from 100 mg of a sulfide-based solid electrolyte only. On the other hand, since the measurement sample of Example 1 was prepared by taking 100 mg from 100 mg of the sulfide-based solid electrolyte and 75 mg of Na 2 CO 3 , the amount of the sulfide-based solid electrolyte contained was 57 mg. It is. The measurement sample of Example 2 was prepared by taking 100 mg from 50 mg of the sulfide-based solid electrolyte and 75 mg of Na 2 CO 3 , so the amount of sulfide-based solid electrolyte contained was 40 mg. is there. In FIG. 4, the hydrogen sulfide generation amount of Example 1 is 40% of that of Comparative Example 1, but since the amount of sulfide-based solid electrolyte is originally 57%, the effect of suppressing the generation amount is very small. is there. In Example 2, the amount generated was 25% of that in Comparative Example 1, but since the amount of sulfide-based solid electrolyte was originally 40%, the effect of suppressing the amount generated is still very small.

また、比較例3−9は硫化物系固体電解質に塩基性物質を添加しているが図5に示すように硫化水素の抑制効果がなかったり、逆により多くの硫化水素を発生させている。   In Comparative Example 3-9, a basic substance is added to the sulfide-based solid electrolyte. However, as shown in FIG. 5, there is no effect of suppressing hydrogen sulfide, or more hydrogen sulfide is generated.

特許文献7に記載されている固体電解質は、これだけ大量に塩基性物質を添加している(カチオン比で0.19〜2.00)ので硫化水素の発生量が抑制されていると言えるが、このように大量に塩基性物質を添加しなければならない理由は開示されていない。しかしながら、これらの実施例から考えると、塩基性物質を大量に添加しないと、硫化水素の発生を抑制出来ない必然的な理由があると推測される。   In the solid electrolyte described in Patent Document 7, it can be said that the amount of hydrogen sulfide generated is suppressed because a large amount of a basic substance is added (cation ratio is 0.19 to 2.00). The reason why the basic substance has to be added in such a large amount is not disclosed. However, considering these examples, it is presumed that there is an inevitable reason why generation of hydrogen sulfide cannot be suppressed unless a large amount of a basic substance is added.

さらには、Li−P−S系の2種類の硫化物系固体電解質が特許文献7の実施例で使われているが、構成元素が同じであるにも関わらず塩基性物質の添加効果が異なっており、これら以外の硫化物系固体電解質ではどのような塩基性物質をどれぐらい加えたら硫化水素抑制の効果があるのか、その効果はどの程度か、イオン伝導度の低下抑制はできるのか、が特許文献7の記載からは予想できず、かえって上述のごとき事情より当業者は特許文献7を参照して硫化水素の発生の抑制とイオン伝導度の低下の抑制の両立を検討しようとは思わないものと考えられる。   Furthermore, although two types of sulfide-based solid electrolytes of Li—PS system are used in Examples of Patent Document 7, the effect of adding a basic substance is different even though the constituent elements are the same. In addition to these, what kind of basic substance is added to sulfide-based solid electrolytes, how much is the effect of suppressing hydrogen sulfide, what is the effect, and whether the decrease in ionic conductivity can be suppressed? It cannot be predicted from the description of Patent Document 7, but the person skilled in the art, on the other hand, does not intend to consider both suppression of hydrogen sulfide generation and suppression of decrease in ionic conductivity with reference to Patent Document 7 due to the circumstances as described above. It is considered a thing.

次に、本実施形態に係る実施例を説明する。   Next, examples according to the present embodiment will be described.

<実施例1>
まず、試薬LiS、P、LiClを目的組成であるLiPSClになるように秤量後、遊星型ボールにて20時間混合を行うことでメカニカルミリング処理を行った。メカニカルミリング処理は、380rpmの回転速度、室温、アルゴン雰囲気内で20時間行った。メカニカルミリング処理により約2gの粉末試料を回収した。
<Example 1>
First, the reagents Li 2 S, P 2 S 5 , and LiCl were weighed so as to be the target composition Li 6 PS 5 Cl, and then mixed with a planetary ball for 20 hours to perform mechanical milling. The mechanical milling treatment was performed for 20 hours at a rotation speed of 380 rpm, room temperature, and argon atmosphere. About 2 g of powder sample was recovered by mechanical milling.

上記メカニカルミリング処理により得られたLiS−P−LiCl系の粉末試料300mgをプレス(圧力400MPa/cm2)することで直径13mm、厚さ約0.8mmのペレットを得た。得られたペレットを金箔で覆い、さらにカーボンルツボに入れた。このカーボンルツボを、石英ガラス管を用いて真空封入を行った後、電気炉を用いて室温から550℃まで0.5℃/分で昇温した後、550℃5時間熱処理を行った後、0.1℃/分で室温に冷却を行うことで固体電解質を得た。 A Li 2 S—P 2 S 5 —LiCl-based powder sample 300 mg obtained by the mechanical milling process was pressed (pressure 400 MPa / cm 2 ) to obtain a pellet having a diameter of 13 mm and a thickness of about 0.8 mm. The obtained pellets were covered with gold foil and further placed in a carbon crucible. The carbon crucible was vacuum sealed using a quartz glass tube, then heated from room temperature to 550 ° C. at 0.5 ° C./minute using an electric furnace, and then heat treated at 550 ° C. for 5 hours. A solid electrolyte was obtained by cooling to room temperature at 0.1 ° C./min.

