[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2017107709A - Battery manufacturing method - Google Patents

Battery manufacturing method Download PDF

Info

Publication number
JP2017107709A
JP2017107709A JP2015239900A JP2015239900A JP2017107709A JP 2017107709 A JP2017107709 A JP 2017107709A JP 2015239900 A JP2015239900 A JP 2015239900A JP 2015239900 A JP2015239900 A JP 2015239900A JP 2017107709 A JP2017107709 A JP 2017107709A
Authority
JP
Japan
Prior art keywords
current collector
welding
negative electrode
collector plate
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015239900A
Other languages
Japanese (ja)
Other versions
JP6493188B2 (en
Inventor
浩哉 梅山
Hiroya Umeyama
浩哉 梅山
一郎 村田
Ichiro Murata
一郎 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015239900A priority Critical patent/JP6493188B2/en
Publication of JP2017107709A publication Critical patent/JP2017107709A/en
Application granted granted Critical
Publication of JP6493188B2 publication Critical patent/JP6493188B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery manufacturing method which can laser-weld a connection part of a collector to a foil exposed part of an electrode plate at uniform welding strength regardless of the place to prevent a keyhole from penetrating through the collector.SOLUTION: In the battery manufacturing method, in a butting process for butting a plurality of foil exposed parts 21m of an electrode plate 21 to a collecting plate (a collector) 50x to be welded including a recessed groove 53 so that the foil exposed parts 21m overlap with each other and the foil exposed parts 21m stride across the recessed groove 53 and in a welding process for welding the foil exposed parts 21m to a connection part 50 by scanning a rear groove part 55 in a groove extending direction while irradiating laser beam LB to the part, a pair of keyholes 50h whose top part 50hs are positioned in the connection part to be welded are formed at positions across the rear groove part 55 by the laser beam LB, and a range from a site 57 between the pair of keyholes 50h to the opposing face 50a is melted.SELECTED DRAWING: Figure 9

Description

本発明は、電極板のうち集電箔が露出した箔露出部を、集電体のうち板状の接続部に、厚み方向に複数の箔露出部が重なる形態で突き当てて溶接してなる電池の製造方法に関する。   The present invention is formed by abutting and welding a foil exposed portion of a current collector foil exposed from the electrode plate to a plate-like connecting portion of the current collector in a form in which a plurality of foil exposed portions overlap in the thickness direction. The present invention relates to a battery manufacturing method.

電極板(正極板または負極板)と集電体(正極集電体または負極集電体)とを集電タブを介することなく直接接続した、いわゆるタブレス構造を有する電池が知られている。即ち、電極板のうち集電箔が露出した箔露出部を、その厚み方向に複数の箔露出部が重なる状態で、集電体のうち板状をなす接続部に突き当てて溶接した電池である。   A battery having a so-called tabless structure in which an electrode plate (positive electrode plate or negative electrode plate) and a current collector (positive electrode current collector or negative electrode current collector) are directly connected without a current collecting tab is known. That is, in a battery in which the current collector foil exposed from the electrode plate is exposed to a plate-shaped connection portion of the current collector and welded with a plurality of foil exposed portions overlapping in the thickness direction. is there.

例えば特許文献1に、このような電池が開示されている(特許文献1の図3,4等を参照)。特許文献1の電池は、正極板と負極板とが多孔質絶縁層を介して捲回された円筒状の電極群(電極体)を備える。この電池では、電極群の軸線方向の一方側において、正極板の正極集電体露出部(正極箔露出部)を、円板状の正極集電端子板(正極集電体)に突き当てて溶接している。また、電極群の軸線方向の他方側において、負極板の負極集電体露出部(負極箔露出部)を、円板状の負極極集電端子板(負極集電体)に突き当てて溶接している。   For example, Patent Document 1 discloses such a battery (see FIGS. 3 and 4 of Patent Document 1). The battery of Patent Document 1 includes a cylindrical electrode group (electrode body) in which a positive electrode plate and a negative electrode plate are wound through a porous insulating layer. In this battery, the positive electrode current collector exposed portion (positive electrode foil exposed portion) of the positive electrode plate is abutted against the disc-shaped positive electrode current collector terminal plate (positive electrode current collector) on one side in the axial direction of the electrode group. Welding. Also, on the other side of the electrode group in the axial direction, the negative electrode current collector exposed portion (negative electrode foil exposed portion) of the negative electrode plate is abutted against the disc-shaped negative electrode current collector terminal plate (negative electrode current collector) and welded. doing.

特開2011−170972号公報JP 2011-170972 A

しかしながら、電極板の箔露出部を集電体の接続部に突き当ててレーザ溶接により両者を溶接する場合には、以下の不具合が生じ得る。即ち、レーザ光により集電体の接続部を裏面から対向面まで十分に溶融させると、多量の溶融金属が出来る。すると、厚み方向に隣り合う箔露出部同士の間隙のうち、ある部分では、多くの溶融金属が毛細管現象によって吸い上げられる。一方、その部分に隣接する部分では、溶融金属が不足するために、集電体の接続部と電極板の箔露出部との接合が十分でない状態となる。このように、集電体の接続部と箔露出部との接合強度が強い部分と弱い部分とが存在する不均一な接合となる。   However, when the foil exposed portion of the electrode plate is abutted against the connecting portion of the current collector and both are welded by laser welding, the following problems may occur. That is, when the connecting portion of the current collector is sufficiently melted from the back surface to the facing surface by laser light, a large amount of molten metal is formed. Then, in a certain portion of the gap between the exposed foil portions adjacent to each other in the thickness direction, a lot of molten metal is sucked up by a capillary phenomenon. On the other hand, in a portion adjacent to the portion, since the molten metal is insufficient, the connection between the connecting portion of the current collector and the foil exposed portion of the electrode plate is not sufficient. In this way, non-uniform bonding is present in which there are strong and weak bonding strength between the connecting portion of the current collector and the exposed foil portion.

また、集電体の接続部を裏面から対向面まで十分に溶融させるべく、レーザの出力を高くすると、レーザ光により形成されるキーホールが集電体の接続部を貫通する場合がある。すると、スパッタが対向面から電極板にまで飛散したり、貫通孔が空いてレーザ光が電極板にまで届くことにより、活物質層を構成する樹脂結着剤等の材料が劣化するなどの不具合が生じるおそれがある。一方、キーホールが集電体の接続部を貫通するのを防止すべく、レーザの出力を抑えると、接続部が対向面まで十分に溶融せず、集電体の接続部と電極板の箔露出部とを溶接できない場合がある。   Further, when the output of the laser is increased so that the connection portion of the current collector is sufficiently melted from the back surface to the opposing surface, the keyhole formed by the laser light may penetrate the connection portion of the current collector. Then, the spatter is scattered from the opposing surface to the electrode plate, or the through hole is formed and the laser beam reaches the electrode plate, so that the material such as the resin binder constituting the active material layer is deteriorated. May occur. On the other hand, if the laser output is suppressed in order to prevent the keyhole from penetrating the current collector connection, the connection does not melt sufficiently to the opposing surface, and the current collector connection and the electrode plate foil The exposed part may not be welded.

本発明は、かかる現状に鑑みてなされたものであって、集電体の接続部と電極板の箔露出部とを場所によらず均一な接合強度でレーザ溶接できると共に、キーホールが集電体の接続部を貫通するのを防止できる電池の製造方法を提供することを目的とする。   The present invention has been made in view of the present situation, and can connect the collector connection portion and the foil exposed portion of the electrode plate with laser welding with uniform bonding strength regardless of the location, and the keyhole can collect the current. It aims at providing the manufacturing method of the battery which can prevent penetrating the connection part of a body.

上記課題を解決するための本発明の一態様は、集電箔を含む1または複数の電極板のうち上記集電箔の両主面が厚み方向に露出した箔露出部を、上記電極板に対向する対向面とこの対向面の裏面とを含む板状の接続部を有する集電体の上記接続部に、上記厚み方向に複数の上記箔露出部が重なる形態で、上記対向面側から突き当てて溶接してなる電池の製造方法であって、上記対向面及び上記裏面を含む板状で、上記対向面に設けられ溝延伸方向に延びる凹溝を含む溶接前接続部を有する溶接前集電体の上記溶接前接続部に、上記1又は複数の電極板の上記箔露出部を、上記厚み方向に複数の上記箔露出部が重なり、かつ、これらの箔露出部がそれぞれ上記凹溝を跨ぐ形態に、上記対向面側から突き当てる突当工程と、上記溶接前接続部のうち上記凹溝の裏側の溝裏部に、上記裏面側からレーザ光を照射しつつ上記溝延伸方向に走査して、上記複数の箔露出部をそれぞれ上記接続部に溶接する溶接工程と、を備え、上記溶接工程において、上記レーザ光により、上記溶接前接続部のうち上記溝裏部を挟んだ位置に、上記裏面から上記対向面に向けて延び、頂部が上記溶接前接続部内に位置する一対のキーホールを形成し、かつ、上記溶接前接続部のうち上記一対のキーホール間の上記溝裏部を含む部位を、上記裏面から上記対向面まで溶融させる電池の製造方法である。   One aspect of the present invention for solving the above-described problems is that one or a plurality of electrode plates including a current collector foil includes a foil exposed portion in which both main surfaces of the current collector foil are exposed in the thickness direction. A plurality of the foil exposed portions in the thickness direction overlap the connecting portion of the current collector having a plate-like connecting portion including the opposing facing surface and the back surface of the opposing surface, and project from the facing surface side. A method of manufacturing a battery formed by contact and welding, wherein the battery is a plate including the opposing surface and the back surface, and has a pre-welding assembly including a pre-welding connection portion including a concave groove provided on the opposing surface and extending in the groove extending direction. The foil exposed portions of the one or more electrode plates overlap the connecting portion before welding of the electric body, the plurality of foil exposed portions overlap in the thickness direction, and the foil exposed portions respectively have the concave grooves. The striking process of striking from the opposite surface side to the straddling form and the connection part before welding A welding step of scanning the groove back portion on the back side of the concave groove in the groove extending direction while irradiating laser light from the back surface side and welding the plurality of exposed foil portions to the connection portions, respectively. In the welding step, a pair of laser beams that extend from the back surface toward the facing surface at a position sandwiching the groove back portion of the pre-welding connection portion and whose top portion is located in the pre-welding connection portion. And a part including the groove back part between the pair of key holes in the pre-weld connection part is melted from the back surface to the facing surface.

