JP2017105714A - Multiple drug discharge pump inhibitor - Google Patents
Multiple drug discharge pump inhibitor Download PDFInfo
- Publication number
- JP2017105714A JP2017105714A JP2015238703A JP2015238703A JP2017105714A JP 2017105714 A JP2017105714 A JP 2017105714A JP 2015238703 A JP2015238703 A JP 2015238703A JP 2015238703 A JP2015238703 A JP 2015238703A JP 2017105714 A JP2017105714 A JP 2017105714A
- Authority
- JP
- Japan
- Prior art keywords
- compound
- group
- hydrogen atom
- pharmaceutical composition
- multidrug
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 0 *C*C(*)C(Nc1cc(C(N*)=O)c(*)cc1)=O Chemical compound *C*C(*)C(Nc1cc(C(N*)=O)c(*)cc1)=O 0.000 description 1
Images
Landscapes
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Thiazole And Isothizaole Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
本発明は、細菌感染症、特に多剤耐性細菌感染症の予防又は治療に有用な化合物、より詳細には、多剤耐性細菌に高発現している多剤排出ポンプの排出能に対する阻害能を有する化合物、及び当該化合物を有効成分とする医薬用組成物に関する。 The present invention relates to compounds useful for the prevention or treatment of bacterial infections, particularly multidrug resistant bacterial infections, and more specifically, the ability to inhibit the drainage ability of multidrug efflux pumps that are highly expressed in multidrug resistant bacteria. And a pharmaceutical composition containing the compound as an active ingredient.
細菌による感染症の予防や治療のために、現在までに多くの抗細菌剤が開発され、β−ラクタム系、アミノグリコシド系、キノロン系、マクロリド系、テトラサイクリン系等の化合物が医薬として実用化されて来た。しかし、近年では、これらの抗細菌剤に対する耐性細菌の出現が、臨床現場で重大な問題になっている。薬剤耐性細菌による感染症の中でも、多剤耐性緑膿菌(MDRP)、多剤耐性アシネトバクター(MDRA)、カルバペネム耐性腸球菌(CRE)等のグラム陰性多剤耐性菌は、メチシリン耐性黄色ブドウ球菌(MRSA)等のグラム陽性多剤耐性菌とは異なり、対処できる治療薬がほとんど無い。このため、グラム陰性多剤耐性菌による院内感染が大きな問題となっている。グラム陰性多剤耐性菌の感染症に対し、新たな抗細菌剤により対処する方法では、新たな耐性細菌の出現を招くおそれがあり、根本的な解決方法とはなりにくい。多剤耐性グラム陰性細菌感染症克服のためには、新規な概念に基づく予防/治療戦略の創出が喫緊の課題として、社会的に要請されている状況がある。 Many antibacterial agents have been developed to date for the prevention and treatment of infections caused by bacteria, and β-lactams, aminoglycosides, quinolones, macrolides, tetracyclines, and other compounds have been put into practical use as pharmaceuticals. I came. However, in recent years, the emergence of resistant bacteria to these antibacterial agents has become a serious problem in clinical practice. Among infections caused by drug-resistant bacteria, gram-negative multidrug-resistant bacteria such as multidrug-resistant Pseudomonas aeruginosa (MDRP), multidrug-resistant Acinetobacter (MDRA), and carbapenem-resistant enterococci (CRE) are methicillin-resistant Staphylococcus aureus ( Unlike gram-positive multidrug-resistant bacteria such as MRSA), there are few therapeutic agents that can be addressed. For this reason, nosocomial infections caused by Gram-negative multidrug-resistant bacteria are a major problem. A method of dealing with an infection caused by a gram-negative multidrug-resistant bacterium with a new antibacterial agent may lead to the emergence of a new resistant bacterium, and is unlikely to be a fundamental solution. In order to overcome multidrug-resistant gram-negative bacterial infections, the creation of prevention / treatment strategies based on new concepts is an urgent issue that is socially demanded.
細菌の多剤耐性化は、複数の耐性因子の獲得によって生じる。耐性因子の獲得の態様としては、例えば、カルバペネマーゼの産生やDNAジャイレース変異の蓄積等がある。これらの耐性因子の個々の耐性スペクトルははっきりしているのに対して、近年の多剤耐性細菌は、非常に広範な、ほとんど全ての抗生物質に耐性を示す点に特徴がある。グラム陰性細菌におけるこのような広範囲な多剤耐性の基礎になっているのは、多剤排出システムの高発現である。グラム陰性細菌の多剤排出システムは、マルチコンポーネント型排出タンパク質複合体であり、大腸菌におけるAcrAB−TolCや緑膿菌におけるMexAB−OprM及びMexXY−OprM等が知られている。これらのうち、AcrB、MexB、及びMexYが、グラム陰性細菌内膜上に存在するRND(resistance/nodulation/division)型多剤排出ポンプであり、プロトン駆動力を利用して多様な薬剤を排出する(非特許文献1)。これらの多剤排出ポンプによる薬剤の排出は、細菌体中の薬剤濃度を低下させて薬剤への感受性を著しく減ずるという直接的効果に加えて、低濃度の薬剤環境下に他の耐性因子を獲得する機会を与えるという間接的効果をもたらし、細菌の多剤耐性化の要因となっている。 Bacterial multidrug resistance is caused by the acquisition of multiple resistance factors. Examples of the acquisition of the resistance factor include production of carbapenemase and accumulation of DNA gyrase mutation. While the individual resistance spectrum of these resistance factors is clear, recent multi-drug resistant bacteria are characterized by a very broad resistance to almost all antibiotics. Underlying such widespread multidrug resistance in gram-negative bacteria is the high expression of the multidrug efflux system. The multidrug efflux system of Gram-negative bacteria is a multicomponent efflux protein complex, and AcrAB-TolC in Escherichia coli, MexAB-OprM and MexXY-OprM in Pseudomonas aeruginosa are known. Among these, AcrB, MexB, and MexY are RND (resistance / nodulation / division) type multidrug efflux pumps that exist on the inner membrane of Gram-negative bacteria and excrete various drugs using proton driving force. (Non-Patent Document 1). Drug drainage by these multidrug pumps gains other resistance factors in low drug environments in addition to the direct effect of lowering drug concentration in the bacterial body and significantly reducing drug sensitivity It has the indirect effect of giving the opportunity to do so, and has become a factor for the multidrug resistance of bacteria.
以上の背景から、多剤耐性化の要因となっている多剤排出ポンプの排出能を阻害することによって既存の抗細菌剤を有効にする併用剤なる概念が提出され、その開発がなされて来た。例えば、ピリドピリミジンを母核とするABI−PP(D13−9001)が、大腸菌のAcrB及び緑膿菌のMexBの排出能を阻害し、既知抗細菌剤に対する細菌の感受性を高めることが報告されている(特許文献1)。また、フェニルアラニン、アルギニン、及び3−アミノキノリンがアミド結合によって連結したオリゴペプチド型化合物(PAβN)並びにその関連化合物(特許文献2〜5)や、分子両端にアミジン基を有する化合物群(ペンタアミジン類)(特許文献6及び7)が、多剤排出ポンプが高発現している緑膿菌株に対する既知抗細菌剤の最小発育阻止濃度(MIC)を低下させることが報告されている。しかしながら、これらの化合物はいずれも医薬応用には至っておらず、現在までに、多剤排出能阻害剤の医薬としての応用例は皆無である。
Based on the above background, the concept of a concomitant drug that makes existing antibacterial agents effective by inhibiting the discharge ability of the multidrug discharge pump, which is the cause of multidrug resistance, has been submitted and developed. It was. For example, it has been reported that ABI-PP (D13-9001) having pyridopyrimidine as a nucleus inhibits the excretion ability of AcrB of E. coli and MexB of Pseudomonas aeruginosa and increases the susceptibility of bacteria to known antibacterial agents. (Patent Document 1). In addition, an oligopeptide compound (PAβN) in which phenylalanine, arginine, and 3-aminoquinoline are linked by an amide bond and related compounds (
近年、合理的医薬分子設計(ラショナルドラッグデザイン)が創薬における重要なアプローチとして認識されるに至っている。特に、薬剤標的となるタンパク質の3次元構造情報を結晶構造解析によって明らかにし、その立体構造情報に基づく医薬設計(SBDD)が確度の高い手法として盛んに試みられている。SBDDのためには、薬剤と標的タンパク質の共結晶構造を取得する必要があるが、膜タンパク質である多剤排出ポンプの結晶構造の取得は困難である。本発明者らは世界に先駆けてAcrBの結晶構造解析に成功し(非特許文献2)、また、AcrBの基質となり排出される数種の既知抗細菌剤とAcrBの共結晶構造解析も達成し、多剤排出ポンプの薬剤排出機構を分子レベルで解明することに世界で初めて成功した(非特許文献3及び4)。更に、排出阻害剤ABI−PP(D13−9001)とMexBとの共結晶構造解析を行い、阻害剤の結合ポケットの存在を明らかにし、ABI−PPが緑膿菌のもう一つの多剤排出ポンプであるMexYの排出能を阻害できない構造的要因も明らかにした(非特許文献5)。 In recent years, rational drug molecular design (rational drug design) has been recognized as an important approach in drug discovery. In particular, three-dimensional structure information of a protein serving as a drug target is clarified by crystal structure analysis, and pharmaceutical design (SBDD) based on the three-dimensional structure information is actively attempted as a highly accurate method. For SBDD, it is necessary to obtain a co-crystal structure of a drug and a target protein, but it is difficult to obtain a crystal structure of a multidrug efflux pump that is a membrane protein. The inventors of the present invention succeeded in crystal structure analysis of AcrB for the first time in the world (Non-patent Document 2), and also achieved co-crystal structure analysis of AcrB with several known antibacterial agents discharged as AcrB substrates. For the first time in the world, we have succeeded in elucidating the drug discharge mechanism of a multidrug discharge pump at the molecular level (Non-patent Documents 3 and 4). Furthermore, the co-crystal structure analysis of the excretion inhibitor ABI-PP (D13-9001) and MexB was conducted to clarify the existence of the inhibitor binding pocket, and ABI-PP is another multidrug excretion pump of Pseudomonas aeruginosa. The structural factor that cannot inhibit the excretion ability of MexY is also clarified (Non-patent Document 5).
本発明は、多剤排出ポンプの排出能を阻害する活性を有する化合物、特に、緑膿菌が有する2種類の多剤排出ポンプMexB及びMexYの両方に対する排出能阻害活性を有する化合物、及び当該化合物を有効成分とする医薬用組成物を提供することを課題としている。 The present invention relates to a compound having an activity of inhibiting the discharge ability of a multidrug efflux pump, in particular, a compound having an efflux inhibitory activity against both of the two multidrug efflux pumps MexB and MexY possessed by Pseudomonas aeruginosa An object of the present invention is to provide a medicinal composition containing as an active ingredient.
本発明に係る化合物、多剤排出ポンプ阻害剤、及び医薬用組成物は、下記[1]〜[12]である。
[1] 下記一般式(I)
The compounds, multidrug efflux pump inhibitors, and pharmaceutical compositions according to the present invention are the following [1] to [12].
[1] The following general formula (I)
[式(I)中、R1は、1個の水素原子が炭素原子数1〜4のアルキル基で置換されていてもよいチアゾール基、アダマンチル基、又は炭素原子数3〜6のアルキル基を表し、Xは、水素原子又はハロゲン原子を表し、R2は、アミノ基又は水素原子を表し、nは1〜4の整数を表し、R3は、1個の水素原子がアミジノ基で置換されていてもよいアミノ基又はイミダゾール基を表す。]
で表される化合物若しくはその生理学的に許容される塩、又はそれらの溶媒和物。
[2] 前記R1が1個の水素原子が炭素原子数1〜4のアルキル基で置換されていてもよいチアゾール基であり、Xが水素原子、塩素原子、又は臭素原子であり、R2がアミノ基である、前記[1]の化合物若しくはその生理学的に許容される塩、又はそれらの溶媒和物。
[3] R3が、無置換のアミノ基又は1個の水素原子がアミジノ基で置換されたアミノ基であり、nが3又は4である、前記[1]又は[2]の化合物若しくはその生理学的に許容される塩、又はそれらの溶媒和物。
[4] 前記一般式(I)で表される化合物が、下記式(H−31)、(H−32)、(H−34)〜(H−37)、(H−39)、(H−46)、(H−47)、(H−50)、又は(H−51)
[In Formula (I), R 1 represents a thiazole group, an adamantyl group, or an alkyl group having 3 to 6 carbon atoms in which one hydrogen atom may be substituted with an alkyl group having 1 to 4 carbon atoms. X represents a hydrogen atom or a halogen atom, R 2 represents an amino group or a hydrogen atom, n represents an integer of 1 to 4, and R 3 represents one hydrogen atom substituted with an amidino group. An amino group or an imidazole group which may be present. ]
Or a physiologically acceptable salt thereof, or a solvate thereof.
[2] R 1 is a thiazole group in which one hydrogen atom may be substituted with an alkyl group having 1 to 4 carbon atoms, X is a hydrogen atom, a chlorine atom, or a bromine atom, and R 2 Or a physiologically acceptable salt thereof, or a solvate thereof, wherein is an amino group.
[3] The compound of [1] or [2] above, wherein R 3 is an unsubstituted amino group or an amino group in which one hydrogen atom is substituted with an amidino group, and n is 3 or 4 or a compound thereof Physiologically acceptable salts or solvates thereof.
[4] The compound represented by the general formula (I) is represented by the following formulas (H-31), (H-32), (H-34) to (H-37), (H-39), (H -46), (H-47), (H-50), or (H-51)
で表される化合物である、前記[1]〜[3]のいずれかの化合物若しくはその生理学的に許容される塩、又はそれらの溶媒和物。
[5] 前記[1]〜[4]のいずれかの化合物若しくはその生理学的に許容される塩、又はそれらの溶媒和物のうち1種又は2種以上を有効成分とし、多剤排出ポンプの薬剤排出能を阻害する活性を有する、多剤排出ポンプ阻害剤。
[6] MexBの薬剤排出能とMexYの薬剤排出能の両方を阻害する活性を有する、前記[5]の多剤排出ポンプ阻害剤。
[7] 前記[1]〜[4]のいずれかの化合物若しくはその生理学的に許容される塩、又はそれらの溶媒和物のうち1種又は2種以上を有効成分とする、医薬用組成物。
[8] 細菌感染症の予防及び/又は治療に用いられる、前記[7]の医薬用組成物。
[9] さらに、1種又は2種以上の抗細菌剤を含有する、前記[8]の医薬用組成物。
[10] 前記細菌感染症の病原細菌が、グラム陰性菌である、前記[8]又は[9]の医薬用組成物。
[11] 前記細菌感染症の病原細菌が、緑膿菌である、前記[8]又は[9]の医薬用組成物。
[12] 前記細菌感染症の病原細菌が、抗細菌剤に対する耐性を獲得した細菌である、前記[8]〜[11]のいずれかの医薬用組成物。
The compound of any one of the above-mentioned [1] to [3], or a physiologically acceptable salt thereof, or a solvate thereof.
[5] The compound according to any one of [1] to [4] or a physiologically acceptable salt thereof, or one or more of these solvates as an active ingredient, A multidrug efflux pump inhibitor having an activity of inhibiting drug excretion ability.
[6] The multidrug efflux pump inhibitor according to the above [5], which has an activity of inhibiting both the drug excretion ability of MexB and the drug excretion ability of MexY.
[7] A pharmaceutical composition comprising one or more of the compounds according to any one of [1] to [4] or a physiologically acceptable salt thereof, or a solvate thereof as an active ingredient. .
[8] The pharmaceutical composition according to the above [7], which is used for prevention and / or treatment of bacterial infection.
[9] The pharmaceutical composition according to [8], further comprising one or more antibacterial agents.
[10] The pharmaceutical composition according to [8] or [9], wherein the pathogenic bacterium of the bacterial infection is a gram-negative bacterium.
[11] The pharmaceutical composition according to [8] or [9], wherein the pathogenic bacterium of the bacterial infection is Pseudomonas aeruginosa.
[12] The pharmaceutical composition according to any of [8] to [11], wherein the pathogenic bacterium of the bacterial infection is a bacterium that has acquired resistance to an antibacterial agent.
本発明に係る化合物は、MexB及びMexYに代表されるグラム陰性菌が有するRND型多剤排出ポンプに対する阻害能を有する。このため、当該化合物若しくはその生理学的に許容される塩、又はそれらの溶媒和物を有効成分とする医薬用組成物は、多剤耐性緑膿菌に代表される多剤耐性グラム陰性細菌感染症の予防又は治療に非常に有用である。 The compound according to the present invention has an inhibitory ability against the RND type multidrug efflux pump possessed by gram-negative bacteria represented by MexB and MexY. Therefore, a pharmaceutical composition comprising the compound or a physiologically acceptable salt thereof or a solvate thereof as an active ingredient is a multidrug resistant gram-negative bacterial infection represented by multidrug resistant Pseudomonas aeruginosa. It is very useful for prevention or treatment.