回収された固体電解質を用いてメノウ乳鉢により粉砕を行った後、X線結晶回折を行い、目的となるLiPSCl(Argyrodite)結晶が生成していることを確認した。得られた固体電解質のイオン伝導度の測定は以下の方法により行った。メノウ乳鉢により粉砕を行った固体電解質を、プレス(圧力400MPa/cm2)することでペレットの作製を行った。なおペレットの両面にIn箔(厚さ500μm)を貼り付けることでイオン伝導度測定用ペレットとした。この方法により得られた室温におけるイオン伝導度は2.2×10-3S/cmを示した。 The recovered solid electrolyte was pulverized with an agate mortar and then subjected to X-ray crystal diffraction to confirm that target Li 6 PS 5 Cl (Argyrodite) crystals were produced. The ionic conductivity of the obtained solid electrolyte was measured by the following method. The solid electrolyte pulverized with an agate mortar was pressed (pressure 400 MPa / cm 2 ) to produce pellets. In addition, it was set as the pellet for ion conductivity measurement by sticking In foil (500 micrometers in thickness) on both surfaces of a pellet. The ionic conductivity at room temperature obtained by this method was 2.2 × 10 −3 S / cm.

次に、上記の固体電解質に、アルカリ性化合物であるLiOを、添加後の混合物において0.5モル%(0.06重量%、カチオン比0.0017)となるように添加し、メノウ乳鉢を用いて10分間混合を行って実施例1の試料を作製した。得られた試料のイオン伝導度は、2.2×10-3S/cmを示した。 Next, Li 2 O, which is an alkaline compound, is added to the solid electrolyte so as to be 0.5 mol% (0.06 wt%, cation ratio 0.0017) in the mixture after the addition, and an agate mortar The sample of Example 1 was prepared by mixing for 10 minutes. The ionic conductivity of the obtained sample was 2.2 × 10 −3 S / cm.

試料から発生する硫化水素ガスの測定は、以下のように行った。上記粉末試料のうち500mgを分取し、1755ccのデシケータ内に置き、硫化水素センサー(iSenLab, TWIN BREASORII)により硫化水素発生量を測定した。測定は、予め温度25℃、露点−40℃に調整された乾燥空気を、80ml/minで流入・排出しながら行った。約5分おきに硫化水素発生量を測定し、硫化水素ガス積算濃度を計算した。結果を図1に示す。   Measurement of hydrogen sulfide gas generated from the sample was performed as follows. 500 mg of the powder sample was taken and placed in a 1755 cc desiccator, and the amount of hydrogen sulfide generated was measured by a hydrogen sulfide sensor (iSenLab, TWIN BREASORII). The measurement was carried out while flowing and discharging dry air previously adjusted to a temperature of 25 ° C. and a dew point of −40 ° C. at 80 ml / min. The amount of hydrogen sulfide generated was measured about every 5 minutes and the hydrogen sulfide gas integrated concentration was calculated. The results are shown in FIG.

上記試料中のアルカリ性化合物粒子の分散度は下記のように求めた。上記の試料を走査型電子顕微鏡(SEM)観察することにより、固体電解質粒子の表面にアルカリ性化合物粒子が確認される存在位置を座標化した。100個のアルカリ性化合物粒子に対して、最近接するアルカリ性化合物粒子間の距離を求め、これらの値の平均値との差の平方の平均を分散度と定義した。例えば、粒子Aに対して最近接粒子を粒子Bと仮定し、粒子A−B間の距離をDA−Bとおく。以下同様に粒子Cに対する最近接粒子を粒子D、粒子Eに対する最近接粒子を粒子Fとする。そして、DA−B、DC−D、DE−F・・・の平均値をX、アルカリ性化合物粒子数をnとすると、分散度(S)は下記の式で表記することができる。 The degree of dispersion of the alkaline compound particles in the sample was determined as follows. By observing the above sample with a scanning electron microscope (SEM), the position where the alkaline compound particles were confirmed on the surface of the solid electrolyte particles was coordinated. For 100 alkaline compound particles, the distance between the closest alkaline compound particles was determined, and the average of the square of the difference between these values was defined as the degree of dispersion. For example, recently the contact particles assuming particles B with respect to particle A, placing the distance between the particles A-B and D A-B. Similarly, the closest particle to particle C is referred to as particle D, and the closest particle to particle E is referred to as particle F. Then, when the average value of D A-B , D C-D , D E-F ... Is X and the number of alkaline compound particles is n, the dispersity (S 2 ) can be expressed by the following formula. .

={(DA−B−X)+(DC−D−X)+(DE−F−X)+・・・}/n
アルカリ性化合物粒子が理想的に分散されている場合、分散度(S)は0となる。分散性が悪いと、Sの値は大きくなる。本実施例では、Sの値は0.0040mmであった。
S 2 = {(D A−B −X) 2 + (D C−D −X) 2 + (D E−F −X) 2 +...} / N
When the alkaline compound particles are ideally dispersed, the dispersity (S 2 ) is 0. When the poor dispersibility, the value of S 2 is increased. In the present example, the value of S 2 was 0.0040 mm 2 .