上述の電池の製造方法によれば、溶接前集電体の溶接前接続部の溝裏部は、凹溝を設けた分だけ板厚が薄くなっているので、レーザ溶接時に凹溝の分だけ溶融金属の量を少なくできる。このため、凹溝を設けないために多量の溶融金属ができて毛細管現象が不均一に生じ、厚み方向に隣り合う箔露出部同士の間隙に吸い上げられる溶融金属の量が不均一になるのを抑制できる。よって、集電体の接続部と電極板の箔露出部とを場所によらず均一な強度で接合できる。
更に、溶接工程では、上述のように、溝裏部を挟む一対のキーホールの頂部が溶接前接続部内に位置するようにレーザ溶接している。このため、キーホールが溶接前接続部を貫通して、対向面からスパッタが電極板にまで飛散したり、貫通孔が空いてレーザ光が電極板にまで届くのを防止できる。
According to the battery manufacturing method described above, the groove back portion of the pre-welding connecting portion of the current collector before welding is thinned by the amount of the concave groove, so that only the amount of the concave groove during laser welding is provided. The amount of molten metal can be reduced. For this reason, a large amount of molten metal is produced because no concave groove is provided, and the capillary phenomenon occurs non-uniformly, and the amount of molten metal sucked into the gap between the exposed foil portions adjacent in the thickness direction becomes non-uniform. Can be suppressed. Therefore, the connection part of the current collector and the foil exposed part of the electrode plate can be joined with a uniform strength regardless of the location.
Furthermore, in the welding process, as described above, laser welding is performed so that the top portions of the pair of keyholes sandwiching the groove back portion are positioned in the connection portion before welding. For this reason, it is possible to prevent the keyhole from penetrating through the pre-weld connecting portion and spattering from the opposing surface to the electrode plate, or the through hole to be opened and the laser beam to reach the electrode plate.

更に、上記の電池の製造方法であって、前記集電体は、銅からなる電池の製造方法とすると良い。   Further, in the battery manufacturing method described above, the current collector may be a battery manufacturing method made of copper.

溶融銅は、溶融アルミニウムなどに比して表面張力が強いので、不均一に毛細管現象が生じ易く、箔露出部同士の間隙に吸い上げられる溶融銅の量が不均一になり易い。しかし、前述のように、溶接前集電体に凹溝を設けたことで、溶融銅の量を少なくできるので、不均一に毛細管現象が生じるのを抑制し、箔露出部同士の間隙に吸い上げられる溶融銅の量が不均一になるのを抑制できる。よって、集電体が銅からなるにも拘わらず、集電体の接続部と電極板の箔露出部とを場所によらず均一な強度で接合できる。   Since molten copper has a higher surface tension than molten aluminum or the like, a capillary phenomenon tends to occur non-uniformly, and the amount of molten copper sucked into the gap between the exposed foil portions tends to be non-uniform. However, as described above, by providing a groove in the current collector before welding, the amount of molten copper can be reduced, so that non-uniform capillary action is suppressed and sucked into the gap between the exposed foil parts. It can suppress that the quantity of the molten copper produced becomes non-uniform | heterogenous. Therefore, although the current collector is made of copper, the connection portion of the current collector and the foil exposed portion of the electrode plate can be joined with uniform strength regardless of the location.

実施形態に係る電池の縦断面図である。It is a longitudinal cross-sectional view of the battery which concerns on embodiment. 実施形態に係る電極体の斜視図である。It is a perspective view of the electrode body which concerns on embodiment. 実施形態に係り、正極板及び負極板をセパレータを介して互いに重ねた状態を示す、電極体の展開図である。It is an expanded view of an electrode body which concerns on embodiment and shows the state which mutually accumulated the positive electrode plate and the negative electrode plate through the separator. 実施形態に係る電池のうち、正極集電板(または負極集電板)と正極板の正極箔露出部(または負極板の負極箔露出部)との接合部分を拡大した部分拡大断面図である。It is the elements on larger scale which expanded the junction part of the positive electrode current collector plate (or negative electrode current collector plate) and the positive electrode foil exposure part (or negative electrode foil exposure part of a negative electrode plate) of the battery which concerns on embodiment. . 実施形態に係る溶接前正極集電板(または溶接前負極集電板)の対向面側から見た平面図である。It is the top view seen from the opposing surface side of the positive electrode current collector plate before welding which concerns on embodiment (or negative electrode current collector plate before welding). 実施形態に係る溶接前正極集電板(または溶接前負極集電板)の図5におけるA−A断面図である。It is AA sectional drawing in FIG. 5 of the positive electrode current collector plate before welding (or negative electrode current collector plate before welding) which concerns on embodiment. 実施形態に係り、溶接前正極集電板(または溶接前負極集電板)に正極板の正極箔露出部(または負極板の負極箔露出部)を突き当てた状態を示す説明図である。It is explanatory drawing which concerns on embodiment and shows the state which faced the positive electrode foil exposed part (or negative electrode foil exposed part of a negative electrode plate) of a positive electrode plate to the positive electrode current collector plate (or negative electrode current collector plate before welding) before welding. 実施形態に係るレーザ光のビームパターン(第1ビームパターン)を示す説明図である。It is explanatory drawing which shows the beam pattern (1st beam pattern) of the laser beam which concerns on embodiment. 実施形態に係り、照射するレーザ光のビームパターン(第1ビームパターン)と、照射された溶接前正極集電板(または溶接前負極集電板)の溶融状態との関係を示す説明図である。It is explanatory drawing which shows the relationship between the beam pattern (1st beam pattern) of the laser beam to irradiate, and the molten state of the irradiated positive electrode current collector plate before welding (or negative electrode current collector plate before welding) concerning embodiment. . 比較例2,4,6に係り、正極集電板(または負極集電板)と正極板の正極箔露出部(または負極板の負極箔露出部)との接合部分を拡大した部分拡大断面図である。The partial expanded sectional view which expanded the junction part of the positive electrode current collector plate (or negative electrode current collector plate) and the positive electrode foil exposure part (or negative electrode foil exposure part of a negative electrode plate) concerning a comparative example 2,4,6. It is. 比較例3,4に係るレーザ光のビームパターン(第2ビームパターン)を示す説明図である。It is explanatory drawing which shows the beam pattern (2nd beam pattern) of the laser beam which concerns on the comparative examples 3 and 4. FIG. 比較例4に係り、照射するレーザ光のビームパターン(第2ビームパターン)と、照射された溶接前正極集電板の溶融状態との関係を示す説明図である。It is explanatory drawing which concerns on the comparative example 4, and shows the relationship between the beam pattern (2nd beam pattern) of the laser beam to irradiate, and the molten state of the irradiated positive electrode current collector plate before welding.

以下、本発明の実施の形態を、図面を参照しつつ説明する。図1に、本実施形態に係る電池1の縦断面図を示す。また、図2及び図3に、この電池1を構成する電極体20の斜視図及び展開図を示す。また、図4に、電池1のうち、正極集電板(正極集電体)50または負極集電板(負極集電体)60と、正極板21の正極箔露出部21mまたは負極板31の負極箔露出部31mとの接合部分の部分拡大断面図を示す。
この電池1は、ハイブリッド自動車や電気自動車等の車両や、ハンマードリル等の電池使用機器などに搭載される円柱状のリチウムイオン二次電池である。電池1は、電池ケース10と、この内部に収容された電極体20と、この電極体20に接合された正極集電板50及び負極集電板60等から構成される。また、電池ケース10内には、非水電解液19が収容されており、その一部は電極体20内に含浸されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a longitudinal sectional view of a battery 1 according to this embodiment. 2 and 3 are a perspective view and a developed view of the electrode body 20 constituting the battery 1. 4, in the battery 1, the positive electrode current collector plate (positive electrode current collector) 50 or the negative electrode current collector plate (negative electrode current collector) 60, the positive electrode foil exposed portion 21 m of the positive electrode plate 21, or the negative electrode plate 31. The partial expanded sectional view of a junction part with negative electrode foil exposed part 31m is shown.
The battery 1 is a cylindrical lithium ion secondary battery mounted on a vehicle such as a hybrid vehicle or an electric vehicle, or a battery-operated device such as a hammer drill. The battery 1 includes a battery case 10, an electrode body 20 accommodated in the battery case 10, a positive current collector plate 50 and a negative current collector plate 60 joined to the electrode body 20. In addition, a non-aqueous electrolyte 19 is accommodated in the battery case 10, and a part thereof is impregnated in the electrode body 20.

このうち電池ケース10は、円柱状で金属(本実施形態ではアルミニウム)からなる。この電池ケース10は、その軸線方向の一方側(図1中、上方)が開口する一方、軸線方向の他方側(図1中、下方)が閉塞した有底円筒状の本体部材11と、この本体部材11の開口部11hを閉塞する円板状の蓋部材13とから構成される。このうち蓋部材13は、絶縁性樹脂からなるリング状のシール部材15を介して、本体部材11の開口部11hに加締め固定されている。この蓋部材13は、後述するようにリード部材17を介して正極集電板50に電気的に接続しており、電池1の正極端子を兼ねている。一方、本体部材11は、後述するように負極集電板60に接続しており、電池1の負極端子を兼ねている。   Among these, the battery case 10 is cylindrical and made of metal (in this embodiment, aluminum). The battery case 10 has a bottomed cylindrical main body member 11 whose one side in the axial direction (upper in FIG. 1) is open and whose other side in the axial direction (lower in FIG. 1) is closed, It is comprised from the disk-shaped cover member 13 which obstruct | occludes the opening part 11h of the main body member 11. FIG. Among these, the lid member 13 is caulked and fixed to the opening 11 h of the main body member 11 via a ring-shaped seal member 15 made of an insulating resin. The lid member 13 is electrically connected to the positive electrode current collector plate 50 via the lead member 17 as will be described later, and also serves as the positive electrode terminal of the battery 1. On the other hand, the main body member 11 is connected to the negative electrode current collector plate 60 as will be described later, and also serves as the negative electrode terminal of the battery 1.

次に、電極体20について説明する(図1〜図4参照)。この電極体20は、帯状の正極板21と帯状の負極板31とを、帯状の一対のセパレータ41,41を介して互いに重ね(図3参照)、軸線AX周りに円筒状に捲回したものである(図2参照)。   Next, the electrode body 20 will be described (see FIGS. 1 to 4). In this electrode body 20, a belt-like positive electrode plate 21 and a belt-like negative electrode plate 31 are overlapped with each other via a pair of belt-like separators 41 and 41 (see FIG. 3), and are wound in a cylindrical shape around an axis AX. (See FIG. 2).