既知排出阻害剤ABI−PP(D13−9001)は、緑膿菌の2種の主要な多剤排出ポンプのうち、MexBに対して阻害能を有するのに対して、MexYの排出能を阻害できない(非特許文献5)。本発明者らは、ABI-PPがMexYの排出能を阻害できない理由は、ABI−PPとMexBとの共結晶構造解析の結果から、ABI−PPの分子中央にあるピリドピリミジン骨格が、MexYの阻害剤結合ポケット中に存在するトリプトファン残基と立体的に干渉せざるを得ないため、と推定した。そこで、本発明者らは、ABI−PPの分子中央にある双環性のピリドピリミジン骨格を単環性骨格に置き換えることが、MexBとMexYの排出能を同時に阻害するためには必須であると推察し、当該推察に基づき、MexBとMexYの両方の排出能に対する阻害能を有する化合物を開発した。 The known elimination inhibitor ABI-PP (D13-9001) has the ability to inhibit MexB among the two major multidrug efflux pumps of Pseudomonas aeruginosa, but cannot inhibit the ability to excrete MexY. (Non-patent document 5). The reason why ABI-PP cannot inhibit the excretion ability of MexY is that the pyridopyrimidine skeleton at the center of the molecule of ABI-PP is based on the result of co-crystal structure analysis of ABI-PP and MexB. It was presumed that it had to sterically interfere with the tryptophan residue present in the inhibitor binding pocket. Therefore, the present inventors must replace the bicyclic pyridopyrimidine skeleton at the center of the molecule of ABI-PP with a monocyclic skeleton in order to simultaneously inhibit the excretion ability of MexB and MexY. Based on the inference, a compound having an inhibitory ability against both MexB and MexY excretory ability was developed.
本発明に係る化合物は、下記一般式(I)で表される化合物である。当該化合物は、MexBとMexYの両方のRND型多剤排出ポンプの薬剤排出能を同時に阻害するデュアル阻害能を有する。このため、一般式(I)で表される化合物は、多剤排出ポンプ阻害剤の有効成分とし得る。 The compound according to the present invention is a compound represented by the following general formula (I). The compound has a dual inhibitory ability to simultaneously inhibit the drug efflux ability of both MexB and MexY RND type multidrug efflux pumps. For this reason, the compound represented by general formula (I) can be used as an active ingredient of a multidrug efflux pump inhibitor.
一般式(I)中、R1は、チアゾール基、アダマンチル基、又は炭素原子数3〜6のアルキル基を表す。R1が炭素原子数3〜6のアルキル基の場合、当該アルキル基としては、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基(tert−ブチル基)、n−ペンチル基、イソアミル基、ネオペンチル基、n−ヘキシル基、イソヘキシル基、テキシル基等が挙げられる。 In general formula (I), R 1 represents a thiazole group, an adamantyl group, or an alkyl group having 3 to 6 carbon atoms. When R 1 is an alkyl group having 3 to 6 carbon atoms, the alkyl group includes a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group (tert-butyl group), and an n-pentyl group. , Isoamyl group, neopentyl group, n-hexyl group, isohexyl group, texyl group and the like.
R1がチアゾール基の場合、無置換のチアゾール基であってもよく、チアゾール基中の1個の水素原子が炭素原子数1〜4のアルキル基で置換された基であってもよい。チアゾール基中の1個の水素原子がアルキル基で置換されている場合、当該アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基(tert−ブチル基)が挙げられる。 When R 1 is a thiazole group, it may be an unsubstituted thiazole group or a group in which one hydrogen atom in the thiazole group is substituted with an alkyl group having 1 to 4 carbon atoms. When one hydrogen atom in the thiazole group is substituted with an alkyl group, the alkyl group includes a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group ( tert-butyl group).
一般式(I)で表される化合物としては、多剤排出ポンプに対する排出能阻害活性がより高いことから、R1がチアゾール基であることが好ましく、1個の水素原子が炭素原子数1〜4のアルキル基で置換されたチアゾール基であることがより好ましく、1個の水素原子が炭素原子数3〜4のアルキル基で置換されたチアゾール基であることがさらに好ましく、1個の水素原子がt−ブチル基で置換されたチアゾール基であることがよりさらに好ましい。 As the compound represented by the general formula (I), R 1 is preferably a thiazole group because of its higher discharge capacity inhibitory activity against a multidrug discharge pump, and one hydrogen atom has 1 to 1 carbon atoms. More preferably, it is a thiazole group substituted with 4 alkyl groups, more preferably a thiazole group in which one hydrogen atom is substituted with an alkyl group having 3 to 4 carbon atoms, one hydrogen atom Is more preferably a thiazole group substituted with a t-butyl group.
一般式(I)中、Xは、水素原子又はハロゲン原子を表す。当該ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられる。一般式(I)で表される化合物としては、Xが水素原子、塩素原子又は臭素原子であるものが好ましく、多剤排出ポンプに対する排出能阻害活性がより高いことから、Xが塩素原子又は臭素原子であるものがより好ましく、塩素原子であるものがさらに好ましい。 In general formula (I), X represents a hydrogen atom or a halogen atom. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. As the compound represented by the general formula (I), those in which X is a hydrogen atom, a chlorine atom or a bromine atom are preferable, and since X has a higher discharge capacity inhibiting activity for a multidrug discharge pump, X is a chlorine atom or bromine. What is an atom is more preferable, and what is a chlorine atom is still more preferable.
一般式(I)中、R2は、アミノ基又は水素原子を表す。R2がアミノ基の場合、一般式(I)で表される化合物としては、R2のアミノ基の立体配置は、(R)体であってもよく、(S)体であってもよく、ラセミ体であってもよい。一般式(I)で表される化合物としては、多剤排出ポンプに対する排出能阻害活性がより高いことから、R2がアミノ基であるものが好ましい。 In general formula (I), R 2 represents an amino group or a hydrogen atom. When R 2 is an amino group, as the compound represented by the general formula (I), the configuration of the amino group of R 2 may be (R) isomer or (S) isomer. The racemate may be used. As the compound represented by the general formula (I), a compound in which R 2 is an amino group is preferable because it has a higher discharge capacity inhibitory activity for a multidrug discharge pump.
一般式(I)中、nは1〜4の整数を表す。 In general formula (I), n represents an integer of 1 to 4.
一般式(I)中、R3は、1個の水素原子がアミジノ基で置換されていてもよいアミノ基又はイミダゾール基を表す。R3が無置換のアミノ基の場合、nは2、3、又は4が好ましく、3又は4がより好ましい。R3が、1個の水素原子がアミジノ基で置換されているアミノ基の場合、nは2、3、又は4が好ましく、3又は4がより好ましい。R3がイミダゾール基の場合、nは1又は2が好ましく、1がより好ましい。 In general formula (I), R 3 represents an amino group or an imidazole group in which one hydrogen atom may be substituted with an amidino group. When R 3 is an unsubstituted amino group, n is preferably 2, 3, or 4, more preferably 3 or 4. When R 3 is an amino group in which one hydrogen atom is substituted with an amidino group, n is preferably 2, 3, or 4, and more preferably 3 or 4. When R 3 is an imidazole group, n is preferably 1 or 2, and more preferably 1.
一般式(I)で表される化合物としては、多剤排出ポンプに対する排出能阻害活性がより高いことから、R3が無置換のアミノ基又は1個の水素原子がアミジノ基で置換されたアミノ基であり、かつnが3又は4である化合物が好ましく、R3が無置換のアミノ基であり、かつnが3若しくは4である化合物、又はR3が1個の水素原子がアミジノ基で置換されたアミノ基であり、かつnが3である化合物がより好ましく、R3が無置換のアミノ基であり、かつnが4である化合物がさらに好ましい。 As the compound represented by the general formula (I), R 3 is an unsubstituted amino group or an amino group in which one hydrogen atom is substituted with an amidino group because of its higher excretion ability inhibiting activity against a multidrug efflux pump. And a compound in which n is 3 or 4 is preferred, a compound in which R 3 is an unsubstituted amino group and n is 3 or 4, or a hydrogen atom in R 3 is an amidino group A compound that is a substituted amino group and n is 3 is more preferable, and a compound that R 3 is an unsubstituted amino group and n is 4 is more preferable.
一般式(I)で表される化合物としては、R1が無置換のチアゾール基又は1個の水素原子が炭素原子数1〜4のアルキル基で置換されたチアゾール基であり、Xが水素原子、塩素原子、又は臭素原子であり、R2がアミノ基であり、nが1〜4の整数であり、R3が無置換のアミノ基、1個の水素原子がアミジノ基で置換されたアミノ基又はイミダゾール基である化合物が好ましく、R1が1個の水素原子が炭素原子数1〜4のアルキル基で置換されたチアゾール基であり、Xが水素原子、塩素原子、又は臭素原子であり、R2がアミノ基であり、nが2、3、又は4の整数であり、R3が無置換のアミノ基又は1個の水素原子がアミジノ基で置換されたアミノ基である化合物がより好ましく、R1が1個の水素原子がt−ブチル基で置換されたチアゾール基であり、Xが水素原子、塩素原子、又は臭素原子であり、R2がアミノ基であり、nが3又は4であり、R3が無置換のアミノ基又は1個の水素原子がアミジノ基で置換されたアミノ基である化合物がさらに好ましい。 As the compound represented by the general formula (I), R 1 is an unsubstituted thiazole group or a thiazole group in which one hydrogen atom is substituted with an alkyl group having 1 to 4 carbon atoms, and X is a hydrogen atom. , A chlorine atom, or a bromine atom, R 2 is an amino group, n is an integer of 1 to 4, R 3 is an unsubstituted amino group, and one hydrogen atom is substituted with an amidino group A compound that is a group or an imidazole group, R 1 is a thiazole group in which one hydrogen atom is substituted with an alkyl group having 1 to 4 carbon atoms, and X is a hydrogen atom, a chlorine atom, or a bromine atom R 2 is an amino group, n is an integer of 2, 3, or 4, and R 3 is an unsubstituted amino group or an amino group in which one hydrogen atom is substituted with an amidino group. Preferably, R 1 is one hydrogen atom being a t-butyl group A substituted thiazole group, X is a hydrogen atom, a chlorine atom, or a bromine atom, R 2 is an amino group, n is 3 or 4, and R 3 is an unsubstituted amino group or one More preferred are compounds in which the hydrogen atom is an amino group substituted with an amidino group.
一般式(I)で表される化合物としては、より具体的には、下記式(H−31)、(H−32)、(H−34)〜(H−37)、(H−39)、(H−46)、(H−47)、(H−50)、又は(H−51)で表される化合物が挙げられる。 More specifically, the compound represented by the general formula (I) is represented by the following formulas (H-31), (H-32), (H-34) to (H-37), (H-39). , (H-46), (H-47), (H-50), or (H-51).
一般式(I)で表される化合物は、例えば、下記反応式(A)に示す反応により、ベンズアミド誘導体のアミノ基とカルボン酸とを縮合剤存在下に縮合させることによって得られる。反応式(A)中、R1、R2、R3、X及びnは、一般式(I)と同じである。当該反応において、カルボン酸中の反応性基は、予め保護基によって保護しておき、縮合反応後に脱保護することが好ましい。 The compound represented by the general formula (I) can be obtained, for example, by condensing an amino group of a benzamide derivative and a carboxylic acid in the presence of a condensing agent by a reaction shown in the following reaction formula (A). In the reaction formula (A), R 1 , R 2 , R 3 , X and n are the same as those in the general formula (I). In this reaction, the reactive group in the carboxylic acid is preferably protected in advance with a protecting group and deprotected after the condensation reaction.
例えば、一般式(I)で表される化合物のうち、R1が1個の水素原子がt−ブチル基で置換されたチアゾール基であり、Xが水素原子、塩素原子又は臭素原子であり、R2がアミノ基である化合物は、下記反応式(A−1)に示す反応のように、3−アミノ−N−(4−t−ブチル−1,3−チアゾール−2−イル)ベンズアミド(CAS Registry Number:1281772−26−6)、5−アミノ−N−(4−t−ブチル−1,3−チアゾール−2−イル)−2−クロロベンズアミド(CAS Registry Number:1308582−83−3)、又は5−アミノ−N−(4−t−ブチル−1,3−チアゾール−2−イル)−2−ブロモベンズアミド(CAS Registry Number:1306544−17−1)に、カルボキシル基以外の反応性基が適切な保護基によって保護されたカルボン酸を、1−(3−ジメチルアミノプロピル)−3−エチルカルボジイミド塩酸塩(EDCI)等の縮合剤存在下に縮合させた後、得られた縮合物中の保護基を脱保護することによって合成できる。側鎖のアミノ基の保護基としては、t−ブトキシカルボニル(Boc)基や9−フルオレニルメチルオキシカルボニル(Fmoc)基等の汎用されている物を用いることができ、これらの保護基の脱保護反応を常法により行うことができる。より詳細には、下記反応式(A−1)のうち、カルボン酸として、側鎖のアミノ基を保護したD−リシンを用いることにより式(H−31)の化合物が合成でき、側鎖のアミノ基を保護したL−リシンを用いることにより式(H−36)の化合物が合成でき、側鎖のアミノ基を保護したL−アルギニンを用いることにより式(H−32)の化合物が合成でき、側鎖のアミノ基を保護したL−オルニチンを用いることにより式(H−37)の化合物が合成できる。 For example, among the compounds represented by the general formula (I), R 1 is a thiazole group in which one hydrogen atom is substituted with a t-butyl group, X is a hydrogen atom, a chlorine atom or a bromine atom, A compound in which R 2 is an amino group is obtained by reacting 3-amino-N- (4-t-butyl-1,3-thiazol-2-yl) benzamide (as shown in the reaction formula (A-1) below) CAS Registry Number: 12817772-26-6), 5-amino-N- (4-t-butyl-1,3-thiazol-2-yl) -2-chlorobenzamide (CAS Registry Number: 13008582-83-3) Or 5-amino-N- (4-t-butyl-1,3-thiazol-2-yl) -2-bromobenzamide (CAS Registry Number: 130654) -17-1) is a condensing agent such as 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (EDCI), wherein a carboxylic acid in which a reactive group other than a carboxyl group is protected by an appropriate protecting group After the condensation in the presence, it can be synthesized by deprotecting the protecting group in the resulting condensate. As the protecting group for the amino group on the side chain, a widely used product such as a t-butoxycarbonyl (Boc) group or a 9-fluorenylmethyloxycarbonyl (Fmoc) group can be used. The deprotection reaction can be performed by a conventional method. More specifically, in the following reaction formula (A-1), the compound of the formula (H-31) can be synthesized by using D-lysine in which the side chain amino group is protected as the carboxylic acid. A compound of formula (H-36) can be synthesized by using L-lysine protected with an amino group, and a compound of formula (H-32) can be synthesized by using L-arginine with the amino group of the side chain protected. The compound of the formula (H-37) can be synthesized by using L-ornithine in which the side chain amino group is protected.
また、例えば、一般式(I)で表される化合物のうち、Xが水素原子であり、R2及びR3を含む側鎖がD−リシンであることを共通構造とする化合物は、(R)−3−(2,6−ビス((t−ブトキシカルボニル)アミノ)ヘキサンアミド)安息香酸を共通原料とすることで合成でき、1−アダマンチルアミンと縮合後、保護基を脱保護することにより式(H−47)の化合物が合成でき、ヘキシルアミンと縮合後、保護基を脱保護することにより式(H−50)が合成できる。なお、(R)−3−(2,6−ビス((t−ブトキシカルボニル)アミノ)ヘキサンアミド)安息香酸は、3−アミノ安息香酸エチルと側鎖のアミノ基を保護したD−リシンとを2−クロロ−1−メチルピリジニウム ヨージドを用いて縮合した後、得られた縮合化合物のエチルエステルを水酸化リチウムで加水分解することによって合成できる。 Further, for example, among compounds represented by the general formula (I), a compound having a common structure in which X is a hydrogen atom and a side chain containing R 2 and R 3 is D-lysine is represented by (R ) -3- (2,6-bis ((t-butoxycarbonyl) amino) hexanamido) benzoic acid as a common raw material, and after condensation with 1-adamantylamine, the protective group is deprotected. A compound of formula (H-47) can be synthesized, and after condensation with hexylamine, formula (H-50) can be synthesized by deprotecting the protecting group. In addition, (R) -3- (2,6-bis ((t-butoxycarbonyl) amino) hexanamide) benzoic acid is obtained by combining ethyl 3-aminobenzoate and D-lysine in which the side chain amino group is protected. After condensing with 2-chloro-1-methylpyridinium iodide, it can be synthesized by hydrolyzing the ethyl ester of the resulting condensed compound with lithium hydroxide.