<実施例2>
実施例2は、アルカリ性化合物であるLiOの添加量だけが実施例1とは異なっている。具体的には、LiPSCl(Argyrodite)結晶に、LiOを、添加後の混合物において2モル%(0.20重量%、カチオン比0.0068)となるように添加し、メノウ乳鉢を用いて10分間混合を行って実施例2の試料を作製した。得られた試料のイオン伝導度は、2.2×10-3S/cmを示した。また実施例1に記載の方法により求めたアルカリ性化合物の最近接粒子間距離の分散度(S)の値は0.0038mmである。硫化水素ガスの測定は、実施例1と同様に行った。結果を図2に示す。
<Example 2>
Example 2 differs from Example 1 only in the amount of addition of Li 2 O, which is an alkaline compound. Specifically, Li 2 O was added to Li 6 PS 5 Cl (Argyrodite) crystals so that the mixture after the addition was 2 mol% (0.20 wt%, cation ratio 0.0068), and agate The sample of Example 2 was produced by mixing for 10 minutes using a mortar. The ionic conductivity of the obtained sample was 2.2 × 10 −3 S / cm. Moreover, the value of the dispersity (S 2 ) of the distance between the closest particles of the alkaline compound determined by the method described in Example 1 is 0.0038 mm 2 . The measurement of hydrogen sulfide gas was performed in the same manner as in Example 1. The results are shown in FIG.

<実施例3>
実施例3は、アルカリ性化合物であるLiOの添加量だけが実施例1とは異なっている。具体的には、LiPSCl(Argyrodite)結晶に、LiOを、添加後の混合物において5モル%(0.58重量%、カチオン比0.018)となるように添加し、メノウ乳鉢を用いて10分間混合を行って実施例3の試料を作製した。得られた試料のイオン伝導度は、2.2×10-3S/cmを示した。また実施例1に記載の方法により求めたアルカリ性化合物の最近接粒子間距離の分散度(S)の値は0.0028mmである。硫化水素ガスの測定は、実施例1と同様に行った。結果を図3に示す。
<Example 3>
Example 3 differs from Example 1 only in the amount of addition of Li 2 O, which is an alkaline compound. Specifically, Li 2 O was added to Li 6 PS 5 Cl (Argyrodite) crystals so that the mixture after the addition was 5 mol% (0.58 wt%, cation ratio 0.018). The sample of Example 3 was produced by mixing for 10 minutes using a mortar. The ionic conductivity of the obtained sample was 2.2 × 10 −3 S / cm. Moreover, the value of the dispersity (S 2 ) of the distance between nearest neighbor particles of the alkaline compound determined by the method described in Example 1 is 0.0028 mm 2 . The measurement of hydrogen sulfide gas was performed in the same manner as in Example 1. The results are shown in FIG.

<実施例4>
実施例4は、アルカリ性化合物の種類を実施例1のLiOからLiCOに変更し、その添加量も実施例1と変更している。具体的には、LiPSCl(Argyrodite)結晶に、LiCOを、添加後の混合物において5モル%(1.4重量%、カチオン比0.018)となるように添加し、メノウ乳鉢を用いて10分間混合を行って実施例4の試料を作製した。得られた試料のイオン伝導度は、2.2×10-3S/cmを示した。また実施例1に記載の方法により求めたアルカリ性化合物の最近接粒子間距離の分散度(S)の値は0.0024mmである。硫化水素ガスの測定は、実施例1と同様に行った。結果を図4に示す。
<Example 4>
Example 4 is to change the type of the alkaline compound from Li 2 O of Example 1 Li 2 CO 3, it is changed its addition amount as in Example 1. Specifically, Li 2 CO 3 was added to Li 6 PS 5 Cl (Argyrodite) crystals so that the mixture after the addition was 5 mol% (1.4 wt%, cation ratio 0.018), The sample of Example 4 was produced by mixing for 10 minutes using an agate mortar. The ionic conductivity of the obtained sample was 2.2 × 10 −3 S / cm. Moreover, the value of the dispersity (S 2 ) of the distance between nearest neighbor particles of the alkaline compound determined by the method described in Example 1 is 0.0024 mm 2 . The measurement of hydrogen sulfide gas was performed in the same manner as in Example 1. The results are shown in FIG.

<実施例5>
実施例5は、アルカリ性化合物であるLiOの添加量だけが実施例1とは異なっている。具体的には、LiPSCl(Argyrodite)結晶に、LiOを、添加後の混合物において10モル%(1.2重量%、カチオン比0.037)となるように添加し、メノウ乳鉢を用いて10分間混合を行って実施例3の試料を作製した。得られた試料のイオン伝導度は、1.8×10-3S/cmを示した。また実施例1に記載の方法により求めたアルカリ性化合物の最近接粒子間距離の分散度(S)の値は0.0026mmである。硫化水素ガスの測定は、実施例1と同様に行った。結果を図5に示す。
<Example 5>
Example 5 differs from Example 1 only in the amount of addition of Li 2 O, which is an alkaline compound. Specifically, Li 2 O was added to Li 6 PS 5 Cl (Argyrodite) crystals so that the mixture after the addition was 10 mol% (1.2 wt%, cation ratio 0.037), and agate The sample of Example 3 was produced by mixing for 10 minutes using a mortar. The ionic conductivity of the obtained sample was 1.8 × 10 −3 S / cm. Further, the value of the dispersity (S 2 ) of the distance between the closest particles of the alkaline compound determined by the method described in Example 1 is 0.0026 mm 2 . The measurement of hydrogen sulfide gas was performed in the same manner as in Example 1. The results are shown in FIG.