正極板21は、帯状のアルミニウム箔からなる正極集電箔22の両主面22a,22aのうち、幅方向の一部でかつ長手方向に延びる領域上に、正極活物質層23,23を帯状に設けてなる。正極活物質層23には、正極活物質、導電材(導電助剤)及び結着剤が含まれる。また、正極板21のうち幅方向の片方の端部は、厚み方向BH(図3において紙面に直交する方向,図4参照)に正極活物質層23が存在せず、厚み方向BHに正極集電箔22の両主面22a,22aが露出した正極箔露出部21mとなっている。正極板21の幅方向の一部(正極箔露出部21mの一部)は、負極板31及びセパレータ41,41から軸線方向AHの一方側AS(図1〜図4中、上方)に、厚み方向BHに複数の正極箔露出部21mが重なり渦巻き状となって突出している。これらの正極箔露出部21mは、後述する正極集電板50に突き当てた状態で正極集電板50に接続し導通している(図1及び図4参照)。   The positive electrode plate 21 is formed by forming the positive electrode active material layers 23 and 23 in a band shape on a region extending in the longitudinal direction and part of the main surface 22a and 22a of the positive electrode current collector foil 22 made of a band-shaped aluminum foil. It is provided. The positive electrode active material layer 23 includes a positive electrode active material, a conductive material (conductive aid), and a binder. Further, one end of the positive electrode plate 21 in the width direction has no positive electrode active material layer 23 in the thickness direction BH (the direction orthogonal to the paper surface in FIG. 3, see FIG. 4), and the positive electrode collector in the thickness direction BH. The main surface 22a of the electric foil 22 is a positive foil exposed portion 21m where the main surfaces 22a are exposed. A part of the positive electrode plate 21 in the width direction (a part of the positive electrode foil exposed portion 21m) extends from the negative electrode plate 31 and the separators 41 and 41 to the one side AS (upward in FIGS. 1 to 4) in the axial direction AH. A plurality of positive foil exposed portions 21m overlap in the direction BH and protrude in a spiral shape. These positive electrode foil exposed portions 21m are connected to and conductive with the positive electrode current collector plate 50 while being in contact with the positive electrode current collector plate 50 described later (see FIGS. 1 and 4).

負極板31は、帯状の銅箔からなる負極集電箔32の両主面32a,32aのうち、幅方向の一部でかつ長手方向に延びる領域上に、負極活物質層33,33を帯状に設けてなる。負極活物質層33には、負極活物質、結着剤及び増粘剤が含まれる。負極板31のうち幅方向の片方の端部は、厚み方向BH(図3において紙面に直交する方向,図4参照)に負極活物質層33が存在せず、厚み方向BHに負極集電箔32の両主面32a,32aが露出した負極箔露出部31mとなっている。負極板31の幅方向の一部(負極箔露出部31mの一部)は、正極板21及びセパレータ41,41から軸線方向AHの他方側AT(図1〜図3中、下方,図4中、上方)に、厚み方向BHに複数の負極箔露出部31mが重なり渦巻き状となって突出している。これらの負極箔露出部31mは、後述する負極集電板60に突き当てた状態で負極集電板60に接続し導通している(図1及び図4参照)。
セパレータ41は、樹脂製の多孔質膜からなり、帯状でフィルム状をなす。
The negative electrode plate 31 has strips of negative electrode active material layers 33 and 33 formed on a part of the width direction and extending in the longitudinal direction of both main surfaces 32a and 32a of the negative electrode current collector foil 32 made of a strip-shaped copper foil. It is provided. The negative electrode active material layer 33 includes a negative electrode active material, a binder, and a thickener. One end of the negative electrode plate 31 in the width direction has no negative electrode active material layer 33 in the thickness direction BH (the direction orthogonal to the paper surface in FIG. 3, see FIG. 4), and the negative electrode current collector foil in the thickness direction BH. The two main surfaces 32a and 32a of 32 are exposed negative electrode foil exposed portions 31m. A part of the negative electrode plate 31 in the width direction (a part of the negative electrode foil exposed portion 31m) extends from the positive electrode plate 21 and the separators 41 and 41 to the other side AT in the axial direction AH (in FIGS. , Upward), a plurality of negative electrode foil exposed portions 31m overlap in the thickness direction BH and protrude in a spiral shape. These negative electrode foil exposed portions 31m are connected to and conductive with the negative electrode current collector plate 60 in a state of abutting against a negative electrode current collector plate 60 described later (see FIGS. 1 and 4).
Separator 41 consists of a resin-made porous membrane, and makes a strip shape and a film form.

正極集電板50は、電極体20(正極板21)に対向する対向面50aとその裏面50bとを有する円板状で、金属(本実施形態ではアルミニウム)からなる(図1及び図4参照)。なお、本実施形態では、正極集電板50の全体が前述の「対向面と裏面とを含む板状の接続部」に該当する。
この正極集電板50の対向面50a側には、電極体20の正極板21のうち、厚み方向BHに複数重なった正極箔露出部21mが突き当てられており、正極集電板50の一部が一旦溶融した後に固化した溶融固化部51を介して正極集電板50と正極箔露出部21mとが接合している。一方、正極集電板50の裏面50b側には、前述のリード部材17が接合している。このリード部材17は、他方で電池ケース10の蓋部材13に接合している。
The positive electrode current collector plate 50 has a disk shape having an opposing surface 50a facing the electrode body 20 (positive electrode plate 21) and a back surface 50b thereof, and is made of metal (in this embodiment, aluminum) (see FIGS. 1 and 4). ). In the present embodiment, the entire positive electrode current collector plate 50 corresponds to the “plate-shaped connecting portion including the opposing surface and the back surface” described above.
A plurality of positive electrode foil exposed portions 21m, which are overlapped in the thickness direction BH, of the positive electrode plate 21 of the electrode body 20 are abutted on the facing surface 50a side of the positive electrode current collector plate 50. The positive electrode current collector plate 50 and the positive electrode foil exposed portion 21m are joined together via a melt-solidified portion 51 that is solidified after the portion is once melted. On the other hand, the above-described lead member 17 is joined to the back surface 50 b side of the positive electrode current collector plate 50. The lead member 17 is joined to the lid member 13 of the battery case 10 on the other side.

負極集電板60は、電極体20(負極板31)に対向する対向面60aとその裏面60bとを有する円板状で、金属(本実施形態では銅)からなる。なお、本実施形態では、負極集電板60の全体が前述の「対向面と裏面とを含む板状の接続部」に該当する。
この負極集電板60の対向面60a側には、電極体20の負極板31のうち、厚み方向BHに複数重なった負極箔露出部31mが突き当てられており、負極集電板60の一部が一旦溶融した後に固化した溶融固化部61を介して負極集電板60と負極箔露出部31mとが接合している。一方、負極集電板60の裏面60b側は、電池ケース10の本体部材11の底部11tに接合している。
The negative electrode current collector plate 60 has a disk shape having a facing surface 60a facing the electrode body 20 (negative electrode plate 31) and a back surface 60b thereof, and is made of metal (copper in this embodiment). In the present embodiment, the entire negative electrode current collector plate 60 corresponds to the “plate-shaped connecting portion including the opposing surface and the back surface” described above.
A plurality of negative electrode foil exposed portions 31 m that are overlapped in the thickness direction BH among the negative electrode plates 31 of the electrode body 20 are abutted against the opposing surface 60 a side of the negative electrode current collector plate 60. The negative electrode current collector plate 60 and the negative electrode foil exposed portion 31m are joined together via a melt-solidified portion 61 that is solidified after the portion is once melted. On the other hand, the back surface 60 b side of the negative electrode current collector plate 60 is joined to the bottom 11 t of the main body member 11 of the battery case 10.

次いで、上記電池1の製造方法について説明する(図5〜図9参照)。まず、帯状のアルミニウム箔からなる正極集電箔22の両主面22a,22aのうち、幅方向の一部でかつ長手方向に延びる領域上に、正極活物質層23,23を帯状に設けて、正極板21の幅方向の片方の端部に正極箔露出部21mを有する正極板21を形成する。
また別途、帯状の銅箔からなる負極集電箔32の両主面32a,32aのうち、幅方向の一部でかつ長手方向に延びる領域上に、負極活物質層33,33を帯状に設けて、負極板31の幅方向の片方の端部に負極箔露出部31mを有する負極板31を形成する。
次に、これらの正極板21及び負極板31を一対のセパレータ41,41を介して互いに重ね(図3参照)、巻き芯を用いて軸線AX周りに捲回して、円筒状捲回型の電極体20を形成する(図2参照)。
Next, a method for manufacturing the battery 1 will be described (see FIGS. 5 to 9). First, the positive electrode active material layers 23 and 23 are provided in a band shape on a region extending in the longitudinal direction in a part of the width direction of both main surfaces 22a and 22a of the positive electrode current collector foil 22 made of a band-shaped aluminum foil. The positive electrode plate 21 having the positive electrode foil exposed portion 21m is formed at one end in the width direction of the positive electrode plate 21.
Separately, negative electrode active material layers 33, 33 are provided in a strip shape on a region extending in the longitudinal direction and part of the width direction of both main surfaces 32 a, 32 a of the negative electrode current collector foil 32 made of a strip-shaped copper foil. Then, the negative electrode plate 31 having the negative electrode foil exposed portion 31m is formed at one end in the width direction of the negative electrode plate 31.
Next, the positive electrode plate 21 and the negative electrode plate 31 are overlapped with each other via a pair of separators 41 and 41 (see FIG. 3), and wound around the axis AX using a winding core to form a cylindrical wound electrode. Form body 20 (see FIG. 2).

次に、アルミニウムからなる溶接前正極集電板(溶接前集電体)50xを用意する(図5及び図6参照)。この溶接前正極集電板50xは、対向面50a及びその裏面50bを含む厚みTa=0.60mmの円板状である。溶接前正極集電板50xの対向面50aには、溶接前正極集電板50xの中心50gから溶接前正極集電板50xの周縁50fまで径方向に延びる(溝延伸方向FHに延びる)4つの凹溝53が、90度毎に形成されている。各凹溝53の幅Waは、0.20〜1.00mmとするのが好ましく、本実施形態では、Wa=0.50mmである。また、各凹溝53の深さHaは、0.10〜0.50mmとするのが好ましく、本実施形態では、Ha=0.15mmである。また、溶接前正極集電板50xのうち凹溝53の裏側の溝裏部55の厚みTc(図9参照)は、Tc=0.45mmである。なお、本実施形態では、溶接前正極集電板50xの全体が前述の「対向面と裏面とを含む板状で、凹溝を含む溶接前接続部」に該当する。   Next, a pre-weld positive electrode current collector plate (pre-weld current collector) 50x made of aluminum is prepared (see FIGS. 5 and 6). The pre-weld positive electrode current collector plate 50x has a disk shape with a thickness Ta = 0.60 mm including the opposing surface 50a and the back surface 50b. Four opposing surfaces 50a of the positive current collector plate 50x before welding extend in the radial direction from the center 50g of the positive current collector plate 50x before welding to the peripheral edge 50f of the positive current collector plate 50x before welding (extend in the groove extending direction FH). A concave groove 53 is formed every 90 degrees. The width Wa of each concave groove 53 is preferably 0.20 to 1.00 mm, and in this embodiment, Wa = 0.50 mm. Further, the depth Ha of each concave groove 53 is preferably 0.10 to 0.50 mm, and Ha = 0.15 mm in this embodiment. In addition, the thickness Tc (see FIG. 9) of the groove back portion 55 on the back side of the groove 53 in the positive electrode current collector plate 50x before welding is Tc = 0.45 mm. In the present embodiment, the entire pre-welding positive electrode current collector plate 50x corresponds to the aforementioned “pre-weld connection portion including a concave surface and a plate shape including a facing surface and a back surface”.

