JP2017117976A - Abrasive pad and method of manufacturing semiconductor device - Google Patents
Abrasive pad and method of manufacturing semiconductor device Download PDFInfo
- Publication number
- JP2017117976A JP2017117976A JP2015253023A JP2015253023A JP2017117976A JP 2017117976 A JP2017117976 A JP 2017117976A JP 2015253023 A JP2015253023 A JP 2015253023A JP 2015253023 A JP2015253023 A JP 2015253023A JP 2017117976 A JP2017117976 A JP 2017117976A
- Authority
- JP
- Japan
- Prior art keywords
- polishing
- light transmission
- region
- polishing pad
- transmission region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
Description
本発明は、ウエハ表面の凹凸をケミカルメカニカルポリシング(CMP)で平坦化する際に使用される研磨パッドに関し、詳しくは、研磨状況等を光学的手段により検知するための窓(光透過領域)を有する研磨パッド、及び該研磨パッドを用いた半導体デバイスの製造方法に関する。 The present invention relates to a polishing pad used when planarizing unevenness on a wafer surface by chemical mechanical polishing (CMP), and more specifically, a window (light transmission region) for detecting a polishing state or the like by optical means. The present invention relates to a polishing pad having a semiconductor device and a method for manufacturing a semiconductor device using the polishing pad.
半導体装置を製造する際には、ウエハ表面に導電性膜を形成し、フォトリソグラフィー、エッチング等をすることにより配線層を形成する工程や、配線層の上に層間絶縁膜を形成する工程等が行われ、これらの工程によってウエハ表面に金属等の導電体や絶縁体からなる凹凸が生じる。近年、半導体集積回路の高密度化を目的として配線の微細化や多層配線化が進んでいるが、これに伴い、ウエハ表面の凹凸を平坦化する技術が重要となってきた。 When manufacturing a semiconductor device, a process of forming a conductive film on the wafer surface and forming a wiring layer by photolithography, etching, or the like, a process of forming an interlayer insulating film on the wiring layer, etc. These steps are performed, and irregularities made of a conductor such as metal or an insulator are generated on the wafer surface. In recent years, miniaturization of wiring and multilayer wiring have been advanced for the purpose of increasing the density of semiconductor integrated circuits, and along with this, technology for flattening the irregularities on the wafer surface has become important.
ウエハ表面の凹凸を平坦化する方法としては、一般的にCMP法が採用されている。CMPは、ウエハの被研磨面を研磨パッドの研磨面に押し付けた状態で、砥粒が分散されたスラリー状の研磨剤(以下、スラリーという)を用いて研磨する技術である。 As a method for flattening the irregularities on the wafer surface, a CMP method is generally employed. CMP is a technique of polishing using a slurry-like abrasive (hereinafter referred to as slurry) in which abrasive grains are dispersed in a state where the surface to be polished of a wafer is pressed against the polishing surface of a polishing pad.
CMPで一般的に使用する研磨装置は、例えば、図1に示すように、研磨パッド1を支持する研磨定盤2と、被研磨対象物(ウエハ)4を支持する支持台(ポリシングヘッド)5とウエハの均一加圧を行うためのバッキング材と、研磨剤の供給機構を備えている。研磨パッド1は、例えば、両面テープで貼り付けることにより、研磨定盤2に装着される。研磨定盤2と支持台5とは、それぞれに支持された研磨パッド1と被研磨対象物4が対向するように配置され、それぞれに回転軸6、7を備えている。また、支持台5には、被研磨対象物4を研磨パッド1に押し付けるための加圧機構が設けてある。
As shown in FIG. 1, for example, a polishing apparatus generally used in CMP includes a polishing surface plate 2 that supports a polishing pad 1 and a support base (polishing head) 5 that supports an object to be polished (wafer) 4. And a backing material for uniformly pressing the wafer, and an abrasive supply mechanism. The polishing pad 1 is attached to the polishing surface plate 2 by attaching it with a double-sided tape, for example. The polishing surface plate 2 and the support base 5 are disposed so that the polishing pad 1 and the object to be polished 4 supported on each of the polishing surface plate 2 and the support base 5 are opposed to each other, and are provided with rotating
このようなCMPを行う上で、ウエハ表面の平坦度の判定の問題がある。すなわち、希望の表面特性や平面状態に到達した時点を検知する必要がある。従来、酸化膜の膜厚や研磨速度等に関しては、テストウエハを定期的に処理し、結果を確認してから製品となるウエハを研磨処理することが行われてきた。 When performing such CMP, there is a problem of determining the flatness of the wafer surface. In other words, it is necessary to detect when the desired surface characteristics or planar state is reached. Conventionally, with regard to the thickness of the oxide film, the polishing rate, and the like, a test wafer is periodically processed, and after confirming the result, a product wafer is polished.
しかし、この方法では、テストウエハを処理する時間とコストが無駄になり、また、あらかじめ加工が全く施されていないテストウエハと製品ウエハでは、CMP特有のローディング効果により、研磨結果が異なり、製品ウエハを実際に加工してみないと、加工結果の正確な予想が困難である。 However, in this method, the time and cost for processing the test wafer are wasted, and the polishing result differs between the test wafer and the product wafer that have not been processed in advance due to the loading effect peculiar to CMP. If it is not actually processed, it is difficult to accurately predict the processing result.
そのため、最近では上記の問題点を解消するために、CMPプロセス時に、その場で、希望の表面特性や厚さが得られた時点を検出できる方法が望まれている。このような検知については、様々な方法が用いられているが、測定精度や非接触測定における空間分解能の点から、回転定盤内にレーザー光による膜厚モニタ機構を組み込んだ光学的検知方法(特許文献1、特許文献2)が主流となりつつある。当該光学的検知手段とは、具体的には光ビームを窓(光透過領域)を通して研磨パッド越しにウエハに照射して、その反射によって発生する干渉信号をモニタすることによって研磨の終点を検知する方法である。 Therefore, recently, in order to solve the above-mentioned problems, there is a demand for a method capable of detecting a point in time when desired surface characteristics and thickness are obtained in the CMP process. Various methods are used for such detection. From the viewpoint of measurement accuracy and spatial resolution in non-contact measurement, an optical detection method in which a film thickness monitoring mechanism using a laser beam is incorporated in a rotating surface plate ( Patent Documents 1 and 2) are becoming mainstream. Specifically, the optical detection means detects the end point of polishing by irradiating a wafer with a light beam through a window (light transmission region) through a polishing pad and monitoring an interference signal generated by the reflection. Is the method.
窓を有する研磨パッドとしては、例えば、研磨領域と光透過領域が同一平面になっている研磨パッドや、光透過領域の表面が研磨領域の表面より凹んでいる研磨パッドがある(特許文献3、4)。
しかし、前記特許文献3に記載の研磨パッドは、研磨領域と光透過領域が同一平面になっているため、研磨領域よりも硬い光透過領域の表面が研磨時に被研磨対象物に接触し、被研磨対象物の表面にスクラッチが生じやすい。 However, in the polishing pad described in Patent Document 3, since the polishing region and the light transmission region are in the same plane, the surface of the light transmission region that is harder than the polishing region is in contact with the object to be polished during polishing. Scratches are likely to occur on the surface of the object to be polished.
前記特許文献4に記載の研磨パッドは、光透過領域の表面が研磨領域の表面より凹んでいるため、光透過領域が被研磨対象物に接触することによるスクラッチの発生を抑制することはできるが、研磨中に凹んでいる部分にスラリーが堆積しやすくなるため、当該スラリーに起因するスクラッチが発生しやすい。また、当該凹んでいる部分にスラリーが堆積すると、光ビームの透過が遮られるため、光学終点検知精度が低下する。 In the polishing pad described in Patent Document 4, since the surface of the light transmission region is recessed from the surface of the polishing region, it is possible to suppress the occurrence of scratches due to the light transmission region contacting the object to be polished. Since the slurry is likely to be deposited in the recessed portion during polishing, scratches due to the slurry are likely to occur. In addition, when slurry is deposited on the recessed portion, the transmission of the light beam is interrupted, so that the optical end point detection accuracy decreases.
すなわち、被研磨対象物表面にスクラッチが生じにくく、かつ高精度の光学終点検知を安定的に行うことのできる研磨パッド、及び該研磨パッドを用いた半導体デバイスの製造方法は従来なかった。 That is, there has not been a polishing pad that can hardly cause scratches on the surface of an object to be polished and can stably detect an optical end point with high accuracy, and a method of manufacturing a semiconductor device using the polishing pad.
本発明は、ウエハ表面にスクラッチが生じにくく、かつ高精度の光学終点検知を安定的に行うことのできる研磨パッド、及び該研磨パッドを用いた半導体デバイスの製造方法を提供することを目的とする。 SUMMARY OF THE INVENTION An object of the present invention is to provide a polishing pad that is less likely to cause scratches on the wafer surface and that can stably perform high-precision optical end point detection, and a method of manufacturing a semiconductor device using the polishing pad. .
本発明は、研磨領域及び光透過領域を有する研磨パッドであって、前記光透過領域の表面が、前記研磨パッドの中心側は前記研磨領域の表面よりも凹んでおり、前記研磨パッドの中心側から外周側に向けて外周側の方が高くなるような勾配を有する、研磨パッドである。 The present invention is a polishing pad having a polishing region and a light transmission region, wherein the surface of the light transmission region is recessed at the center side of the polishing pad than the surface of the polishing region, and the center side of the polishing pad The polishing pad has a gradient such that the outer peripheral side becomes higher from the outer periphery toward the outer peripheral side.
本発明は、前記研磨パッドを用いて半導体ウエハの表面を研磨する工程を含む半導体デバイスの製造方法である。 The present invention is a method for manufacturing a semiconductor device including a step of polishing a surface of a semiconductor wafer using the polishing pad.