<実施例6>
実施例6は、アルカリ性化合物であるLiOと固体電解質との混合方法だけが実施例1とは異なっている。具体的には、LiPSCl(Argyrodite)結晶に、LiOを、添加後の混合物において0.5モル%(0.06重量%、カチオン比0.0017)となるように添加し、スパチュラを用いて10分間混合を行って実施例6の試料を作製した。得られた試料のイオン伝導度は、2.2×10-3S/cmを示した。また実施例1に記載の方法により求めたアルカリ性化合物の最近接粒子間距離の分散度(S)の値は、0.0056mmである。アルカリ性化合物の粒子が硫化物系固体電解質の表面に硫化水素ガスの測定は、実施例1と同様に行った。結果を図6に示す。
<Example 6>
Example 6 differs from Example 1 only in the mixing method of Li 2 O, which is an alkaline compound, and a solid electrolyte. Specifically, Li 2 O was added to Li 6 PS 5 Cl (Argyrodite) crystals so that the mixture after the addition would be 0.5 mol% (0.06 wt%, cation ratio 0.0017). The sample of Example 6 was prepared by mixing for 10 minutes using a spatula. The ionic conductivity of the obtained sample was 2.2 × 10 −3 S / cm. Moreover, the value of the dispersity (S 2 ) of the distance between nearest neighbor particles of the alkaline compound determined by the method described in Example 1 is 0.0056 mm 2 . Measurement of hydrogen sulfide gas on the surface of the sulfide-based solid electrolyte was performed in the same manner as in Example 1. The results are shown in FIG.

<比較例1>
比較例1は、アルカリ性化合物を添加していない点だけが実施例1とは異なっている。具体的には、LiPSCl(Argyrodite)結晶のみの粉末を用いて試料のイオン伝導度を測定したところ、2.2×10-3S/cmであった。硫化水素ガスの測定は、実施例1と同様に行った。結果を図7に示す。
<Comparative Example 1>
Comparative Example 1 differs from Example 1 only in that no alkaline compound is added. Specifically, when the ion conductivity of the sample was measured using a powder of only Li 6 PS 5 Cl (Argyrodite) crystals, it was 2.2 × 10 −3 S / cm. The measurement of hydrogen sulfide gas was performed in the same manner as in Example 1. The results are shown in FIG.

実施例5では、アルカリ性化合物をカチオン比で0.037と比較的多く加えているので、イオン伝導度がやや低下しているが、その低下度合は小さい。イオン伝導度が低下しないようにするためには、カチオン比を3/100以下とすることが好ましい。   In Example 5, since the alkaline compound is added in a relatively large cation ratio of 0.037, the ionic conductivity is slightly reduced, but the degree of decrease is small. In order not to lower the ionic conductivity, the cation ratio is preferably 3/100 or less.

<実施例7>
実施例7の試料は実施例3と同じ試料である。すなわち、実施例1で作製したLiPSCl(Argyrodite)結晶に、LiOを、添加後の混合物において5モル%(0.58重量%、カチオン比0.018)となるように添加し、メノウ乳鉢を用いて10分間混合を行って作製したものである。イオン伝導度は実施例3と同じく、2.2×10-3S/cmを示した。
<Example 7>
The sample of Example 7 is the same sample as Example 3. That is, Li 2 O was added to the Li 6 PS 5 Cl (Argyrodite) crystal prepared in Example 1 so that the mixture after the addition was 5 mol% (0.58 wt%, cation ratio 0.018). And mixing for 10 minutes using an agate mortar. The ionic conductivity was 2.2 × 10 −3 S / cm as in Example 3.

硫化水素ガスの測定は、実施例3とは異なる条件により、以下のように行った。上記の試料500mgを、1755ccのデシケータ内に置き、硫化水素センサー(iSenLab, TWIN BREASORII)により硫化水素発生量を測定した。測定は、温度25℃、湿度100%の湿潤空気を、80ml/minの速度で流入・排出させながら行った。約5分おきに硫化水素発生量を測定し、硫化水素ガス積算濃度を計算した。その結果を図8の黒丸、実線で示す。   The measurement of the hydrogen sulfide gas was performed as follows under conditions different from those in Example 3. 500 mg of the above sample was placed in a 1755 cc desiccator, and the amount of hydrogen sulfide generated was measured by a hydrogen sulfide sensor (iSenLab, TWIN BREASORII). The measurement was performed while inflowing and discharging humid air at a temperature of 25 ° C. and a humidity of 100% at a rate of 80 ml / min. The amount of hydrogen sulfide generated was measured about every 5 minutes and the hydrogen sulfide gas integrated concentration was calculated. The results are indicated by black circles and solid lines in FIG.

<比較例2>
比較例2の試料は比較例1の試料と同じであって、LiPSCl(Argyrodite)結晶のみの粉末である。イオン伝導度は比較例1と同じ、2.2×10-3S/cmである。この試料を用いて、実施例7と同じ方法で硫化水素ガスの測定を行った。その結果を図8の三角、破線で示す。
<Comparative example 2>
The sample of Comparative Example 2 is the same as the sample of Comparative Example 1, and is a powder of only Li 6 PS 5 Cl (Argyrodite) crystals. The ionic conductivity is 2.2 × 10 −3 S / cm, the same as in Comparative Example 1. Using this sample, hydrogen sulfide gas was measured in the same manner as in Example 7. The result is indicated by a triangle and a broken line in FIG.