次に、「突当工程」において、電極体20の軸線AXが溶接前正極集電板50xの中心50gを通るように、電極体20の軸線方向AHの一方側ASの端部を、溶接前正極集電板50xに対向面50a側から突き当てる(図7参照)。これにより、電極体20の正極板21のうち厚み方向BHに複数重なった正極箔露出部21mがそれぞれ凹溝53を跨ぐ形態に、正極箔露出部21mを溶接前正極集電板50xに対向面50a側から突き当てることができる。   Next, in the “butting step”, the end of one side AS in the axial direction AH of the electrode body 20 is pre-welded so that the axis AX of the electrode body 20 passes through the center 50g of the positive current collector plate 50x before welding. It abuts on the positive electrode current collector plate 50x from the facing surface 50a side (see FIG. 7). As a result, a plurality of positive foil exposed portions 21m that overlap each other in the thickness direction BH of the positive electrode plate 21 of the electrode body 20 straddle the concave grooves 53, and the positive foil exposed portions 21m face the positive current collector plate 50x before welding. It can be abutted from the 50a side.

次に、「溶接工程」において、溶接前正極集電板50xのうち凹溝53の裏側の溝裏部55に、それぞれ、裏面50b側からレーザ光LBを照射しつつ溝延伸方向FHに走査して、複数の正極箔露出部21mをそれぞれ溶接前正極集電板50x(正極集電板50)に溶接する(図8、図9及び図4参照)。この溶接工程では、レーザ光LBにより、溶接前正極集電板50xのうち溝裏部55を挟んだ位置に、裏面50bから対向面50aに向けて延び、頂部50hsが溶接前正極集電板50x内に位置する一対のキーホール50h,50hを形成する。またこれと共に、レーザ光LBにより、溶接前正極集電板50xのうち一対のキーホール50h,50h間の溝裏部55を含む部位57を、裏面50bから対向面50aまで溶融させる。   Next, in the “welding process”, scanning is performed in the groove extending direction FH while irradiating the laser beam LB from the back surface 50b side to the groove back portion 55 on the back side of the groove 53 of the positive electrode current collector plate 50x before welding. Then, the plurality of positive foil exposed portions 21m are respectively welded to the positive current collector 50x (positive current collector 50) before welding (see FIGS. 8, 9, and 4). In this welding process, the laser beam LB extends from the back surface 50b toward the facing surface 50a at a position sandwiching the groove back portion 55 in the positive electrode current collector plate 50x before welding, and the top portion 50hs has a positive electrode current collector plate 50x before welding. A pair of keyholes 50h, 50h located inside is formed. At the same time, the laser beam LB melts the portion 57 including the groove back portion 55 between the pair of keyholes 50h, 50h in the pre-welding positive electrode current collector plate 50x from the back surface 50b to the facing surface 50a.

具体的には、図8及び図9に示すDOE(ディフラクティブオプティクス,回折光学素子)ビームパターンを有するレーザ光LBにより溶接する。即ち、このDOEビームパターンは、スポット径が40μmで、間隔Ca=(凹溝53の幅Wa+0.20)=0.70mmをあけて配置されたエネルギ密度の高い2つのピーク(ピークP1及びピークP2)と、これらのピークP1,P2を含むスポット径Da=(凹溝53の幅Wa+0.30)=0.80mmでエネルギ密度の低いピークP3とからなる。ピークP1,P2のパワー密度は、それぞれ1.0×106〜1.0×108 W/cm2 とするの好ましく、本実施形態では、1.0×107 W/cm2 である。また、ピークP3のパワー密度は、1.0×104〜1.0×106 W/cm2 とするのが好ましく、本実施形態では、1.0×105 W/cm2 である。 Specifically, welding is performed with a laser beam LB having a DOE (diffractive optics, diffractive optical element) beam pattern shown in FIGS. That is, this DOE beam pattern has a spot diameter of 40 μm, and two peaks (peak P1 and peak P2) having a high energy density arranged with an interval Ca = (width Wa + 0.20 of the groove 53) = 0.70 mm. ) And a spot diameter Da including these peaks P1 and P2 = (width Wa + 0.30 of the concave groove 53) = 0.80 mm and a peak P3 having a low energy density. The power densities of the peaks P1 and P2 are preferably 1.0 × 10 6 to 1.0 × 10 8 W / cm 2 , respectively, and in this embodiment, 1.0 × 10 7 W / cm 2 . In addition, the power density of the peak P3 is preferably 1.0 × 10 4 to 1.0 × 10 6 W / cm 2, and in this embodiment, 1.0 × 10 5 W / cm 2 .

このようなビームパターンを有するレーザ光LBを用いることで、エネルギ密度の高いピークP1及びピークP2によって、溶接前正極集電板50xのうち溝裏部55を挟んだ位置に、裏面50bから対向面50aに向けて延び、頂部50hsが溶接前正極集電板50x内に位置する一対のキーホール50h,50hを形成できる。これと共に、エネルギ密度が低くスポット径Daが大きいピークP3によって、溶接前正極集電板50xのうち一対のキーホール50h,50h間の部位57を、裏面50bから対向面50aまで溶融させることができる。
この溶接工程により、正極集電板50と正極板21の正極箔露出部21mとが溶融固化部51を介して接合する。なお、溶融固化部51のうち、凹溝53よりも裏面50b側に位置する部分の外周面と、正極集電板50の対向面50aとのなす角αは、60度以上となる(図9参照)。
By using the laser beam LB having such a beam pattern, the opposite surface from the back surface 50b to the position where the groove back portion 55 is sandwiched in the positive current collector plate 50x before welding by the peaks P1 and P2 having high energy density. A pair of keyholes 50h, 50h extending toward 50a and having the top portion 50hs positioned in the positive current collector plate 50x before welding can be formed. At the same time, the portion 57 between the pair of keyholes 50h, 50h of the positive current collector plate 50x before welding can be melted from the back surface 50b to the facing surface 50a by the peak P3 having a low energy density and a large spot diameter Da. .
Through this welding process, the positive electrode current collector plate 50 and the positive electrode foil exposed portion 21 m of the positive electrode plate 21 are joined via the melt-solidified portion 51. In addition, the angle α formed between the outer peripheral surface of the melt-solidified portion 51 located on the back surface 50b side of the concave groove 53 and the facing surface 50a of the positive electrode current collector plate 50 is 60 degrees or more (FIG. 9). reference).

次に、銅からなる溶接前負極集電板(溶接前集電体)60xを用意する(図5及び図6参照)。この溶接前負極集電板60xは、対向面60a及びその裏面60bを含む厚みTb=0.60mmの円板状である。溶接前負極集電板60xの対向面60aには、溶接前負極集電板60xの中心60gから溶接前負極集電板60xの周縁60fまで径方向に延びる(溝延伸方向FHに延びる)4つの凹溝63が、90度毎に形成されている。各凹溝63の幅Wbは、正極の場合と同様に、0.20〜1.00mmとするのが好ましく、本実施形態では、Wb=0.50mmである。また、各凹溝63の深さHbは、0.10〜0.50mmとするのが好ましく、本実施形態では、Hb=0.15mmである。また、溶接前負極集電板60xのうち凹溝63の裏側の溝裏部65の厚みTdは、Td=0.45mmである。なお、本実施形態では、溶接前負極集電板60xの全体が前述の「対向面と裏面とを含む板状で、凹溝を含む溶接前接続部」に該当する。   Next, a pre-weld negative electrode current collector plate (pre-weld current collector) 60x made of copper is prepared (see FIGS. 5 and 6). The pre-welding negative electrode current collector plate 60x has a disk shape with a thickness Tb = 0.60 mm including the opposing surface 60a and the back surface 60b. On the opposing surface 60a of the negative electrode current collector plate 60x before welding, four pieces (in the groove extending direction FH) extend in the radial direction from the center 60g of the negative electrode current collector plate 60x before welding to the peripheral edge 60f of the negative electrode current collector plate 60x before welding. A concave groove 63 is formed every 90 degrees. The width Wb of each concave groove 63 is preferably 0.20 to 1.00 mm, as in the case of the positive electrode. In this embodiment, Wb = 0.50 mm. The depth Hb of each concave groove 63 is preferably 0.10 to 0.50 mm, and in this embodiment, Hb = 0.15 mm. In addition, the thickness Td of the groove back portion 65 on the back side of the groove 63 in the pre-welding negative electrode current collector plate 60x is Td = 0.45 mm. In addition, in this embodiment, the whole negative electrode current collector plate 60x before welding corresponds to the above-described “plate-like shape including a facing surface and a back surface, and a connection portion before welding including a concave groove”.

次に、「突当工程」において、電極体20の軸線AXが溶接前負極集電板60xの中心60gを通るように、電極体20の軸線方向AHの他方側ATの端部を、溶接前負極集電板60xに対向面60a側から突き当てる(図7参照)。これにより、電極体20の負極板31のうち厚み方向BHに複数重なった負極箔露出部31mがそれぞれ凹溝63を跨ぐ形態に、負極箔露出部31mを溶接前負極集電板60xに対向面60a側から突き当てることができる。   Next, in the “abutting step”, the end of the other side AT in the axial direction AH of the electrode body 20 is set to the position before welding so that the axis AX of the electrode body 20 passes through the center 60g of the negative electrode current collector plate 60x before welding. It abuts against the negative electrode current collector plate 60x from the facing surface 60a side (see FIG. 7). As a result, the negative electrode foil exposed portions 31m, which overlap each other in the thickness direction BH among the negative electrode plates 31 of the electrode body 20, straddle the concave grooves 63, and the negative electrode foil exposed portions 31m face the negative electrode current collector plate 60x before welding. It can be abutted from the 60a side.

次に、「溶接工程」において、溶接前負極集電板60xのうち凹溝63の裏側の溝裏部65に、それぞれ、裏面60b側からレーザ光LBを照射しつつ溝延伸方向FHに走査して、複数の負極箔露出部31mをそれぞれ溶接前負極集電板60x(負極集電板60)に溶接する(図8、図9及び図4参照)。この溶接工程では、レーザ光LBにより、溶接前負極集電板60xのうち溝裏部65を挟んだ位置に、裏面60bから対向面60aに向けて延び、頂部60hsが溶接前負極集電板60x内に位置する一対のキーホール60h,60hを形成する。またこれと共に、レーザ光LBにより、溶接前負極集電板60xのうち一対のキーホール60h,60h間の溝裏部65を含む部位67を、裏面60bから対向面60aまで溶融させる。   Next, in the “welding process”, the groove back portion 65 on the back side of the concave groove 63 in the negative electrode current collector plate 60x before welding is scanned in the groove extending direction FH while irradiating the laser beam LB from the back surface 60b side. Then, the plurality of negative electrode foil exposed portions 31m are each welded to the pre-welding negative electrode current collector plate 60x (negative electrode current collector plate 60) (see FIGS. 8, 9, and 4). In this welding process, the laser beam LB extends from the back surface 60b toward the facing surface 60a at a position sandwiching the groove back portion 65 of the negative electrode current collector plate 60x before welding, and the top portion 60hs has a negative electrode current collector plate 60x before welding. A pair of keyholes 60h, 60h located inside is formed. At the same time, the laser beam LB is used to melt the portion 67 including the groove back portion 65 between the pair of keyholes 60h and 60h from the back surface 60b to the facing surface 60a.