本発明の研磨パッドに係る光透過領域の研磨領域側の表面の前記研磨パッドの中心側は、前記研磨領域の表面よりも凹んでいる。そのため、研磨領域の表面と光透過領域の表面が同一平面上にある場合よりも光透過領域が被研磨対象物に接触する面積を少なくすることができ、研磨中に光透過領域が被研磨対象物に接触することによるスクラッチの発生を抑制することが出来る。前記光透過領域の表面が前記研磨領域の表面よりも凹んでいる部分にはスラリーが堆積するが、前記研磨パッドは前記研磨パッドの中心側から外周側に向けて外周側の方が高くなるような勾配を有するため、研磨中の研磨パッドの回転による遠心力により、凹んでいる部分に堆積したスラリーは前記勾配にそって外周部方向に移動して凹んでいる部分から排出される。そのため、スラリーに起因するウエハ表面のスクラッチの発生を抑制しながら、光学終点検知を安定的に行うことができる。従って、本発明によれば、ウエハ表面にスクラッチが生じにくく、かつ高精度の光学終点検知を安定的に行うことのできる研磨パッド、及び該研磨パッドを用いた半導体デバイスの製造方法を提供することができる。 The center side of the polishing pad on the surface on the polishing region side of the light transmission region according to the polishing pad of the present invention is recessed from the surface of the polishing region. Therefore, the area where the light transmission region contacts the object to be polished can be reduced as compared with the case where the surface of the polishing region and the surface of the light transmission region are on the same plane, and the light transmission region is to be polished during polishing. Scratch generation due to contact with an object can be suppressed. Slurry is deposited on the portion where the surface of the light transmission region is recessed from the surface of the polishing region, but the polishing pad is higher on the outer peripheral side from the center side to the outer peripheral side of the polishing pad. Therefore, the slurry accumulated in the recessed portion is moved in the direction of the outer peripheral portion along the gradient and discharged from the recessed portion due to the centrifugal force generated by the rotation of the polishing pad during polishing. Therefore, it is possible to stably detect the optical end point while suppressing generation of scratches on the wafer surface due to the slurry. Therefore, according to the present invention, it is possible to provide a polishing pad that is unlikely to cause scratches on the wafer surface and that can stably perform high-precision optical end point detection, and a semiconductor device manufacturing method using the polishing pad. Can do.
本実施形態の研磨パッドは、研磨領域及び光透過領域を有する研磨パッドであって、前記光透過領域の表面が、前記研磨パッドの中心側は前記研磨領域の表面よりも凹んでおり、前記研磨パッドの中心側から外周側に向けて外周側の方が高くなるような勾配を有する。 The polishing pad of the present embodiment is a polishing pad having a polishing region and a light transmission region, and the surface of the light transmission region is recessed on the center side of the polishing pad from the surface of the polishing region. It has a gradient such that the outer peripheral side becomes higher from the center side of the pad toward the outer peripheral side.
<第1の実施形態>
第1の実施形態の研磨パッドを図2〜6を参照しつつ説明する。
<First Embodiment>
The polishing pad of the first embodiment will be described with reference to FIGS.
図2は、本実施形態の研磨パッド10の一例を示す概略図である。図2に示すように、前記研磨パッド10は、研磨層11及び光透過領域12を有する。当該光透過領域12は、前記研磨層11が有する開口部14内に設けられている。前記研磨層11は、その表面に研磨領域13を有する。
FIG. 2 is a schematic view showing an example of the
図3は、図2で示される研磨パッド10をA−B方向に切断した概略断面図である。図3に示すように、前記光透過領域12は、研磨層11を貫く開口部14内に設けられており、前記光透過領域12の研磨領域13側の表面の前記研磨パッド10の中心側は、前記研磨領域13の表面よりも凹んでいる。
FIG. 3 is a schematic cross-sectional view of the
図4は、図3で示される研磨パッド10の概略断面図の光透過領域12付近を拡大した概略図である。図4に示すように、前記光透過領域12の研磨領域13側の表面の前記研磨パッド10の中心側の端部124は、前記開口部14の壁面141に接している。なお、前記光透過領域12の研磨領域13側の表面の前記研磨パッド10の中心側の端部124は、図5に示すように、前記光透過領域12の研磨領域13の反対側の面の前記研磨パッド10の中心側の端部と連続するように接していてもよい。
4 is an enlarged schematic view of the vicinity of the
図4に示すように、前記光透過領域12の研磨領域13側の表面は、前記研磨パッド10の中心側から外周側に向けて外周側の方が高くなるような勾配を有している。前記光透過領域12の研磨領域13側の表面の形状は平面であってもよく、全面または一部が曲率を有していてもよいが、研磨中に遠心力でスラリーを効率的に排出する観点から平面が好ましい。
As shown in FIG. 4, the surface of the
図4に示すように、前記光透過領域12の研磨領域13側の表面の前記研磨パッド10の外周側の端部125は、前記研磨領域13の端部と連続するように接している。前記端部125は、図4に示すように前記研磨領域13の端部と連続するように接していても良いし、前記開口部14の研磨パッド10の外周側の壁面142に接していても良いが、研磨中に遠心力でスラリーを効率的に排出する観点から、前記端部125は、前記研磨領域13の端部と連続するように接しているのが好ましい。
As shown in FIG. 4, the
図4において、前記光透過領域12の端部125は、勾配を有した状態で研磨領域13の端部と連続するように接しているが、図6に示すように、前記光透過領域12の端部125は、前記研磨領域13と同一平面を有した状態で前記研磨領域13の端部と連続するように接していてもよい。
In FIG. 4, the
図4において、前記光透過領域12の研磨領域13側の表面の前記研磨パッド10の中心側と、前記壁面141と前記光透過領域12の接点を含む前記研磨領域13と平行な面Sとの角度である勾配121は、研磨層11の厚さや、光透過領域12の大きさによって適宜変更することができるが、研磨中に遠心力でスラリーを効率的に排出する観点から、60°以下が好ましく、45°以下がより好ましい。ただし、当該勾配121が小さくなると、前記光透過領域12の、前記研磨領域13からの凹み量hが小さくなる。当該凹み量hが小さい場合、研磨やドレス処理(目立て処理)によって研磨領域13及び前記光透過領域12の上部が摩耗すると、当該光透過領域12の上部が被研磨対象物に接触する面積が早期に大きくなり、被研磨対象物のスクラッチが増加する原因になる。従って、前記勾配121は、被研磨対象物のスクラッチの発生を抑制する観点から、0.5°以上が好ましく、1°以上がより好ましい。
In FIG. 4, the center side of the
前記光透過領域12の研磨領域13側の表面の研磨パッド10の外周側の勾配と、前記研磨領域13を含む平面との角度122は、研磨層11の厚さや、光透過領域12の大きさによって適宜変更することができるが、研磨中に遠心力でスラリーを効率的に排出する観点から、120°以上が好ましく、135°以上がより好ましい。ただし、当該角度122が大きくなると、研磨やドレス処理(目立て処理)によって前記光透過領域12の上部が摩耗して当該光透過領域12の上部が被研磨対象物に接触する面積が早期に大きくなり、被研磨対象物のスクラッチが増加する原因になる。従って、前記角度122は、被研磨対象物のスクラッチの発生を抑制する観点から、179.5°以下が好ましく、179°以下がより好ましい。
The
前記光透過領域12の研磨領域13側の表面は、スラリーを効率的に排出する観点から撥水層を有することが好ましい。前記撥水層を構成する材料としては、撥水性能を有する物質である限り特に限定されないが、例えば、フッ素含有化合物やケイ素含有化合物が挙げられる。前記フッ素含有化合物としては、例えば、パーフルオロアルキル基やパーフルオロアルキレンエーテル基を有する化合物が挙げられ、前記ケイ素含有化合物としては、例えば、シリコーン骨格を有する化合物が挙げられる。
The surface of the
前記光透過領域12の研磨領域13側の表面の算術平均粗さ(Ra)は、スラリーを効率的に排出する観点から3μm以下が好ましく、1μm以下がより好ましい。前記光透過領域12が研磨領域13側の表面に撥水層を有する場合、当該撥水層の表面の算術平均粗さ(Ra)は、スラリーを効率的に排出する観点から3μm以下が好ましく、1μm以下がより好ましい。
The arithmetic average roughness (Ra) of the surface of the
前記光透過領域12の研磨領域13の反対側の表面は、スラリー漏れ防止の観点から、研磨層11の研磨領域13の反対側の表面と同一平面であることが好ましい。また、研磨層11の研磨領域13の反対側には、研磨層11をプラテンやクッション層等と接着するために両面テープを設けることがあるが、前記光透過領域12の研磨領域13の反対側の表面が、研磨層11の研磨領域13の反対側の表面と同一平面であることにより、研磨層11と光透過領域12とを両面テープで接着できるため、生産性の観点からも好ましい。
The surface of the
前記光透過領域12の形成材料は特に制限されないが、研磨を行っている状態で高精度の光学終点検知を可能とし、波長400〜800nmの全範囲で光透過率が10%以上である材料を用いることが好ましく、より好ましくは光透過率が50%以上の材料である。そのような材料としては、例えば、ポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、エポキシ樹脂、及びアクリル樹脂などの熱硬化性樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、セルロース系樹脂、アクリル樹脂、ポリカーボネート樹脂、ハロゲン系樹脂(ポリ塩化ビニル、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなど)、ポリスチレン、及びオレフィン系樹脂(ポリエチレン、ポリプロピレンなど)などの熱可塑性樹脂、ブタジエンゴムやイソプレンゴムなどのゴム、紫外線や電子線などの光により硬化する光硬化性樹脂、及び感光性樹脂などが挙げられる。これらの樹脂は単独で用いてもよく、2種以上を併用してもよい。
The material for forming the
前記光透過領域12の形成材料は、前記研磨領域13の形成材料と同じもの、又は前記研磨領域13の物性に類似する材料を用いることが好ましい。特に、ポリウレタン樹脂を用いることが好ましい。
The material for forming the
前記ポリウレタン樹脂は、イソシアネート成分、ポリオール成分(高分子量ポリオール、低分子量ポリオールなど)、及び鎖延長剤からなるものである。 The polyurethane resin comprises an isocyanate component, a polyol component (high molecular weight polyol, low molecular weight polyol, etc.), and a chain extender.