実施例7、比較例2の硫化水素発生条件は、水分量が非常に多い条件のため、多量の硫化水素が発生している。図8に示すように、センサーの検出限界(上限)が100ppmであるので、実施例7では10分から60分の間、比較例2では3分から90分の間はセンサー上限以上の硫化水素が発生していて両者の比較ができないが、それ以外の領域のデータから、LiOを5モル%加えた実施例7の方が、アルカリ性化合物を添加していない比較例2よりも硫化水素の発生量が明らかに少ないことがわかる。 Since the hydrogen sulfide generation conditions of Example 7 and Comparative Example 2 are conditions in which the amount of water is very large, a large amount of hydrogen sulfide is generated. As shown in FIG. 8, since the detection limit (upper limit) of the sensor is 100 ppm, hydrogen sulfide exceeding the upper limit of the sensor is generated in Example 7 for 10 minutes to 60 minutes and in Comparative Example 2 for 3 minutes to 90 minutes. However, the comparison between the two is impossible, but from the data in the other regions, the generation of hydrogen sulfide is higher in Example 7 in which 5 mol% of Li 2 O is added than in Comparative Example 2 in which no alkaline compound is added. It can be seen that the amount is clearly small.

(実施形態2)
実施形態2に係る全固体電池は、硫化物系固体電解質の表面にアルカリ性化合物を被覆していることが実施形態1に係る全固体電池とは異なっており、それ以外の点は実施形態1と同じである。
(Embodiment 2)
The all-solid-state battery according to the second embodiment is different from the all-solid-state battery according to the first embodiment in that the surface of the sulfide-based solid electrolyte is covered with an alkaline compound. The same.

<実施例8>
まず,試薬LiS、P、LiIを目的組成である35LiI−65(0.75LiS−0.25P)になるように、LiSを0.319g、Pを0.513g、LiIを0.667g秤量した。それらの試薬を遊星型ボール(ZrOball(φ7mmを7個およびφ1mmを10個))にて20時間混合を行うことでメカニカルミリング処理を行った。メカニカルミリング処理は、380rpmの回転速度、室温、アルゴン雰囲気内で10分混合・5分休止の条件を繰り返し、合計35時間行った。
<Example 8>
First, so that the reagent Li 2 S, P 2 S 5 , 35LiI-65 LiI a target composition of (0.75Li 2 S-0.25P 2 S 5), 0.319g of Li 2 S, P 2 the S 5 0.513g, and 0.667g weighed LiI. The mechanical milling process was performed by mixing these reagents for 20 hours with a planetary ball (ZrO 2 ball (7 pieces of φ7 mm and 10 pieces of φ1 mm)). The mechanical milling process was repeated for a total of 35 hours under the conditions of 380 rpm, room temperature, 10 minutes mixing and 5 minutes rest in an argon atmosphere.

上記メカニカルミリング処理により得られた35LiI−65(0.75LiS−0.25P)の粉末材料は、粉末X線回折により非晶質状態であることを確認した。この粉末材料(固体電解質)の硫黄含有量は、39.4モル%である。 The powder material of 35LiI-65 (0.75Li 2 S-0.25P 2 S 5 ) obtained by the mechanical milling process was confirmed to be in an amorphous state by powder X-ray diffraction. The sulfur content of this powder material (solid electrolyte) is 39.4 mol%.

本実施形態では、アルカリ性化合物の粒子を固体電解質の粒子表面にまぶすのではなく、アルカリ性化合物を固体電解質の粒子表面に被覆させた。具体的には、乾燥xylene400mlにLiOEtのTHF溶液29.3mgを入れて撹拌した。本溶液に35LiI−65(0.75LiS−0.25P)組成の粉末試料を500mg投入し、Ar雰囲気下で48時間撹拌を行った。その後100℃1時間の条件下で溶媒を除去することで、アルカリ性化合物であるLiOを被覆した硫化物系固体電解質の試料を作製した。得られた試料のイオン伝導度は、1.6×10-3S/cmを示した。また、上記の固体電解質に対して、LiOのカチオン比は0.015であった。 In the present embodiment, the alkaline compound particles are not coated on the surface of the solid electrolyte particles, but the alkaline compound particles are coated on the solid electrolyte particles. Specifically, 29.3 mg of a THF solution of LiOEt was added to 400 ml of dry xylen and stirred. To this solution, 500 mg of a powder sample having a composition of 35LiI-65 (0.75Li 2 S-0.25P 2 S 5 ) was added and stirred for 48 hours in an Ar atmosphere. Thereafter, the solvent was removed under the condition of 100 ° C. for 1 hour to prepare a sulfide-based solid electrolyte sample coated with Li 2 O, which is an alkaline compound. The ionic conductivity of the obtained sample was 1.6 × 10 −3 S / cm. Further, with respect to the solid electrolyte, the cation ratio of Li 2 O is was 0.015.

得られた試料を用いて、実施例1と同じ方法(ただし、試料の量は1/5である100mg)で硫化水素ガスの発生量を測定した。その結果を図9において黒丸で示す。   Using the obtained sample, the amount of hydrogen sulfide gas generated was measured by the same method as in Example 1 (however, the amount of the sample was 1/5, 100 mg). The result is shown by a black circle in FIG.