一般式(I)で表される化合物は、生理学的に許容される塩であっても、遊離形態の化合物と同様に多剤排出ポンプ阻害剤の有効成分とし得る。一般式(I)で表される化合物は、塩基性アミノ基を有しているため、当該化合物の生理学的に許容される塩としては、例えば、塩酸、臭化水素酸、硫酸、硝酸、リン酸等の鉱酸の塩;メタンスルホン酸、ベンゼンスルホン酸、パラトルエンスルホン酸、酢酸、プロピオン酸塩、酒石酸、フマル酸、マレイン酸、リンゴ酸、シュウ酸、コハク酸、クエン酸、安息香酸、マンデル酸、ケイ皮酸、乳酸、グリコール酸、グルクロン酸、アスコルビン酸、ニコチン酸、サリチル酸等の有機酸との塩;又はアスパラギン酸、グルタミン酸等の酸性アミノ酸との塩が挙げられる。 Even if the compound represented by general formula (I) is a physiologically acceptable salt, it can be used as an active ingredient of a multidrug efflux pump inhibitor like the free form compound. Since the compound represented by the general formula (I) has a basic amino group, examples of physiologically acceptable salts of the compound include hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphorus Salts of mineral acids such as acids; methanesulfonic acid, benzenesulfonic acid, paratoluenesulfonic acid, acetic acid, propionate, tartaric acid, fumaric acid, maleic acid, malic acid, oxalic acid, succinic acid, citric acid, benzoic acid, And salts with organic acids such as mandelic acid, cinnamic acid, lactic acid, glycolic acid, glucuronic acid, ascorbic acid, nicotinic acid and salicylic acid; or salts with acidic amino acids such as aspartic acid and glutamic acid.
一般式(I)で表される化合物は、当該化合物又はその生理学的に許容される塩の溶媒和物であっても、遊離形態の化合物と同様に多剤排出ポンプ阻害剤の有効成分とし得る。当該溶媒和物を形成する溶媒としては、水、エタノール等が挙げられる。 The compound represented by the general formula (I) can be used as an active ingredient of a multidrug efflux pump inhibitor even in the solvate of the compound or a physiologically acceptable salt thereof, like the free form compound. . Examples of the solvent that forms the solvate include water and ethanol.
本発明に係る多剤排出ポンプ阻害剤は、一般式(I)で表される化合物を1種類のみ含有していてもよく、2種類以上を組み合わせて含有していてもよい。また、本発明に係る多剤排出ポンプ阻害剤が含有する一般式(I)で表される化合物は、遊離形態のみであってもよく、遊離形態の化合物とその生理学的に許容される塩との両方であってもよく、遊離形態の化合物とその溶媒和物の両方であってもよく、生理学的に許容される塩とその溶媒和物の両方であってもよく、遊離形態の化合物とその生理学的に許容される塩とそれらの溶媒和物を全てであってもよい。 The multidrug discharge pump inhibitor according to the present invention may contain only one type of compound represented by the general formula (I) or may contain two or more types in combination. In addition, the compound represented by the general formula (I) contained in the multidrug efflux pump inhibitor according to the present invention may be only in a free form, and a free form compound and a physiologically acceptable salt thereof Both free form compounds and solvates thereof, both physiologically acceptable salts and solvates thereof, free form compounds and The physiologically acceptable salts and their solvates may be all.
本発明に係る多剤排出ポンプ阻害剤は、有効成分である一般式(I)で表される化合物若しくはその生理学的に許容される塩、又はそれらの溶媒和物(以下、「本発明に係る化合物等」ということがある。)のみからなるものであってもよく、本発明に係る化合物等による多剤排出ポンプ阻害活性を損なわない限度において、各種添加剤を含有していてもよい。当該添加剤としては、賦形剤、結合剤、滑沢剤、湿潤剤、溶剤、崩壊剤、溶解補助剤、懸濁化剤、乳化剤、等張化剤、安定化剤、緩衝剤、防腐剤、抗酸化剤、矯味矯臭剤、着色剤等が挙げられる。これらの添加剤としては、薬学上許容される物質であって、医薬の製剤化に使用されているものの中から適宜選択して使用することができる。 The multidrug efflux pump inhibitor according to the present invention is a compound represented by the general formula (I) which is an active ingredient or a physiologically acceptable salt thereof, or a solvate thereof (hereinafter referred to as “the present invention”). It may be composed only of “compounds and the like.”) And may contain various additives as long as the multidrug efflux pump inhibitory activity of the compound according to the present invention is not impaired. Such additives include excipients, binders, lubricants, wetting agents, solvents, disintegrants, solubilizers, suspending agents, emulsifiers, isotonic agents, stabilizers, buffers, preservatives. , Antioxidants, flavoring agents, coloring agents and the like. These additives are pharmaceutically acceptable substances and can be appropriately selected from those used for pharmaceutical preparation.
本発明に係る化合物等は、医薬用組成物の有効成分としても好適である。本発明に係る医薬用組成物は、本発明に係る化合物等を1種類のみ含有していてもよく、2種類以上を組み合わせて含有していてもよい。 The compound according to the present invention is also suitable as an active ingredient of a pharmaceutical composition. The pharmaceutical composition according to the present invention may contain only one type of the compound according to the present invention, or may contain two or more types in combination.
本発明に係る化合物等は、グラム陰性細菌の有するRND型多剤排出ポンプの薬剤排出能に対する阻害能を有するため、1種又は2種以上の抗細菌剤と併用した場合に、病原細菌の当該抗細菌剤に対する感受性を増大させ、得られる治療効果を増強することができる。すなわち、本発明に係る化合物等と併用投与することにより、必要な治療効果を得るために必要な抗細菌剤の投与量を、単独投与した場合よりも減少させることができる。抗細菌剤の服用量の低用量化により、本発明に係る化合物等は、細菌の抗細菌剤に対する耐性化を抑制することもできる。さらに、本発明に係る化合物等は、抗細菌剤に対して耐性を獲得した細菌に作用して、多剤排出ポンプの排出能を阻害し、脱耐性化させることもできる。 Since the compound according to the present invention has the ability to inhibit the drug excretion ability of the RND type multidrug excretion pump possessed by Gram-negative bacteria, when used in combination with one or more antibacterial agents, The sensitivity to antibacterial agents can be increased and the resulting therapeutic effect can be enhanced. That is, by administering together with the compound etc. which concern on this invention, the dosage of an antibacterial agent required in order to acquire a required therapeutic effect can be decreased rather than the case where it administers alone. By reducing the dose of the antibacterial agent, the compound according to the present invention can also suppress the resistance of the bacterium to the antibacterial agent. Furthermore, the compound etc. which concern on this invention can act on the bacteria which acquired tolerance with respect to an antibacterial agent, can inhibit the discharge | emission ability of a multidrug discharge pump, and can also make it detolerated.
したがって、本発明に係る化合物等を有効成分とする医薬用組成物は、細菌感染症の予防及び/又は治療に用いられるものが好ましく、少なくとも1種類の抗細菌剤に対する耐性を獲得した細菌が病原細菌である細菌感染症の予防及び/又は治療に用いられるものがより好ましく、多剤耐性細菌が病原細菌である細菌感染症の予防及び/又は治療に用いられるものがさらに好ましい。 Therefore, the pharmaceutical composition comprising the compound according to the present invention as an active ingredient is preferably used for the prevention and / or treatment of bacterial infections, and the bacteria that have acquired resistance to at least one antibacterial agent are pathogenic. What is used for prevention and / or treatment of bacterial infection which is bacteria is more preferable, and what is used for prevention and / or treatment of bacterial infection whose multidrug resistant bacteria are pathogenic bacteria is more preferable.
本発明に係る医薬用組成物の適用対象となる細菌感染症の種類は特に限定されるものではない。本発明に係る医薬用組成物の適用対象としては、グラム陰性細菌感染症(病原細菌がグラム陰性菌である細菌感染症)が好ましく、緑膿菌、アシネトバクター、又は腸球菌が病原細菌である細菌感染症がより好ましく、緑膿菌が病原細菌である細菌感染症がさらに好ましく、多剤耐性緑膿菌が特に好ましい。 The kind of bacterial infection which becomes the application target of the pharmaceutical composition according to the present invention is not particularly limited. The application target of the pharmaceutical composition according to the present invention is preferably a gram-negative bacterial infection (bacterial infection in which the pathogenic bacterium is a gram-negative bacterium), and a bacterium in which Pseudomonas aeruginosa, Acinetobacter, or enterococci are pathogenic bacteria. Infectious diseases are more preferred, bacterial infections in which Pseudomonas aeruginosa is a pathogenic bacterium are further preferred, and multidrug resistant Pseudomonas aeruginosa is particularly preferred.
本発明に係る医薬用組成物は、ヒトやヒト以外の動物に投与されることが好ましい。ヒト以外の動物としては、例えば、ウシ、ブタ、ウマ、ヒツジ、ヤギ、サル、イヌ、ネコ、ウサギ、マウス、ラット、ハムスター、モルモット等の哺乳動物や、ニワトリ、ウズラ、カモ等の鳥類等が挙げられる。 The pharmaceutical composition according to the present invention is preferably administered to humans or non-human animals. Examples of animals other than humans include mammals such as cows, pigs, horses, sheep, goats, monkeys, dogs, cats, rabbits, mice, rats, hamsters, guinea pigs, and birds such as chickens, quails, and ducks. Can be mentioned.
抗細菌剤としては、現在までに多様な構造の化合物が知られており、多数の化合物が医薬品として臨床に供されている。本発明に係る医薬用組成物とともに投与可能な抗細菌剤の種類としては特に限定されるものではない。当該抗細菌剤としては、例えば、ペニシリン(ペナム)系、セファロスポリン(セフェム)系、オキサセフェム系、ペネム系、カルバペネム系等の双環性β−ラクタム系抗細菌剤、モノバクタム系等の単環性β−ラクタム系抗細菌剤、アミノグリコシド系抗細菌剤、マクロライド系抗細菌剤、クロラムフェニコール系抗細菌剤、テトラサイクリン系抗細菌剤、グリコペプチド系抗細菌剤、ホスホマイシン系抗細菌剤、リンコマイシン系抗細菌剤、さらには、サルファ剤、パラアミノサリチル酸製剤、イソニコチン酸ヒドラジド製剤、及びキノロン系等の合成抗細菌剤等を挙げることができる。 As antibacterial agents, compounds having various structures have been known so far, and many compounds have been clinically used as pharmaceuticals. The kind of antibacterial agent that can be administered together with the pharmaceutical composition according to the present invention is not particularly limited. Examples of the antibacterial agent include penicillin (penam), cephalosporin (cephem), oxacephem, penem, carbapenem and other bicyclic β-lactam antibacterial agents, monobactams and the like. Cyclic β-lactam antibacterial agent, aminoglycoside antibacterial agent, macrolide antibacterial agent, chloramphenicol antibacterial agent, tetracycline antibacterial agent, glycopeptide antibacterial agent, fosfomycin antibacterial agent And lincomycin-based antibacterial agents, as well as sulfa drugs, paraaminosalicylic acid formulations, isonicotinic acid hydrazide formulations, and quinolone-based synthetic antibacterial agents.
本発明に係る医薬用組成物は、本発明に係る化合物等に加えて、その他の有効成分を含有していてもよい。本発明に係る医薬用組成物が、細菌感染症の予防及び/又は治療に用いられる組成物である場合、本発明に係る医薬用組成物が含有することが好ましい有効成分としては、例えば、抗細菌剤、βラクタマーゼ阻害剤等の抗細菌剤への耐性化を抑制する機能を有する薬剤等が挙げられる。本発明に係る医薬用組成物がさらに1種又は2種以上の抗細菌剤を含有する場合、当該抗細菌剤としては、本発明に係る医薬用組成物とともに投与可能な抗細菌剤として列挙されたものを挙げることができる。本発明に係る化合物等と抗細菌剤を組み合わせて投与することにより、細菌感染症に対して極めて高い治療効果を達成することができる。 The pharmaceutical composition according to the present invention may contain other active ingredients in addition to the compound according to the present invention. When the pharmaceutical composition according to the present invention is a composition used for the prevention and / or treatment of bacterial infection, the active ingredient preferably contained in the pharmaceutical composition according to the present invention includes, for example, Examples thereof include agents having a function of suppressing resistance to antibacterial agents such as bacterial agents and β-lactamase inhibitors. When the pharmaceutical composition according to the present invention further contains one or more antibacterial agents, the antibacterial agent is listed as an antibacterial agent that can be administered together with the pharmaceutical composition according to the present invention. Can be mentioned. By administering a compound according to the present invention in combination with an antibacterial agent, an extremely high therapeutic effect can be achieved for bacterial infections.
本発明に係る医薬用組成物は、有効成分である本発明に係る化合物等を、製剤学的に許容される製剤用添加物の1種又は2種以上と混合し、製剤学の分野において公知の製剤方法に従って、動物への投与に適した剤型に製剤化することができる。製剤用添加物としては、例えば、賦形剤、結合剤、滑沢剤、湿潤剤、溶剤、崩壊剤、溶解補助剤、懸濁化剤、乳化剤(界面活性剤)、等張化剤、安定化剤、緩衝剤、可塑剤、防腐剤、抗酸化剤、矯味矯臭剤、着色剤等が挙げられるが、これらに限定されるものではない。 The pharmaceutical composition according to the present invention is known in the field of pharmaceutics by mixing the compound according to the present invention, which is an active ingredient, with one or more pharmaceutically acceptable excipients. According to the formulation method, it can be formulated into a dosage form suitable for administration to animals. Examples of pharmaceutical additives include excipients, binders, lubricants, wetting agents, solvents, disintegrants, solubilizers, suspending agents, emulsifiers (surfactants), isotonic agents, and stability. Examples include, but are not limited to, agents, buffers, plasticizers, preservatives, antioxidants, flavoring agents, and coloring agents.
本発明に係る医薬用組成物の動物への投与方法は、特に限定されるものではなく、その剤型も特に限定されるものではない。経口投与に適する剤型としては、例えば、カプセル剤、散剤、錠剤、顆粒剤、細粒剤、乳剤、シロップ剤、溶液剤、懸濁剤等を挙げることができ、非経口投与に適する剤型としては、例えば、吸入剤、噴霧剤、直腸内投与剤、注射剤、点滴剤、軟膏、クリーム剤、経皮吸収剤、経粘膜吸収剤、点眼剤、点鼻剤、点耳剤、テープ剤、貼付剤等を挙げることができる。 The method for administering the pharmaceutical composition according to the present invention to an animal is not particularly limited, and the dosage form is not particularly limited. Examples of dosage forms suitable for oral administration include capsules, powders, tablets, granules, fine granules, emulsions, syrups, solutions, suspensions, etc., and dosage forms suitable for parenteral administration As, for example, inhalants, sprays, rectal administration, injections, drops, ointments, creams, transdermal absorption agents, transmucosal absorption agents, eye drops, nasal drops, ear drops, tapes And patches.
経口投与に適する医薬組成物のうち、例えば乳剤及びシロップ剤等の液体製剤は、水;蔗糖、ソルビット、果糖等の糖類;ポリエチレングリコール、プロピレングリコール等のグリコール類;ごま油、オリーブ油、大豆油等の油類;p−ヒドロキシ安息香酸エステル類等の防腐剤;ストロベリーフレーバー、ペパーミント等のフレーバー類等の製剤用添加物を用いて製造することができる。カプセル剤、錠剤、散剤、及び顆粒剤等の固形製剤は、乳糖、ブドウ糖、蔗糖、マンニット等の賦形剤;澱粉、アルギン酸ソーダ等の崩壊剤;ステアリン酸マグネシウム、タルク等の滑沢剤;ポリビニールアルコール、ヒドロキシプロピルセルロース、ゼラチン等の結合剤;脂肪酸エステル等の界面活性剤;グリセリン等の可塑剤等を用いて製造することができる。 Among pharmaceutical compositions suitable for oral administration, for example, liquid preparations such as emulsions and syrups include water; sugars such as sucrose, sorbit and fructose; glycols such as polyethylene glycol and propylene glycol; sesame oil, olive oil, soybean oil and the like Oils; Preservatives such as p-hydroxybenzoates; and other additives for pharmaceutical use such as strawberry flavors and flavors such as peppermint. Solid preparations such as capsules, tablets, powders and granules include excipients such as lactose, glucose, sucrose and mannitol; disintegrants such as starch and sodium alginate; lubricants such as magnesium stearate and talc; It can be produced using a binder such as polyvinyl alcohol, hydroxypropyl cellulose, gelatin; a surfactant such as a fatty acid ester; a plasticizer such as glycerin.
非経口投与に適する医薬組成物のうち、注射剤、点滴剤、点眼剤等の液体製剤は、好ましくは滅菌された等張の液体製剤として調製することができる。例えば、注射剤は、塩溶液、ブドウ糖溶液、又は塩水とブドウ糖溶液との混合物からなる水性媒体を用いて調製することができる。直腸内投与剤は、例えばカカオ脂、水素化脂肪又は水素化カルボン酸等の担体を用いて、通常は座剤の形態として調製することができる。また、噴霧剤の調製には、有効成分である上記の物質を微細な粒子として分散させて吸収を容易にする非刺激性の担体を用いることができる。このような担体として、例えば、乳糖、グリセリン等を挙げることができ、製剤の形態としてはエアロゾルやドライパウダー等の形態を選択することが可能である。 Among pharmaceutical compositions suitable for parenteral administration, liquid preparations such as injections, drops, eye drops and the like can be prepared preferably as sterilized isotonic liquid preparations. For example, injections can be prepared using an aqueous medium consisting of a salt solution, a glucose solution, or a mixture of saline and glucose solution. Rectal administration agents can be prepared usually in the form of suppositories, using a carrier such as cacao butter, hydrogenated fat or hydrogenated carboxylic acid. For the preparation of the propellant, a non-irritating carrier that facilitates absorption by dispersing the above-mentioned substance as an active ingredient as fine particles can be used. Examples of such a carrier include lactose and glycerin, and the form of the preparation can be selected from forms such as aerosol and dry powder.