イソシアネート成分としては、2,4−トルエンジイソシアネート、2,6−トルエンジイソシアネート、2,2’−ジフェニルメタンジイソシアネート、2,4’−ジフェニルメタンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、1,5−ナフタレンジイソシアネート、p−フェニレンジイソシアネート、m−フェニレンジイソシアネート、p−キシリレンジイソシアネート、m−キシリレンジイソシアネート、ヘキサメチレンジイソシアネート、1,4−シクロヘキサンジイソシアネート、4,4’−ジシクロへキシルメタンジイソシアネート、イソホロンジイソシアネート等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。 As the isocyanate component, 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, 2,2′-diphenylmethane diisocyanate, 2,4′-diphenylmethane diisocyanate, 4,4′-diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate, Examples include p-phenylene diisocyanate, m-phenylene diisocyanate, p-xylylene diisocyanate, m-xylylene diisocyanate, hexamethylene diisocyanate, 1,4-cyclohexane diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, and isophorone diisocyanate. . These may be used alone or in combination of two or more.
高分子量ポリオールとしては、ポリテトラメチレンエーテルグリコールに代表されるポリエ−テルポリオール、ポリブチレンアジペートに代表されるポリエステルポリオール、ポリカプロラクトンポリオール、ポリカプロラクトンのようなポリエステルグリコールとアルキレンカーボネートとの反応物などで例示されるポリエステルポリカーボネートポリオール、エチレンカーボネートを多価アルコールと反応させ、次いで得られた反応混合物を有機ジカルボン酸と反応させたポリエステルポリカーボネートポリオール、及びポリヒドキシル化合物とアリールカーボネートとのエステル交換反応により得られるポリカーボネートポリオールなどが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。 Examples of the high molecular weight polyol include a polyether polyol represented by polytetramethylene ether glycol, a polyester polyol represented by polybutylene adipate, a polycaprolactone polyol, a reaction product of a polyester glycol such as polycaprolactone and an alkylene carbonate, and the like. Exemplified polyester polycarbonate polyol, polyester polycarbonate polyol obtained by reacting ethylene carbonate with polyhydric alcohol and then reacting the obtained reaction mixture with organic dicarboxylic acid, and polycarbonate obtained by transesterification reaction between polyhydroxyl compound and aryl carbonate A polyol etc. are mentioned. These may be used alone or in combination of two or more.
また、ポリオールとして上述した高分子量ポリオールの他に、エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール、ネオペンチルグリコール、1,4−シクロヘキサンジメタノール、3−メチル−1,5−ペンタンジオール、ジエチレングリコール、トリエチレングリコール、1,4−ビス(2−ヒドロキシエトキシ)ベンゼン等の低分子量ポリオールを併用してもよい。 In addition to the high molecular weight polyols described above as polyols, ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, 1, Low molecular weight polyols such as 4-cyclohexanedimethanol, 3-methyl-1,5-pentanediol, diethylene glycol, triethylene glycol, and 1,4-bis (2-hydroxyethoxy) benzene may be used in combination.
鎖延長剤としては、エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール、ネオペンチルグリコール、1,4−シクロヘキサンジメタノール、3−メチル−1,5−ペンタンジオール、ジエチレングリコール、トリエチレングリコール、1,4−ビス(2−ヒドロキシエトキシ)ベンゼン等の低分子量ポリオール類、あるいは2,4−トルエンジアミン、2,6−トルエンジアミン、3 ,5 −ジエチル−2 ,4 −トルエンジアミン、4,4’−ジ−sec−ブチルージアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン、3,3’−ジクロロ−4,4’−ジアミノジフェニルメタン、2,2’,3,3’−テトラクロロ−4,4’−ジアミノジフェニルメタン、4,4’−ジアミノ−3,3’−ジエチル−5,5’−ジメチルジフェニルメタン、3,3’−ジエチル−4,4’−ジアミノジフェニルメタン、4,4’−メチレン−ビス−メチルアンスラニレート、4,4’−メチレン−ビス−アンスラニリックアシッド、4,4’−ジアミノジフェニルスルフォン、N,N’−ジ−sec−ブチル−p−フェニレンジアミン、4,4’−メチレン−ビス(3−クロロ−2,6−ジエチルアニリン)、4,4’−メチレンビス(o−クロロアニリン)、3,3’−ジクロロ−4,4’−ジアミノ−5,5’−ジエチルジフェニルメタン、1,2−ビス(2−アミノフェニルチオ)エタン、トリメチレングリコールージ−p−アミノベンゾエート、3,5−ビス(メチルチオ)−2,4−トルエンジアミン等に例示されるポリアミン類を挙げることができる。これらは1種で用いても、2種以上を混合しても差し支えない。ただし、ポリアミン類については自身が着色していたり、これらを用いてなる樹脂が着色する場合も多いため、物性や光透過性を損なわない程度に配合することが好ましい。また、芳香族炭化水素基を有する化合物を用いると短波長側での光透過率が低下する傾向にあるため、このような化合物を用いないことが特に好ましい。また、ハロゲン基やチオ基などの電子供与性基又は電子吸引性基が芳香環等に結合している化合物は、光透過率が低下する傾向にあるため、このような化合物を用いないことが特に好ましい。ただし、短波長側で要求される光透過性を損なわない程度に配合してもよい。 Chain extenders include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, 1,4-cyclohexanedimethanol, 3 -Low molecular weight polyols such as methyl-1,5-pentanediol, diethylene glycol, triethylene glycol, 1,4-bis (2-hydroxyethoxy) benzene, or 2,4-toluenediamine, 2,6-toluenediamine, 3,5-diethyl-2,4-toluenediamine, 4,4′-di-sec-butyl-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, 3,3′-dichloro-4,4′-diaminodiphenylmethane, 2,2 ′, 3,3′-tetrachloro-4,4′-diamino Phenylmethane, 4,4'-diamino-3,3'-diethyl-5,5'-dimethyldiphenylmethane, 3,3'-diethyl-4,4'-diaminodiphenylmethane, 4,4'-methylene-bis-methyl Anthranilate, 4,4'-methylene-bis-anthranilic acid, 4,4'-diaminodiphenylsulfone, N, N'-di-sec-butyl-p-phenylenediamine, 4,4'-methylene- Bis (3-chloro-2,6-diethylaniline), 4,4′-methylenebis (o-chloroaniline), 3,3′-dichloro-4,4′-diamino-5,5′-diethyldiphenylmethane, 1 , 2-bis (2-aminophenylthio) ethane, trimethylene glycol di-p-aminobenzoate, 3,5-bis (methylthio) -2,4- Polyamines exemplified by toluenediamine and the like can be mentioned. These may be used alone or in combination of two or more. However, since the polyamines are often colored themselves or resins formed using these are colored in many cases, it is preferable to blend them so as not to impair the physical properties and light transmittance. In addition, when a compound having an aromatic hydrocarbon group is used, the light transmittance on the short wavelength side tends to be lowered. Therefore, it is particularly preferable not to use such a compound. In addition, a compound in which an electron donating group such as a halogen group or a thio group or an electron withdrawing group is bonded to an aromatic ring or the like tends to decrease the light transmittance. Therefore, such a compound may not be used. Particularly preferred. However, you may mix | blend to such an extent that the light transmittance requested | required by the short wavelength side is not impaired.
前記ポリウレタン樹脂におけるイソシアネート成分、ポリオール成分、及び鎖延長剤の比は、各々の分子量やこれらから製造される光透過領域の所望物性などにより適宜変更できる。ポリオールと鎖延長剤の合計官能基(水酸基+アミノ基)数に対する有機イソシアネートのイソシアネート基数は、0.90〜1.15であることが好ましく、さらに好ましくは0.95〜1.10である。前記ポリウレタン樹脂は、溶融法、溶液法など公知のウレタン化技術を応用して製造することができるが、コスト、作業環境などを考慮した場合、溶融法で製造することが好ましい。 The ratio of the isocyanate component, the polyol component, and the chain extender in the polyurethane resin can be appropriately changed depending on the molecular weight of each and the desired physical properties of the light transmission region produced therefrom. The number of isocyanate groups of the organic isocyanate relative to the total number of functional groups (hydroxyl group + amino group) of the polyol and the chain extender is preferably 0.90 to 1.15, more preferably 0.95 to 1.10. The polyurethane resin can be manufactured by applying a known urethanization technique such as a melting method or a solution method, but it is preferable to manufacture the polyurethane resin by a melting method in consideration of cost, working environment, and the like.