<比較例3>
実施例8の35LiI−65(0.75LiS−0.25P)の粉末材料のみを試料として比較例3とし、実施例8と同じ条件で硫化水素ガスの発生量を測定した。その結果を図9において三角で示す。なお、この試料のイオン伝導度は、3.5×10-3S/cmを示した。
<Comparative Example 3>
Only powdered material 35LiI-65 of Example 8 (0.75Li 2 S-0.25P 2 S 5) as Comparative Example 3 as a sample were measured amount of generated hydrogen sulfide gas under the same conditions as in Example 8. The result is indicated by a triangle in FIG. The ionic conductivity of this sample was 3.5 × 10 −3 S / cm.

実施例8の試料は、比較例3の試料に比べてイオン伝導度がやや劣るが、硫化水素ガスの発生が大きく低下している。つまり、硫化物系固体電解質の粒子表面にアルカリ性化合物の被覆を形成しても、イオン伝導度の低下をある程度抑制しつつ硫化水素ガスの発生を大幅に抑制出来る。   The sample of Example 8 has slightly lower ionic conductivity than the sample of Comparative Example 3, but the generation of hydrogen sulfide gas is greatly reduced. In other words, even if a coating of an alkaline compound is formed on the surface of the sulfide-based solid electrolyte particles, generation of hydrogen sulfide gas can be significantly suppressed while suppressing a decrease in ionic conductivity to some extent.

(その他の実施形態)
上述の実施形態は本願発明の例示であって、本願発明はこれらの例に限定されず、これらの例に周知技術や慣用技術、公知技術を組み合わせたり、一部置き換えたりしてもよい。また当業者であれば容易に思いつく改変発明も本願発明に含まれる。
(Other embodiments)
The above-described embodiment is an exemplification of the present invention, and the present invention is not limited to these examples, and these examples may be combined or partially replaced with known techniques, common techniques, and known techniques. Also, modified inventions easily conceived by those skilled in the art are included in the present invention.

固体電解質の種類も実施例の固体電解質に限定されない。アルカリ性化合物の種類も実施例のアルカリ性化合物に限定されない。アルカリ性化合物に含まれる金属元素は、Liに限定されず、NaやKであってもよい。硫化物系の固体電解質に含まれるハロゲンもCl、Br、Iのいずれであっても構わないし、複数種が含まれる固体電解質であってもよい。   The kind of solid electrolyte is not limited to the solid electrolyte of the embodiment. The kind of alkaline compound is not limited to the alkaline compound of the examples. The metal element contained in the alkaline compound is not limited to Li, and may be Na or K. The halogen contained in the sulfide-based solid electrolyte may be Cl, Br, or I, or may be a solid electrolyte containing a plurality of types.

Claims (6)

正極と、負極と、前記正極および前記負極の間に固体電解質を主成分とする固体電解質層とを備え、
前記固体電解質は硫化物系固体電解質であり、
前記固体電解質層では、前記固体電解質にアルカリ性化合物が混合されており、
前記固体電解質に含まれるLiのモル量に対する前記アルカリ性化合物に含まれるアルカリ金属のモル量の比が1/1000以上1/25以下である、全固体電池。
A positive electrode, a negative electrode, and a solid electrolyte layer mainly composed of a solid electrolyte between the positive electrode and the negative electrode;
The solid electrolyte is a sulfide-based solid electrolyte,
In the solid electrolyte layer, an alkaline compound is mixed in the solid electrolyte,
The all-solid-state battery whose ratio of the molar amount of the alkali metal contained in the alkaline compound to the molar amount of Li contained in the solid electrolyte is 1/1000 or more and 1/25 or less.
前記固体電解質は、Li−P−S−X系(XはCl、Br及びIのうちの少なくとも一種)の硫化物系固体電解質である、請求項1に記載されている全固体電池。   2. The all-solid-state battery according to claim 1, wherein the solid electrolyte is a Li—P—S—X-based (X is at least one of Cl, Br, and I) sulfide-based solid electrolyte. 前記固体電解質に含まれるSの含有量が45モル%以下である、請求項1又は2に記載されている全固体電池。   The all-solid-state battery described in Claim 1 or 2 whose content of S contained in the said solid electrolyte is 45 mol% or less. 前記アルカリ性化合物は、Li、Na及びKの少なくとも一種を含み、さらにOを含む、請求項1から3のいずれか一つに記載されている全固体電池。   The all-solid-state battery according to any one of claims 1 to 3, wherein the alkaline compound includes at least one of Li, Na, and K, and further includes O. 前記固体電解質層を構成する物質が前記正極にも含有されている、請求項1から4のいずれか一つに記載されている全固体電池。   The all-solid-state battery as described in any one of Claim 1 to 4 in which the substance which comprises the said solid electrolyte layer is contained also in the said positive electrode. 前記アルカリ性化合物及び前記固体電解質は粒子であり、
前記アルカリ性化合物の粒子は、前記固体電解質の粒子の表面において分散しており、且つ最近接粒子間距離の分散度が0.0050mm以下である、請求項1から5のいずれか一つに記載されている全固体電池。
The alkaline compound and the solid electrolyte are particles,
The particles of the alkaline compound are dispersed on the surface of the particles of the solid electrolyte, and the dispersity of the distance between the nearest particles is 0.0050 mm 2 or less. All-solid battery.
JP2015257030A 2015-12-28 2015-12-28 All solid state battery Expired - Fee Related JP6735096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015257030A JP6735096B2 (en) 2015-12-28 2015-12-28 All solid state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015257030A JP6735096B2 (en) 2015-12-28 2015-12-28 All solid state battery