本発明に係る医薬用組成物の投与量及び投与回数は特に限定されず、本発明に係る化合物の作用効果が充分に発揮されるように、細菌感染症の種類や重篤度、投与対象の生物種、性別、年齢、体重、基礎疾患の有無、投与の形態等に応じて、適宜設定することができる。 The dosage and number of administrations of the pharmaceutical composition according to the present invention are not particularly limited, and the type and severity of the bacterial infection, the subject of administration, so that the action effect of the compound according to the present invention is sufficiently exhibited. It can be set as appropriate according to the species, sex, age, weight, presence or absence of the underlying disease, mode of administration, and the like.
次に実施例等を示して本発明をさらに詳細に説明するが、本発明は以下の実施例等に限定されるものではない。 EXAMPLES Next, although an Example etc. are shown and this invention is demonstrated further in detail, this invention is not limited to a following example etc.
[実施例1]
(R)−N−(4−(t−ブチル)チアゾール−2−イル)−2−クロロ−5−(2,6−ジアミノヘキサンアミド)ベンズアミド(式(H−31)で表される化合物、以下「H−31化合物」ということがある。)を、以下の通りに合成した。
[Example 1]
(R) -N- (4- (t-butyl) thiazol-2-yl) -2-chloro-5- (2,6-diaminohexanamide) benzamide (a compound represented by the formula (H-31); Hereinafter, it may be referred to as “H-31 compound”) was synthesized as follows.
(1) 30mLナスフラスコにNα,Nε−ビス(t−ブトキシカルボニル)−D−リシン(215mg、0.62mmol、1.3eq)をジクロロメタンに溶解し、ジクロロメタンに溶解した1−(3−ジメチルアミノプロピル)−3−エチルカルボジイミド塩酸塩(EDCI;151mg、0.79mmol、1.6eq)を滴下した。次に、ジクロロメタンに溶解した市販の5−アミノ−N−(4−t−ブチル−1,3−チアゾール−2−イル)−2−クロロベンズアミド(152mg、0.49mmol)を加え、室温で3時間撹拌した。反応溶液を1M塩酸水溶液、炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄した後、酢酸エチルとジエチルエーテルの混合溶媒で抽出し、硫酸ナトリウムで乾燥させた。乾燥後の抽出溶液を減圧濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=2:1)を2回行い、縮合物(200mg,0.31mmol)を得た。収率は64%であった。得られた縮合物に対して、NMR解析と質量分析を行った。 (1) In a 30 mL eggplant flask, Nα, Nε-bis (t-butoxycarbonyl) -D-lysine (215 mg, 0.62 mmol, 1.3 eq) was dissolved in dichloromethane, and 1- (3-dimethylamino was dissolved in dichloromethane. Propyl) -3-ethylcarbodiimide hydrochloride (EDCI; 151 mg, 0.79 mmol, 1.6 eq) was added dropwise. Next, commercially available 5-amino-N- (4-tert-butyl-1,3-thiazol-2-yl) -2-chlorobenzamide (152 mg, 0.49 mmol) dissolved in dichloromethane was added, and 3 Stir for hours. The reaction solution was washed successively with 1M aqueous hydrochloric acid solution, aqueous sodium hydrogen carbonate solution and saturated brine, then extracted with a mixed solvent of ethyl acetate and diethyl ether, and dried over sodium sulfate. The extract solution after drying was concentrated under reduced pressure, and silica gel column chromatography (hexane: ethyl acetate = 2: 1) was performed twice to obtain a condensate (200 mg, 0.31 mmol). The yield was 64%. NMR analysis and mass spectrometry were performed on the obtained condensate.
1H−NMR(400MHz,CDCl3):δ11.29(br,1H),9.39(brs,1H),7.67(d,J=8.7Hz,1H),7.18(brm,1H),7.12(d,J=8.7Hz,1H),6.94(brs,1H),6.61(s,1H),4.55(brm,1H),4.47(q,J=7.8Hz,1H),3.11(brm,2H),2.00−1.80(m,2H),1.62−1.46(m,4H),1.40(s,9H),1.37(s,9H),1.25(s,9H)。
HRMS(ESI,m/z,M+Na+):C30H44ClN5O6SNaに対する計算値660.2593、実測値660.2596。
1 H-NMR (400 MHz, CDCl 3 ): δ 11.29 (br, 1H), 9.39 (brs, 1H), 7.67 (d, J = 8.7 Hz, 1H), 7.18 (brm, 1H), 7.12 (d, J = 8.7 Hz, 1H), 6.94 (brs, 1H), 6.61 (s, 1H), 4.55 (brm, 1H), 4.47 (q , J = 7.8 Hz, 1H), 3.11 (brm, 2H), 2.00-1.80 (m, 2H), 1.62-1.46 (m, 4H), 1.40 (s , 9H), 1.37 (s, 9H), 1.25 (s, 9H).
HRMS (ESI, m / z, M + Na + ): Calculated 660.2593 for C 30 H 44 ClN 5 O 6 SNa, found 660.2596.
(2) 次いで、前記工程(1)で得られた縮合物(63mg,0.10mmol)を、20mLナスフラスコ中でジエチルエーテル(3mL)に溶かした後、1M 塩酸水溶液/酢酸エチル(3mL)を滴下し、室温で1時間撹拌した。析出した固体を吸引ろ過し、回収した固体をジエチルエーテルで洗浄した後、さらに真空乾燥し、目的の化合物(H−31化合物)を2塩酸塩として得た。収量は51mg(0.10mmol)であり、収率は100%であった。得られた目的の化合物に対して、NMR解析と質量分析を行った。 (2) Next, the condensate (63 mg, 0.10 mmol) obtained in the above step (1) was dissolved in diethyl ether (3 mL) in a 20 mL eggplant flask, and then 1M aqueous hydrochloric acid / ethyl acetate (3 mL) was added. The solution was added dropwise and stirred at room temperature for 1 hour. The precipitated solid was subjected to suction filtration, and the collected solid was washed with diethyl ether and then vacuum-dried to obtain the target compound (H-31 compound) as a dihydrochloride salt. The yield was 51 mg (0.10 mmol), and the yield was 100%. The obtained target compound was subjected to NMR analysis and mass spectrometry.
1H−NMR(400MHz,CD3OD):δ8.17(d,J=2.7Hz,1H),7.88(dd,J=8.7,2.7Hz,1H),7.57(d,J=8.7Hz,1H),7.11(s,1H),4.16(brt,J=6.6Hz,1H),2.97(brt,J=7.8Hz,2H),2.08(m,1H),2.01(m,1H),1.75(m,2H),1.60(m,2H),1.41(s,9H)。
HRMS(ESI,m/z,M+H+):C20H29ClN5O2Sに対する計算値438.1725、実測値438.1717。
1 H-NMR (400 MHz, CD 3 OD): δ 8.17 (d, J = 2.7 Hz, 1H), 7.88 (dd, J = 8.7, 2.7 Hz, 1H), 7.57 ( d, J = 8.7 Hz, 1H), 7.11 (s, 1H), 4.16 (brt, J = 6.6 Hz, 1H), 2.97 (brt, J = 7.8 Hz, 2H), 2.08 (m, 1H), 2.01 (m, 1H), 1.75 (m, 2H), 1.60 (m, 2H), 1.41 (s, 9H).
HRMS (ESI, m / z, M + H +): C 20 H 29 ClN 5
[実施例2]
(S)−N−(4−(t−ブチル)チアゾール−2−イル)−2−クロロ−5−(2,6−ジアミノヘキサンアミド)ベンズアミド(式(H−36)で表される化合物、以下「H−36化合物」ということがある。)を、以下の通りに合成した。
[Example 2]
(S) -N- (4- (t-butyl) thiazol-2-yl) -2-chloro-5- (2,6-diaminohexaneamide) benzamide (a compound represented by the formula (H-36); Hereinafter, it may be referred to as “H-36 compound”) was synthesized as follows.
(1) Nα,Nε−ビス(t−ブトキシカルボニル)−D−リシンに代えてNα,Nε−ビス(t−ブトキシカルボニル)−L−リシンを用い、実施例1の工程(1)と同様の工程により、縮合物を得、NMR解析と質量分析を行った。収率は92%であった。 (1) Nα, Nε-bis (t-butoxycarbonyl) -L-lysine is used instead of Nα, Nε-bis (t-butoxycarbonyl) -D-lysine, and the same as step (1) of Example 1 By the process, a condensate was obtained and subjected to NMR analysis and mass spectrometry. The yield was 92%.
1H−NMR(400MHz,CDCl3):δ11.38(br,1H),9.41(br,1H),7.66(d,J=8.7Hz,1H),7.26(br,1H),7.11(d,J=8.7Hz,1H),6.91(s,1H),6.61(s,1H),4.57(m,1H),4.49(q,J=7.8Hz,1H),3.17−3.05(br,2H),2.00−1.80(m,2H),1.62−1.46(m,4H),1.40(s,9H),1.36(s,9H),1.24(s,9H)。
HRMS(ESI,m/z,M+Na+):C30H44ClN5O6SNaに対する計算値660.2593、実測値660.2592。
1 H-NMR (400 MHz, CDCl 3 ): δ 11.38 (br, 1H), 9.41 (br, 1H), 7.66 (d, J = 8.7 Hz, 1H), 7.26 (br, 1H), 7.11 (d, J = 8.7 Hz, 1H), 6.91 (s, 1H), 6.61 (s, 1H), 4.57 (m, 1H), 4.49 (q , J = 7.8 Hz, 1H), 3.17-3.05 (br, 2H), 2.00-1.80 (m, 2H), 1.62-1.46 (m, 4H), 1 .40 (s, 9H), 1.36 (s, 9H), 1.24 (s, 9H).
HRMS (ESI, m / z, M + Na + ): Calculated 660.2593 for C 30 H 44 ClN 5 O 6 SNa, found 660.25592.
(2) 次いで、前記工程(1)で得られた縮合物から、実施例1の工程(2)と同様の工程により、目的の化合物(H−36化合物)を2塩酸塩として得、NMR解析と質量分析を行った。収率は100%であった。 (2) Next, the target compound (H-36 compound) was obtained as a dihydrochloride salt from the condensate obtained in the step (1) by the same step as the step (2) of Example 1, and subjected to NMR analysis. And mass spectrometry was performed. The yield was 100%.
1H−NMR(400MHz,CD3OD):δ8.12(brm,1H),7.86(brd,J=8.7Hz,1H),7.56(d,J=8.7Hz,1H),7.02(brs,1H),4.15(m,1H),2.97(brt,J=7.8Hz,2H),2.08(m,1H),2.01(m,1H),1.75(m,2H),1.60(m,2H),1.39(s,9H)。
HRMS(ESI,m/z,M+H+):C20H29ClN5O2Sに対する計算値438.1725、実測値438.1726。
1 H-NMR (400 MHz, CD 3 OD): δ 8.12 (brm, 1H), 7.86 (brd, J = 8.7 Hz, 1H), 7.56 (d, J = 8.7 Hz, 1H) 7.02 (brs, 1H), 4.15 (m, 1H), 2.97 (brt, J = 7.8 Hz, 2H), 2.08 (m, 1H), 2.01 (m, 1H) ), 1.75 (m, 2H), 1.60 (m, 2H), 1.39 (s, 9H).
HRMS (ESI, m / z, M + H + ): Calculated 438.1725 for C 20 H 29 ClN 5 O 2 S, found 438.1726.
[実施例3]
(R)−N−(4−(t−ブチル)チアゾール−2−イル)−2−ブロモ−5−(2,6−ジアミノヘキサンアミド)ベンズアミド(式(H−34)で表される化合物、以下「H−34化合物」ということがある。)を、以下の通りに合成した。
[Example 3]
(R) -N- (4- (t-butyl) thiazol-2-yl) -2-bromo-5- (2,6-diaminohexanamide) benzamide (a compound represented by the formula (H-34); Hereinafter, it may be referred to as “H-34 compound”) was synthesized as follows.
(1) 市販の5−アミノ−N−(4−t−ブチル−1,3−チアゾール−2−イル)−2−ブロモベンズアミドとNα,Nε−ビス(t−ブトキシカルボニル)−D−リシンから、実施例1の工程(1)と同様の工程により縮合物を得、NMR解析と質量分析を行った。収率は81%であった。 (1) From commercially available 5-amino-N- (4-t-butyl-1,3-thiazol-2-yl) -2-bromobenzamide and Nα, Nε-bis (t-butoxycarbonyl) -D-lysine The condensate was obtained by the same process as the process (1) of Example 1, and NMR analysis and mass spectrometry were performed. The yield was 81%.
1H−NMR(400MHz,CDCl3):δ11.27(br,1H),9.39(brs,1H),7.57(d,J=8.7Hz,1H),7.29(d,J=8.7Hz,1H),7.25(brm,1H),6.89(brs,1H),6.61(s,1H),4.55(brm,1H),4.47(q,J=7.8Hz,1H),3.12(brm,2H),1.98−1.78(m,2H),1.67−1.42(m,4H),1.40(s,9H),1.36(s,9H),1.24(s,9H)。
HRMS(ESI,m/z,M+Na+):C30H44BrN5O6SNaに対する計算値704.2088、実測値704.2095。
1 H-NMR (400 MHz, CDCl 3 ): δ 11.27 (br, 1H), 9.39 (brs, 1H), 7.57 (d, J = 8.7 Hz, 1H), 7.29 (d, J = 8.7 Hz, 1H), 7.25 (brm, 1H), 6.89 (brs, 1H), 6.61 (s, 1H), 4.55 (brm, 1H), 4.47 (q , J = 7.8 Hz, 1H), 3.12 (brm, 2H), 1.98-1.78 (m, 2H), 1.67-1.42 (m, 4H), 1.40 (s , 9H), 1.36 (s, 9H), 1.24 (s, 9H).
HRMS (ESI, m / z, M + Na + ): calcd for C 30 H 44 BrN 5 O 6 SNa 704.2088, found 704.2095.
(2) 次いで、前記工程(1)で得られた縮合物から、実施例1の工程(2)と同様の工程により、目的の化合物(H−34化合物)を2塩酸塩として得、NMR解析と質量分析を行った。収率は100%であった。 (2) Next, the target compound (H-34 compound) was obtained as a dihydrochloride salt from the condensate obtained in the step (1) by the same step as the step (2) of Example 1, and subjected to NMR analysis. And mass spectrometry was performed. The yield was 100%.
1H−NMR(400MHz,CD3OD):δ8.04(d,J=2.2Hz,1H),7.76(dd,J=8.6,2.2Hz,1H),7.71(d,J=8.7Hz,1H),6.95(s,1H),4.15(brt,J=6.2Hz,1H)2.97(brt,J=7.5Hz,2H),2.06(m,1H),1.98(m,1H),1.75(m,2H),1.57(m,2H),1.37(s,9H)。
HRMS(ESI,m/z,M+H+):C20H29BrN5O2Sに対する計算値482.1220、実測値482.1219。
1 H-NMR (400 MHz, CD 3 OD): δ 8.04 (d, J = 2.2 Hz, 1H), 7.76 (dd, J = 8.6, 2.2 Hz, 1H), 7.71 ( d, J = 8.7 Hz, 1H), 6.95 (s, 1H), 4.15 (brt, J = 6.2 Hz, 1H) 2.97 (brt, J = 7.5 Hz, 2H), 2 .06 (m, 1H), 1.98 (m, 1H), 1.75 (m, 2H), 1.57 (m, 2H), 1.37 (s, 9H).
HRMS (ESI, m / z, M + H + ): Calculated 482.1220 for C 20 H 29 BrN 5 O 2 S, found 482.1219.
[実施例4]
(S)−N−(4−(t−ブチル)チアゾール−2−イル)−2−クロロ−5−(2,5−ジアミノペンタンアミド)ベンズアミド(式(H−37)で表される化合物、以下「H−37化合物」ということがある。)を、以下の通りに合成した。
[Example 4]
(S) -N- (4- (t-butyl) thiazol-2-yl) -2-chloro-5- (2,5-diaminopentanamide) benzamide (a compound represented by the formula (H-37); Hereinafter, it may be referred to as “H-37 compound”) was synthesized as follows.
(1) Nα,Nε−ビス(t−ブトキシカルボニル)−D−リシンに代えてNα,Nδ−ビス(t−ブトキシカルボニル)−L−オルニチンを用い、実施例1の工程(1)と同様の工程により、縮合物を得、NMR解析と質量分析を行った。収率は29%であった。 (1) In place of Nα, Nε-bis (t-butoxycarbonyl) -D-lysine, Nα, Nδ-bis (t-butoxycarbonyl) -L-ornithine is used, and the same as step (1) of Example 1 By the process, a condensate was obtained and subjected to NMR analysis and mass spectrometry. The yield was 29%.
1H−NMR(400MHz,CDCl3):δ11.15(br,1H),9.39(brs,1H),7.65(brd,J=8.7Hz,1H),7.13(d,J=8.7Hz,1H),7.03(brm,2H),6.61(s,1H),4.69(brm,1H),4.53(brq,J=7.3Hz,1H),3.28(m,1H),3.18(m,1H),1.93(m,1H),1.84(m,1H),1.73−1.60(m,2H),1.40(s,9H),1.36(s,9H),1.26(s,9H)。
HRMS(ESI,m/z,M+Na+):C29H42ClN5O6SNaに対する計算値646.2437、実測値646.2436。
1 H-NMR (400 MHz, CDCl 3 ): δ 11.15 (br, 1H), 9.39 (brs, 1H), 7.65 (brd, J = 8.7 Hz, 1H), 7.13 (d, J = 8.7 Hz, 1H), 7.03 (brm, 2H), 6.61 (s, 1H), 4.69 (brm, 1H), 4.53 (brq, J = 7.3 Hz, 1H) 3.28 (m, 1H), 3.18 (m, 1H), 1.93 (m, 1H), 1.84 (m, 1H), 1.73-1.60 (m, 2H), 1.40 (s, 9H), 1.36 (s, 9H), 1.26 (s, 9H).
HRMS (ESI, m / z, M + Na + ): calcd for C 29 H 42 ClN 5 O 6 SNa 646.2437, found 646.2436.
(2) 次いで、前記工程(1)で得られた縮合物から、実施例1の工程(2)と同様の工程により、目的の化合物(H−37化合物)を2塩酸塩として得、NMR解析と質量分析を行った。収率は70%であった。 (2) Next, the target compound (H-37 compound) was obtained as a dihydrochloride salt from the condensate obtained in the step (1) by the same step as the step (2) of Example 1, and subjected to NMR analysis. And mass spectrometry was performed. The yield was 70%.
1H−NMR(400MHz,CD3OD):δ8.12(d,J=2.3Hz,1H),7.86(dd,J=8.7,2.3Hz,1H),7.56(d,J=8.7Hz,1H),7.01(s,1H),4.20(brt,J=6.6Hz,1H),3.11−2.93(m,2H),2.19−1.95(m,2H),1.95−1.78(m,2H),1.38(s,9H)。
HRMS(ESI,m/z,M+H+):C19H27ClN5O2Sに対する計算値424.1568、実測値424.1569。
1 H-NMR (400 MHz, CD 3 OD): δ 8.12 (d, J = 2.3 Hz, 1H), 7.86 (dd, J = 8.7, 2.3 Hz, 1H), 7.56 ( d, J = 8.7 Hz, 1H), 7.01 (s, 1H), 4.20 (brt, J = 6.6 Hz, 1H), 3.11-2.93 (m, 2H), 2. 19-1.95 (m, 2H), 1.95-1.78 (m, 2H), 1.38 (s, 9H).
HRMS (ESI, m / z, M + H + ): Calculated 414.1568 for C 19 H 27 ClN 5 O 2 S, found 424.1569.
[実施例5]
(S)−5−(2−アミノ−5−グアニジノペンタンアミド)−N−(4−(t−ブチル)チアゾール−2−イル)−2−クロロベンズアミド(式(H−32)で表される化合物、以下「H−32化合物」ということがある。)を、以下の通りに合成した。
[Example 5]
(S) -5- (2-amino-5-guanidinopentanamide) -N- (4- (t-butyl) thiazol-2-yl) -2-chlorobenzamide (represented by formula (H-32) Compound, hereinafter sometimes referred to as “H-32 compound”) was synthesized as follows.
(1) Nα,Nε−ビス(t−ブトキシカルボニル)−D−リシンに代えてN−α−(9−フルオレニルメトキシカルボニル)−N−ω−(2,2,4,6,7−ペンタメチルジヒドロベンゾフラン−5−スルホニル)−L−アルギニンを用い、実施例1の工程(1)と同様の工程により、縮合物を得、NMR解析と質量分析を行った。収率は58%であった。 (1) N-α- (9-fluorenylmethoxycarbonyl) -N-ω- (2,2,4,6,7- in place of Nα, Nε-bis (t-butoxycarbonyl) -D-lysine Using pentamethyldihydrobenzofuran-5-sulfonyl) -L-arginine, a condensate was obtained in the same manner as in step (1) of Example 1, and NMR analysis and mass spectrometry were performed. The yield was 58%.
1H−NMR(400MHz,CD3OD):δ7.78(d,J=2.3Hz,1H),7.68(d,J=7.8Hz,2H),7.60(dd,J=8.7,2.3Hz,1H),7.56(dd in appearance,J=6.8,5.5Hz,2H),7.37(d,J=8.7Hz,1H),7.26(dd,J=7.8,7.3Hz,2H),7.19(dd,J=7.8,7.3Hz,2H),6.66(s,1H),4.53(brs,1H),4.31(d,J=6.9Hz,2H),4.12(m,2H),3.15(m,1H),2.85(s,2H),2.46(s,3H),2.39(s,3H),1.94(s,3H),1.72(m,1H),1.60(m,1H),1.54−1.1.43(m,2H),1.31(s,6H),1.22(s,9H)。
HRMS(ESI,m/z,M+Na+):C48H54ClN7O7S2Naに対する計算値962.3107、実測値962.3287。
1 H-NMR (400 MHz, CD 3 OD): δ 7.78 (d, J = 2.3 Hz, 1H), 7.68 (d, J = 7.8 Hz, 2H), 7.60 (dd, J = 8.7, 2.3 Hz, 1H), 7.56 (dd in appearance, J = 6.8, 5.5 Hz, 2H), 7.37 (d, J = 8.7 Hz, 1H), 7.26. (Dd, J = 7.8, 7.3 Hz, 2H), 7.19 (dd, J = 7.8, 7.3 Hz, 2H), 6.66 (s, 1H), 4.53 (brs, 1H), 4.31 (d, J = 6.9 Hz, 2H), 4.12 (m, 2H), 3.15 (m, 1H), 2.85 (s, 2H), 2.46 (s) , 3H), 2.39 (s, 3H), 1.94 (s, 3H), 1.72 (m, 1H), 1.60 (m, 1H), 1.54-1.1.13 ( m, 2H), 1.31 (s, 6H), 1.22 (s, 9H).
HRMS (ESI, m / z, M + Na +): C 48 H 54 ClN 7 O 7 S Calculated 962.3107 for 2 Na, Found 962.3287.
(2) 次いで、前記工程(1)で得られた縮合物(127mg,0.135mmol)のジクロロメタン溶液(2mL)にピペリジン0.5mLを加え、室温で2時間攪拌した。反応終了後、酢酸エチルで希釈し、有機相を1M塩酸水溶液で3回抽出し、中性/酸性不純物を除去した後、水相を炭酸水素ナトリウム水溶液で中和した。中和した溶液を、酢酸エチルとジエチルエーテルの混合溶媒で抽出し、得られた有機相を飽和食塩水で洗浄した後、硫酸ナトリウムで脱水した。次いで、有機相を濃縮した後、シリカゲルカラムクロマトグラフィー(ジクロロメタン:メタノール=9:1で精製し、Fmoc脱保護体83mg(0.12mmol)を得、NMR解析と質量分析を行った。収率は86%であった。 (2) Next, 0.5 mL of piperidine was added to a dichloromethane solution (2 mL) of the condensate (127 mg, 0.135 mmol) obtained in the step (1), and the mixture was stirred at room temperature for 2 hours. After completion of the reaction, the reaction mixture was diluted with ethyl acetate, the organic phase was extracted three times with 1M aqueous hydrochloric acid solution to remove neutral / acidic impurities, and the aqueous phase was neutralized with aqueous sodium hydrogen carbonate solution. The neutralized solution was extracted with a mixed solvent of ethyl acetate and diethyl ether, and the obtained organic phase was washed with saturated brine and then dried over sodium sulfate. Next, after concentrating the organic phase, purification was performed with silica gel column chromatography (dichloromethane: methanol = 9: 1) to obtain 83 mg (0.12 mmol) of Fmoc deprotected body, and NMR analysis and mass spectrometry were performed. It was 86%.
1H−NMR(400MHz,CD3OD):δ7.82(d,J=2.8Hz,1H),7.60(dd,J=8.7,2.8Hz,1H),7.36(d,8.7Hz,1H),6.65(s,1H)3.36(dd,J=6.4,5.5Hz,1H),3.28−3.02(m,2H),2.87(s,2H),2.45(s,3H),2.38(s,3H),1.95(s,3H),1.71−1.42(m,4H),1.33(s,6H),1.22(s,9H)。
HRMS(ESI,m/z,M+H+):C33H45ClN7O5S2に対する計算値718.2607、実測値718.2607。
1 H-NMR (400 MHz, CD 3 OD): δ 7.82 (d, J = 2.8 Hz, 1H), 7.60 (dd, J = 8.7, 2.8 Hz, 1H), 7.36 ( d, 8.7 Hz, 1H), 6.65 (s, 1H) 3.36 (dd, J = 6.4, 5.5 Hz, 1H), 3.28-3.02 (m, 2H), 2 .87 (s, 2H), 2.45 (s, 3H), 2.38 (s, 3H), 1.95 (s, 3H), 1.71-1.42 (m, 4H), 1. 33 (s, 6H), 1.22 (s, 9H).
HRMS (ESI, m / z, M + H +): C 33 H 45 ClN 7 O 5 Calculated 718.2607 for S 2, Found 718.2607.
(3) 次いで、上記工程(2)で得られたFmoc脱保護体(53mg,0.074mmol)をトリフルオロ酢酸2mLに溶解し、水0.3mLを加え、室温で1時間攪拌した。反応終了後、水で希釈した後、ジエチルエーテルで抽出した。詳細には、水相を蒸発乾固させた後、得られた固体にジエチルエーテルを加え、不溶物をろ過によって除去することにより、目的の化合物(H−32化合物)のジエチルエーテル溶液を得た。一方、ジエチルエーテル相から1M塩酸で塩基性化合物を再抽出し、得られた抽出物を炭酸水素ナトリウム水溶液で中和した後、酢酸エチルで抽出した。得られた有機相を飽和食塩水で洗浄し、硫酸ナトリウムで脱水した後、最初に得られたジエチルエーテル溶液とともに濃縮した、さらに一晩真空乾燥することにより、白色粉末状固体として目的の化合物(H−32化合物)(23mg,0.049mmol)が得られた。収率は66%であった。 (3) Next, the Fmoc deprotected body (53 mg, 0.074 mmol) obtained in the above step (2) was dissolved in 2 mL of trifluoroacetic acid, 0.3 mL of water was added, and the mixture was stirred at room temperature for 1 hour. After completion of the reaction, the reaction mixture was diluted with water and extracted with diethyl ether. Specifically, after the aqueous phase was evaporated to dryness, diethyl ether was added to the obtained solid, and insoluble matters were removed by filtration to obtain a diethyl ether solution of the target compound (H-32 compound). . On the other hand, the basic compound was re-extracted from the diethyl ether phase with 1M hydrochloric acid, and the resulting extract was neutralized with an aqueous sodium hydrogen carbonate solution and then extracted with ethyl acetate. The obtained organic phase was washed with saturated brine, dehydrated with sodium sulfate, concentrated with the diethyl ether solution obtained first, and further dried in vacuo overnight to give the desired compound (white powder solid) H-32 compound) (23 mg, 0.049 mmol) was obtained. The yield was 66%.
1H−NMR(400MHz,CD3OD):δ7.91(d,J=2.8Hz,1H),7.74(dd,J=9.2,2.8Hz,1H),7.42(d,J=9.2Hz,1H),6.79(s,1H),4.02(brdd,J=6.0,5.5Hz,1H),3.17(brdd,J=6.9,6.4Hz,2H),1.98(m,1H),1.91(m,1H),1.67(m,2H),1.26(s,9H)。
HRMS(ESI,m/z,M+H+):C20H29ClN7O2Sに対する計算値466.1786、実測値466.1777。
1 H-NMR (400 MHz, CD 3 OD): δ 7.91 (d, J = 2.8 Hz, 1H), 7.74 (dd, J = 9.2, 2.8 Hz, 1H), 7.42 ( d, J = 9.2 Hz, 1H), 6.79 (s, 1H), 4.02 (brdd, J = 6.0, 5.5 Hz, 1H), 3.17 (brdd, J = 6.9). , 6.4 Hz, 2H), 1.98 (m, 1H), 1.91 (m, 1H), 1.67 (m, 2H), 1.26 (s, 9H).
HRMS (ESI, m / z, M + H +): C 20 H 29 ClN 7
[実施例6]
5−(2−アミノヘキサンアミド)−N−(4−(t−ブチル)チアゾール−2−イル)−2−クロロベンズアミド(式(H−35)で表される化合物、以下「H−35化合物」ということがある。)を、以下の通りに合成した。
[Example 6]
5- (2-aminohexanamide) -N- (4- (t-butyl) thiazol-2-yl) -2-chlorobenzamide (compound represented by formula (H-35), hereinafter referred to as “H-35 compound” Was synthesized as follows.
(1) Nα,Nε−ビス(t−ブトキシカルボニル)−D−リシンに代えて、6−((t−ブトキシカルボニル)アミノ)ヘキサン酸を用い、実施例1の工程(1)と同様の工程により縮合物を得、NMR解析を行った。収率は89%であった。 (1) A step similar to step (1) of Example 1 except that 6-((t-butoxycarbonyl) amino) hexanoic acid is used instead of Nα, Nε-bis (t-butoxycarbonyl) -D-lysine. The condensate was obtained by NMR analysis. The yield was 89%.
1H−NMR(400MHz,CDCl3):δ9.91(br,1H),8.26(br,1H),7.91(s,1H),7.83(d,J=8.7Hz,1H),7.38(d,J=8.7Hz,1H),6.60(s,1H),4.68(brm,1H),3.10(m,2H),2.38(m,2H),1.71(m,2H),1.48(m,2H),1.43(s,9H),1.35(m,2H),1.30(s,9H)。 1 H-NMR (400 MHz, CDCl 3 ): δ 9.91 (br, 1H), 8.26 (br, 1H), 7.91 (s, 1H), 7.83 (d, J = 8.7 Hz, 1H), 7.38 (d, J = 8.7 Hz, 1H), 6.60 (s, 1H), 4.68 (brm, 1H), 3.10 (m, 2H), 2.38 (m , 2H), 1.71 (m, 2H), 1.48 (m, 2H), 1.43 (s, 9H), 1.35 (m, 2H), 1.30 (s, 9H).
(2) 次いで、前記工程(1)で得られた縮合物から、実施例1の工程(2)と同様の工程により、目的の化合物(H−35化合物)を塩酸塩として得、NMR解析を行った。収率は85%であった。 (2) Next, from the condensate obtained in the step (1), the target compound (H-35 compound) is obtained as a hydrochloride by the same step as the step (2) of Example 1, and NMR analysis is performed. went. The yield was 85%.
1H−NMR(400MHz,CD3OD):δ7.96(d,J=2.6Hz,1H),7.70(dd,J=8.6,2.6Hz,1H),7.49(d,J=8.6Hz,1H),6.88(s,1H),2.93(brdd,J=7.7,7.3Hz,2H),2.45(t,J=7.3Hz,2H),1.75(ttm,J=7.7,7.3Hz,2H),1.70(ttm,J=7.7,7.3Hz,2H),1.47(m,2H),1.35(s,9H)。 1 H-NMR (400 MHz, CD 3 OD): δ 7.96 (d, J = 2.6 Hz, 1H), 7.70 (dd, J = 8.6, 2.6 Hz, 1H), 7.49 ( d, J = 8.6 Hz, 1H), 6.88 (s, 1H), 2.93 (brdd, J = 7.7, 7.3 Hz, 2H), 2.45 (t, J = 7.3 Hz). , 2H), 1.75 (ttm, J = 7.7, 7.3 Hz, 2H), 1.70 (ttm, J = 7.7, 7.3 Hz, 2H), 1.47 (m, 2H) , 1.35 (s, 9H).
[実施例7]
N−(4−(t−ブチル)チアゾール−2−イル)−2−クロロ−5−(2,3−ジアミノプロパンアミド)ベンズアミド(式(H−39)で表される化合物、以下「H−39化合物」ということがある。)を、以下の通りに合成した。
[Example 7]
N- (4- (t-butyl) thiazol-2-yl) -2-chloro-5- (2,3-diaminopropanamide) benzamide (a compound represented by the formula (H-39), hereinafter referred to as “H- 39 compounds ") was synthesized as follows.
(1) Nα,Nε−ビス(t−ブトキシカルボニル)−D−リシンに代えて、2,3−ビス((t−ブトキシカルボニル)アミノ)プロパン酸を用い、実施例1の工程(1)と同様の工程により縮合物を得、NMR解析を行った。収率は87%であった。 (1) In place of Nα, Nε-bis (t-butoxycarbonyl) -D-lysine, 2,3-bis ((t-butoxycarbonyl) amino) propanoic acid was used, and step (1) of Example 1 and A condensate was obtained by the same process and subjected to NMR analysis. The yield was 87%.
1H−NMR(400MHz,CDCl3):δ10.46(br,1H),9.43(brs,1H),7.69(s,1H),7.66(d,J=8.4Hz,1H),7.31(d,J=8.4Hz,1H),6.61(d,J=4.9Hz,1H),6.35(brs,1H),5.38(brm,1H),4.42(brm,1H),3.63(m,1H),3.56(m,1H),1.41(s,9H),1.40(s,9H),1.33(s,9H)。 1 H-NMR (400 MHz, CDCl 3 ): δ 10.46 (br, 1H), 9.43 (brs, 1H), 7.69 (s, 1H), 7.66 (d, J = 8.4 Hz, 1H), 7.31 (d, J = 8.4 Hz, 1H), 6.61 (d, J = 4.9 Hz, 1H), 6.35 (brs, 1H), 5.38 (brm, 1H) 4.42 (brm, 1H), 3.63 (m, 1H), 3.56 (m, 1H), 1.41 (s, 9H), 1.40 (s, 9H), 1.33 ( s, 9H).
(2) 次いで、前記工程(1)で得られた縮合物から、実施例1の工程(2)と同様の工程により、目的の化合物(H−39化合物)を2塩酸塩として得、NMR解析を行った。収率は100%であった。 (2) Next, the target compound (H-39 compound) was obtained as a dihydrochloride salt from the condensate obtained in the step (1) by the same step as the step (2) of Example 1, and subjected to NMR analysis. Went. The yield was 100%.
1H−NMR(700MHz,CD3OD):δ8.10(d,J=2.6Hz,1H),7.86(dd,J=8.8,2.6Hz,1H),7.56(d,J=8.8Hz,1H),6.90(s,1H),4.56(dd,J=5.8,5.6Hz,1H),3.62(dd,J=14.1,5.8Hz,1H),3.54(dd,J=14.1,5.6Hz,1H),1.35(s,9H)。 1 H-NMR (700 MHz, CD 3 OD): δ 8.10 (d, J = 2.6 Hz, 1H), 7.86 (dd, J = 8.8, 2.6 Hz, 1H), 7.56 ( d, J = 8.8 Hz, 1H), 6.90 (s, 1H), 4.56 (dd, J = 5.8, 5.6 Hz, 1H), 3.62 (dd, J = 14.1) , 5.8 Hz, 1H), 3.54 (dd, J = 14.1, 5.6 Hz, 1H), 1.35 (s, 9H).
[実施例8]
(S)−5−(2−アミノ−3−(1H−イミダゾール−4−イル)プロパンアミド−N−(4−(t−ブチル)チアゾール−2−イル)−2−クロロベンズアミド(式(H−46)で表される化合物、以下「H−46化合物」ということがある。)を、以下の通りに合成した。
[Example 8]
(S) -5- (2-Amino-3- (1H-imidazol-4-yl) propanamide-N- (4- (t-butyl) thiazol-2-yl) -2-chlorobenzamide (formula (H The compound represented by -46), hereinafter sometimes referred to as "H-46 compound") was synthesized as follows.
(1) Nα,Nε−ビス(t−ブトキシカルボニル)−D−リシンに代えて、N−α−(9−フルオレニルメトキシカルボニル)アミノ)−N−τ−トリチル−L−ヒスチジンを用い、実施例1の工程(1)と同様の工程により縮合物を得、NMR解析を行った。収率は37%であった。 (1) Instead of Nα, Nε-bis (t-butoxycarbonyl) -D-lysine, N-α- (9-fluorenylmethoxycarbonyl) amino) -N-τ-trityl-L-histidine was used. A condensate was obtained by the same step as in step (1) of Example 1, and NMR analysis was performed. The yield was 37%.
1H−NMR(400MHz,CDCl3):δ11.01(br,1H),10.01(brs,1H),7.66−7.61(m,3H),7.45−7.10(m,19H),6.97(d−like,J=7.8Hz,6H),6.63(s,1H),6.58(s,1H),4.84(dm,J=6.4Hz,1H),4.33(dd,J=11.3,7.1Hz,1H),4.16(m,1H),3.99(brt,J=6.9Hz,1H),3.37(br,1H),3.15−3.04(m,2H),1.29(s,9H)。 1 H-NMR (400 MHz, CDCl 3 ): δ 11.01 (br, 1H), 10.01 (brs, 1H), 7.66-7.61 (m, 3H), 7.45-7.10 ( m, 19H), 6.97 (d-like, J = 7.8 Hz, 6H), 6.63 (s, 1H), 6.58 (s, 1H), 4.84 (dm, J = 6. 4 Hz, 1 H), 4.33 (dd, J = 11.3, 7.1 Hz, 1 H), 4.16 (m, 1 H), 3.99 (brt, J = 6.9 Hz, 1 H), 3. 37 (br, 1H), 3.15-3.04 (m, 2H), 1.29 (s, 9H).
(2) 次いで、前記工程(1)で得られた縮合物から、実施例5の工程(2)と同様の工程により、Fmoc脱保護体を得、NMR解析を行った。収率は42%であった。 (2) Next, from the condensate obtained in the step (1), an Fmoc deprotection product was obtained in the same manner as the step (2) of Example 5, and NMR analysis was performed. The yield was 42%.
1H−NMR(400MHz,CDCl3):δ10.06(br,1H),7.83(s,1H),7.63(d,J=8.2Hz,1H),7.30−7.20(m,11H),7.03(brd,J=6.9Hz,6H),6.61(s,1H),6.57(s,1H),3.77(brm,1H),3.02(m,1H),2.91(m,1H),1.26(s,9H)。 1 H-NMR (400 MHz, CDCl 3 ): δ 10.06 (br, 1H), 7.83 (s, 1H), 7.63 (d, J = 8.2 Hz, 1H), 7.30-7. 20 (m, 11H), 7.03 (brd, J = 6.9 Hz, 6H), 6.61 (s, 1H), 6.57 (s, 1H), 3.77 (brm, 1H), 3 .02 (m, 1H), 2.91 (m, 1H), 1.26 (s, 9H).
(3) 次いで、前記工程(2)で得られたFmoc脱保護体から、実施例5の工程(3)と同様の工程により、目的の化合物(H−46化合物)を得、NMR解析を行った。収率は52%であった。 (3) Next, the target compound (H-46 compound) was obtained from the Fmoc deprotected body obtained in the step (2) by the same step as the step (3) of Example 5, and subjected to NMR analysis. It was. The yield was 52%.
1H−NMR(400MHz,CDCl3):δ9.94(br,1H),7.95(d,J=2.3Hz,1H),7.74(d,J=8.7,2.3Hz,1H),7.54(s,1H),7.38(d,J=8.7Hz,1H),6.85(s,1H),6.61(s,1H),3.77(t,J=5.5Hz,1H),3.11(dd,J=14.7,5.5Hz,1H),3.06(dd,J=14.7,5.5Hz,1H),1.30(s,9H)。 1 H-NMR (400 MHz, CDCl 3 ): δ 9.94 (br, 1H), 7.95 (d, J = 2.3 Hz, 1H), 7.74 (d, J = 8.7, 2.3 Hz) , 1H), 7.54 (s, 1H), 7.38 (d, J = 8.7 Hz, 1H), 6.85 (s, 1H), 6.61 (s, 1H), 3.77 ( t, J = 5.5 Hz, 1H), 3.11 (dd, J = 14.7, 5.5 Hz, 1H), 3.06 (dd, J = 14.7, 5.5 Hz, 1H), 1 .30 (s, 9H).
[製造例1]
(R)−3−(2,6−ビス((t−ブトキシカルボニル)アミノ)ヘキサンアミド)安息香酸を、以下の通りに合成した。
[Production Example 1]
(R) -3- (2,6-bis ((t-butoxycarbonyl) amino) hexanamido) benzoic acid was synthesized as follows.
(1) 3-アミノ安息香酸エチル(366mg、2.22mmol)とNα,Nε−ビス(t−ブトキシカルボニル)−D−リシン(969mg、2.93mmol)をジクロロメタン(8mL)に溶解し、2−クロロ−1−メチルピリジニウム ヨージド(879mg、3.44mmol)及びトリエチルアミン(1.5mL、10mmol)を加え、室温で12時間撹拌した。反応終了後、酢酸エチルで希釈し、水、次いで硫酸水素ナトリウム水溶液で有機相を洗浄した。その際の水相は酢酸エチルで2回再抽出し、有機相は炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄した後、硫酸ナトリウムで乾燥させた。乾燥後の抽出溶液を減圧濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=2:1)で精製し、縮合物(456mg,0.924mmol)を得た。収率は42%であった。得られた縮合物に対して、NMR解析を行った。 (1) Ethyl 3-aminobenzoate (366 mg, 2.22 mmol) and Nα, Nε-bis (t-butoxycarbonyl) -D-lysine (969 mg, 2.93 mmol) were dissolved in dichloromethane (8 mL), and 2- Chloro-1-methylpyridinium iodide (879 mg, 3.44 mmol) and triethylamine (1.5 mL, 10 mmol) were added, and the mixture was stirred at room temperature for 12 hours. After completion of the reaction, the reaction mixture was diluted with ethyl acetate, and the organic phase was washed with water and then with an aqueous sodium hydrogen sulfate solution. The aqueous phase at that time was re-extracted twice with ethyl acetate, and the organic phase was washed successively with an aqueous sodium hydrogen carbonate solution and saturated brine, and then dried over sodium sulfate. The extracted solution after drying was concentrated under reduced pressure and purified by silica gel column chromatography (hexane: ethyl acetate = 2: 1) to obtain a condensate (456 mg, 0.924 mmol). The yield was 42%. NMR analysis was performed on the resulting condensate.
1H−NMR(400MHz,CDCl3):δ9.16(br,1H),8.10(s,1H),7.80−7.68(m,2H),7.30(brm,1H),5.61(brs,1H),4.80(brs,1H),4.38−4.32(m,3H),3.18−3.06(m,2H),1.91(m,1H),1.74(m,1H),1.58−1.40(m,4H),1.44(s,9H),1.43(s,9H),1.37(t,J=7.0Hz,3H)。 1 H-NMR (400 MHz, CDCl 3 ): δ 9.16 (br, 1H), 8.10 (s, 1H), 7.80-7.68 (m, 2H), 7.30 (brm, 1H) , 5.61 (brs, 1H), 4.80 (brs, 1H), 4.38-4.32 (m, 3H), 3.18-3.06 (m, 2H), 1.91 (m , 1H), 1.74 (m, 1H), 1.58-1.40 (m, 4H), 1.44 (s, 9H), 1.43 (s, 9H), 1.37 (t, J = 7.0 Hz, 3H).
(2) 次いで、前記工程(1)で得られた縮合物(972mg,1.97mmol)を、テトラヒドロフラン(20mL)に溶解した後、水、メタノールそれぞれ10mLを加え、さらに、水酸化リチウム1水和物(234mg、5.58mmol)を加え、室温で2.5時間撹拌した。反応終了後、炭酸カリウム水溶液で希釈し、酢酸エチルで洗浄することで中性及び塩基性物質を除去した後、水相に1M塩酸を滴下して酸性にし、酢酸エチルで抽出した。有機相を飽和食塩水で洗浄後、硫酸ナトリウムで乾燥させた。乾燥後の抽出溶液を減圧濃縮して、目的の安息香酸誘導体(864mg、1.86mmol)を得た。収率は96%であった。得られた目的の化合物に対して、NMR解析を行った。 (2) Next, the condensate (972 mg, 1.97 mmol) obtained in the step (1) was dissolved in tetrahydrofuran (20 mL), 10 mL each of water and methanol was added, and lithium hydroxide monohydrate was further added. (234 mg, 5.58 mmol) was added, and the mixture was stirred at room temperature for 2.5 hours. After completion of the reaction, the mixture was diluted with an aqueous potassium carbonate solution and washed with ethyl acetate to remove neutral and basic substances. The aqueous phase was acidified with 1M hydrochloric acid dropwise, and extracted with ethyl acetate. The organic phase was washed with saturated brine and dried over sodium sulfate. The extracted solution after drying was concentrated under reduced pressure to obtain the desired benzoic acid derivative (864 mg, 1.86 mmol). The yield was 96%. The obtained target compound was subjected to NMR analysis.
1H−NMR(400MHz,CDCl3):δ9.50(s,1H),8.23(brs,1H),8.14(s,1H),7.79(d,J=6.9Hz,1H),7.38(dd,J=7.6,6.9Hz,1H),5.81(brs,1H),4.81(brs,1H),4.46(brs,1H),3.10(brm,2H),1.87(m,1H),1.75(m,1H),1.55−1.50(m,2H),1.46(s,9H),1.41(s,9H)。 1 H-NMR (400 MHz, CDCl 3 ): δ 9.50 (s, 1H), 8.23 (brs, 1H), 8.14 (s, 1H), 7.79 (d, J = 6.9 Hz, 1H), 7.38 (dd, J = 7.6, 6.9 Hz, 1H), 5.81 (brs, 1H), 4.81 (brs, 1H), 4.46 (brs, 1H), 3 .10 (brm, 2H), 1.87 (m, 1H), 1.75 (m, 1H), 1.55-1.50 (m, 2H), 1.46 (s, 9H), 1. 41 (s, 9H).
[実施例9]
(R)−N−アダマンタン−1−イル−3−(2,6−ジアミノヘキサンアミド)ベンズアミド(式(H−47)で表される化合物、以下「H−47化合物」ということがある。)を、以下の通りに合成した。
[Example 9]
(R) -N-adamantan-1-yl-3- (2,6-diaminohexanamide) benzamide (compound represented by the formula (H-47), hereinafter may be referred to as “H-47 compound”) Was synthesized as follows.
(1) 1−アダマンチルアミン(55mg、0.36mmol)と製造例1で得られた安息香酸誘導体(147mg、0.316mmol)をジクロロメタン(8mL)に溶解し、EDCI塩酸塩(64mg、0.335mmol)、ジイソプロピルエチルアミン(610μL、3.59mmol)及び1-ヒドロキシベンゾトリアゾール(HOBt:45mg、0.33mmol)を順次加え、室温で4時間撹拌した。反応終了後、酢酸エチルで希釈し、水、次いで硫酸水素ナトリウム水溶液で有機相を洗浄した。さらに有機相は炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄した後、硫酸ナトリウムで乾燥させた。乾燥後の抽出溶液を減圧濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=2:1)で精製し、縮合物(115mg,0.192mmol)を得た。収率は60%であった。得られた縮合物に対して、NMR解析を行った。 (1) 1-adamantylamine (55 mg, 0.36 mmol) and the benzoic acid derivative (147 mg, 0.316 mmol) obtained in Preparation Example 1 were dissolved in dichloromethane (8 mL), and EDCI hydrochloride (64 mg, 0.335 mmol) was dissolved. ), Diisopropylethylamine (610 μL, 3.59 mmol) and 1-hydroxybenzotriazole (HOBt: 45 mg, 0.33 mmol) were sequentially added, and the mixture was stirred at room temperature for 4 hours. After completion of the reaction, the reaction mixture was diluted with ethyl acetate, and the organic phase was washed with water and then with an aqueous sodium hydrogen sulfate solution. Further, the organic phase was washed successively with an aqueous sodium hydrogen carbonate solution and saturated brine, and then dried over sodium sulfate. The extracted solution after drying was concentrated under reduced pressure and purified by silica gel column chromatography (hexane: ethyl acetate = 2: 1) to obtain a condensate (115 mg, 0.192 mmol). The yield was 60%. NMR analysis was performed on the resulting condensate.
1H−NMR(400MHz,CDCl3):δ9.18(brs,1H),7.64(d,J=7.8Hz,1H),7.40(brs,1H),7.36(d,J=7.3Hz,1H),7.15(dd,J=7.8,7.3Hz,1H),6.31(s,1H),5.44(brm,1H),4.70(brm,1H),4.31(brm,1H),3.11(brm,2H),2.16(brs,4H),2.14(brm,4H),1.99(m,2H),1.95−1.81(m,2H),1.80−1.48(m,9H),1.47(s,9H),1.44(s,9H)。 1 H-NMR (400 MHz, CDCl 3 ): δ 9.18 (brs, 1H), 7.64 (d, J = 7.8 Hz, 1H), 7.40 (brs, 1H), 7.36 (d, J = 7.3 Hz, 1H), 7.15 (dd, J = 7.8, 7.3 Hz, 1H), 6.31 (s, 1H), 5.44 (brm, 1H), 4.70 ( brm, 1H), 4.31 (brm, 1H), 3.11 (brm, 2H), 2.16 (brs, 4H), 2.14 (brm, 4H), 1.99 (m, 2H), 1.95-1.81 (m, 2H), 1.80-1.48 (m, 9H), 1.47 (s, 9H), 1.44 (s, 9H).
(2) 次いで、前記工程(1)で得られた縮合物(109mg,0.182mmol)を、ジクロロメタン(2mL)に溶かした後、トリフルオロ酢酸(1mL)を滴下し、室温で1.5時間撹拌した。反応終了後反応液を濃縮し、ジエチルエーテルを加えることで析出した固体を吸引ろ過し、回収した固体をジエチルエーテルで洗浄した後、さらに真空乾燥し、目的の化合物(H−47化合物)を2トリフルオロ酢酸塩として得た。収量は85mg(0.213mmol)であり、収率は75%であった。得られた目的の化合物に対して、NMR解析を行った。 (2) Next, the condensate (109 mg, 0.182 mmol) obtained in the above step (1) was dissolved in dichloromethane (2 mL), and trifluoroacetic acid (1 mL) was added dropwise thereto at room temperature for 1.5 hours. Stir. After completion of the reaction, the reaction solution is concentrated, and the solid precipitated by adding diethyl ether is filtered by suction. The collected solid is washed with diethyl ether and further dried under vacuum to obtain the target compound (H-47 compound) as 2 Obtained as the trifluoroacetate salt. The yield was 85 mg (0.213 mmol), and the yield was 75%. The obtained target compound was subjected to NMR analysis.
1H−NMR(400MHz,CD3OD):δ7.98(s,1H),7.72(dm,J=8.2Hz,1H),7.49(d,J=7.8Hz,1H),7.40(dd,J=8.2,7.8Hz,1H),4.06(brt,J=6.4Hz,1H),2.94(dd,J=7.8,7.3Hz,2H),2.15(m,6H),2.10(brm,3H),2.06−1.92(m,2H),1.80−1.68(m,8H),1.60−1.49(m,2H)。 1 H-NMR (400 MHz, CD 3 OD): δ 7.98 (s, 1H), 7.72 (dm, J = 8.2 Hz, 1H), 7.49 (d, J = 7.8 Hz, 1H) , 7.40 (dd, J = 8.2, 7.8 Hz, 1H), 4.06 (brt, J = 6.4 Hz, 1H), 2.94 (dd, J = 7.8, 7.3 Hz) , 2H), 2.15 (m, 6H), 2.10 (brm, 3H), 2.06-1.92 (m, 2H), 1.80-1.68 (m, 8H), 1. 60-1.49 (m, 2H).
[実施例10]
(R)−3−(2,6−ジアミノヘキサンアミド)−N−ヘキシルベンズアミド(式(H−50)で表される化合物、以下「H−50化合物」ということがある。)を、以下の通りに合成した。
[Example 10]
(R) -3- (2,6-diaminohexanamide) -N-hexylbenzamide (a compound represented by the formula (H-50), hereinafter may be referred to as “H-50 compound”) is as follows. Synthesized as street.
(1) 1−アダマンチルアミンに代えてヘキシルアミンを用い、実施例9の工程(1)と同様の工程により、縮合物を得、NMR解析を行った。収率は45%であった。 (1) Using hexylamine instead of 1-adamantylamine, a condensate was obtained and subjected to NMR analysis by the same step as in step (1) of Example 9. The yield was 45%.
1H−NMR(400MHz,CDCl3):δ9.53(brs,1H),7.68(d,J=7.8Hz,1H),7.33(d,J=6.9Hz,1H),7.14−7.05(m,2H),5.58(brm,1H),4.74(brs,1H),4.37(brm,1H),3.50−3.36(m,2H),3.11(brm,2H),1.86−1.28(m,15H),1.44(s,9H),1.43(s,9H),0.91(m,3H)。 1 H-NMR (400 MHz, CDCl 3 ): δ9.53 (brs, 1H), 7.68 (d, J = 7.8 Hz, 1H), 7.33 (d, J = 6.9 Hz, 1H), 7.14-7.05 (m, 2H), 5.58 (brm, 1H), 4.74 (brs, 1H), 4.37 (brm, 1H), 3.50-3.36 (m, 2H), 3.11 (brm, 2H), 1.86-1.28 (m, 15H), 1.44 (s, 9H), 1.43 (s, 9H), 0.91 (m, 3H) ).
(2) 次いで、前記工程(1)で得られた縮合物から、実施例9の工程(2)と同様の工程により、目的の化合物(H−50化合物)を2トリフルオロ酢酸塩として得、NMR解析を行った。収率は72%であった。 (2) Next, the target compound (H-50 compound) was obtained as a 2-trifluoroacetate salt from the condensate obtained in the step (1) by the same step as the step (2) in Example 9. NMR analysis was performed. The yield was 72%.
1H−NMR(400MHz,CD3OD):δ8.09(s,1H),7.76(d,J=7.8Hz,1H),7.56(d,J=7.8Hz,1H),7.43(t,J=7.8Hz,1H),4.03(t,J=6.4Hz,1H),3.37(dd,J=7.3,6.9Hz,2H),2.94(brt,J=7.8Hz,2H),2.08−1.94(m,2H),1.77−1.69(m,2H),1.64−1.51(m,4H),1.42−1.30(m,6H),0.91(t−like,J〜6.8Hz,3H)。 1 H-NMR (400 MHz, CD 3 OD): δ 8.09 (s, 1H), 7.76 (d, J = 7.8 Hz, 1H), 7.56 (d, J = 7.8 Hz, 1H) , 7.43 (t, J = 7.8 Hz, 1H), 4.03 (t, J = 6.4 Hz, 1H), 3.37 (dd, J = 7.3, 6.9 Hz, 2H), 2.94 (brt, J = 7.8 Hz, 2H), 2.08-1.94 (m, 2H), 1.77-1.69 (m, 2H), 1.64-1.51 (m , 4H), 1.42-1.30 (m, 6H), 0.91 (t-like, J to 6.8 Hz, 3H).
[実施例11]
(S)−N−(4−(t−ブチル)チアゾール−2−イル)−3−(2,6−ジアミノヘキサンアミド)ベンズアミド(式(H−51)で表される化合物、以下「H−51化合物」ということがある。)を、以下の通りに合成した。
[Example 11]
(S) -N- (4- (t-butyl) thiazol-2-yl) -3- (2,6-diaminohexaneamide) benzamide (compound represented by formula (H-51), hereinafter referred to as “H- 51 compounds ”)) was synthesized as follows.
(1) Nα,Nε−ビス(t−ブトキシカルボニル)−D−リシンに代えてNα,Nε−ビス(t−ブトキシカルボニル)−L−リシンを、又、5−アミノ−N−(4−t−ブチル−1,3−チアゾール−2−イル)−2−クロロベンズアミドに代えて3−アミノ−N−(4−t−ブチル−1,3−チアゾール−2−イル)ベンズアミドを用い、実施例1の工程(1)と同様の工程により、縮合物を得、NMR解析を行った。収率は90%であった。 (1) Instead of Nα, Nε-bis (t-butoxycarbonyl) -D-lysine, Nα, Nε-bis (t-butoxycarbonyl) -L-lysine is used, and 5-amino-N- (4-t Example using 3-amino-N- (4-tert-butyl-1,3-thiazol-2-yl) benzamide instead of -butyl-1,3-thiazol-2-yl) -2-chlorobenzamide A condensate was obtained by the same step as step 1 (1) and NMR analysis was performed. The yield was 90%.
1H−NMR(400MHz,CDCl3):δ10.84(br,1H),9.35(brs,1H),7.70(d,J=7.8Hz,1H),7.54(d,J=7.3Hz,1H),7.27(brs,1H),7.11(dd,J=7.8,7.3Hz,1H),6.79(d,J=8.2Hz,1H),6.58(s,1H),4.68(brm,1H),4.51(dtm,J=7.3,6.9Hz,1H),3.13(brm,2H),1.95(m,1H),1.88(m,1H),1.60−1.44(m,4H),1.41(s,9H),1.36(s,9H),1.31(s,9H)。 1 H-NMR (400 MHz, CDCl 3 ): δ 10.84 (br, 1H), 9.35 (brs, 1H), 7.70 (d, J = 7.8 Hz, 1H), 7.54 (d, J = 7.3 Hz, 1H), 7.27 (brs, 1H), 7.11 (dd, J = 7.8, 7.3 Hz, 1H), 6.79 (d, J = 8.2 Hz, 1H) ), 6.58 (s, 1H), 4.68 (brm, 1H), 4.51 (dtm, J = 7.3, 6.9 Hz, 1H), 3.13 (brm, 2H), 1. 95 (m, 1H), 1.88 (m, 1H), 1.60-1.44 (m, 4H), 1.41 (s, 9H), 1.36 (s, 9H), 1.31 (S, 9H).
(2) 次いで、前記工程(1)で得られた縮合物から、実施例1の工程(2)と同様の工程により、目的の化合物(H−51化合物)を2塩酸塩として得、NMR解析を行った。収率は100%であった。 (2) Next, the target compound (H-51 compound) is obtained as a dihydrochloride salt from the condensate obtained in the step (1) by the same step as the step (2) in Example 1, and subjected to NMR analysis. Went. The yield was 100%.
1H−NMR(400MHz,CD3OD):δ8.39(dd,J=2.3,1.8Hz,1H),7.92(ddm,J=8.2,2.3Hz,1H),7.86(ddm,J=8.2,1.8Hz,1H),7.58(t,J=8.2Hz,1H),6.94(s,1H),4.16(t,J=6.4Hz,1H),2.98(brdd,J=7.8,7.3Hz,2H),2.14−1.97(m,2H),1.81−1.73(m,2H),1.68−1.53(m,2H),1.39(s,9H)。 1 H-NMR (400 MHz, CD 3 OD): δ 8.39 (dd, J = 2.3, 1.8 Hz, 1H), 7.92 (ddm, J = 8.2, 2.3 Hz, 1H), 7.86 (ddm, J = 8.2, 1.8 Hz, 1H), 7.58 (t, J = 8.2 Hz, 1H), 6.94 (s, 1H), 4.16 (t, J = 6.4 Hz, 1H), 2.98 (brdd, J = 7.8, 7.3 Hz, 2H), 2.14-1.97 (m, 2H), 1.81-1.73 (m, 2H), 1.68-1.53 (m, 2H), 1.39 (s, 9H).
[試験例1]RND型多剤排出ポンプに対する排出能阻害効果の評価
マクロライド系抗細菌剤であり、MexB及びMexYの排出基質であるエリスロマイシン(以降及び図中、「EM」と表記する。)の存在下における細菌の増殖能を指標として、一般式(I)で表される化合物のRND型多剤排出ポンプに対する排出能阻害効果を調べた。被検化合物がRND型多剤排出ポンプに対する排出能阻害能を有する場合には、EMと被検化合物の併用により、EMの単独使用時よりも、細菌の増殖が抑制される。
[Test Example 1] Evaluation of the discharge inhibitory effect on the RND type multidrug discharge pump Erythromycin, which is a macrolide antibacterial agent and is an excretion substrate of MexB and MexY (hereinafter referred to as “EM” in the figures). The ability of the compound represented by the general formula (I) to inhibit the discharge ability of the compound represented by the general formula (I) on the RND type multidrug discharge pump was examined using the growth ability of bacteria in the presence of When the test compound has the ability to inhibit the discharge capacity of the RND-type multidrug discharge pump, the combined use of EM and the test compound suppresses bacterial growth compared to when EM is used alone.
非特許文献6記載の大腸菌が持つ多剤排出システムAcrAB−TolCのうち、acrB及びtolC遺伝子を欠損させた大腸菌(Escherichia coli)株に、非特許文献5記載の緑膿菌(Pseudomonas aeruginosa)の主たる多剤排出システムMexAB−OprMの遺伝子をプラスミドとして形質移入した変異株(以降及び図中、「pmexB株」と表記する。)、緑膿菌のもう一つの主たる多剤排出システムMexXY−OprMの遺伝子移入株(以降及び図中、「pmexY」と表記する。)、及び空ベクター移入株(以降及び図中、「vector株」と表記する。)を、一般式(I)で表される化合物の多剤排出ポンプに対する阻害能の評価に使用した。各大腸菌株の培養には、培地としてLB(Luria−Bertani)brothを使用し、96穴プレート(一穴当たりの培地量は200μL)を用い、接種菌量を2×107CFU/μLとした。 Among the multidrug efflux system AcrAB-TolC possessed by E. coli described in Non-Patent Document 6, the Escherichia coli strain lacking the acrB and tolC genes is the main component of Pseudomonas aeruginosa described in Non-Patent Document 5. Mutant strain transfected with the gene of multidrug efflux system MexAB-OprM as a plasmid (hereinafter referred to as “pmexB strain” in the figure and the figure), another main multidrug efflux system gene of Pseudomonas aeruginosa MexXY-OprM The transferred strain (hereinafter referred to as “pmexY”) and the empty vector transferred strain (hereinafter referred to as “vector strain” in the figure) are represented by the compound represented by the general formula (I). Used to evaluate the inhibitory capacity against multidrug efflux pumps. For culture of each E. coli strain, LB (Luria-Bertani) broth was used as a medium, a 96-well plate (medium amount per well was 200 μL), and the amount of inoculum was 2 × 10 7 CFU / μL. .
具体的には、各大腸菌株を、EMと各種濃度(0〜128μg/mL)の被検化合物を添加した培地中で培養し、菌株の増殖を600nmにおける光学的濁度(OD600)の経時的測定によって評価した。培地のEM濃度は、pmexB株の培養では8μg/mLとし、pmexY株の培養では64μg/mLとした。 Specifically, each E. coli strain is cultured in a medium to which EM and various concentrations (0 to 128 μg / mL) of a test compound are added, and the growth of the strain is measured over time with optical turbidity (OD 600 ) at 600 nm. Was evaluated by mechanical measurement. The EM concentration of the medium was 8 μg / mL in the culture of the pmexB strain and 64 μg / mL in the culture of the pmexY strain.
菌株の増殖に対する各被検化合物自身が持つ抗細菌活性の寄与は、EM非添加培地に接種したvector株に同じ濃度の被検化合物を添加した場合の菌株の増殖を同様の手法で測定することによって評価した。 The contribution of the antibacterial activity of each test compound itself to the growth of the strain is to measure the growth of the strain when the same concentration of the test compound is added to the vector strain inoculated in the EM-free medium. Evaluated by.
H−31化合物、H−32化合物、H−34化合物、H−36化合物、及びH−37化合物を被検化合物とし、各被検化合物を添加した場合の各大腸菌株を培養した培地のOD600の測定結果を図1〜5に示す。図1〜5中、(A)はvector株の結果であり、(B)はpmexB株の結果であり、(C)はpmexY株の結果である。vector株の培養実験では、いずれの被検化合物でも、EM非存在下において、培地への添加量依存的にOD600が低下し、菌株の増殖が抑制されていた(各図(A))。この結果から、これらの被検化合物は、単独で弱い抗細菌活性を有することがわかった。また、いずれの被検化合物も、EM併用時に、pmexB株とpmexY株の両方において、8μg/mLという低い添加濃度でOD600を急激に低下させ、各菌株の増殖が抑制された(各図(B)及び(C))。培地への添加濃度が8μg/mLにおける各被検化合物の抗細菌活性は弱かったことから、EM併用時のpmexB株とpmexY株における菌株増殖能の低下は、各被検化合物の抗細菌活性によるものではなく、各被検化合物がRND型多剤排出ポンプを阻害することにより菌株内に蓄積されたEMの抗細菌活性によるものであることがわかった。 OD 600 of the culture medium in which each E. coli strain was cultured when H-31 compound, H-32 compound, H-34 compound, H-36 compound, and H-37 compound were used as test compounds and each test compound was added. The measurement results are shown in FIGS. In FIGS. 1 to 5, (A) shows the results of the vector strain, (B) shows the results of the pmexB strain, and (C) shows the results of the pmexY strain. In the culture experiment of the vector strain, in any test compound, in the absence of EM, the OD 600 decreased depending on the amount added to the medium, and the growth of the strain was suppressed (each figure (A)). From these results, it was found that these test compounds have weak antibacterial activity alone. In addition, when any of the test compounds was used in combination with EM, the OD 600 was drastically decreased at an addition concentration of 8 μg / mL in both the pmexB strain and the pmexY strain, and the growth of each strain was suppressed (each figure ( B) and (C)). Since the antibacterial activity of each test compound was weak when the concentration added to the medium was 8 μg / mL, the decrease in the strain growth ability of the pmexB strain and the pmexY strain when combined with EM was due to the antibacterial activity of each test compound. It was found that each test compound was due to the antibacterial activity of EM accumulated in the strain by inhibiting the RND type multidrug efflux pump.
図6に、H−31化合物を被検化合物とし、培地への添加濃度をより低濃度(0〜8μg/mL)とし、同様に各菌株の増殖を調べた結果を示す。H−31化合物は、4μg/mLという低い添加濃度ではほとんど抗細菌活性を示さなかったが(図6(A))、pmexB株とpmexY株の両方において、EM併用時には、4μg/mLという低い添加濃度でOD600をほぼ0にまで低下させた(図6(B)及び(C))。H−31化合物の添加濃度が2μg/mLの場合と無添加(0μg/mL)の場合で培地のOD600にほとんど差がなく、添加濃度が4μg/mLではほぼ完全に増殖能が阻害されていることから、本発明に係る化合物のRND型多剤排出ポンプに対する阻害能には、明確な閾値が存在することが示唆された。 FIG. 6 shows the results of examining the growth of each strain in the same manner, with the H-31 compound as the test compound and the concentration added to the medium being lower (0 to 8 μg / mL). The H-31 compound showed almost no antibacterial activity at an addition concentration as low as 4 μg / mL (FIG. 6 (A)), but in both pmexB and pmexY strains, the addition was as low as 4 μg / mL. The OD 600 was reduced to almost 0 with the concentration (FIGS. 6B and 6C). There is almost no difference in the OD 600 of the medium when the addition concentration of H-31 compound is 2 μg / mL and when it is not added (0 μg / mL), and the growth ability is almost completely inhibited when the addition concentration is 4 μg / mL. From these results, it was suggested that there is a clear threshold for the ability of the compound of the present invention to inhibit the RND type multidrug efflux pump.
また、実施例6〜11で合成したH−35化合物、H−39化合物、H−46化合物、H−47化合物、H−50化合物、及びH−51化合物に加えて、下記式(H−8)、(H−27)〜(H−30)、(H−33)、(H−38)、(H−41)、(H−42)、(H−45)、(H−48)、及び(H−49)で表される化合物についても、同様にしてRND型多剤排出ポンプに対する排出能阻害効果を調べた。各被検化合物を添加した場合の各大腸菌株を培養した培地のOD600の測定結果から、各被検化合物による増殖抑制効果を評価した。vector株に対する被験化合物単独での増殖抑制効果は、vector株を用いた実験において、EC50(50%効果濃度)が、32μg/mL以上である場合に「−」と評価し、8μg/mL以上32μg/mL未満である場合に「+」と評価し、8μg/mL未満である場合に「++」と評価した。pmexB株に対するEM(8μg/mL)併用下での各被験化合物の増殖抑制効果は、pmexB株を用いた実験において、EC50が、128μg/mL以上である場合に「−」と評価し、8μg/mL以上128μg/mL未満である場合に「+」と評価し、8μg/mL未満である場合に「++」と評価した。pmexY株に対するEM(64μg/mL)併用下での各被験化合物の増殖抑制効果は、pmexY株を用いた実験において、EC50が、128μg/mL以上である場合に「−」と評価し、8μg/mL以上128μg/mL未満である場合に「+」と評価し、8μg/mL未満である場合に「++」と評価した。 In addition to the H-35 compound, H-39 compound, H-46 compound, H-47 compound, H-50 compound, and H-51 compound synthesized in Examples 6 to 11, the following formula (H-8 ), (H-27) to (H-30), (H-33), (H-38), (H-41), (H-42), (H-45), (H-48), And about the compound represented by (H-49), the discharge ability inhibitory effect with respect to a RND type | mold multidrug discharge pump was investigated similarly. From the measurement result of OD 600 of the culture medium in which each E. coli strain was cultured when each test compound was added, the growth inhibitory effect of each test compound was evaluated. The growth inhibitory effect of the test compound alone against the vector strain is evaluated as “−” when the EC 50 (50% effective concentration) is 32 μg / mL or more in the experiment using the vector strain, and is 8 μg / mL or more. When it was less than 32 μg / mL, it was evaluated as “+”, and when it was less than 8 μg / mL, it was evaluated as “++”. The growth inhibitory effect of each test compound in combination with EM (8 μg / mL) against the pmexB strain was evaluated as “−” when the EC 50 was 128 μg / mL or more in the experiment using the pmexB strain, and 8 μg When it was not less than 128 μg / mL, it was evaluated as “+”, and when it was less than 8 μg / mL, it was evaluated as “++”. The growth inhibitory effect of each test compound in combination with EM (64 μg / mL) on the pmexY strain was evaluated as “−” when the EC 50 was 128 μg / mL or more in the experiment using the pmexY strain, and 8 μg When it was not less than 128 μg / mL, it was evaluated as “+”, and when it was less than 8 μg / mL, it was evaluated as “++”.
各被検化合物による増殖抑制効果の評価結果を表1に示す。表1中、「vector株増殖抑制」欄にはvector株に対する被験化合物単独での増殖抑制効果の評価結果を、「pmexB株増殖抑制」欄にはpmexB株に対するEM(8μg/mL)併用下での増殖抑制効果の評価結果を、「pmexY株増殖抑制」欄にはpmexY株に対するEM(64μg/mL)併用下での増殖抑制効果の評価結果を、それぞれ示す。 Table 1 shows the results of evaluating the growth inhibitory effect of each test compound. In Table 1, the “vector strain growth inhibition” column shows the evaluation results of the growth inhibition effect of the test compound alone against the vector strain, and the “pmexB strain growth inhibition” column shows the EM (8 μg / mL) combination with the pmexB strain. The evaluation result of the growth inhibitory effect is shown in the column “pmexY strain growth inhibition”, and the evaluation result of the growth inhibitory effect in combination with EM (64 μg / mL) for the pmexY strain is shown.
この結果、前記一般式(I)で表される化合物であるH−35、H−39、H−46、H−47、H−50、及びH−51の化合物も、H−31、H−32、H−34、H−35、及びH−37の化合物と同様に、pmexX株とpmexY株の両方に対して、EM併用投与下で高い増殖抑制効果を有していた。これらの結果から、本発明に係る化合物は、pmexB株とpmexY株の多剤排出ポンプであるMexB及びMexYの排出能を阻害することにより、両菌株のEMに対する感受性を著しく高めていることは明らかである。すなわち、本発明に係る化合物が、RND型多剤排出ポンプに対する阻害剤として有用であることが示された。 As a result, the compounds represented by the general formula (I), such as H-35, H-39, H-46, H-47, H-50, and H-51, are also H-31, H- Similar to the compounds of 32, H-34, H-35, and H-37, both pmexX strain and pmexY strain had a high growth inhibitory effect under combined administration with EM. From these results, it is clear that the compounds according to the present invention remarkably enhance the susceptibility of both strains to EM by inhibiting the excretion of MexB and MexY, which are multidrug efflux pumps of pmexB and pmexY strains. It is. That is, it was shown that the compound according to the present invention is useful as an inhibitor for the RND type multidrug efflux pump.
一方で、前記一般式(I)で表される化合物ではないH−8、H−27〜H−30、H−33、H−38、H−41、H−42、H−45、H−48、及びH−49の化合物は、pmexB株とpmexY株のいずれも又はいずれかの増殖を阻害できなかった。つまり、これらの化合物は、MexB及びMexYの薬剤排出能を同時には阻害できないことがわかった。 On the other hand, H-8, H-27 to H-30, H-33, H-38, H-41, H-42, H-45, H-, which are not compounds represented by the general formula (I). The 48 and H-49 compounds were unable to inhibit the growth of either or both pmexB and pmexY strains. That is, it was found that these compounds cannot simultaneously inhibit the drug excretion ability of MexB and MexY.
[試験例2]多剤耐性緑膿菌に対する抗細菌剤との併用効果の評価
実施例1で製造したH−31化合物を用いて、多剤耐性緑膿菌に対する抗細菌剤との併用効果を調べた。多剤耐性緑膿菌としては、国内医療機関から収集した臨床分離株55株を使用した。併用抗細菌剤として、キノロン系であるシプロフロキサシン(CPFX)、カルバペネム系であるイミペネム(IPM)、アミノグリコシド系であるアミカシン(AMK)、又はモノバクタム系であるアズトレオナム(AZT)を供試した。比較対照として、既知のMexB阻害剤であるABI-PP(D13−9001)を使用した。
[Test Example 2] Evaluation of combined effect with antibacterial agent against multidrug-resistant Pseudomonas aeruginosa Using the H-31 compound produced in Example 1, the combined effect with antibacterial agent against multidrug-resistant Pseudomonas aeruginosa Examined. As the multidrug resistant Pseudomonas aeruginosa, 55 clinical isolates collected from domestic medical institutions were used. As a combined antibacterial agent, ciprofloxacin (CPFX) which is a quinolone series, imipenem (IPM) which is a carbapenem series, amikacin (AMK) which is an aminoglycoside series, or aztreonam (AZT) which is a monobactam series was used. As a comparative control, ABI-PP (D13-9001), a known MexB inhibitor, was used.
具体的には、H−31化合物存在下における、臨床分離株55株に対する併用抗細菌剤の最小発育阻止濃度(MIC)を求めた。
まず、寒天平板培地希釈法によって、いずれかの抗細菌剤を様々な濃度で含有するMH(Mueller−Hinton)寒天培地に、DMSOに溶解させたH−31化合物を、寒天培地中の濃度が32μg/mLとなるように添加した平板培地を調製した。同様に、いずれかの抗細菌剤を様々な濃度で含有するMH寒天培地に、DMSOに溶解させたABI−PPを、寒天培地中の濃度が32μg/mLとなるように添加した平板培地と、いずれかの抗細菌剤を様々な濃度で含有するMH寒天培地に、溶媒であるDMSOのみを同量添加した平板培地と、を調製した。
次いで、各平板培地に、37℃のMH brothで一晩培養した後、同液体培地で105CFU/μLの濃度に希釈した各臨床分離株を1μLずつ接種し、37℃で20時間培養した後、細菌の増殖が阻害されてコロニーが観察されなかった最小の併用抗細菌剤濃度をMICとした。
Specifically, the minimum inhibitory concentration (MIC) of the combined antibacterial agent for 55 clinical isolates in the presence of the H-31 compound was determined.
First, the H-31 compound dissolved in DMSO in an MH (Mueller-Hinton) agar medium containing various antibacterial agents at various concentrations by the agar plate medium dilution method has a concentration of 32 μg in the agar medium. A plate medium was prepared so as to be / mL. Similarly, a plate medium in which ABI-PP dissolved in DMSO is added to an MH agar medium containing various antibacterial agents at various concentrations so that the concentration in the agar medium is 32 μg / mL; A plate medium was prepared by adding the same amount of DMSO as a solvent to an MH agar medium containing any antibacterial agent at various concentrations.
Next, each plate medium was cultured overnight at 37 ° C. in MH broth, then 1 μL of each clinical isolate diluted to a concentration of 10 5 CFU / μL in the same liquid medium was inoculated and cultured at 37 ° C. for 20 hours. Later, the minimum combined antibacterial agent concentration at which no bacterial growth was inhibited and colonies were observed was defined as MIC.
図7〜10に、各平板培地における、併用抗細菌剤の臨床分離多剤耐性緑膿菌55株に対するMICの累積分布のグラフを示す。図7はシプロフロキサシンを併用した場合の結果であり、図8はイミペネムを併用した場合の結果であり、図9はアミカシンを併用した場合の結果であり、図10はアズトレオナムを併用した場合の結果である。この結果、併用抗細菌剤がアミノグリコシド系抗細菌剤であるアミカシン(AMK)である場合(図9)には、有効性が認められないものの、併用抗細菌剤がキノロン系であるシプロフロキサシン(CPFX:図7)、カルバペネム系であるイミペネム(IPM:図8)、又はモノバクタム系であるアズトレオナム(AZT:図10)の場合には、H−31化合物による多剤耐性緑膿菌の脱薬剤耐性化が認められた。特にAZTの場合のH−31化合物の効果は、ABI-PPのそれと同程度に極めて顕著であった。CPFXの場合のH−31化合物の効果は、ABI-PPのそれよりはるかに大きかった。IPMに対する効果は、前2者に比して小さかったが、これは、双環性β−ラクタム系抗細菌剤に対する薬剤排出ポンプ以外の耐性因子の寄与が大きいためと考えられた。例えば、β−ラクタマーゼの寄与が強く示唆されるため、双環性β−ラクタム系抗細菌剤とβ−ラクタマーゼ阻害剤の合剤を併用剤とすることが好ましいことが容易に推定できる。上記のように、本発明に係る化合物は、多剤耐性緑膿菌の臨床分離株に対しても、その主たる多剤排出ポンプであるMexB及びMexYの排出能を同時に阻害するデュアル阻害剤として機能し、脱薬剤耐性化させることによって抗細菌剤との併用効果をもたらすことが立証された。 FIGS. 7 to 10 show graphs of the cumulative distribution of MIC for clinically separated multidrug-resistant Pseudomonas aeruginosa strains 55 of the combined antibacterial agent in each plate medium. FIG. 7 shows the results when ciprofloxacin was used together, FIG. 8 shows the results when imipenem was used together, FIG. 9 shows the results when amikacin was used together, and FIG. 10 shows the results when used together with aztreonam. Is the result of As a result, when the concomitant antibacterial agent is amikacin (AMK) which is an aminoglycoside antibacterial agent (FIG. 9), although the effectiveness is not recognized, ciprofloxacin whose concomitant antibacterial agent is quinolone In the case of (CPFX: FIG. 7), imipenem (IPM: FIG. 8) which is a carbapenem series, or aztreonam (AZT: FIG. 10) which is a monobactam series, de-drug of multidrug-resistant Pseudomonas aeruginosa by H-31 compound Tolerance was observed. In particular, the effect of the H-31 compound in the case of AZT was extremely remarkable as that of ABI-PP. The effect of the H-31 compound in the case of CPFX was much greater than that of ABI-PP. The effect on IPM was small compared to the former two, but this was thought to be due to the large contribution of resistance factors other than the drug efflux pump to the bicyclic β-lactam antibacterial agent. For example, since the contribution of β-lactamase is strongly suggested, it can be easily estimated that a combination of a bicyclic β-lactam antibacterial agent and a β-lactamase inhibitor is preferable. As described above, the compound according to the present invention functions as a dual inhibitor that simultaneously inhibits the excretion of MexB and MexY, which are the main multidrug efflux pumps, against clinical isolates of multidrug resistant Pseudomonas aeruginosa. Thus, it has been proved that a combination effect with an antibacterial agent is brought about by making it resistant to de-drug.
Claims (12)
で表される化合物若しくはその生理学的に許容される塩、又はそれらの溶媒和物。 The following general formula (I)
Or a physiologically acceptable salt thereof, or a solvate thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015238703A JP2017105714A (en) | 2015-12-07 | 2015-12-07 | Multiple drug discharge pump inhibitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015238703A JP2017105714A (en) | 2015-12-07 | 2015-12-07 | Multiple drug discharge pump inhibitor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017105714A true JP2017105714A (en) | 2017-06-15 |
Family
ID=59058836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015238703A Pending JP2017105714A (en) | 2015-12-07 | 2015-12-07 | Multiple drug discharge pump inhibitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017105714A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4425561A2 (en) | 2017-05-29 | 2024-09-04 | Sony Semiconductor Solutions Corporation | Imaging device, solid state image sensor, and electronic device |
-
2015
- 2015-12-07 JP JP2015238703A patent/JP2017105714A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4425561A2 (en) | 2017-05-29 | 2024-09-04 | Sony Semiconductor Solutions Corporation | Imaging device, solid state image sensor, and electronic device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60024861T2 (en) | PUMP INHIBITORS FOR THE RELEASE OF MEDICAMENTS | |
US8263613B2 (en) | Salts, prodrugs and polymorphs of fab I inhibitors | |
US8859620B2 (en) | Phthalanilate compounds and methods of use | |
US9771394B2 (en) | Antimicrobial polymyxins for treatment of bacterial infections | |
WO2019042445A1 (en) | Compound having bruton's tyrosine kinase (btk)-inhibition and degradation activity | |
JP2017533187A (en) | Non-β-lactam antibiotics | |
WO2019052535A1 (en) | Compound for inhibiting and degrading cdk | |
CN105682655A (en) | Antimicrobial compounds | |
AU2010275375B2 (en) | Spectinamides as anti-tuberculosis agents | |
US20030092720A1 (en) | Drug efflux pump inhibitor | |
JP6967000B2 (en) | Cephem compounds, their production and use | |
CN106957315A (en) | N- replaces benzenesulfonyl-azaindole oxybenzamide class compound and its prepares the purposes of medicine | |
US20230129181A1 (en) | Compounds and their use for the treatment of alpha1-antitrypsin deficiency | |
WO2018229141A1 (en) | Ring-fused thiazolino 2-pyridones, methods for preparation thereof and their use in the treatment and/or prevention of a disease involving gram-positive bacteria | |
JP2017105714A (en) | Multiple drug discharge pump inhibitor | |
JP2016510749A (en) | Quinazolinone antibiotics | |
US10717757B2 (en) | Ketolides having antibacterial activity | |
CN107245050A (en) | Vanillic aldehyde hydroxamic acid derivatives and its application | |
CN110981888A (en) | N-aryl dithiopyrryl ketonuria and amino ester derivatives, preparation and application thereof | |
JP2004137185A (en) | Antimicrobial agent containing thiophene skeleton | |
US20230339973A1 (en) | Ring-fused 2-pyridone compounds, methods for preparation thereof and their use in the treatment and/or prevention of a disease involving gram-positive bacteria | |
JP2006347942A (en) | beta-AMYLOID FORMATION INHIBITOR | |
JP2006526612A (en) | Beta-lactamase inhibitor / prodrug | |
EP3628666A1 (en) | Indane derivatives for use in the treatment of bacterial infection | |
JP2016523230A (en) | New pyrrole derivatives |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20181116 |