前記ポリウレタン樹脂の重合手順としては、プレポリマー法、ワンショット法のどちらでも可能であるが、研磨時のポリウレタン樹脂の安定性及び透明性の観点から、事前に有機イソシアネートとポリオールからイソシアネート末端プレポリマーを合成しておき、これに鎖延長剤を反応させるプレポリマー法が好ましい。また、前記プレポリマーのNCO重量%は2〜12重量%程度であることが好ましく、さらに好ましくは3〜11重量%程度である。NCO重量%が2重量%未満の場合には、反応硬化に時間がかかりすぎて生産性が低下する傾向にあり、一方NCO重量%が12重量%を超える場合には、反応速度が速くなり過ぎて空気の巻き込み等が発生し、ポリウレタン樹脂の透明性や光透過率等の物理特性が悪くなる傾向にある。なお、光透過領域に気泡がある場合には、光の散乱により反射光の減衰が大きくなり研磨終点検出精度や膜厚測定精度が低下する傾向にある。したがって、このような気泡を除去して光透過領域を無発泡体にするために、前記材料を混合する前に10Torr以下に減圧することにより材料中に含まれる気体を十分に除去することが好ましい。また、混合後の撹拌工程においては気泡が混入しないように、通常用いられる撹拌翼式ミキサーの場合には、回転数100rpm以下で撹拌することが好ましい。また、撹拌工程においても減圧下で行うことが好ましい。さらに、自転公転式混合機は、高回転でも気泡が混入しにくいため、該混合機を用いて撹拌、脱泡を行うことも好ましい方法である。 As the polymerization procedure of the polyurethane resin, either a prepolymer method or a one-shot method is possible. From the viewpoint of stability and transparency of the polyurethane resin during polishing, an isocyanate-terminated prepolymer from an organic isocyanate and a polyol in advance. Is preferably synthesized, and a prepolymer method in which a chain extender is reacted with this is preferred. Moreover, it is preferable that the NCO weight% of the said prepolymer is about 2 to 12 weight%, More preferably, it is about 3 to 11 weight%. If the NCO wt% is less than 2 wt%, the reaction curing tends to take too much time and the productivity tends to decrease. On the other hand, if the NCO wt% exceeds 12 wt%, the reaction rate becomes too fast. As a result, air entrainment or the like occurs, and physical properties such as transparency and light transmittance of the polyurethane resin tend to deteriorate. When there are bubbles in the light transmission region, the attenuation of the reflected light increases due to light scattering, and the polishing end point detection accuracy and the film thickness measurement accuracy tend to decrease. Therefore, in order to remove such bubbles and make the light transmission region non-foamed, it is preferable to sufficiently remove the gas contained in the material by reducing the pressure to 10 Torr or less before mixing the material. . Moreover, in the stirring process after mixing, in the case of the stirring blade type mixer normally used, it is preferable to stir at the rotation speed of 100 rpm or less so that bubbles may not mix. In addition, the stirring step is preferably performed under reduced pressure. Furthermore, since the rotation and revolution type mixer is difficult to mix bubbles even at high rotation, it is also preferable to perform stirring and defoaming using the mixer.
前記光透過領域12の作製方法は特に制限されず、公知の方法により作製できる。例えば、前記方法により製造したポリウレタン樹脂のブロックをバンドソー方式やカンナ方式のスライサーを用いて所定厚みにする方法や所定厚みのキャビティーを持った金型に樹脂を流し込み硬化させる方法や、コーティング技術やシート成形技術を用いた方法などが用いられる。
The production method of the
前記光透過領域12のアスカーD硬度は、30〜80度であることが好ましく、より好ましくは30〜75度である。該硬度の光透過領域を用いることにより、光透過領域の変形を抑制できる。
The Asker D hardness of the
前記研磨領域13の形成材料としては、例えば、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、アクリル樹脂、ポリカーボネート樹脂、ハロゲン系樹脂(ポリ塩化ビニル、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなど)、ポリスチレン、オレフィン系樹脂(ポリエチレン、ポリプロピレンなど)、エポキシ樹脂、及び感光性樹脂などが挙げられる。これらは単独で使用してもよく、2種以上を併用してもよい。なお、研磨領域の形成材料は、光透過領域と同組成でも異なる組成であってもよいが、光透過領域に用いられる形成材料と同種の材料を用いることが好ましい。
Examples of the material for forming the polishing
ポリウレタン樹脂は耐摩耗性に優れ、原料組成を種々変えることにより所望の物性を有するポリマーを容易に得ることができるため、研磨領域の形成材料として特に好ましい材料である。 Polyurethane resin is particularly preferable as a material for forming a polishing region because it has excellent wear resistance and a polymer having desired physical properties can be easily obtained by variously changing the raw material composition.
使用するイソシアネート成分は特に制限されず、例えば、前記イソシアネート成分が挙げられる。 The isocyanate component to be used is not particularly limited, and examples thereof include the isocyanate component.
使用する高分子量ポリオールは特に制限されず、例えば、前記高分子量ポリオールが挙げられる。なお、これら高分子量ポリオールの数平均分子量は、特に限定されるものではないが、得られるポリウレタンの弾性特性等の観点から500〜2000であることが好ましい。数平均分子量が500未満であると、これを用いたポリウレタンは十分な弾性特性を有さず、脆いポリマーとなる。そのためこのポリウレタンから製造される研磨領域は硬くなりすぎ、ウエハ表面のスクラッチの原因となる。また、摩耗しやすくなるため、パッド寿命の観点からも好ましくない。一方、数平均分子量が2000を超えると、これを用いたポリウレタンは軟らかくなりすぎるため、このポリウレタンから製造される研磨領域は平坦化特性に劣る傾向にある。 The high molecular weight polyol to be used is not particularly limited, and examples thereof include the high molecular weight polyol. In addition, the number average molecular weight of these high molecular weight polyols is not particularly limited, but is preferably 500 to 2000 from the viewpoint of the elastic characteristics of the obtained polyurethane. If the number average molecular weight is less than 500, a polyurethane using the number average molecular weight does not have sufficient elastic properties and becomes a brittle polymer. For this reason, the polishing region produced from this polyurethane becomes too hard, which causes scratches on the wafer surface. Moreover, since it becomes easy to wear, it is not preferable from the viewpoint of the pad life. On the other hand, when the number average molecular weight exceeds 2,000, polyurethane using this is too soft, and the polishing region produced from this polyurethane tends to have poor planarization characteristics.
また、ポリオールとしては、高分子量ポリオールの他に、前記低分子量ポリオールを併用することもできる。 Moreover, as a polyol, the said low molecular weight polyol can also be used together besides a high molecular weight polyol.
鎖延長剤としては、4,4’−メチレンビス(o−クロロアニリン)(MOCA)、2,6−ジクロロ−p−フェニレンジアミン、4,4’−メチレンビス(2,3−ジクロロアニリン)、3,5−ビス(メチルチオ)−2,4−トルエンジアミン、3,5−ビス(メチルチオ)−2,6−トルエンジアミン、3,5−ジエチルトルエン−2,4−ジアミン、3,5−ジエチルトルエン−2,6−ジアミン、トリメチレングリコール−ジ−p−アミノベンゾエート、ポリテトラメチレンオキシド−ジ−p−アミノベンゾエート、1,2−ビス(2−アミノフェニルチオ)エタン、4,4’−ジアミノ−3,3’−ジエチル−5,5’−ジメチルジフェニルメタン、N,N’−ジ−sec−ブチル−4,4’−ジアミノジフェニルメタン、4,4’−ジアミノ−3,3’−ジエチルジフェニルメタン、4,4’−ジアミノ−3,3’−ジエチル−5,5’−ジメチルジフェニルメタン、4,4’−ジアミノ−3,3’−ジイソプロピル−5,5’−ジメチルジフェニルメタン、4,4’−ジアミノ−3,3’,5,5’−テトラエチルジフェニルメタン、4,4’−ジアミノ−3,3’,5,5’−テトライソプロピルジフェニルメタン、m−キシリレンジアミン、N,N’−ジ−sec−ブチル−p−フェニレンジアミン、m−フェニレンジアミン、及びp−キシリレンジアミン等に例示されるポリアミン類、あるいは、上述した低分子量ポリオール成分を挙げることができる。これらは1種で用いても、2種以上を混合しても差し支えない。 As chain extenders, 4,4′-methylenebis (o-chloroaniline) (MOCA), 2,6-dichloro-p-phenylenediamine, 4,4′-methylenebis (2,3-dichloroaniline), 3, 5-bis (methylthio) -2,4-toluenediamine, 3,5-bis (methylthio) -2,6-toluenediamine, 3,5-diethyltoluene-2,4-diamine, 3,5-diethyltoluene- 2,6-diamine, trimethylene glycol-di-p-aminobenzoate, polytetramethylene oxide-di-p-aminobenzoate, 1,2-bis (2-aminophenylthio) ethane, 4,4′-diamino- 3,3′-diethyl-5,5′-dimethyldiphenylmethane, N, N′-di-sec-butyl-4,4′-diaminodiphenylmethane, 4, '-Diamino-3,3'-diethyldiphenylmethane, 4,4'-diamino-3,3'-diethyl-5,5'-dimethyldiphenylmethane, 4,4'-diamino-3,3'-diisopropyl-5 5'-dimethyldiphenylmethane, 4,4'-diamino-3,3 ', 5,5'-tetraethyldiphenylmethane, 4,4'-diamino-3,3', 5,5'-tetraisopropyldiphenylmethane, m-xyl Examples include polyamines exemplified by range amine, N, N′-di-sec-butyl-p-phenylenediamine, m-phenylenediamine, and p-xylylenediamine, or the low molecular weight polyol component described above. it can. These may be used alone or in combination of two or more.
前記ポリウレタン樹脂におけるイソシアネート成分、ポリオール成分、及び鎖延長剤の比は、各々の分子量やこれらから製造される研磨領域の所望物性などにより種々変え得る。研磨特性に優れる研磨領域を得るためには、ポリオール成分と鎖延長剤の合計官能基(水酸基+アミノ基)数に対するイソシアネート成分のイソシアネート基数は0.95〜1.15であることが好ましく、さらに好ましくは0.99〜1.10である。 The ratio of the isocyanate component, the polyol component, and the chain extender in the polyurethane resin can be variously changed depending on the molecular weight of each and the desired physical properties of the polishing region produced therefrom. In order to obtain a polishing region having excellent polishing characteristics, the number of isocyanate groups in the isocyanate component relative to the total number of functional groups (hydroxyl group + amino group) of the polyol component and the chain extender is preferably 0.95 to 1.15. Preferably it is 0.99 to 1.10.
ポリウレタン樹脂は、前記方法と同様の方法により製造することができる。なお、必要に応じてポリウレタン樹脂に酸化防止剤等の安定剤、界面活性剤、滑剤、顔料、中実ビーズや水溶性粒子やエマルション粒子等の充填剤、帯電防止剤、研磨砥粒、その他の添加剤を添加してもよい。 The polyurethane resin can be produced by the same method as described above. In addition, stabilizers such as antioxidants, surfactants, lubricants, pigments, solid beads, fillers such as water-soluble particles and emulsion particles, antistatic agents, abrasive grains, and other materials as necessary. Additives may be added.
前記研磨層11は、微細発泡体であることが好ましい。微細発泡体にすることにより表面の微細孔にスラリーを保持することができ、研磨速度を大きくすることができる。
The
ポリウレタン樹脂を微細発泡させる方法は特に制限されないが、例えば中空ビーズを添加する方法、機械的発泡法、及び化学的発泡法等により発泡させる方法などが挙げられる。なお、各方法を併用してもよいが、特にポリアルキルシロキサンとポリエーテルとの共重合体であるシリコーン系界面活性剤を使用した機械的発泡法が好ましい。該シリコーン系界面活性剤としては、SH−192、L−5340(東レダウコーニングシリコン製)等が好適な化合物として例示される。 The method of finely foaming the polyurethane resin is not particularly limited, and examples thereof include a method of adding hollow beads, a method of foaming by a mechanical foaming method, a chemical foaming method, and the like. In addition, although each method may be used together, the mechanical foaming method using the silicone type surfactant which is a copolymer of polyalkylsiloxane and polyether is especially preferable. Examples of the silicone surfactant include SH-192, L-5340 (manufactured by Toray Dow Corning Silicon), and the like.
微細気泡タイプのポリウレタン発泡体を製造する方法の例について以下に説明する。かかるポリウレタン発泡体の製造方法は、以下の工程を有する。
1)イソシアネート末端プレポリマーの気泡分散液を作製する発泡工程
イソシアネート末端プレポリマー(第1成分)にシリコーン系界面活性剤を添加し、非反応性気体の存在下で撹拌し、非反応性気体を微細気泡として分散させて気泡分散液とする。前記プレポリマーが常温で固体の場合には適宜の温度に予熱し、溶融して使用する。
2)硬化剤(鎖延長剤)混合工程
上記の気泡分散液に鎖延長剤(第2成分)を添加、混合、撹拌して発泡反応液とする。 3)注型工程
上記の発泡反応液を金型に流し込む。
4)硬化工程
金型に流し込まれた発泡反応液を加熱し、反応硬化させる。
An example of a method for producing a micro-bubble type polyurethane foam will be described below. The manufacturing method of this polyurethane foam has the following processes.
1) Foaming step for producing a cell dispersion of isocyanate-terminated prepolymer A silicone-based surfactant is added to the isocyanate-terminated prepolymer (first component), and the mixture is stirred in the presence of a non-reactive gas to remove the non-reactive gas. Disperse as fine bubbles to obtain a cell dispersion. When the prepolymer is solid at normal temperature, it is preheated to an appropriate temperature and melted before use.
2) Curing Agent (Chain Extender) Mixing Step A chain extender (second component) is added to the above cell dispersion, mixed and stirred to obtain a foaming reaction solution. 3) Casting process The above foaming reaction liquid is poured into a mold.
4) Curing process The foaming reaction liquid poured into the mold is heated and reacted and cured.
微細気泡を形成するために使用される非反応性気体としては、可燃性でないものが好ましく、具体的には窒素、酸素、炭酸ガス、ヘリウムやアルゴン等の希ガスやこれらの混合気体が例示され、乾燥して水分を除去した空気の使用がコスト的にも最も好ましい。 As the non-reactive gas used to form the fine bubbles, non-flammable gases are preferable, and specific examples include nitrogen, oxygen, carbon dioxide, rare gases such as helium and argon, and mixed gases thereof. The use of air that has been dried to remove moisture is most preferable in terms of cost.
非反応性気体を微細気泡状にしてシリコーン系界面活性剤を含むイソシアネート末端プレポリマーに分散させる撹拌装置としては、公知の撹拌装置を特に限定なく使用可能であり、具体的にはホモジナイザー、ディゾルバー、2軸遊星型ミキサー(プラネタリーミキサー)等が例示される。撹拌装置の撹拌翼の形状も特に限定されないが、ホイッパー型の撹拌翼を使用すると微細気泡が得られるため好ましい。 As a stirring device for making non-reactive gas into fine bubbles and dispersing it in an isocyanate-terminated prepolymer containing a silicone-based surfactant, a known stirring device can be used without particular limitation. Specifically, a homogenizer, a dissolver, A two-axis planetary mixer (planetary mixer) is exemplified. The shape of the stirring blade of the stirring device is not particularly limited, but it is preferable to use a whipper-type stirring blade because fine bubbles can be obtained.
なお、撹拌工程において気泡分散液を作成する撹拌と、混合工程における鎖延長剤を添加して混合する撹拌は、異なる撹拌装置を使用することも好ましい態様である。特に混合工程における撹拌は気泡を形成する撹拌でなくてもよく、大きな気泡を巻き込まない撹拌装置の使用が好ましい。このような撹拌装置としては、遊星型ミキサーが好適である。撹拌工程と混合工程の撹拌装置を同一の撹拌装置を使用しても支障はなく、必要に応じて撹拌翼の回転速度を調整する等の撹拌条件の調整を行って使用することも好適である。 In addition, it is also a preferable aspect to use a different stirring apparatus for the stirring which produces a bubble dispersion liquid in the stirring process, and the stirring which adds and mixes the chain extender in a mixing process. In particular, the stirring in the mixing step may not be stirring that forms bubbles, and it is preferable to use a stirring device that does not involve large bubbles. As such an agitator, a planetary mixer is suitable. There is no problem even if the same stirring device is used as the stirring device for the stirring step and the mixing step, and it is also preferable to adjust the stirring conditions such as adjusting the rotation speed of the stirring blade as necessary. .
ポリウレタン発泡体の製造方法においては、発泡反応液を型に流し込んで流動しなくなるまで反応した発泡体を、加熱、ポストキュアすることは、発泡体の物理的特性を向上させる効果があり、極めて好適である。金型に発泡反応液を流し込んで直ちに加熱オーブン中に入れてポストキュアを行う条件としてもよく、そのような条件下でもすぐに反応成分に熱が伝達されないので、気泡径が大きくなることはない。硬化反応は、常圧で行うと気泡形状が安定するため好ましい。 In the production method of polyurethane foam, heating and post-curing the foam that has reacted until the foaming reaction liquid is poured into the mold and no longer flows is effective in improving the physical properties of the foam and is extremely suitable. It is. The foam reaction solution may be poured into the mold and immediately put into a heating oven for post cure, and heat is not immediately transferred to the reaction components under such conditions, so the bubble size does not increase. . The curing reaction is preferably performed at normal pressure because the bubble shape is stable.
ポリウレタン樹脂の製造において、第3級アミン系、有機スズ系等の公知のポリウレタン反応を促進する触媒を使用してもかまわない。触媒の種類、添加量は、混合工程後、所定形状の型に流し込む流動時間を考慮して選択する。 In the production of the polyurethane resin, a catalyst that promotes a known polyurethane reaction such as a tertiary amine type or an organic tin type may be used. The type and amount of the catalyst are selected in consideration of the flow time for pouring into a mold having a predetermined shape after the mixing step.
ポリウレタン発泡体の製造は、容器に各成分を計量して投入し、撹拌するバッチ方式であってもよく、また撹拌装置に各成分と非反応性気体を連続して供給して撹拌し、気泡分散液を送り出して成形品を製造する連続生産方式であってもよい。 The polyurethane foam may be produced by a batch method in which each component is metered into a container and stirred, and each component and a non-reactive gas are continuously supplied to the stirring device and stirred to produce bubbles. It may be a continuous production method in which a dispersion is sent out to produce a molded product.
ポリウレタン発泡体の平均気泡径は、30〜80μmであることが好ましく、より好ましくは30〜60μmである。この範囲から逸脱する場合は、研磨速度が低下したり、研磨後の被研磨対象物(ウエハ)のプラナリティ(平坦性)が低下する傾向にある。 The average cell diameter of the polyurethane foam is preferably 30 to 80 μm, more preferably 30 to 60 μm. When deviating from this range, the polishing rate tends to decrease, or the planarity (flatness) of the object to be polished (wafer) after polishing tends to decrease.
ポリウレタン発泡体の比重は、0.5〜1.3であることが好ましい。比重が0.5未満の場合、研磨領域の表面強度が低下し、被研磨対象物のプラナリティが低下する傾向にある。また、1.3より大きい場合は、研磨領域表面の気泡数が少なくなり、プラナリティは良好であるが、研磨速度が低下する傾向にある。 The specific gravity of the polyurethane foam is preferably 0.5 to 1.3. When the specific gravity is less than 0.5, the surface strength of the polishing region decreases, and the planarity of the object to be polished tends to decrease. On the other hand, when the ratio is larger than 1.3, the number of bubbles on the surface of the polishing region decreases, and planarity is good, but the polishing rate tends to decrease.
ポリウレタン発泡体の硬度は、アスカーD硬度計にて、45〜70度であることが好ましい。アスカーD硬度が45度未満の場合には、被研磨対象物のプラナリティが低下し、また、70度より大きい場合は、プラナリティは良好であるが、被研磨対象物のユニフォーミティ(均一性)が低下する傾向にある。 The hardness of the polyurethane foam is preferably 45 to 70 degrees as measured by an Asker D hardness meter. When the Asker D hardness is less than 45 degrees, the planarity of the object to be polished is lowered. When the Asker D hardness is more than 70 degrees, the planarity is good, but the uniformity of the object to be polished is uniform. It tends to decrease.
前記研磨領域13は、以上のようにして作製されたポリウレタン発泡体を、所定のサイズに裁断して製造される。
The polishing
前記研磨領域13は、被研磨対象物と接触する表面に、スラリーを効率よく保持・更新するための溝が設けられていることが好ましい。溝は、スラリーを保持・更新する表面形状であれば特に限定されるものではなく、例えば、XY格子溝、同心円状溝、貫通孔、貫通していない穴、多角柱、円柱、螺旋状溝、偏心円状溝、放射状溝、及びこれらの溝を組み合わせたものが挙げられる。また、溝ピッチ、溝幅、溝深さ等も特に制限されず適宜選択して形成される。さらに、これらの溝は規則性のあるものが一般的であるが、スラリーの保持・更新性を望ましいものにするため、ある範囲ごとに溝ピッチ、溝幅、溝深さ等を変化させることも可能である。
The polishing
前記研磨領域13が溝を有する場合、前記光透過領域12の前記光学的検知手段の光ビームが透過する部分の凹み量tは、前記溝の深さdよりも大きい方が好ましい。被研磨対象物の研磨作業時及び研磨領域13のドレス作業(目立て作業)時における研磨領域13の磨耗により、光透過領域表面12の凹みは次第に小さくなるが、光透過領域12表面の凹み量tを研磨領域13の溝の深さdよりも大きくすることにより、研磨領域の溝がなくなるまで光透過領域の前記ビームの透過部分が研磨領域13より凹んだ構造を維持できるため、光学的検知精度を高く維持したまま研磨パッド10の長寿命化を図ることができる。
In the case where the polishing
前記研磨層11の厚みは特に限定されるものではないが、0.8〜4.0mm程度である。前記厚みの研磨層11を作製する方法としては、前記微細発泡体のブロックをバンドソー方式やカンナ方式のスライサーを用いて所定厚みにする方法、所定厚みのキャビティーを持った金型に樹脂を流し込み硬化させる方法、及びコーティング技術やシート成形技術を用いた方法などが挙げられる。
The thickness of the
前記開口部14を形成する手段は特に制限されるものではないが、例えば、切削工具でプレス又は研削する方法、炭酸レーザーなどによるレーザーを利用する方法などが挙げられる。
The means for forming the
前記研磨パッド10は、前記研磨領域13を有する前記研磨層11、及び光透過領域12のみからなっていても良く、当該研磨層11と他の層(例えばクッション層)との積層体、及び前記光透過領域12からなっていても良い。
The
前記クッション層は、前記研磨層11の特性を補うものである。前記クッション層は、CMPにおいて、トレードオフの関係にあるプラナリティとユニフォーミティの両者を両立させるために必要なものである。プラナリティとは、パターン形成時に発生する微小凹凸のある被研磨材を研磨した時のパターン部の平坦性をいい、ユニフォーミティとは、被研磨材全体の均一性をいう。前記研磨層11の特性によって、プラナリティを改善し、前記クッション層の特性によってユニフォーミティを改善する。前記研磨パッド10においては、前記クッション層は前記研磨層11より柔らかいものを用いることが好ましい。
The cushion layer supplements the characteristics of the
前記クッション層としては、例えば、ポリエステル不織布、ナイロン不織布、アクリル不織布などの繊維不織布やポリウレタンを含浸したポリエステル不織布のような樹脂含浸不織布、ポリウレタンフォーム、ポリエチレンフォームなどの高分子樹脂発泡体、ブタジエンゴム、イソプレンゴムなどのゴム性樹脂、感光性樹脂などが挙げられる。 Examples of the cushion layer include a fiber nonwoven fabric such as a polyester nonwoven fabric, a nylon nonwoven fabric, and an acrylic nonwoven fabric, a resin-impregnated nonwoven fabric such as a polyester nonwoven fabric impregnated with polyurethane, a polymer resin foam such as polyurethane foam and polyethylene foam, a butadiene rubber, Examples thereof include rubber resins such as isoprene rubber and photosensitive resins.
前記研磨層11と前記クッション層とを貼り合わせる手段としては、例えば、前記研磨層11と前記クッション層を両面テープで挟みプレスする方法が挙げられる。
Examples of means for attaching the
前記両面テープは、不織布やフィルム等の基材の両面に接着層を設けた一般的な構成を有するものである。前記クッション層へのスラリーの浸透等を防ぐことを考慮すると、基材にフィルムを用いることが好ましい。また、接着層の組成としては、例えば、ゴム系接着剤やアクリル系接着剤等が挙げられる。金属イオンの含有量を考慮すると、アクリル系接着剤は、金属イオン含有量が少ないため好ましい。また、前記研磨層11とクッション層は組成が異なることもあるため、両面テープの各接着層の組成を異なるものとし、各層の接着力を適正化することも可能である。
The double-sided tape has a general configuration in which adhesive layers are provided on both sides of a substrate such as a nonwoven fabric or a film. In consideration of preventing the slurry from penetrating into the cushion layer, it is preferable to use a film for the substrate. Examples of the composition of the adhesive layer include rubber adhesives and acrylic adhesives. Considering the content of metal ions, an acrylic adhesive is preferable because the metal ion content is low. In addition, since the
前記研磨パッド10は、プラテンと接着する面に両面テープが設けられていてもよい。該両面テープとしては、上述と同様に基材の両面に接着層を設けた一般的な構成を有するものを用いることができる。基材としては、例えば不織布やフィルム等が挙げられる。研磨パッド10の使用後のプラテンからの剥離を考慮すれば、基材にフィルムを用いることが好ましい。また、接着層の組成としては、例えば、ゴム系接着剤やアクリル系接着剤等が挙げられる。金属イオンの含有量を考慮すると、アクリル系接着剤は、金属イオン含有量が少ないため好ましい。
The
<第2の実施形態>
第2の実施形態の研磨パッド20を図7〜9を参照しつつ説明する。なお、第1の実施形態の研磨パッド10の構成と同様の構成については同一の符号を付し、説明を省略する。
<Second Embodiment>
A
図7は、本実施形態の研磨パッド20の一例を示す概略図である。図7に示すように、前記研磨パッド20は、研磨層11及び光透過領域22を有する。当該光透過領域22は、前記研磨層11が有する開口部14内に設けられている。
FIG. 7 is a schematic view showing an example of the
図8は、図7で示される研磨パッド20をA−B方向に切断した概略断面図である。図8に示すように、前記光透過領域22は、研磨層11を貫く開口部14内に設けられており、前記光透過領域22の研磨領域13側の表面の前記研磨パッド20の中心側は、前記研磨領域13の表面よりも凹んでいる。
FIG. 8 is a schematic cross-sectional view of the
図9は、図8で示される研磨パッド20の概略断面図の光透過領域22付近を拡大した概略図である。図9に示すように、前記光透過領域22の研磨領域13側の表面の前記研磨パッド20の中心側の端部225は、前記開口部14の壁面141に接している。
FIG. 9 is an enlarged schematic view of the vicinity of the
前記光透過領域22の研磨領域13側の表面は、前記端部225から研磨パッド20の外周方向に向かって当該研磨領域13と実質的に平行になっている平行部分223、及び研磨パッド20の外周側の方が高くなるような勾配部分224を有している。当該勾配部分224は、前記平行部分223よりも、研磨パッド20の外周側にある。当該研磨パッド20は、光透過領域22が当該平行部分223を有することにより、前記光学的検知手段の光ビームを前記平行部分223を透過させることによって当該光ビームの屈折及び散乱を低減することができるため、光学終点検知精度の低下を抑制することができる。さらに、当該研磨パッド20は、光透過領域22が前記平行部分223よりも研磨パッド20の外周側に前記傾斜部分224を有することにより、研磨中に遠心力でスラリーを凹部から効率的に排出することができ、被研磨対象物のスクラッチの発生を抑制することができる。すなわち、本実施形態の研磨パッド20によれば、光学終点検知精度の低下を抑制しながら、被研磨対象物のスクラッチを発生を抑制することができる。
The surface of the
図9に示すように、前記光透過領域22の、前記光透過領域22の研磨領域13側の表面の前記研磨パッド20の外周側の端部226は、研磨領域13の端部と連続するように接している。前記端部226は、図9に示すように、研磨領域13の端部と連続するように接していても良いし、前記開口部14の研磨パッド20の外周側の壁面142に接していても良いが、研磨中に遠心力でスラリーを効率的に排出する観点から、前記端部226は、研磨領域13の端部と連続するように接している方が好ましい。
As shown in FIG. 9, the
図9において、前記光透過領域22の端部226は、勾配を有した状態で研磨領域13の端部と連続するように接しているが、前記光透過領域22の端部226は、前記研磨領域13と同一平面を有した状態で前記研磨領域13の端部と連続するように接していてもよい。
In FIG. 9, the
前記傾斜部分224と、前記平行部分223を含む面との角度である勾配221は、研磨層11の厚さや、光透過領域12の大きさによって適宜変更することができるが、研磨中に遠心力でスラリーを効率的に排出する観点から、60°以下が好ましく、45°以下がより好ましい。ただし、当該勾配221が小さくなると、前記光透過領域22の、前記平行部分223の凹み量hが小さくなる。当該凹み量hが小さい場合、研磨やドレス処理(目立て処理)によって研磨領域13及び前記光透過領域12の上部が摩耗すると、当該光透過領域12の上部が被研磨対象物に接触する面積が早期に大きくなり、被研磨対象物のスクラッチが増加する原因になる。従って、前記角度221は、被研磨対象物のスクラッチの発生を抑制する観点から、0.5°以上が好ましく、1°以上がより好ましい。
The
前記光透過領域22の研磨領域13側の表面の前記研磨パッド20の外周側と、前記研磨領域13を含む平面との角度222は、研磨層11の厚さや、光透過領域22の大きさによって適宜変更することができるが、研磨中に遠心力でスラリーを効率的に排出する観点から、120°以上が好ましく、135°以上がより好ましい。ただし、当該角度222が大きくなると、研磨やドレス処理(目立て処理)によって前記光透過領域22の上部が摩耗して当該光透過領域22の上部が被研磨対象物に接触する面積が早期に大きくなり、被研磨対象物のスクラッチが増加する原因になる。従って、前記角度222は、被研磨対象物のスクラッチの発生を抑制する観点から、179.5°以下が好ましく、179°以下がより好ましい。
The
前記光透過領域22の研磨領域13側の表面は、スラリーを効率的に排出する観点から、第1の実施形態の研磨パッドと同様に、撥水層を有することが好ましい。
The surface of the
前記光透過領域22の研磨領域13側の表面の算術平均粗さ(Ra)は、第1の実施形態の研磨パッドと同様に、スラリーを効率的に排出する観点から3μm以下が好ましく、1μm以下がより好ましい。
The arithmetic average roughness (Ra) of the surface of the
前記光透過領域22の研磨領域13の反対側の表面は、第1の実施形態の研磨パッドと同様に、スラリー漏れ防止の観点から、研磨層11の研磨領域13の反対側の表面と同一平面であることが好ましい。
Similar to the polishing pad of the first embodiment, the surface of the
前記光透過領域22の形成材料及び作製方法は、前記光透過領域12の形成材料及び作成方法と同様のものが例示できる。
Examples of the formation material and the production method of the
半導体デバイスは、前記研磨パッドを用いて半導体ウエハの表面を研磨する工程を経て製造される。半導体ウエハとは、一般にシリコンウエハ上に配線金属及び酸化膜を積層したものである。半導体ウエハの研磨方法、研磨装置は特に制限されず、例えば、図1に示すように研磨パッド1を支持する研磨定盤2と、半導体ウエハ4を支持する支持台5(ポリシングヘッド)とウエハへの均一加圧を行うためのバッキング材と、研磨剤3の供給機構を備えた研磨装置などを用いて行われる。研磨パッド1は、例えば、両面テープで貼り付けることにより、研磨定盤2に装着される。研磨定盤2と支持台5とは、それぞれに支持された研磨パッド1と半導体ウエハ4が対向するように配置され、それぞれに回転軸6、7を備えている。また、支持台5側には、半導体ウエハ4を研磨パッド1に押し付けるための加圧機構が設けてある。研磨に際しては、研磨定盤2と支持台5とを回転させつつ半導体ウエハ4を研磨パッド1に押し付け、スラリーを供給しながら研磨を行う。スラリーの流量、研磨荷重、研磨定盤回転数、及びウエハ回転数は特に制限されず、適宜調整して行う。
The semiconductor device is manufactured through a step of polishing the surface of the semiconductor wafer using the polishing pad. A semiconductor wafer is generally a laminate of a wiring metal and an oxide film on a silicon wafer. The method and apparatus for polishing the semiconductor wafer are not particularly limited. For example, as shown in FIG. 1, a polishing surface plate 2 that supports the polishing pad 1, a support table 5 (polishing head) that supports the semiconductor wafer 4, and the wafer. This is performed using a backing material for performing uniform pressurization and a polishing apparatus equipped with a polishing agent 3 supply mechanism. The polishing pad 1 is attached to the polishing surface plate 2 by attaching it with a double-sided tape, for example. The polishing surface plate 2 and the support base 5 are disposed so that the polishing pad 1 and the semiconductor wafer 4 supported on each of the polishing surface plate 2 and the support table 5 face each other, and are provided with
これにより半導体ウエハ4の表面の突出した部分が除去されて平坦状に研磨される。その後、ダイシング、ボンディング、パッケージング等することにより半導体デバイスが製造される。半導体デバイスは、演算処理装置やメモリー等に用いられる。 As a result, the protruding portion of the surface of the semiconductor wafer 4 is removed and polished flat. Thereafter, a semiconductor device is manufactured by dicing, bonding, packaging, or the like. The semiconductor device is used for an arithmetic processing device, a memory, and the like.
以下、本発明を実施例を上げて説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
<測定、評価方法>
〔表面の算術平均粗さ(Ra)〕
JIS B0601−1994に準拠して、光透過領域の研磨領域側の表面の算術平均粗さを測定した。
<Measurement and evaluation method>
[Arithmetic mean roughness of surface (Ra)]
In accordance with JIS B0601-1994, the arithmetic average roughness of the surface of the light transmission region on the polishing region side was measured.
〔研磨特性の評価〕
[研磨条件]
研磨装置としてMIRRA(Appried Materials社製)を用い、以下の条件で研磨パッド表面をドレス処理しながら研磨した。
・モニターウェハ(デフェクトの評価用):8インチのシリコンウェハ上に熱酸化膜2000Å、Ta100Å、TaN100Å、及びCu−seed800Åをこの順で堆積させ、その上にCuメッキ25000Åを製膜したもの。
・モニターウェハ(終点検出エラー用):8インチパターンウエハ(SEMATEC社製、854パターンウエハ)
・スラリー:PL7101(フジミインコーポレット社製)に過酸化水素水1重量%添加したもの。
・スラリー供給流量:200ml/min
・研磨荷重:2psi リテーナ荷重:2.6psi
・回転数:研磨/ウェハ=70/70rpm
・ドレッサ:SAESOL社製 DK45(4inドレッサ) 60rpm
[Evaluation of polishing characteristics]
[Polishing conditions]
Using MIRRA (Applied Materials) as a polishing apparatus, polishing was performed while dressing the surface of the polishing pad under the following conditions.
Monitor wafer (for defect evaluation): A thermal oxide film of 2000 mm, Ta100 mm, TaN100 mm, and Cu-seed 800 mm are deposited in this order on an 8-inch silicon wafer, and Cu plating 25000 mm is formed thereon.
Monitor wafer (for end point detection error): 8-inch pattern wafer (manufactured by SEMATEC, 854 pattern wafer)
-Slurry: PL7101 (Fujimi Incorporated) added with 1% by weight of hydrogen peroxide.
・ Slurry supply flow rate: 200 ml / min
Polishing load: 2 psi Retainer load: 2.6 psi
・ Rotation speed: Polishing / wafer = 70/70 rpm
-Dresser: DK45 (4-in dresser) 60 rpm manufactured by SAESOL
〔デフェクトの評価〕
前述条件にて研磨した後にウエハ洗浄装置(MAT社製、MAT−ZAB−8W2MC)を用いてアルカリ洗浄液(三洋化成工業社製、ジャスペン)でウエハを洗浄し、洗浄したウエハを表面欠陥検査装置(KLAテンコール社製、サーフスキャンSP1-TBI)を用いて、EE(EDEGE−Exclusion)5mm領域のCu膜上に0.24μm以上の条痕がいくつあるのかを測定した。
[Defect evaluation]
After polishing under the above-mentioned conditions, the wafer is cleaned with an alkali cleaning solution (manufactured by Sanyo Kasei Kogyo Co., Ltd., Jaspen) using a wafer cleaning apparatus (MAT-ZAB-8W2MC, manufactured by MAT), and the cleaned wafer is subjected to a surface defect inspection apparatus ( The number of striations of 0.24 μm or more on a Cu film in an EE (EDEGE-Exclusion) 5 mm region was measured using Surfscan SP1-TBI (manufactured by KLA Tencor).
〔終点検出エラー〕
前述条件にて研磨を行ってCu膜を研磨する際、研磨装置の終点検出機能を用いて、終点検出を行った。終点検出された際にCu膜が残っている場合、若しくは、終点が検出されない場合を終点検出エラーとした。
[End point detection error]
When polishing the Cu film by polishing under the aforementioned conditions, the end point was detected using the end point detection function of the polishing apparatus. When the Cu film remains when the end point is detected or when the end point is not detected, the end point detection error is determined.
<実施例1>
〔光透過領域の作製〕
熱可塑性ポリウレタンA1098A(東洋紡績社製)及びミラクトンE567(日本ポリウレタン社製)を用い、インジェクション成型にて研磨層の開口部(直径方向56mm×円周方向20mm)に合う大きさの光透過領域30を作製した。図10は当該光透過領域30の概略断面図である。図10において、D1は4.08°、H1は4mm、W1は56mmである。
<Example 1>
[Production of light transmission region]
Using thermoplastic polyurethane A1098A (manufactured by Toyobo Co., Ltd.) and milactone E567 (manufactured by Nippon Polyurethane Co., Ltd.), a
〔研磨層の作製〕
反応容器内に、ポリエーテル系プレポリマー(ユニロイヤル社製、アジプレンL−325、NCO重量%:9.15重量%)100重量部、及びシリコーン系界面活性剤(東レダウコーニングシリコーン社製、SH−192)3重量部を混合し、温度を80℃に調整した。撹拌翼を用いて、回転数900rpmで反応系内に気泡を取り込むように約4分間激しく撹拌を行った。そこへ予め120℃で溶融した4,4’−メチレンビス(o−クロロアニリン)(イハラケミカル社製、イハラキュアミンMT)26重量部を添加した。その後、約1分間撹拌を続けてパン型のオープンモールドへ反応溶液を流し込んだ。この反応溶液の流動性がなくなった時点でオーブン内に入れ、110℃で6時間ポストキュアを行い、ポリウレタン発泡体ブロックを得た。このポリウレタン発泡体ブロックをバンドソータイプのスライサー(フェッケン社製)を用いてスライスし、ポリウレタン発泡体シート(平均気泡径50μm、比重0.86、D硬度55度)を得た。次にこのシートをバフ機(アミテック社製)を使用して、所定の厚さに表面バフをし、厚み精度を整えたシートとした(厚さ:4.0mm)。このバフ処理をしたシートを直径61cmに打ち抜き、溝加工機(東邦鋼機社製)を用いて表面に溝幅0.40mm、溝ピッチ3.1mm、溝深さ1.50mmの同心円状の溝加工を行った。このシートの溝加工面と反対側の面にラミ機を使用して、両面テープ(積水化学工業社製、ダブルタックテープ、厚さ:0.10mm)を貼り合わせて両面テープ付き研磨層11を作製した。
[Preparation of polishing layer]
In a reaction container, 100 parts by weight of a polyether-based prepolymer (manufactured by Uniroyal, Adiprene L-325, NCO wt%: 9.15 wt%), and a silicone surfactant (manufactured by Toray Dow Corning Silicone, SH -192) 3 parts by weight were mixed and the temperature was adjusted to 80 ° C. Using a stirring blade, the mixture was vigorously stirred for about 4 minutes so that bubbles were taken into the reaction system at 900 rpm. 26 parts by weight of 4,4′-methylenebis (o-chloroaniline) (Ihara Chemical amine, manufactured by Ihara Chemical Co.) previously melted at 120 ° C. was added thereto. Thereafter, stirring was continued for about 1 minute, and the reaction solution was poured into a pan-shaped open mold. When the fluidity of this reaction solution disappeared, it was put in an oven and post-cured at 110 ° C. for 6 hours to obtain a polyurethane foam block. This polyurethane foam block was sliced using a band saw type slicer (manufactured by Fecken) to obtain a polyurethane foam sheet (
〔研磨パッドの作製〕
表面をバフがけし、コロナ処理したポリエチレンフォーム(東レ社製、トーレペフ、厚さ:1.27mm)からなるクッション層40を、作製した両面テープ付き研磨層の接着面にラミ機を用いて貼り合わせて研磨シートを作製した。次に、研磨シートに直径方向56mm×円周方向20mmの大きさの開口部を形成した。そして、両面に接着剤層を有する透明支持フィルム50(基材:ポリエチレンテレフタレート、厚さ:50μm)を研磨シートのクッション層に貼り合わせて積層体を得た。その後、該積層体の開口部内の透明支持フィルムに光透過領域30を貼り付けて研磨パッド100を作製した。図11は、実施例1に係る研磨パッド100の構成を示す概略断面図である。
[Production of polishing pad]
A
<実施例2>
〔光透過領域の作製〕
形状を変更した以外は前記光透過領域30と同様の方法で光透過領域31を作製した。図12は当該光透過領域31の概略断面図である。図12において、D2は3.58°、H2は4mm、H3は0.5mm、W2は56mmである。
<Example 2>
[Production of light transmission region]
A
〔研磨層の作製〕
前記実施例1と同様に行った。
[Preparation of polishing layer]
The same operation as in Example 1 was performed.
〔研磨パッドの作製〕
前記光透過領域30の代わりに前記光透過領域31を用いた以外は実施例1と同様の方法で研磨パッド101を作製した。図13は、実施例2に係る研磨パッド101の構成を示す概略断面図である。
[Production of polishing pad]
A
<実施例3>
〔光透過領域の作製〕
形状を変更した以外は前記光透過領域30と同様の方法で光透過領域32を作製した。図14は当該光透過領域32の概略断面図である。図14において、D3は7.12°、H4は4mm、H5は1.5mm、W3は56mmである。
<Example 3>
[Production of light transmission region]
A
〔研磨層の作製〕
前記実施例1と同様に行った。
[Preparation of polishing layer]
The same operation as in Example 1 was performed.
〔研磨パッドの作製〕
前記光透過領域30の代わりに前記光透過領域32を用いた以外は実施例1と同様の方法で研磨パッド102を作製した。図15は、実施例3に係る研磨パッド102の構成を示す概略断面図である。
[Production of polishing pad]
A
<比較例1>
〔光透過領域の作製〕
形状を変更した以外は前記光透過領域30と同様の方法で光透過領域33を作製した。図16は当該光透過領域33の概略断面図である。図16において、H6は4mm、W4は56mmである。
<Comparative Example 1>
[Production of light transmission region]
A
〔研磨層の作製〕
前記実施例1と同様に行った。
[Preparation of polishing layer]
The same operation as in Example 1 was performed.
〔研磨パッドの作製〕
前記光透過領域30の代わりに前記光透過領域33を用いた以外は実施例1と同様の方法で研磨パッド103を作製した。図17は、比較例1に係る研磨パッド103の構成を示す概略断面図である。
[Production of polishing pad]
A
<比較例2>
〔光透過領域の作製〕
形状を変更した以外は前記光透過領域30と同様の方法で光透過領域34を作製した。図18は当該光透過領域34の概略断面図である。図18において、H4は1.5mm、W3は56mmである。
<Comparative example 2>
[Production of light transmission region]
A
〔研磨層の作製〕
前記実施例1と同様に行った。
[Preparation of polishing layer]
The same operation as in Example 1 was performed.
〔研磨パッドの作製〕
前記光透過領域30の代わりに前記光透過領域34を用いた以外は実施例1と同様の方法で研磨パッド104を作製した。図19は、実施例3に係る研磨パッド104の構成を示す概略断面図である。
[Production of polishing pad]
A
実施例1〜3の研磨パッドは、長時間研磨した場合でも終点検出エラーは発生しなかった。また、実施例1〜3の研磨パッドで研磨したウェハには、パーティクルやスクラッチ等のデフェクトが見られなかった。 The polishing pads of Examples 1 to 3 did not generate end point detection errors even when polished for a long time. Further, defects such as particles and scratches were not observed on the wafers polished with the polishing pads of Examples 1 to 3.
本発明の積層研磨パッドの製造方法は、レンズ、反射ミラー等の光学材料やシリコンウエハ、ハードディスク用のガラス基板、アルミ基板、及び一般的な金属研磨加工等の高度の表面平坦性を要求される材料の平坦化加工を行う研磨パッドの製造方法に用いることができる。 The method for producing a laminated polishing pad of the present invention requires high surface flatness such as optical materials such as lenses and reflecting mirrors, silicon wafers, glass substrates for hard disks, aluminum substrates, and general metal polishing processes. It can be used in a method for manufacturing a polishing pad that performs planarization of a material.
1、10、20、100、101、102、103、104:研磨パッド
2:研磨定盤
3:研磨剤(スラリー)
4:被研磨材(半導体ウエハ)
5:支持台(ポリシングヘッド)
6、7:回転軸
11:研磨層
12、22、30、31、32、33、34:光透過領域
13:研磨領域
14:開口部
121、221、D1、D2、D3:光透過領域の勾配
122、222:光透過領域の研磨領域側の表面と、前記研磨領域を含む平面との角度
124、225:光透過領域の研磨パッドの中心側の端部
125、226:光透過領域の研磨パッドの外周側の端部
141:開口部の研磨パッドの中心側の壁面
142:開口部の研磨パッドの外周側の壁面
223:光透過領域の平坦部分
224:光透過領域の勾配部分
40:クッション層
50:両面に接着剤層を有する透明支持フィルム
1, 10, 20, 100, 101, 102, 103, 104: Polishing pad 2: Polishing surface plate 3: Abrasive (slurry)
4: Material to be polished (semiconductor wafer)
5: Support base (polishing head)
6, 7: Rotating shaft 11: Polishing layers 12, 22, 30, 31, 32, 33, 34: Light transmission region 13: Polishing region 14:
Claims (6)
前記光透過領域の表面が、前記研磨パッドの中心側は前記研磨領域の表面よりも凹んでおり、前記研磨パッドの中心側から外周側に向けて外周側の方が高くなるような勾配を有する、研磨パッド。 A polishing pad having a polishing region and a light transmission region,
The surface of the light transmission region has a gradient such that the center side of the polishing pad is recessed from the surface of the polishing region, and the outer peripheral side becomes higher from the center side of the polishing pad toward the outer peripheral side. , Polishing pad.
A method for manufacturing a semiconductor device, comprising a step of polishing a surface of a semiconductor wafer using the polishing pad according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015253023A JP2017117976A (en) | 2015-12-25 | 2015-12-25 | Abrasive pad and method of manufacturing semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015253023A JP2017117976A (en) | 2015-12-25 | 2015-12-25 | Abrasive pad and method of manufacturing semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017117976A true JP2017117976A (en) | 2017-06-29 |
Family
ID=59231984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015253023A Pending JP2017117976A (en) | 2015-12-25 | 2015-12-25 | Abrasive pad and method of manufacturing semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017117976A (en) |
-
2015
- 2015-12-25 JP JP2015253023A patent/JP2017117976A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5110677B2 (en) | Polishing pad | |
JP4971028B2 (en) | Polishing pad manufacturing method | |
JP5620141B2 (en) | Polishing pad | |
WO2014080729A1 (en) | Polishing pad | |
JP2007307639A (en) | Polishing pad | |
JP5732354B2 (en) | Polishing pad | |
JP4909706B2 (en) | Polishing pad | |
JP2007260827A (en) | Method of manufacturing polishing pad | |
JP5072072B2 (en) | Polishing pad | |
WO2016103862A1 (en) | Circular polishing pad, and semiconductor device manufacturing method | |
WO2014087771A1 (en) | Polishing pad | |
JP2009224384A (en) | Polishing pad, and manufacturing method of semiconductor device | |
JP2006110686A (en) | Polishing pad | |
JP4859109B2 (en) | Polishing pad manufacturing method | |
JP4621014B2 (en) | Polishing pad and method for manufacturing semiconductor device | |
JP2006196836A (en) | Polishing pad | |
JP4869017B2 (en) | Manufacturing method of long polishing pad | |
WO2016052155A1 (en) | Abrasive pad | |
JP2006187837A (en) | Polishing pad | |
JP2017117976A (en) | Abrasive pad and method of manufacturing semiconductor device | |
WO2016047451A1 (en) | Grinding pad | |
JP4941735B2 (en) | Polishing pad manufacturing method | |
JP4831476B2 (en) | Polishing pad manufacturing method | |
JP2017119313A (en) | Manufacturing method of polishing pad | |
JP2017119314A (en) | Use method of polishing pad |