具体的には、正極の場合と同様に、図8及び図9に示すDOEビームパターンを有するレーザ光LBにより溶接する。即ち、このDOEビームパターンは、正極の場合と同様に、スポット径が40μmで、間隔Cb=(凹溝63の幅Wb+0.20)=0.70mmをあけて配置されたエネルギ密度の高い2つのピーク(ピークP1及びピークP2)と、これらのピークP1,P2を含むスポット径Db=(凹溝63の幅Wb+0.30)=0.80mmでエネルギ密度の低いピークP3とからなる。ピークP1,P2のパワー密度は、それぞれ1.0×106〜1.0×108 W/cm2 とするのが好ましく、本実施形態では、1.0×107 W/cm2 である。また、ピークP3のパワー密度は、1.0×104〜1.0×106 W/cm2 とするのが好ましく、本実施形態では、1.0×105 W/cm2 である。 Specifically, as in the case of the positive electrode, welding is performed with the laser beam LB having the DOE beam pattern shown in FIGS. That is, as in the case of the positive electrode, this DOE beam pattern has two high energy densities arranged with a spot diameter of 40 μm and a distance Cb = (width Wb + 0.20 of the concave groove 63) = 0.70 mm. A peak (peak P1 and peak P2) and a spot diameter Db including these peaks P1 and P2 = (width Wb + 0.30 of the concave groove 63) = 0.80 mm and a peak P3 having a low energy density. The power densities of the peaks P1 and P2 are each preferably 1.0 × 10 6 to 1.0 × 10 8 W / cm 2, and in this embodiment, 1.0 × 10 7 W / cm 2 . . In addition, the power density of the peak P3 is preferably 1.0 × 10 4 to 1.0 × 10 6 W / cm 2, and in this embodiment, 1.0 × 10 5 W / cm 2 .

このようなビームパターンを有するレーザ光LBを用いることで、エネルギ密度の高いピークP1及びピークP2によって、溶接前負極集電板60xのうち溝裏部65を挟んだ位置に、裏面60bから対向面60aに向けて延び、頂部60hsが溶接前負極集電板60x内に位置する一対のキーホール60h,60hを形成できる。これと共に、エネルギ密度が低くスポット径Dbが大きいピークP3によって、溶接前負極集電板60xのうち一対のキーホール60h,60h間の部位67を、裏面60bから対向面60aまで溶融させることができる。
この溶接工程により、負極集電板60と負極板31の負極箔露出部31mとが溶融固化部61を介して接合する。なお、溶融固化部61のうち、凹溝63よりも裏面60b側に位置する部分の外周面と、負極集電板60の対向面60aとのなす角βは、60度以上となる(図9参照)。
By using the laser beam LB having such a beam pattern, the opposite surface from the back surface 60b to the position where the groove back portion 65 is sandwiched in the negative current collector plate 60x before welding by the peaks P1 and P2 having high energy density. A pair of keyholes 60h, 60h extending toward 60a and having a top portion 60hs located in the negative electrode current collector plate 60x before welding can be formed. At the same time, the peak P3 having a low energy density and a large spot diameter Db can melt the portion 67 between the pair of keyholes 60h and 60h in the pre-welding negative electrode current collector plate 60x from the back surface 60b to the facing surface 60a. .
Through this welding process, the negative electrode current collector plate 60 and the negative electrode foil exposed portion 31 m of the negative electrode plate 31 are joined via the melt-solidified portion 61. In addition, an angle β formed between the outer peripheral surface of the melt-solidified portion 61 located on the back surface 60b side of the concave groove 63 and the facing surface 60a of the negative electrode current collector plate 60 is 60 degrees or more (FIG. 9). reference).

次に、リード部材17及び蓋部材13を用意し、リード部材17の一端側を正極集電板50の裏面50bに溶接する共に、リード部材17の他端側を蓋部材13に溶接する。次に、電池ケース10の本体部材11を用意し、この中に上述の正極集電板50及び負極集電板60を接合した電極体20を挿入する。その後、負極集電板60を本体部材11の底部11tに溶接する。次に、本体部材11内に非水電解液19注液し、その後、蓋部材13をシール部材15を介して加締め固定して、本体部材11の開口部11hを閉塞する。その後は、この電池について、初充電や各種検査を行う。かくして、電池1が完成する。   Next, the lead member 17 and the lid member 13 are prepared, and one end side of the lead member 17 is welded to the back surface 50 b of the positive electrode current collector plate 50 and the other end side of the lead member 17 is welded to the lid member 13. Next, the main body member 11 of the battery case 10 is prepared, and the electrode body 20 in which the positive electrode current collector plate 50 and the negative electrode current collector plate 60 are joined is inserted therein. Thereafter, the negative electrode current collector plate 60 is welded to the bottom portion 11 t of the main body member 11. Next, the nonaqueous electrolyte 19 is injected into the main body member 11, and then the lid member 13 is crimped and fixed via the seal member 15 to close the opening 11 h of the main body member 11. Thereafter, the battery is subjected to initial charging and various inspections. Thus, the battery 1 is completed.

(実施例及び比較例)
次いで、本発明の効果を検証するために行った試験の結果について説明する。下記の表1に示すように、凹溝の有無、凹溝の幅、DOEビームパターン、レーザ出力をそれぞれ変更して、正極集電板(または負極集電板)と電極体20のうち正極板21の正極箔露出部21m(または負極板31の負極箔露出部31m)とをレーザ溶接した。
(Examples and Comparative Examples)
Subsequently, the result of the test conducted in order to verify the effect of this invention is demonstrated. As shown in Table 1 below, the positive electrode plate of the positive electrode current collector plate (or negative electrode current collector plate) and the electrode body 20 is changed by changing the presence or absence of the groove, the width of the groove, the DOE beam pattern, and the laser output. 21 positive electrode foil exposed portion 21m (or negative electrode foil exposed portion 31m of negative electrode plate 31) was laser welded.

Figure 2017107709
Figure 2017107709

具体的には、実施例1では、溶接前正極集電板に幅Wa=0.20mmの凹溝を形成しておき、図8に示した実施形態と同様のDOEビームパターン(これを第1ビームパターンとする。表1には「第1パターン」と記す。)により、レーザ出力860Wでレーザ溶接を行った。それ以外は実施形態と同様とした。
実施例2は、前述の実施形態と同様である。即ち、溶接前正極集電板に幅Wa=0.50mmの凹溝を形成しておき、第1ビームパターンにより、レーザ出力1200Wでレーザ溶接を行った。
実施例3では、溶接前正極集電板に幅Wa=1.00mmの凹溝を形成しておき、第1ビームパターンにより、レーザ出力1760Wでレーザ溶接を行った。それ以外は実施形態と同様とした。
Specifically, in Example 1, a concave groove having a width Wa = 0.20 mm is formed on the positive electrode current collector plate before welding, and a DOE beam pattern similar to that in the embodiment shown in FIG. The laser beam was welded at a laser output of 860 W according to Table 1 (referred to as “first pattern” in Table 1). Other than that, it was the same as the embodiment.
Example 2 is the same as that of the above-mentioned embodiment. That is, a concave groove having a width Wa = 0.50 mm was formed on the positive electrode current collector plate before welding, and laser welding was performed with a laser output of 1200 W using the first beam pattern.
In Example 3, a concave groove having a width Wa = 1.00 mm was formed in the positive electrode current collector plate before welding, and laser welding was performed at a laser output of 1760 W using the first beam pattern. Other than that, it was the same as the embodiment.

一方、比較例1では、溶接前正極集電板に凹溝を設けず、図8に示した第1ビームパターンにより、レーザ出力1200Wでレーザ溶接を行った。それ以外は実施形態と同様とした。
比較例2では、溶接前正極集電板に凹溝を設けず、第1ビームパターンにより、レーザ出力1400Wでレーザ溶接を行った。それ以外は実施形態と同様とした。
比較例3では、溶接前正極集電板に凹溝を設けず、図11に示したDOEビームパターン(これを第2ビームパターンとする。表1には「第2パターン」と記す。)により、レーザ出力300Wでレーザ溶接を行った。このDOEビームパターンは、スポット径が40μmで、間隔Cc=0.70mmをあけて配置された2つのピーク(ピークP4及びピークP5)のみからなる。それ以外は実施形態と同様とした。
比較例4では、溶接前正極集電板に凹溝を設けず、第2ビームパターンにより、レーザ出力1200Wでレーザ溶接を行った。それ以外は実施形態と同様とした。
On the other hand, in Comparative Example 1, laser welding was performed with a laser output of 1200 W using the first beam pattern shown in FIG. Other than that, it was the same as the embodiment.
In Comparative Example 2, laser welding was performed with a laser output of 1400 W using the first beam pattern without providing a groove in the positive current collector plate before welding. Other than that, it was the same as the embodiment.
In Comparative Example 3, the positive electrode current collector plate before welding is not provided with a concave groove, and is based on the DOE beam pattern shown in FIG. 11 (this is referred to as a second beam pattern. Table 1 describes “second pattern”). Laser welding was performed at a laser output of 300 W. This DOE beam pattern is composed of only two peaks (peak P4 and peak P5) having a spot diameter of 40 μm and an interval Cc = 0.70 mm. Other than that, it was the same as the embodiment.
In Comparative Example 4, laser welding was performed with a laser output of 1200 W using the second beam pattern without providing a concave groove in the positive electrode current collector plate before welding. Other than that, it was the same as the embodiment.

また、実施例4では、溶接前負極集電板にWb=幅0.20mmの凹溝を形成しておき、第1ビームパターンにより、レーザ出力1360Wでレーザ溶接を行った。それ以外は実施形態と同様とした。
実施例5は、前述の実施形態と同様である。即ち、溶接前負極集電板に幅Wb=0.50mmの凹溝を形成しておき、第1ビームパターンにより、レーザ出力1900Wでレーザ溶接を行った。
実施例6では、溶接前負極集電板に幅Wb=1.00mmの凹溝を形成しておき、第1ビームパターンにより、レーザ出力2790Wでレーザ溶接を行った。それ以外は実施形態と同様とした。
Moreover, in Example 4, a concave groove with Wb = width 0.20 mm was formed in the negative electrode current collector plate before welding, and laser welding was performed with a laser output of 1360 W using the first beam pattern. Other than that, it was the same as the embodiment.
Example 5 is the same as that of the above-mentioned embodiment. That is, a concave groove having a width Wb = 0.50 mm was formed on the negative electrode current collector plate before welding, and laser welding was performed with a laser output of 1900 W using the first beam pattern.
In Example 6, a concave groove having a width Wb = 1.00 mm was formed on the negative electrode current collector plate before welding, and laser welding was performed with a laser output of 2790 W using the first beam pattern. Other than that, it was the same as the embodiment.

一方、比較例5では、溶接前負極集電板に凹溝を設けず、第1ビームパターンにより、レーザ出力1900Wでレーザ溶接を行った。それ以外は実施形態と同様とした。
比較例6では、溶接前負極集電板に凹溝を設けず、第1ビームパターンにより、レーザ出力2100Wでレーザ溶接を行った。それ以外は実施形態と同様とした。
On the other hand, in Comparative Example 5, laser welding was performed with a laser output of 1900 W using the first beam pattern without providing a groove on the negative electrode current collector plate before welding. Other than that, it was the same as the embodiment.
In Comparative Example 6, laser welding was performed with a laser output of 2100 W using the first beam pattern without providing a groove on the negative electrode current collector plate before welding. Other than that, it was the same as the embodiment.

実施例1〜6及び比較例1〜6のそれぞれについて、レーザ溶接時に形成されるキーホールの頂部の位置を調査した。キーホールの頂部が、図9の下方に示したように、溶接前正極集電板(または溶接前負極集電板)の内部に位置していたものを「集電板内」とした。一方、キーホールの頂部が、図12の下方に示すように、溶接前正極集電板(または溶接前負極集電板)内に留まらずに貫通したものを「貫通」とした。その結果を表1に示す。   About each of Examples 1-6 and Comparative Examples 1-6, the position of the top part of the keyhole formed at the time of laser welding was investigated. As shown in the lower part of FIG. 9, the one in which the top of the keyhole was located inside the positive current collector plate before welding (or the negative current collector plate before welding) was defined as “inside the current collector plate”. On the other hand, as shown in the lower part of FIG. 12, what penetrated the top part of the keyhole without staying in the pre-welding positive electrode current collector plate (or negative electrode current collector plate before welding) was defined as “penetration”. The results are shown in Table 1.

また、実施例1〜6及び比較例1〜6のそれぞれについて、溶接前正極集電板(または溶接前負極集電板)の対向面から飛散したスパッタの発生数(個/mm)を、顕微鏡を用いて目視にて測定した。その結果を表1に示す。   Moreover, about each of Examples 1-6 and Comparative Examples 1-6, the generation | occurrence | production number (pieces / mm) of the spatter | spatter which scattered from the opposing surface of the positive electrode current collector plate before welding (or negative electrode current collector plate before welding) was measured with a microscope. Was measured visually. The results are shown in Table 1.

また、実施例1〜6及び比較例1〜6のそれぞれについて、正極集電板(または負極集電板)と正極板21の正極箔露出部21m(または負極板31の負極箔露出部31m)との接合状態を目視で観察した。正極集電板等と正極箔露出部21m等とが適切に接合されているものを「良好」とした。一方、正極集電板等と正極箔露出部21m等とが接合されていないものを「非接合」とした。また、正極集電板等と正極箔露出部21m等とが接合されているものの、図10に示すように、場所により不均一に接合されているものを「不均一」とした。   Moreover, about each of Examples 1-6 and Comparative Examples 1-6, the positive electrode current collector plate (or negative electrode current collector plate) and the positive electrode foil exposed portion 21m of the positive electrode plate 21 (or the negative electrode foil exposed portion 31m of the negative electrode plate 31). The joint state was visually observed. A sample in which the positive electrode current collector plate and the positive electrode foil exposed portion 21m and the like were appropriately joined was defined as “good”. On the other hand, the case where the positive electrode current collector plate or the like and the positive electrode foil exposed portion 21m or the like were not joined was defined as “non-joined”. Moreover, although the positive electrode current collector plate and the positive electrode foil exposed portion 21m and the like are joined, as shown in FIG.

表1から判るように、溶接前正極集電板に凹溝を設け、かつ、図8に示した第1ビームパターンによりレーザ溶接を行った実施例1〜3では、いずれも、キーホールの頂部が溶接前正極集電板内に位置し、対向面からのスパッタの発生がなく、かつ、正極集電板と正極箔露出部21mとの接合状態が良好であった。一方、溶接前正極集電板に凹溝を設けなかった比較例1〜4では、キーホールの頂部が溶接前正極集電板を貫通したり、対向面からスパッタが発生したり、正極集電板と正極箔露出部21mとの接合状態が「非接合」または「不均一」であった。   As can be seen from Table 1, in Examples 1 to 3 in which a concave groove was provided in the positive electrode current collector plate before welding and laser welding was performed using the first beam pattern shown in FIG. Was located in the positive current collector plate before welding, no spatter was generated from the facing surface, and the joining state of the positive current collector plate and the positive foil exposed portion 21m was good. On the other hand, in Comparative Examples 1 to 4 in which the positive electrode current collector plate before welding was not provided with a groove, the top of the keyhole penetrates the positive electrode current collector plate before welding, spatter is generated from the opposite surface, The joining state of the plate and the positive electrode foil exposed portion 21m was “non-joined” or “non-uniform”.

その理由は、以下であると考えられる。実施例1〜3では、溶接前正極集電板の溝裏部は、凹溝を設けた分だけ厚みTcが0.15mm薄くTc=0.45mmとなっているので、レーザ溶接時に凹溝の分だけ溶融アルミニウムの量を少なくできる。このため、凹溝を設けないために多量の溶融アルミニウムができて毛細管現象が不均一に生じ、正極箔露出部21m同士の間隙に吸い上げられる溶融アルミニウムの量が不均一になるのを抑制できる。よって、正極集電板と正極箔露出部21mとを場所によらず均一に接合できる。また、溝裏部を挟む一対のキーホールの頂部が溶接前正極集電板内に位置しているので、キーホールが溶接前正極集電板を貫通して、対向面からスパッタが発生するのを防止できたと考えられる。   The reason is considered as follows. In Examples 1 to 3, the groove back portion of the positive electrode current collector plate before welding has a thickness Tc of 0.15 mm and Tc = 0.45 mm corresponding to the amount of the concave groove. The amount of molten aluminum can be reduced by that amount. For this reason, since a large amount of molten aluminum is not formed because the concave groove is not provided, the capillary phenomenon is unevenly generated, and the amount of molten aluminum sucked up in the gap between the positive electrode foil exposed portions 21m can be suppressed from becoming uneven. Therefore, the positive electrode current collector plate and the positive electrode foil exposed portion 21m can be uniformly bonded regardless of the place. In addition, since the tops of the pair of keyholes sandwiching the groove back portion are located in the positive current collector plate before welding, the keyhole penetrates the positive current collector plate before welding and spatter is generated from the facing surface. It is thought that we were able to prevent.

一方、比較例1では、溶接前正極集電板に凹溝を設けず板厚が厚い(0.60mm)のに対して、レーザ出力が低すぎるために、溶接前正極集電板が対向面まで十分に溶融しない。このため、正極集電板と正極箔露出部21mとが接合できない。また、レーザ出力が低いため、一対のキーホールの頂部が溶接前正極集電板内に位置しているので、対向面からスパッタが発生しなかったと考えられる。
これに対し、比較例2では、溶接前正極集電板を対向面まで十分に溶融するべく、レーザ出力を高くしたため、一対のキーホールが図12の下方に示したように溶接前正極集電板を貫通して、対向面からスパッタが発生したと考えられる。また、この比較例2では、凹溝を設けず板厚が厚かったために多量の溶融アルミニウムができて毛細管現象が不均一に生じ、正極箔露出部21m同士の間隙に吸い上げられる溶融アルミニウムの量が不均一になる。このため、図10に示すように、正極集電板150と正極箔露出部21mとの溶融固化部151を介した接合が、場所によって不均一になったと考えられる。
On the other hand, in Comparative Example 1, the positive electrode current collector plate before welding was not opposed to the positive electrode current collector plate before welding because the laser output was too low for the thick plate thickness (0.60 mm). Does not melt enough. For this reason, the positive electrode current collector plate and the positive electrode foil exposed portion 21m cannot be joined. Further, since the laser output is low, the tops of the pair of keyholes are located in the positive current collector plate before welding, so it is considered that no spatter occurred from the facing surface.
On the other hand, in Comparative Example 2, since the laser output was increased in order to sufficiently melt the positive electrode current collector plate before welding up to the opposing surface, the pair of keyholes as shown in the lower part of FIG. It is thought that spatter occurred from the opposing surface through the plate. Further, in Comparative Example 2, since the groove was not provided and the plate thickness was thick, a large amount of molten aluminum was produced, and the capillary phenomenon was unevenly generated, and the amount of molten aluminum sucked up in the gap between the positive electrode foil exposed portions 21m was reduced. It becomes uneven. For this reason, as shown in FIG. 10, it is considered that the joining of the positive electrode current collector plate 150 and the positive electrode foil exposed portion 21 m via the melt-solidified portion 151 becomes uneven depending on the location.

また、第1ビームパターンに代えて第2ビームパターンを用いた比較例3でも、溶接前正極集電板に凹溝を設けず板厚が厚いのに対して、レーザ出力が低すぎるために、溶接前正極集電板が裏面から対向面まで十分に溶融しない。このため、正極集電板と正極箔露出部21mとが接合できない。また、レーザ出力が低いため、一対のキーホールの頂部が溶接前正極集電板内に位置しているので、対向面からスパッタが発生しなかったと考えられる。
これに対し、同じく第2ビームパターンを用いた比較例4では、溶接前正極集電板150xを対向面まで十分に溶融溶解するべく、レーザ出力を高くしたため、図12に示すように、一対のキーホール150h,150hの頂部が溶接前正極集電板150xを貫通して、対向面からスパッタが発生したと考えられる。また、この比較例4では、比較例2と同様に、多量の溶融アルミニウムができて毛細管現象が不均一に生じ、正極箔露出部21m同士の間隙に吸い上げられる溶融アルミニウムの量が不均一になる。このため、正極集電板150と正極箔露出部21mとの溶融固化部151を介した接合が、場所によって不均一になったと考えられる(図10参照)。
Further, in Comparative Example 3 using the second beam pattern instead of the first beam pattern, the plate thickness is not provided in the positive electrode current collector plate before welding, but the laser output is too low. The positive electrode current collector plate before welding does not melt sufficiently from the back surface to the facing surface. For this reason, the positive electrode current collector plate and the positive electrode foil exposed portion 21m cannot be joined. Further, since the laser output is low, the tops of the pair of keyholes are located in the positive current collector plate before welding, so it is considered that no spatter occurred from the facing surface.
On the other hand, in Comparative Example 4 using the second beam pattern, the laser output was increased in order to sufficiently melt and melt the positive electrode current collector plate 150x before welding up to the opposing surface. It is considered that the tops of the keyholes 150h and 150h penetrated the positive current collector plate 150x before welding and spatter was generated from the facing surface. Further, in Comparative Example 4, as in Comparative Example 2, a large amount of molten aluminum is formed, and the capillary phenomenon occurs non-uniformly, and the amount of molten aluminum sucked up in the gaps between the positive electrode foil exposed portions 21m becomes non-uniform. . For this reason, it is considered that the joining of the positive electrode current collector plate 150 and the positive electrode foil exposed portion 21m via the melt-solidified portion 151 is uneven depending on the location (see FIG. 10).

次に、溶接前負極集電板に凹溝を設け、かつ、図8に示した第1ビームパターンによりレーザ溶接を行った実施例4〜6では、いずれも、キーホールの頂部が溶接前負極集電板内に位置し、対向面からのスパッタの発生がなく、かつ、負極集電板と負極箔露出部31mとの接合状態が良好であった。一方、溶接前負極集電板に凹溝を設けなかった比較例5,6では、キーホールの頂部が溶接前負極集電板を貫通したり、対向面からのスパッタの発生したり、負極集電板と負極箔露出部31mとの接合状態が「非接合」または「不均一」であった。   Next, in Examples 4 to 6 in which the negative electrode current collector plate before welding was provided with a concave groove and laser welding was performed using the first beam pattern shown in FIG. 8, the top of the keyhole was the negative electrode before welding. It was located in the current collector plate, no spatter was generated from the facing surface, and the bonding state between the negative electrode current collector plate and the negative electrode foil exposed portion 31m was good. On the other hand, in Comparative Examples 5 and 6 where the negative electrode current collector plate before welding was not provided with a groove, the top of the keyhole penetrates the negative electrode current collector plate before welding, spattering occurred from the opposing surface, The bonding state between the electric plate and the negative electrode foil exposed portion 31m was “non-bonded” or “non-uniform”.

その理由は、以下であると考えられる。正極の場合(実施例1〜3)と同様、実施例4〜6では、溶接前負極集電板の溝裏部は、凹溝を設けた分だけ厚みTdが0.15mm薄くTd=0.45mmとなっているので、レーザ溶接時に凹溝の分だけ溶融銅の量を少なくできる。このため、凹溝を設けないために多量の溶融銅ができて毛細管現象が不均一に生じ、負極箔露出部31m同士の間隙に吸い上げられる溶融銅の量が不均一になるのを抑制できる。よって、負極集電板と負極箔露出部31mとを場所によらず均一に接合できる。また、溝裏部を挟む一対のキーホールの頂部が溶接前負極集電板内に位置しているので、キーホールが溶接前負極集電板を貫通して、対向面からスパッタが発生するのを防止できたと考えられる。   The reason is considered as follows. As in the case of the positive electrode (Examples 1 to 3), in Examples 4 to 6, the groove back portion of the negative electrode current collector plate before welding has a thickness Td of 0.15 mm and Td = 0. Since it is 45 mm, the amount of molten copper can be reduced by the amount of the concave groove during laser welding. For this reason, it is possible to suppress a large amount of molten copper from being formed because the concave groove is not provided, and the capillary phenomenon to occur non-uniformly, and the amount of molten copper sucked into the gap between the negative electrode foil exposed portions 31m to be non-uniform. Therefore, the negative electrode current collector plate and the negative electrode foil exposed portion 31m can be uniformly joined regardless of the place. In addition, since the tops of the pair of keyholes sandwiching the groove back portion are located in the negative electrode current collector plate before welding, the keyhole penetrates the negative electrode current collector plate before welding and spatter is generated from the facing surface. It is thought that we were able to prevent.

一方、比較例5では、溶接前負極集電板に凹溝を設けず板厚が厚い(0.60mm)のに対して、レーザ出力が低すぎるために、溶接前負極集電板が対向面まで十分に溶融しない。このため、負極集電板と負極箔露出部31mとが接合できない。また、レーザ出力が低いため、一対のキーホールの頂部が溶接前負極集電板内に位置しているので、対向面からスパッタが発生しなかったと考えられる。
これに対し、比較例6では、溶接前負極集電板を対向面まで十分に溶融するべく、レーザ出力を高くしたため、一対のキーホールが溶接前負極集電板を貫通して、対向面からスパッタが発生したと考えられる。また、この比較例6では、凹溝を設けず板厚が厚かったために多量の溶融銅ができて毛細管現象が不均一に生じ、負極箔露出部31m同士の間隙に吸い上げられる溶融銅の量が不均一になる。このため、図10に示すように、負極集電板160と負極箔露出部31mとの溶融固化部161を介した接合が、場所によって不均一になったと考えられる。
On the other hand, in Comparative Example 5, the negative electrode current collector plate before welding was opposed to the negative electrode current collector plate before welding because the negative electrode current collector plate before welding had a thick plate thickness (0.60 mm), but the laser output was too low. Does not melt enough. For this reason, the negative electrode current collector plate and the negative electrode foil exposed portion 31m cannot be joined. In addition, since the laser output is low, the tops of the pair of keyholes are located in the negative electrode current collector plate before welding, so it is considered that no spatter occurred from the facing surface.
On the other hand, in Comparative Example 6, since the laser output was increased to sufficiently melt the negative electrode current collector plate before welding to the opposing surface, the pair of keyholes penetrated the negative electrode current collector plate before welding from the opposing surface. It is thought that spatter occurred. Further, in Comparative Example 6, since the groove was not provided and the plate thickness was thick, a large amount of molten copper was formed, and the capillary phenomenon was unevenly generated, and the amount of molten copper sucked up in the gap between the negative electrode foil exposed portions 31m was reduced. It becomes uneven. For this reason, as shown in FIG. 10, it is considered that the joining of the negative electrode current collector plate 160 and the negative electrode foil exposed portion 31m via the melt-solidified portion 161 is uneven depending on the location.

以上で説明したように、本実施形態の電池1の製造方法では、溶接前正極集電板50xの溝裏部55は、凹溝53を設けた分だけ厚みTcが薄くなっているので、レーザ溶接時に凹溝53の分だけ溶融アルミニウムの量を少なくできる。このため、凹溝53を設けないために多量の溶融アルミニウムができて毛細管現象が不均一に生じ、厚み方向BHに隣り合う正極箔露出部21m同士の間隙に吸い上げられる溶融アルミニウムの量が不均一になるのを抑制できる。よって、正極集電板50と正極板21の正極箔露出部21mとを場所によらず均一な強度で接合できる。更に、溶接工程では、溝裏部55を挟む一対のキーホール50h,50hの頂部50hs,50hsが溶接前正極集電板50x内に位置するようにレーザ溶接している。このため、キーホール50hが溶接前正極集電板50xを貫通して、対向面50aからスパッタが正極板21にまで飛散したり、貫通孔が空いてレーザ光LBが正極板21にまで届くのを防止できる。   As described above, in the manufacturing method of the battery 1 of the present embodiment, the groove back portion 55 of the pre-weld positive electrode current collector plate 50x has a thickness Tc that is reduced by the amount of the concave groove 53. The amount of molten aluminum can be reduced by the amount of the groove 53 during welding. For this reason, since the concave groove 53 is not provided, a large amount of molten aluminum is formed, and the capillary phenomenon occurs non-uniformly, and the amount of molten aluminum sucked into the gap between the positive electrode foil exposed portions 21m adjacent in the thickness direction BH is non-uniform. Can be suppressed. Therefore, the positive electrode current collector plate 50 and the positive electrode foil exposed portion 21m of the positive electrode plate 21 can be joined with a uniform strength regardless of the location. Further, in the welding process, laser welding is performed so that the top portions 50hs, 50hs of the pair of keyholes 50h, 50h sandwiching the groove back portion 55 are located in the positive current collector plate 50x before welding. For this reason, the keyhole 50h penetrates the positive electrode current collector plate 50x before welding, and spatter is scattered from the facing surface 50a to the positive electrode plate 21, or a through hole is formed and the laser beam LB reaches the positive electrode plate 21. Can be prevented.

また、本実施形態では、溶接前負極集電板60xの溝裏部65は、凹溝63を設けた分だけ厚みTdが薄くなっているので、レーザ溶接時に凹溝63の分だけ溶融銅の量を少なくできる。このため、凹溝63を設けないために多量の溶融銅ができて毛細管現象が不均一に生じ、厚み方向BHに隣り合う負極箔露出部31m同士の間隙に吸い上げられる溶融銅の量が不均一になるのを抑制できる。よって、負極集電板60と負極板31の負極箔露出部31mとを場所によらず均一な強度で接合できる。更に、溶接工程では、溝裏部65を挟む一対のキーホール60h,60hの頂部60hs,60hsが溶接前負極集電板60x内に位置するようにレーザ溶接している。このため、キーホール60hが溶接前負極集電板60xを貫通して、対向面60aからスパッタが負極板31にまで飛散したり、貫通孔が空いてレーザ光LBが負極板31にまで届くのを防止できる。   Further, in this embodiment, the groove back portion 65 of the negative electrode current collector plate 60x before welding has a thickness Td that is reduced by the amount of the recessed groove 63, so that the molten copper is made by the amount of the recessed groove 63 during laser welding. The amount can be reduced. For this reason, since the concave groove 63 is not provided, a large amount of molten copper is formed, and the capillary phenomenon occurs nonuniformly, and the amount of molten copper sucked up in the gap between the negative electrode foil exposed portions 31m adjacent in the thickness direction BH is nonuniform. Can be suppressed. Therefore, the negative electrode current collector plate 60 and the negative electrode foil exposed portion 31m of the negative electrode plate 31 can be joined with a uniform strength regardless of the location. Further, in the welding process, laser welding is performed such that the top portions 60hs and 60hs of the pair of keyholes 60h and 60h sandwiching the groove back portion 65 are positioned in the negative electrode current collector plate 60x before welding. For this reason, the keyhole 60h penetrates the negative electrode current collector plate 60x before welding, and spatter is scattered from the facing surface 60a to the negative electrode plate 31, or a through hole is formed and the laser beam LB reaches the negative electrode plate 31. Can be prevented.

更に、本実施形態では、負極集電板60は、銅からなる。溶融銅は、溶融アルミニウムなどに比して表面張力が強いので、不均一に毛細管現象が生じ易く、負極箔露出部31m同士の間隙に吸い上げられる溶融銅の量が不均一になり易い。しかし、前述のように、負極集電板60に凹溝63を設けたことで、溶融銅の量を少なくできるので、不均一に毛細管現象が生じるのを抑制し、負極箔露出部31m同士の間隙に吸い上げられる溶融銅の量が不均一になるのを抑制できる。よって、負極集電板60が銅からなるにも拘わらず、負極集電板60と負極板31の負極箔露出部31mとを場所によらず均一な強度で接合できる。   Furthermore, in this embodiment, the negative electrode current collector plate 60 is made of copper. Since the surface tension of molten copper is stronger than that of molten aluminum or the like, a capillary phenomenon tends to occur non-uniformly, and the amount of molten copper sucked into the gap between the negative electrode foil exposed portions 31m tends to be non-uniform. However, as described above, by providing the concave groove 63 in the negative electrode current collector plate 60, it is possible to reduce the amount of molten copper. It is possible to suppress the amount of molten copper sucked up in the gap from becoming uneven. Therefore, although the negative electrode current collector plate 60 is made of copper, the negative electrode current collector plate 60 and the negative electrode foil exposed portion 31m of the negative electrode plate 31 can be joined with a uniform strength regardless of the location.

以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態では、電極体として、円筒状捲回型の電極体20を例示したが、これに限られない。例えば、扁平状捲回型の電極体、即ち、帯状の正極板と帯状の負極板とを、帯状の一対のセパレータを介して互いに重ねて、軸線周りに扁平状に捲回した電極体でもよい。或いは、積層型の電極体、即ち、各々所定形状(例えば矩形状など)をなす複数の正極板及び複数の負極板を、セパレータを介して交互に複数積層した電極体でもよい。
In the above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof.
For example, in the embodiment, the cylindrical wound electrode body 20 is exemplified as the electrode body, but is not limited thereto. For example, it may be a flat wound electrode body, that is, an electrode body in which a belt-like positive electrode plate and a belt-like negative electrode plate are overlapped with each other via a pair of belt-like separators and wound around the axis. . Alternatively, a stacked electrode body, that is, an electrode body in which a plurality of positive plates and a plurality of negative plates each having a predetermined shape (for example, a rectangular shape) are alternately stacked via separators may be used.

1 電池
20 電極体
21 正極板
21m 正極箔露出部
22 正極集電箔
22a 主面
23 正極活物質層
31 負極板
31m 負極箔露出部
32 負極集電箔
32a 主面
33 負極活物質層
50 正極集電板(正極集電体,接続部)
50x 溶接前正極集電板(溶接前集電体,溶接前接続部)
50a 対向面
50b 裏面
50h キーホール
50hs (キーホールの)頂部
51 溶融固化部
53 凹溝
55 溝裏部
57 (溝裏部を含む)部位
60 負極集電板(負極集電体,接続部)
60x 溶接前負極集電板(溶接前集電体,溶接前接続部)
60a 対向面
60b 裏面
60h キーホール
60hs (キーホールの)頂部
61 溶融固化部
63 凹溝
65 溝裏部
67 (溝裏部を含む)部位
BH 厚み方向
FH 溝延伸方向
LB レーザ光
DESCRIPTION OF SYMBOLS 1 Battery 20 Electrode body 21 Positive electrode plate 21m Positive electrode foil exposed part 22 Positive electrode collector foil 22a Main surface 23 Positive electrode active material layer 31 Negative electrode plate 31m Negative electrode foil exposed part 32 Negative electrode current collector foil 32a Main surface 33 Negative electrode active material layer 50 Positive electrode collector Electric plate (positive electrode current collector, connection part)
50x Positive current collector plate before welding (current collector before welding, connection part before welding)
50a Opposite surface 50b Back surface 50h Keyhole 50hs (Keyhole) top 51 Melt-solidified portion 53 Concave groove 55 Groove back portion 57 (including groove back portion) Site 60 Negative electrode current collector plate (Negative electrode current collector, connection portion)
60x Negative electrode current collector plate before welding (current collector before welding, connection part before welding)
60a Opposing surface 60b Back surface 60h Keyhole 60hs (Keyhole) top portion 61 Melting and solidifying portion 63 Concave groove 65 Groove back portion 67 (including groove back portion) Site BH Thickness direction FH Groove extending direction LB Laser light

Claims (1)

集電箔を含む1または複数の電極板のうち上記集電箔の両主面が厚み方向に露出した箔露出部を、
上記電極板に対向する対向面とこの対向面の裏面とを含む板状の接続部を有する集電体の上記接続部に、
上記厚み方向に複数の上記箔露出部が重なる形態で、上記対向面側から突き当てて溶接してなる
電池の製造方法であって、
上記対向面及び上記裏面を含む板状で、上記対向面に設けられ溝延伸方向に延びる凹溝を含む溶接前接続部を有する溶接前集電体の上記溶接前接続部に、上記1又は複数の電極板の上記箔露出部を、上記厚み方向に複数の上記箔露出部が重なり、かつ、これらの箔露出部がそれぞれ上記凹溝を跨ぐ形態に、上記対向面側から突き当てる突当工程と、
上記溶接前接続部のうち上記凹溝の裏側の溝裏部に、上記裏面側からレーザ光を照射しつつ上記溝延伸方向に走査して、上記複数の箔露出部をそれぞれ上記接続部に溶接する溶接工程と、を備え、
上記溶接工程において、
上記レーザ光により、
上記溶接前接続部のうち上記溝裏部を挟んだ位置に、上記裏面から上記対向面に向けて延び、頂部が上記溶接前接続部内に位置する一対のキーホールを形成し、かつ、
上記溶接前接続部のうち上記一対のキーホール間の上記溝裏部を含む部位を、上記裏面から上記対向面まで溶融させる
電池の製造方法。
A foil exposed portion in which both main surfaces of the current collecting foil are exposed in the thickness direction among one or a plurality of electrode plates including the current collecting foil,
In the connection portion of the current collector having a plate-like connection portion including an opposing surface facing the electrode plate and a back surface of the opposing surface,
In the form in which the plurality of foil exposed portions overlap in the thickness direction, the battery is produced by abutting and welding from the facing surface side,
One or more of the pre-welding connection portions of the pre-welding current collector having a pre-welding connection portion including a concave groove provided on the opposing surface and extending in the groove extending direction in a plate shape including the facing surface and the back surface. The abutting step of abutting the foil exposed portion of the electrode plate from the facing surface side in a form in which the plurality of foil exposed portions overlap in the thickness direction, and each of the foil exposed portions straddles the concave groove When,
Scanning in the groove extending direction while irradiating a laser beam from the back side to the groove back part on the back side of the concave groove among the pre-welding connection parts, and welding the plurality of foil exposed parts to the connection parts respectively. A welding process to perform,
In the above welding process,
By the above laser beam,
A pair of keyholes extending from the back surface toward the facing surface at a position sandwiching the groove back portion in the pre-welding connection portion, and forming a pair of keyholes whose top portions are located in the pre-welding connection portion, and
A battery manufacturing method in which a portion including the groove back portion between the pair of keyholes in the connection portion before welding is melted from the back surface to the facing surface.
JP2015239900A 2015-12-09 2015-12-09 Battery manufacturing method Active JP6493188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015239900A JP6493188B2 (en) 2015-12-09 2015-12-09 Battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015239900A JP6493188B2 (en) 2015-12-09 2015-12-09 Battery manufacturing method

Publications (2)

Publication Number Publication Date
JP2017107709A true JP2017107709A (en) 2017-06-15
JP6493188B2 JP6493188B2 (en) 2019-04-03

Family

ID=59059786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015239900A Active JP6493188B2 (en) 2015-12-09 2015-12-09 Battery manufacturing method

Country Status (1)

Country Link
JP (1) JP6493188B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019174374A1 (en) * 2018-03-15 2019-09-19 宁德时代新能源科技股份有限公司 Bus bar and battery module
US12046777B2 (en) 2019-08-08 2024-07-23 Murata Manufacturing Co., Ltd. Secondary battery, battery pack, electronic device, electric tool, and electric vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242317A (en) * 2006-03-07 2007-09-20 Toyota Motor Corp Battery and manufacturing method of battery
JP2008311184A (en) * 2007-06-18 2008-12-25 Hitachi Vehicle Energy Ltd Lithium ion secondary battery
JP2010272513A (en) * 2009-05-20 2010-12-02 Sb Limotive Co Ltd Secondary battery
JP2010283115A (en) * 2009-06-04 2010-12-16 Panasonic Corp Method of manufacturing energy device
JP2012086254A (en) * 2010-10-21 2012-05-10 Toyota Motor Corp Welding method, welding apparatus, method of manufacturing battery, and battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242317A (en) * 2006-03-07 2007-09-20 Toyota Motor Corp Battery and manufacturing method of battery
JP2008311184A (en) * 2007-06-18 2008-12-25 Hitachi Vehicle Energy Ltd Lithium ion secondary battery
JP2010272513A (en) * 2009-05-20 2010-12-02 Sb Limotive Co Ltd Secondary battery
JP2010283115A (en) * 2009-06-04 2010-12-16 Panasonic Corp Method of manufacturing energy device
JP2012086254A (en) * 2010-10-21 2012-05-10 Toyota Motor Corp Welding method, welding apparatus, method of manufacturing battery, and battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019174374A1 (en) * 2018-03-15 2019-09-19 宁德时代新能源科技股份有限公司 Bus bar and battery module
US12046777B2 (en) 2019-08-08 2024-07-23 Murata Manufacturing Co., Ltd. Secondary battery, battery pack, electronic device, electric tool, and electric vehicle

Also Published As

Publication number Publication date
JP6493188B2 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
JP5587061B2 (en) Energizing block for resistance welding, sealed battery manufacturing method using the energizing block, and sealed battery
JP5080199B2 (en) Secondary battery and method for manufacturing secondary battery
JP6183555B2 (en) Tab welding method for battery pack
JP4444989B2 (en) Lithium ion secondary battery
JP6331079B2 (en) Laser welding method and laser welding apparatus
JP6022460B2 (en) Battery and manufacturing method thereof
JP5337586B2 (en) Sealed battery and method for manufacturing sealed battery
JP2015099681A (en) Sealed battery
JP2013237102A (en) Device case and method of manufacturing the same
JP6853762B2 (en) Secondary battery
JP2008258145A (en) Secondary battery and method for manufacturing the secondary battery
JP6593304B2 (en) Electric storage device and method for manufacturing electric storage device
JP2020013733A (en) Power storage device and manufacturing method thereof
JP2007250442A (en) Nonaqueous electrolyte secondary battery
JP6493188B2 (en) Battery manufacturing method
JP2009266695A (en) Manufacturing method of battery, and battery pack
JP2020004643A (en) Power storage device
JP6579023B2 (en) Manufacturing method of secondary battery
JP2019207767A (en) Manufacturing method of power storage device
JP5248210B2 (en) Lithium ion secondary battery
JP2007242362A (en) Sealed battery and its manufacturing method
JP2013165010A (en) Power storage element
JP2018073767A (en) Manufacturing method of secondary battery
JP2015109140A (en) Manufacturing method of sealed battery
JP2015115223A (en) Method of manufacturing sealed battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190218

R151 Written notification of patent or utility model registration

Ref document number: 6493188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250