Publications (2)

Publication Number Publication Date
JP2017120728A true JP2017120728A (en) 2017-07-06
JP6735096B2 JP6735096B2 (en) 2020-08-05

Family

ID=59272326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015257030A Expired - Fee Related JP6735096B2 (en) 2015-12-28 2015-12-28 All solid state battery

Country Status (1)

Country Link
JP (1) JP6735096B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019009228A1 (en) * 2017-07-07 2019-01-10 三井金属鉱業株式会社 Solid electrolyte of lithium secondary battery and sulfide compound for said solid electrolyte
WO2019031436A1 (en) * 2017-08-10 2019-02-14 出光興産株式会社 Sulfide solid electrolyte
JP2019160510A (en) * 2018-03-12 2019-09-19 トヨタ自動車株式会社 Sulfide solid electrolyte
JP2020064740A (en) * 2018-10-16 2020-04-23 トヨタ自動車株式会社 Sulfide all-solid-state battery
WO2021054433A1 (en) 2019-09-20 2021-03-25 出光興産株式会社 Solid electrolyte and method for producing same
CN113299998A (en) * 2020-02-21 2021-08-24 丰田自动车株式会社 Method for producing sulfide solid electrolyte
KR20210107793A (en) * 2019-09-11 2021-09-01 미쓰이금속광업주식회사 Method for producing sulfide solid electrolyte, electrode mixture, solid battery and sulfide solid electrolyte
CN114709474A (en) * 2022-04-28 2022-07-05 上海屹锂新能源科技有限公司 Bismuth-doped silver germanite type sulfide solid electrolyte and preparation method thereof
JP2022110662A (en) * 2021-01-19 2022-07-29 トヨタ自動車株式会社 Sulfide solid electrolyte, precursor, all-solid battery, and production method of sulfide solid electrolyte

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165650A (en) * 2010-01-12 2011-08-25 Toyota Motor Corp Sulfide-based solid electrolyte battery
US20110318650A1 (en) * 2010-03-30 2011-12-29 West Virginia University Inorganic Solid Electrolyte Glass Phase Composite and a Battery Containing an Inorganic Solid Electrolyte Glass Phase Composite
JP2012054212A (en) * 2010-09-03 2012-03-15 Toyota Motor Corp Sulfide solid electrolyte material, method for producing sulfide solid electrolyte material, and lithium solid battery
JP2015103451A (en) * 2013-11-26 2015-06-04 三星電子株式会社Samsung Electronics Co.,Ltd. All-solid type secondary battery and method for manufacturing all-solid type secondary battery
JP2015191778A (en) * 2014-03-28 2015-11-02 古河電気工業株式会社 All-solid type secondary battery
JP2015195155A (en) * 2014-03-19 2015-11-05 出光興産株式会社 solid electrolyte and battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165650A (en) * 2010-01-12 2011-08-25 Toyota Motor Corp Sulfide-based solid electrolyte battery
US20110318650A1 (en) * 2010-03-30 2011-12-29 West Virginia University Inorganic Solid Electrolyte Glass Phase Composite and a Battery Containing an Inorganic Solid Electrolyte Glass Phase Composite
JP2012054212A (en) * 2010-09-03 2012-03-15 Toyota Motor Corp Sulfide solid electrolyte material, method for producing sulfide solid electrolyte material, and lithium solid battery
JP2015103451A (en) * 2013-11-26 2015-06-04 三星電子株式会社Samsung Electronics Co.,Ltd. All-solid type secondary battery and method for manufacturing all-solid type secondary battery
JP2015195155A (en) * 2014-03-19 2015-11-05 出光興産株式会社 solid electrolyte and battery
JP2015191778A (en) * 2014-03-28 2015-11-02 古河電気工業株式会社 All-solid type secondary battery

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11196083B2 (en) 2017-07-07 2021-12-07 Mitsui Mining & Smelting Co., Ltd. Solid electrolyte of lithium secondary battery and sulfide compound for said solid electrolyte
JPWO2019009228A1 (en) * 2017-07-07 2019-11-07 三井金属鉱業株式会社 Solid electrolyte of lithium secondary battery and sulfide compound for solid electrolyte
CN110800149A (en) * 2017-07-07 2020-02-14 三井金属矿业株式会社 Solid electrolyte for lithium secondary battery and sulfide-based compound for the solid electrolyte
CN112331910A (en) * 2017-07-07 2021-02-05 三井金属矿业株式会社 Solid electrolyte for lithium secondary battery and sulfide-based compound for the solid electrolyte
WO2019009228A1 (en) * 2017-07-07 2019-01-10 三井金属鉱業株式会社 Solid electrolyte of lithium secondary battery and sulfide compound for said solid electrolyte
WO2019031436A1 (en) * 2017-08-10 2019-02-14 出光興産株式会社 Sulfide solid electrolyte
EP3667800B1 (en) * 2017-08-10 2024-10-09 Idemitsu Kosan Co.,Ltd. Sulfide solid electrolyte
CN110998952A (en) * 2017-08-10 2020-04-10 出光兴产株式会社 Sulfide solid electrolyte
CN110998952B (en) * 2017-08-10 2023-08-08 出光兴产株式会社 Sulfide solid electrolyte
US11387486B2 (en) 2017-08-10 2022-07-12 Idemitsu Kosan Co., Ltd. Sulfide solid electrolyte
JP7047485B2 (en) 2018-03-12 2022-04-05 トヨタ自動車株式会社 Sulfide solid electrolyte
JP2019160510A (en) * 2018-03-12 2019-09-19 トヨタ自動車株式会社 Sulfide solid electrolyte
JP7119884B2 (en) 2018-10-16 2022-08-17 トヨタ自動車株式会社 Sulfide all-solid-state battery
JP2020064740A (en) * 2018-10-16 2020-04-23 トヨタ自動車株式会社 Sulfide all-solid-state battery
CN113366685B (en) * 2019-09-11 2024-11-01 三井金属矿业株式会社 Sulfide solid electrolyte, electrode mixture, solid battery, and method for producing sulfide solid electrolyte
KR20210107793A (en) * 2019-09-11 2021-09-01 미쓰이금속광업주식회사 Method for producing sulfide solid electrolyte, electrode mixture, solid battery and sulfide solid electrolyte
CN113366685A (en) * 2019-09-11 2021-09-07 三井金属矿业株式会社 Sulfide solid electrolyte, electrode mixture, solid battery, and method for producing sulfide solid electrolyte
KR102658300B1 (en) * 2019-09-11 2024-04-18 미쓰이금속광업주식회사 Sulfide solid electrolyte, electrode mixture, solid battery, and method for producing sulfide solid electrolyte
EP4030509A4 (en) * 2019-09-11 2022-11-23 Mitsui Mining & Smelting Co., Ltd. Sulfide solid-state electrolyte, electrode mixture, solid-state battery and sulfide-solid-state-electrolyte manufacturing method
KR20220066038A (en) 2019-09-20 2022-05-23 이데미쓰 고산 가부시키가이샤 Solid electrolyte and method for manufacturing the same
WO2021054433A1 (en) 2019-09-20 2021-03-25 出光興産株式会社 Solid electrolyte and method for producing same
JP7243662B2 (en) 2020-02-21 2023-03-22 トヨタ自動車株式会社 Method for producing sulfide solid electrolyte
CN113299998B (en) * 2020-02-21 2024-03-05 丰田自动车株式会社 Method for producing sulfide solid electrolyte
CN113299998A (en) * 2020-02-21 2021-08-24 丰田自动车株式会社 Method for producing sulfide solid electrolyte
JP2021132023A (en) * 2020-02-21 2021-09-09 トヨタ自動車株式会社 Method for producing sulfide solid electrolyte
JP2022110662A (en) * 2021-01-19 2022-07-29 トヨタ自動車株式会社 Sulfide solid electrolyte, precursor, all-solid battery, and production method of sulfide solid electrolyte
JP7484737B2 (en) 2021-01-19 2024-05-16 トヨタ自動車株式会社 Sulfide solid electrolyte, precursor, all-solid-state battery, and method for producing sulfide solid electrolyte
CN114709474A (en) * 2022-04-28 2022-07-05 上海屹锂新能源科技有限公司 Bismuth-doped silver germanite type sulfide solid electrolyte and preparation method thereof

Also Published As

Publication number Publication date
JP6735096B2 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
JP6735096B2 (en) All solid state battery
JP5578280B2 (en) Coated active material and lithium solid state battery
JP5541319B2 (en) Method for producing coated active material
JP5691401B2 (en) Sulfide solid electrolyte particles
JP6952467B2 (en) Positive active material for all-solid-state secondary batteries, positive-positive active material layer for all-solid-state secondary batteries, and all-solid-state secondary batteries
JP5664773B2 (en) Lithium solid state battery
JP5967100B2 (en) Electrolyte-coated positive electrode active material particles, all solid state battery, and method for producing electrolyte-coated positive electrode active material particles
JP6240306B2 (en) Lithium secondary battery
CN107134591B (en) The manufacturing method of active material, solid state battery and active material
JP6376068B2 (en) Negative electrode composite and all-solid battery
JP2017117753A (en) Solid electrolyte, all-solid battery, and method for manufacturing solid electrolyte
JP5682318B2 (en) All solid battery
JP6681570B2 (en) Battery and positive electrode material for battery
WO2015050031A1 (en) Covered cathode active material and lithium battery
CN107134588B (en) The manufacturing method of active material
JP2012099323A (en) Cathode active substance material, cathode active substance layer, all-solid battery, and method for producing cathode active substance material
JP2014229579A (en) Lithium ion conductive inorganic solid composite
JP2013134825A (en) Composite active material, all-solid battery, and method for manufacturing composite active material
JP2012089406A (en) Method for manufacturing positive electrode active material part, method for manufacturing solid electrolyte lithium battery, and positive electrode active material part
Sung et al. Highly reversible and superior Li-storage characteristics of layered GeS2 and its amorphous composites
JP6245519B2 (en) Positive electrode for all solid lithium secondary battery and all solid lithium secondary battery using the same
JP2021072288A (en) Solid ion conductor compound, solid electrolyte including solid ion conductor compound, electrochemical cell including solid ion conductor compound, and method of preparing solid ion conductor compound
JP2017054615A (en) Coated negative-electrode active material
JP2009301749A (en) Cathode active material, lithium secondary battery and manufacturing method of cathode active material
Parameswaran et al. An integrated study on the ionic migration across the nano lithium lanthanum titanate (LLTO) and lithium iron phosphate-carbon (LFP-C) interface in all-solid-state Li-ion batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200713

R150 Certificate of patent or registration of utility model

Ref document number: 6735096

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees