[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2017196645A - Pressurizing method and pressurizing device - Google Patents

Pressurizing method and pressurizing device Download PDF

Info

Publication number
JP2017196645A
JP2017196645A JP2016089813A JP2016089813A JP2017196645A JP 2017196645 A JP2017196645 A JP 2017196645A JP 2016089813 A JP2016089813 A JP 2016089813A JP 2016089813 A JP2016089813 A JP 2016089813A JP 2017196645 A JP2017196645 A JP 2017196645A
Authority
JP
Japan
Prior art keywords
workpiece
pressurizing
mold
mounting table
upper mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016089813A
Other languages
Japanese (ja)
Other versions
JP6336510B2 (en
Inventor
隆博 森
Takahiro Mori
隆博 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP2016089813A priority Critical patent/JP6336510B2/en
Publication of JP2017196645A publication Critical patent/JP2017196645A/en
Application granted granted Critical
Publication of JP6336510B2 publication Critical patent/JP6336510B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member

Landscapes

  • Wire Bonding (AREA)
  • Presses And Accessory Devices Thereof (AREA)
  • Press Drives And Press Lines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pressurizing method by which positional deviation of a component of a work-piece can be prevented more reliably.SOLUTION: A pressurizing method comprises: a sealing step at which a side die 28 arranged around an upper die 20 is brought into close contact with a loading table 12 thereby forming a tightly closed space, which is surrounded by the loading table 12, the side die 28, the upper die 20 and so on, on a circumference of a work-piece 100; a suction step at which a circumference of the work-piece 100 is so made as to be in a vacuum state; a preliminarily pressurizing step at which the upper die 20 is relatively moved toward the loading table 12 by a differential pressure between an interior and an exterior of the tightly closed space, and the work-piece 100 is pressurized by a preliminary load which is smaller than a press load; and a main pressurizing step at which after the preliminarily pressurizing step, the loading table 12 is pressed by a lower die 50 thereby pressurizing the work-piece 100 by the press load.SELECTED DRAWING: Figure 2

Description

本発明は、被加工物を複数の加圧型で加圧するとともに加熱する加圧方法および加圧装置に関する。   The present invention relates to a pressurizing method and a pressurizing apparatus for pressurizing and heating a workpiece with a plurality of pressurizing dies.

従来から、被加工物を複数の加圧型で挟持・加圧しつつ加熱する加圧装置が知られている。例えば、特許文献1,2には、下型と上型で被加工物を挟持して加圧するとともに、型に内蔵されたヒータで被加工物を加熱する装置が開示されている。より具体的に説明すると特許文献1には、被加工物が載置される下型と、被加工物を上側から加圧する上型と、上型の周囲に配されるサイド型と、上型と被加工物との間に介在する介在パッドと、を備えた装置が開示されている。被加工物を加圧・加熱する際には、まず、被加工物の表面にカバーシートを配したうえで、サイド型を下型に密着させて被加工物の周囲を密閉し、その状態で、被加工物の周囲の空気を吸引することでカバーシートを被加工物に密着させる。その後、上型を被加工物に向かって下降させ、柔軟性を有した介在パッドを介して被加工物を加圧する。この加圧期間中は、下型に設けられたヒータにより被加工物を加熱する。   2. Description of the Related Art Conventionally, a pressurizing apparatus that heats a workpiece while sandwiching and pressurizing the workpiece with a plurality of pressurization molds is known. For example, Patent Documents 1 and 2 disclose an apparatus that sandwiches and pressurizes a workpiece between a lower mold and an upper mold and heats the workpiece with a heater built in the mold. More specifically, Patent Document 1 describes a lower mold on which a workpiece is placed, an upper mold that pressurizes the workpiece from the upper side, a side mold disposed around the upper mold, and an upper mold. And an intervening pad interposed between the workpiece and the workpiece. When pressurizing and heating the work piece, first place a cover sheet on the surface of the work piece, and then attach the side mold to the lower mold to seal the periphery of the work piece. The cover sheet is brought into close contact with the workpiece by sucking air around the workpiece. Thereafter, the upper die is lowered toward the workpiece, and the workpiece is pressurized through a flexible intervening pad. During this pressurization period, the workpiece is heated by a heater provided in the lower mold.

特許文献2に開示の加工装置においては、カバーシートを配することなく、被加工物の周囲を真空状態にした後、上型および下型で、被加工物を挟持して加圧する。また、加圧期間中は、下型および上型に設けられたヒータにより被加工物を加熱する。   In the processing apparatus disclosed in Patent Document 2, the work piece is sandwiched and pressed between the upper mold and the lower mold after the periphery of the work is evacuated without providing a cover sheet. Further, during the pressurizing period, the workpiece is heated by the heaters provided in the lower mold and the upper mold.

特開2004−296746号公報JP 2004-296746 A 特開2007−896号公報JP 2007-896 A

特許文献1,2において、上型と被加工物との間に介在パッドを設けることで、当該介在パッドが、被加工物表面の凹凸の隙間に入り込み、下型からの圧力を均等に付与することができる。しかしながら、従来の加圧装置では、被加工物の周囲を真空吸引した後、即座に、被加工物を規定のプレス荷重で加圧している。この場合、介在パッドが被加工物の表面形状に追従して変形する前に、被加工物に圧力が加わり、被加工物の部品の位置ズレ等の問題が招くおそれがあった。   In Patent Documents 1 and 2, by providing an intervening pad between the upper mold and the workpiece, the intervening pad enters the gap between the irregularities on the surface of the workpiece, and uniformly applies pressure from the lower mold. be able to. However, in the conventional pressurizing apparatus, the workpiece is pressurized with a prescribed press load immediately after vacuuming around the workpiece. In this case, before the intervening pad is deformed following the surface shape of the workpiece, pressure is applied to the workpiece, which may cause problems such as misalignment of parts of the workpiece.

そこで、本実施形態では、被加工物の部品の位置ズレをより確実に防止できる加圧方法および加圧装置を提供することを目的とする。   Accordingly, an object of the present embodiment is to provide a pressurizing method and a pressurizing apparatus that can more reliably prevent positional displacement of parts of a workpiece.

本発明の加圧方法は、載置台を上型および下型で挟持することで、前記載置台に載置された被加工物を規定のプレス荷重で加圧する加圧方法であって、前記上型の周囲に配されたサイド型を前記載置台に密着させることで、前記被加工物の周囲に、少なくとも一部が、前記載置台、サイド型、上型で囲まれた密閉空間を形成する密閉ステップと、前記密閉空間内の空気を吸引することで前記被加工物の周囲を真空状態にする吸引ステップと、前記密閉空間の内外の圧力差により、前記上型を前記載置台に向かって相対的に移動させて、前記被加工物を、前記プレス荷重よりも小さい予備荷重で加圧する予備加圧ステップと、前記予備加圧ステップの後に、前記下型で前記載置台を押圧することで、前記被加工物を前記プレス荷重で加圧する本加圧ステップと、を備えることを特徴とする。   The pressurizing method of the present invention is a pressurizing method for pressurizing a workpiece placed on the mounting table with a prescribed press load by sandwiching the mounting table between an upper mold and a lower mold. By adhering the side mold arranged around the mold to the mounting table, a sealed space surrounded at least in part by the mounting table, the side mold, and the upper mold is formed around the workpiece. The upper mold is moved toward the mounting table by a sealing step, a suction step for vacuuming the periphery of the workpiece by sucking air in the sealed space, and a pressure difference between the inside and outside of the sealed space. By relatively moving and pressing the work table with the lower mold after the preliminary pressurizing step of pressurizing the workpiece with a preload smaller than the press load, and the prepressurizing step. The book that pressurizes the workpiece with the press load Characterized in that it comprises a pressure step.

好適な態様では、前記被加工物を前記上型との間には、柔軟な材料からなる介在パッドが設けられており、前記予備加圧ステップにおいて、前記介在パッドは、前記被加工物の表面形状に追従して変形し、前記本加圧ステップにおいて、前記被加工物は、前記変形した介在パッドを介して加圧される。   In a preferred aspect, an intervening pad made of a flexible material is provided between the workpiece and the upper mold, and in the pre-pressurizing step, the intervening pad is a surface of the workpiece. The workpiece is deformed following the shape, and the workpiece is pressurized through the deformed intervening pad in the main pressurizing step.

他の好適な態様では、前記上型は、ベース部材に取り付けられており、前記サイド型は、空気圧または油圧が付与されることで伸長し、前記空気圧または油圧が解除されることで収縮可能となるシリンダを介して前記ベース部材に取り付けられており、前記上型は、前記予備加圧ステップにおいて、前記シリンダの収縮を許容することで前記載置台に向かって相対的に移動する。   In another preferred aspect, the upper mold is attached to a base member, and the side mold is extended by applying air pressure or hydraulic pressure, and can be contracted by releasing the air pressure or hydraulic pressure. The upper mold is relatively moved toward the mounting table by allowing the cylinder to contract in the preliminary pressurizing step.

他の好適な態様では、前記下型は、予め、加熱手段により加熱された加熱用下型を含み、前記被加工物は、本加圧ステップにおいて、前記加熱用下型により加熱されつつ加圧される一方で、本加圧開始前においては加熱されない。   In another preferred aspect, the lower mold includes a lower mold for heating previously heated by a heating means, and the workpiece is pressurized while being heated by the lower mold for heating in the main pressing step. On the other hand, it is not heated before the start of this pressurization.

この場合、前記下型は、さらに、冷却手段により冷却された冷却用下型を含み、さらに、前記本加圧ステップの後に、前記載置台を前記冷却用下型および前記上型で挟持することで前記被加工物を加圧しつつ冷却する冷却ステップを備える。   In this case, the lower mold further includes a lower mold for cooling cooled by a cooling means, and further, after the main pressurizing step, the mounting table is sandwiched between the lower mold for cooling and the upper mold. A cooling step of cooling the workpiece while applying pressure.

他の本発明である加圧装置は、被加工物を規定のプレス荷重で加圧する加圧装置であって、前記被加工物が載置される載置台と、前記被加工物を上側から加圧する上型と、前記上型の周囲に配され、前記載置台に密着することで、前記上型、載置台とともに前記被加工物の周囲に密閉空間を形成するサイド型と、前記密閉空間の空気を吸引して前記被加工物の周囲を真空状態にする吸引装置と、前記上型と協働して前記載置台を挟持することで、前記被加工物を加圧する下型と、を備え、前記被加工物を前記プレス荷重で加圧する本加圧に先だって、前記吸引装置により前記密閉空間を真空状態にした後に、前記密閉空間の内外の圧力差により前記上型を前記載置台に向かって相対移動させることで前記被加工物を前記プレス荷重より小さい予備荷重で加圧する予備加圧を行う、ことを特徴とする。   Another pressurizing apparatus according to the present invention is a pressurizing apparatus that pressurizes a work piece with a prescribed press load, and a work table on which the work piece is placed, and the work piece from above. An upper mold to be pressed, a side mold that is arranged around the upper mold and is in close contact with the mounting table, and forms a sealed space around the workpiece together with the upper mold and the mounting table; and A suction device that sucks air to create a vacuum around the workpiece; and a lower die that pressurizes the workpiece by sandwiching the mounting table in cooperation with the upper die. Prior to the main pressurization to pressurize the workpiece with the press load, after the sealed space is evacuated by the suction device, the upper mold is moved toward the mounting table due to a pressure difference between the inside and the outside of the sealed space. To move the workpiece to be smaller than the press load. Preliminary pressurization for pressurizing at 備荷 heavy, characterized in that.

本発明によれば、本加圧に先だって、被加工物の周囲を真空吸引したうえで、予備加圧している。そのため、被加工物の部品の位置ズレをより確実に防止できる。   According to the present invention, prior to the main pressurization, the periphery of the workpiece is vacuum-sucked and then pre-pressurized. Therefore, it is possible to more reliably prevent the positional deviation of the workpiece parts.

本実施形態の加圧装置での被加工物の加圧の原理を説明する図である。It is a figure explaining the principle of the pressurization of the workpiece in the pressurization apparatus of this embodiment. 本実施形態の加圧装置の構成を示す図である。It is a figure which shows the structure of the pressurization apparatus of this embodiment. 加圧装置での加圧処理の過程を示す図である。It is a figure which shows the process of the pressurization process in a pressurization apparatus. 加圧装置での加圧処理の過程を示す図である。It is a figure which shows the process of the pressurization process in a pressurization apparatus. 加圧装置での加圧処理の過程を示す図である。It is a figure which shows the process of the pressurization process in a pressurization apparatus. 加圧装置での加圧処理の過程を示す図である。It is a figure which shows the process of the pressurization process in a pressurization apparatus. 加圧装置での加圧処理の過程を示す図である。It is a figure which shows the process of the pressurization process in a pressurization apparatus. 加圧処理期間中における被加工物の周辺環境の圧力、被加工物の温度、被加工物に付与される荷重の変化の一例を示すグラフである。It is a graph which shows an example of the change of the load given to the pressure of the surrounding environment of a workpiece, the temperature of a workpiece, and the workpiece during a pressurization process period. 第二実施形態の加圧装置での加圧処理の過程を示す図である。It is a figure which shows the process of the pressurization process in the pressurization apparatus of 2nd embodiment. 第二実施形態の加圧装置での加圧処理の過程を示す図である。It is a figure which shows the process of the pressurization process in the pressurization apparatus of 2nd embodiment. 第二実施形態の加圧装置での加圧処理の過程を示す図である。It is a figure which shows the process of the pressurization process in the pressurization apparatus of 2nd embodiment. 第二実施形態の加圧装置での加圧処理の過程を示す図である。It is a figure which shows the process of the pressurization process in the pressurization apparatus of 2nd embodiment.

以下、本発明の実施形態である加圧装置10について図面を参照して説明する。はじめに、本実施形態の加圧装置10での加圧の原理について図1を参照して説明する。本実施形態における被加工物100は、熱硬化性の接着剤を用いて接着される複数の電子部品112を含む。例えば、被加工物100は、図1に示すように、基板110と、当該基板110上に配置された回路素子等の電子部品112と、基板110および電子部品112の間に介在するシート状の接着剤114と、を含む。基板110の表面には所定のパターンで配線111が形成されている。電子部品112の基板110に対向する面(図においては下面)には、電気的な接点となるバンプ113と呼ばれる突起が設けられている。接着剤114は、熱硬化性の接着剤からなり、電子部品112と基板110との間に配置されている。接着剤114は、加圧・加熱を開始する前の初期段階では、所定の形状を有したシート状である。接着剤114は、所定のガラス転移温度Tgを越えると軟化して流動性を有し、その後、更に温度上昇して所定の硬化温度Tcを越えると不可逆的に硬化する。   Hereinafter, a pressure device 10 according to an embodiment of the present invention will be described with reference to the drawings. First, the principle of pressurization in the pressurizing apparatus 10 of the present embodiment will be described with reference to FIG. The workpiece 100 in this embodiment includes a plurality of electronic components 112 that are bonded using a thermosetting adhesive. For example, as shown in FIG. 1, the workpiece 100 includes a substrate 110, an electronic component 112 such as a circuit element disposed on the substrate 110, and a sheet-like sheet interposed between the substrate 110 and the electronic component 112. Adhesive 114. Wiring 111 is formed in a predetermined pattern on the surface of the substrate 110. On the surface (the lower surface in the figure) facing the substrate 110 of the electronic component 112, a projection called a bump 113 serving as an electrical contact is provided. The adhesive 114 is made of a thermosetting adhesive and is disposed between the electronic component 112 and the substrate 110. The adhesive 114 is in the form of a sheet having a predetermined shape in the initial stage before the start of pressing and heating. The adhesive 114 softens and has fluidity when it exceeds a predetermined glass transition temperature Tg, and then irreversibly cures when the temperature further rises and exceeds a predetermined curing temperature Tc.

基板110に電子部品112を接合する際には、この被加工物100を上型および下型で挟持して加圧するとともに、加熱する。加熱することで、接着剤114は、ガラス転移温度Tgを越えて、軟化する。さらに、加熱を続けると、接着剤114は、硬化温度Tcに達して硬化する。この接着剤114が軟化した後、硬化するまでの期間中、被加工物100を加圧し続けることで、配線111およびバンプ113で挟まれた接着剤114の部分が圧縮され、バンプ113と配線111の間が導通状態となる。   When the electronic component 112 is bonded to the substrate 110, the workpiece 100 is sandwiched between the upper mold and the lower mold and pressed and heated. By heating, the adhesive 114 exceeds the glass transition temperature Tg and softens. Further, when the heating is continued, the adhesive 114 reaches the curing temperature Tc and is cured. By continuing to pressurize the workpiece 100 during the period from when the adhesive 114 is softened until it hardens, the portion of the adhesive 114 sandwiched between the wiring 111 and the bump 113 is compressed, and the bump 113 and the wiring 111 are compressed. Is in a conductive state.

ここで、電子部品112および接着剤114を、その周囲(図においては上方および側方)から均等に加圧するために、本実施形態では、上型20に介在パッド24を設けている。介在パッド24は、被加工物100の形状に応じて変形する柔軟性を有している。かかる介在パッド24を介して被加工物100を加圧した場合、図1(c)に示すように、介在パッド24が、電子部品112や接着剤114の側方へと回り込む。そして、上型20からの加圧力が、介在パッド24を介して、電子部品112および接着剤114の上方だけでなく、側方にも伝達される。   Here, in order to pressurize the electronic component 112 and the adhesive 114 evenly from the periphery (upper side and side in the drawing), in this embodiment, the interposer pad 24 is provided in the upper mold 20. The intervening pad 24 has the flexibility to be deformed according to the shape of the workpiece 100. When the workpiece 100 is pressurized through the intervening pad 24, the intervening pad 24 wraps around the electronic component 112 and the adhesive 114 as shown in FIG. Then, the pressing force from the upper mold 20 is transmitted not only above the electronic component 112 and the adhesive 114 but also to the side via the interposing pad 24.

接着剤114が硬化した後は、表裏の熱膨張差から生じる被加工物100の反りを防止するために、被加工物100を加圧した状態を保ちながら被加工物100を冷却する。そして、被加工物100の温度が、取り出し可能な温度まで低下すれば、加圧を解除して、被加工物100を型から取り出す。   After the adhesive 114 is cured, the workpiece 100 is cooled while maintaining the pressurized state of the workpiece 100 in order to prevent the workpiece 100 from warping due to the difference in thermal expansion between the front and back surfaces. And if the temperature of the to-be-processed object 100 falls to the temperature which can be taken out, pressurization will be cancelled | released and the to-be-processed object 100 will be taken out from a type | mold.

次に、こうした加圧を実現する加圧装置10について説明する。図2は、本実施形態の加圧装置10の構成を示す図である。この加圧装置10は、被加工物100が載置される載置台12と、載置台12の上側に配された上側ユニット14と、載置台12の下側に配された下側ユニット16と、これらの駆動を制御する制御部18と、を備えている。   Next, the pressurizing apparatus 10 that realizes such pressurization will be described. FIG. 2 is a diagram illustrating a configuration of the pressurizing apparatus 10 according to the present embodiment. The pressurizing device 10 includes a mounting table 12 on which the workpiece 100 is mounted, an upper unit 14 disposed on the upper side of the mounting table 12, and a lower unit 16 disposed on the lower side of the mounting table 12. And a control unit 18 that controls these drivings.

載置台12は、被加工物100が載置される台である。この載置台12は、上側ユニット14および下側ユニット16から付与される加圧力および後述する加熱用下型50から付与される熱に耐えられるのであれば、その構成は、特に限定されない。しかし、処理時間を短縮するためには、載置台12は、加熱用下型50からの熱が迅速に伝わる高伝熱性材料から成ることが望ましい。高伝熱性材料としては、例えば、銅(400W/mK)や銅を含む合金であり、株式会社守谷刃物研究所社製のSTC(登録商標、630W/mK)や、株式会社サーモグラフィティクス社製のコンポロイド(商品名、1700W/mK)等を用いることができる。   The mounting table 12 is a table on which the workpiece 100 is mounted. The configuration of the mounting table 12 is not particularly limited as long as it can withstand the pressure applied from the upper unit 14 and the lower unit 16 and the heat applied from the heating lower mold 50 described later. However, in order to shorten the processing time, it is desirable that the mounting table 12 be made of a highly heat-conductive material through which heat from the heating lower mold 50 can be quickly transmitted. Examples of the highly heat conductive material include copper (400 W / mK) and an alloy containing copper, such as STC (registered trademark, 630 W / mK) manufactured by Moriya Knife Laboratory Co., Ltd., and Thermographics Co., Ltd. Comporoid (trade name, 1700 W / mK) or the like can be used.

また、後に詳説するように、本実施形態では、被加工物100を真空状態とする。載置台12は、この真空による推力に耐えられる程度の強度を有することが望ましく、望ましくは5mm以上、より望ましくは8mm以上、より望ましくは10mm以上の厚みを有する。ただし、厚みが過度に大きいと、載置台12の体積、ひいては、熱容量が増加するため、加熱時に要する熱量や、冷却時に要する冷却熱量が増加し、加熱・冷却に要する時間が増加する。そこで、載置台12は、熱容量を押さえつつも、真空による推力に耐えられる強度が得られる厚み、例えば、10mm〜20mm程度とすることが望ましい。   Further, as will be described in detail later, in the present embodiment, the workpiece 100 is in a vacuum state. The mounting table 12 desirably has a strength sufficient to withstand the thrust by the vacuum, and desirably has a thickness of 5 mm or more, more desirably 8 mm or more, and more desirably 10 mm or more. However, if the thickness is excessively large, the volume of the mounting table 12 and thus the heat capacity increases, so the amount of heat required for heating and the amount of cooling heat required for cooling increase, and the time required for heating and cooling increases. Therefore, it is desirable that the mounting table 12 has a thickness that can provide a strength sufficient to withstand thrust by vacuum while suppressing the heat capacity, for example, about 10 mm to 20 mm.

上側ユニット14は、載置台12の上側に配されており、ベース部材22と、被加工物100を加圧する上型20と、上型20と被加工物100の間に介在する介在パッド24と、介在パッド24を支持する枠体26と、載置台12と密着することで密閉空間を形成するサイド型28と、を備えている。   The upper unit 14 is arranged on the upper side of the mounting table 12, and includes a base member 22, an upper mold 20 that pressurizes the workpiece 100, and an interposition pad 24 that is interposed between the upper mold 20 and the workpiece 100. A frame body 26 that supports the intervening pad 24 and a side mold 28 that forms a sealed space by being in close contact with the mounting table 12 are provided.

ベース部材22は、図示しない昇降機構により昇降可能となっており、このベース部材22が昇降することで、上型20やサイド型28、枠体26が昇降する。このベース部材22の昇降は、制御部18により制御される。上型20は、被加工物100を上側から加圧するための型であり、被加工物100の真上に配置される。上型20は、ベース部材22に固着されており、ベース部材22と連動して昇降する。この上型20の内部には、冷媒が流れる冷媒流路30aが形成されている。図示しない冷却装置は、冷媒が、当該冷媒流路30aを通るように循環させている。すなわち、冷却装置は、冷媒を冷媒流路30aに供給する。冷媒は、冷媒流路30aを流れる過程で、上型20から熱を吸収して温度上昇する。冷却装置は、冷媒流路30aから放出された冷媒を回収して冷却したうえで、冷却された冷媒を再度、冷媒流路30aに送る。なお、図2から明らかな通り、上型20には、加熱手段は、設けられておらず、上型20は、加熱されることなく、冷却のみが施される。   The base member 22 can be moved up and down by a lifting mechanism (not shown), and the upper mold 20, the side mold 28, and the frame body 26 are moved up and down as the base member 22 moves up and down. The elevation of the base member 22 is controlled by the control unit 18. The upper mold 20 is a mold for pressurizing the workpiece 100 from above, and is disposed immediately above the workpiece 100. The upper mold 20 is fixed to the base member 22 and moves up and down in conjunction with the base member 22. Inside the upper mold 20, a refrigerant flow path 30 a through which a refrigerant flows is formed. A cooling device (not shown) circulates the refrigerant so as to pass through the refrigerant flow path 30a. That is, the cooling device supplies the refrigerant to the refrigerant flow path 30a. In the process of flowing through the refrigerant flow path 30a, the refrigerant absorbs heat from the upper mold 20 and rises in temperature. The cooling device collects and cools the refrigerant released from the refrigerant flow path 30a, and then sends the cooled refrigerant to the refrigerant flow path 30a again. As is clear from FIG. 2, the upper die 20 is not provided with a heating means, and the upper die 20 is only heated and not cooled.

上型20の周囲には、介在パッド24を支持する枠体26が設けられている。枠体26は、バネ部材32を介してベース部材22に取り付けられており、上型20に対して僅かに上下できるようになっている。介在パッド24は、被加工物100と上型20との間に介在する弾性体で、被加工物100の形状に応じて柔軟に変形する柔軟層34と、柔軟層34と被加工物100との間に介在する断熱層36と、を備えている。柔軟層34は、上型20の圧力を均等に伝達するためのもので、ゴムなど柔軟な材料からなる。この柔軟層34は、一層構造でもよいが、複数構造でもよい。例えば、柔軟層34は、流動性が高い一方で、反発弾性率が低い材料からなる流動性柔軟層と、シリコンスポンジ、フッ素スポンジ等の多孔質材料からなる多孔質柔軟層と、を備えた二層構造としてもよい。流動性柔軟層の材料としては、例えば、(株)ジェルテック製、高ダンピング熱伝導ゲルシート「αGEL(商標)」や、リケンテクノス(株)製、熱可塑性エラストマー、鬼怒川ゴム工業(株)超軟質エラストマー「フレンジェル(商品名)」などを用いることができる。   A frame body 26 that supports the intervening pad 24 is provided around the upper mold 20. The frame body 26 is attached to the base member 22 via a spring member 32 so that it can move up and down slightly with respect to the upper mold 20. The interposition pad 24 is an elastic body interposed between the workpiece 100 and the upper mold 20, and a flexible layer 34 that flexibly deforms according to the shape of the workpiece 100, and the flexible layer 34 and the workpiece 100. And a heat insulating layer 36 interposed therebetween. The flexible layer 34 is for uniformly transmitting the pressure of the upper mold 20 and is made of a flexible material such as rubber. The flexible layer 34 may have a single layer structure or a plurality of structures. For example, the flexible layer 34 includes a fluid flexible layer made of a material having high fluidity and a low rebound resilience, and a porous flexible layer made of a porous material such as silicon sponge or fluorine sponge. A layer structure may be used. Examples of the material of the fluid flexible layer include, for example, Geltech Co., Ltd., high damping heat conductive gel sheet “αGEL (trademark)”, Riken Technos Co., Ltd., thermoplastic elastomer, Kinugawa Rubber Industrial Co., Ltd. “French (trade name)” or the like can be used.

断熱層36は、被加工物100と柔軟層34との間に介在する層で、被加工物100からの熱が柔軟層34に伝達することを阻害するする。この断熱層36は、例えば、ガラスウールやセラミックウール、耐熱フェルト等の熱伝導率の低い材料からなる繊維素材からなる。断熱層36は、断熱性を確保するためには、厚いことが望ましい。一方で、断熱層36は、上型20からの圧力を被加工物100に均一に伝達するために、被加工物100の形状に応じて変形する柔軟性も必要であり、過度に厚くすることは出来ない。そのため、断熱層36の厚みは、適度な断熱性と柔軟性とを両立できる厚み、例えば、2mm〜10mm、望ましくは3mm〜6mm程度である。   The heat insulating layer 36 is a layer interposed between the workpiece 100 and the flexible layer 34 and inhibits heat from the workpiece 100 from being transferred to the flexible layer 34. The heat insulating layer 36 is made of a fiber material made of a material having low thermal conductivity such as glass wool, ceramic wool, heat resistant felt, or the like. The heat insulation layer 36 is desirably thick in order to ensure heat insulation. On the other hand, in order to uniformly transmit the pressure from the upper mold 20 to the workpiece 100, the heat insulating layer 36 needs to have flexibility to be deformed according to the shape of the workpiece 100, and is too thick. I can't. Therefore, the thickness of the heat insulating layer 36 is a thickness that can achieve both appropriate heat insulating properties and flexibility, for example, 2 mm to 10 mm, preferably about 3 mm to 6 mm.

なお、断熱層36を直接、被加工物100に接触させると、断熱層36が被加工物100に貼り付き、両者を離間させることが困難になる。そのため、被加工物100を加圧する際には、さらに、断熱層36と被加工物100との間には、貼り付き防止用の中間シート38を配置する。中間シート38は、柔軟性を有した薄いシート状部材で、例えば、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂や、ポリイミド等からなる。この中間シート38は、原則として、1回〜数回の使用の度に廃棄、交換される。   When the heat insulating layer 36 is brought into direct contact with the workpiece 100, the heat insulating layer 36 sticks to the workpiece 100 and it is difficult to separate them. Therefore, when pressurizing the workpiece 100, an intermediate sheet 38 for preventing sticking is further disposed between the heat insulating layer 36 and the workpiece 100. The intermediate sheet 38 is a thin sheet-like member having flexibility, and is made of, for example, a fluorine resin such as polytetrafluoroethylene (PTFE), polyimide, or the like. In principle, the intermediate sheet 38 is discarded and replaced every time it is used once to several times.

サイド型28は、上型20の周囲に配されており、エアシリンダ40を介してベース部材22に取り付けられている。サイド型28は、載置台12の上面に密着することで、当該サイド型28、載置台12、上型20、枠体26で囲まれる密閉空間を形成する。この密閉空間を形成するためにサイド型28の底面には、シール部材28aが設けられている。また、サイド型28は、エアシリンダ40を駆動することで、上型20に対して昇降可能となっている。サイド型28の内部にも、冷媒が流れる冷媒流路30bが形成されており、冷却装置が、当該冷媒流路30bを通るように、冷媒を循環させることでサイド型28が冷却される。   The side mold 28 is disposed around the upper mold 20 and is attached to the base member 22 via the air cylinder 40. The side mold 28 is in close contact with the upper surface of the mounting table 12, thereby forming a sealed space surrounded by the side mold 28, the mounting table 12, the upper mold 20, and the frame body 26. In order to form this sealed space, a seal member 28 a is provided on the bottom surface of the side mold 28. The side mold 28 can be moved up and down with respect to the upper mold 20 by driving the air cylinder 40. A refrigerant flow path 30b through which a refrigerant flows is also formed inside the side mold 28, and the side mold 28 is cooled by circulating the refrigerant so that the cooling device passes through the refrigerant flow path 30b.

サイド型28には、さらに、水平方向に貫通する吸引孔42も形成されている。この吸引孔42は、吸引ポンプ44に連通されている。そして、サイド型28を載置台12に密着させて密閉空間を形成した状態で、吸引ポンプ44を駆動すれば、密閉空間の空気が吸引され、密閉空間が真空状態となる。こうした吸引ポンプ44やエアシリンダ40の駆動は、制御部18により制御される。なお、本実施形態では、サイド型28を、エアシリンダ40を介してベース部材22に取り付けているが、サイド型28の上型20に対する昇降を禁止または許容できるのであれば他の構成でもよい。例えば、エアシリンダ40に替えて、油圧シリンダや電動シリンダを用いてもよい。   The side mold 28 is further formed with a suction hole 42 penetrating in the horizontal direction. The suction hole 42 communicates with the suction pump 44. When the suction pump 44 is driven in a state where the side mold 28 is in close contact with the mounting table 12 to form a sealed space, the air in the sealed space is sucked and the sealed space is in a vacuum state. The driving of the suction pump 44 and the air cylinder 40 is controlled by the control unit 18. In the present embodiment, the side mold 28 is attached to the base member 22 via the air cylinder 40, but other configurations may be used as long as the elevation of the side mold 28 relative to the upper mold 20 can be prohibited or permitted. For example, instead of the air cylinder 40, a hydraulic cylinder or an electric cylinder may be used.

下側ユニット16は、加熱用下型50と、冷却用下型52と、切り替え機構(図示せず)と、を備えている。切り替え機構は、加熱用下型50の上部に、冷却用下型52を挿入することで、加熱用下型50と、冷却用下型52とを使い分ける機構である。加熱用下型50は、被加工物100を加熱しつつ加圧するための型で、その内部には、加熱手段として機能するヒータ54が設けられている。ヒータ54は、加熱用下型50を所定の処理温度Tpまで加熱でき、また、規定のプレス荷重Ppに耐えられるものであれば、特に、限定されない。本実施形態では、ヒータ54として、発熱線(ニクロム線)を棒状のセラミックに巻き付けたものを耐熱性パイプの中に挿入してカートリッジ化したカートリッジヒータを用いている。制御部18は、ヒータ54の駆動を制御して、加熱用下型50を所定の処理温度Tpに維持する。ここで、処理温度Tpは、被加工物100、特に、被加工物100の一部を構成する熱硬化性の接着剤114を、当該接着剤114の硬化温度Tcよりも高い温度まで加熱できる温度である。例えば、硬化温度Tcが150〜200度の場合、処理温度Tpは、硬化温度Tcよりも十分に高い温度、例えば、300度に設定される。   The lower unit 16 includes a lower die 50 for heating, a lower die 52 for cooling, and a switching mechanism (not shown). The switching mechanism is a mechanism for selectively using the lower heating mold 50 and the lower cooling mold 52 by inserting the lower cooling mold 52 above the lower heating mold 50. The lower heating mold 50 is a mold for heating and pressurizing the workpiece 100, and a heater 54 functioning as a heating means is provided therein. The heater 54 is not particularly limited as long as it can heat the lower mold 50 for heating to a predetermined processing temperature Tp and can withstand a prescribed press load Pp. In this embodiment, as the heater 54, a cartridge heater is used in which a heating wire (nichrome wire) wound around a rod-shaped ceramic is inserted into a heat-resistant pipe to form a cartridge. The control unit 18 controls driving of the heater 54 to maintain the lower heating mold 50 at a predetermined processing temperature Tp. Here, the processing temperature Tp is a temperature at which the workpiece 100, in particular, the thermosetting adhesive 114 constituting a part of the workpiece 100 can be heated to a temperature higher than the curing temperature Tc of the adhesive 114. It is. For example, when the curing temperature Tc is 150 to 200 degrees, the processing temperature Tp is set to a temperature sufficiently higher than the curing temperature Tc, for example, 300 degrees.

加熱用下型50の周囲には、第一断熱部材56が設けられており、ヒータ54の熱が側方に漏れることが防止されている。また、ヒータ54の下部には、第二断熱部材58が設けられており、ヒータ54の熱が下方に漏れることが防止されている。加熱用下型50は、この第二断熱部材58により上下に仕切られており、第二断熱部材58より下側には、冷媒が流れる冷媒流路30dが形成されている。冷媒は、当該冷媒流路30dを通るように、冷却装置により循環される。   A first heat insulating member 56 is provided around the lower die 50 for heating, and the heat of the heater 54 is prevented from leaking to the side. Moreover, the 2nd heat insulation member 58 is provided in the lower part of the heater 54, and it is prevented that the heat of the heater 54 leaks below. The lower die 50 for heating is partitioned up and down by the second heat insulating member 58, and a refrigerant flow path 30 d through which a refrigerant flows is formed below the second heat insulating member 58. The refrigerant is circulated by the cooling device so as to pass through the refrigerant flow path 30d.

冷却用下型52は、被加工物100を冷却しつつ加圧するための型で、その内部には、冷媒が流れる冷媒流路30eが形成されている。冷媒は、当該冷媒流路30eを通るように冷却装置により循環される。また、冷却用下型52の底面には断熱部材60が設けられている。かかる断熱部材60を設けることで、冷却用下型52を加熱用下型50の真上に配した際に、加熱用下型50からの伝熱が防止される。   The cooling lower mold 52 is a mold for pressurizing while cooling the workpiece 100, and a refrigerant flow path 30e through which a refrigerant flows is formed therein. The refrigerant is circulated by the cooling device so as to pass through the refrigerant flow path 30e. A heat insulating member 60 is provided on the bottom surface of the cooling lower mold 52. By providing the heat insulating member 60, heat transfer from the lower heating mold 50 is prevented when the lower cooling mold 52 is disposed directly above the lower heating mold 50.

切り替え機構は、処理の進行状況に応じて、冷却用下型52を移動させる。具体的には、切り替え機構は、冷却用下型52を水平移動させる水平移動機構を有している。水平移動機構は、冷却用下型52を、加熱用下型50の真上位置と、加熱用下型50から水平方向にずれた位置との間で移動させる。また、この加圧装置10には、上側ユニット14を昇降させる昇降機構が設けられおり、上側ユニット14を、下側ユニット16に向かって下降させ、載置台12を加熱用下型50または加熱用下型50の上に位置する冷却用下型52に押し当てて、被加工物100を加圧する。つまり本実施形態では、加熱用下型50の上に冷却用下型52が位置する状態で、上側ユニット14を下降させることで、被加工物100を冷却しつつ加圧でき、加熱用下型50の上に冷却用下型52が存在しない状態で、上側ユニット14を下降させることで、被加工物100を加熱しつつ加圧できる。別の見方をすれば、本実施形態では、昇降機構で上側ユニット14を昇降させることで、加圧の実行・解除が制御され、水平機構で冷却用下型52を水平移動させることで、加圧に寄与する下型を加熱用下型50または冷却用下型52に切り替えることができる。かかる昇降機構および水平機構の駆動は、制御部18により制御される。   The switching mechanism moves the cooling lower mold 52 according to the progress of the process. Specifically, the switching mechanism has a horizontal movement mechanism that horizontally moves the cooling lower mold 52. The horizontal movement mechanism moves the cooling lower mold 52 between a position directly above the lower heating mold 50 and a position shifted in the horizontal direction from the lower heating mold 50. Further, the pressurizing device 10 is provided with an elevating mechanism for elevating and lowering the upper unit 14. The upper unit 14 is lowered toward the lower unit 16, and the mounting table 12 is heated by the lower die 50 for heating or for heating. The workpiece 100 is pressed against the lower mold 52 for cooling located on the lower mold 50. That is, in this embodiment, the lower unit 52 is lowered while the cooling lower die 52 is positioned on the heating lower die 50, so that the workpiece 100 can be pressurized while being cooled, and the lower heating die By lowering the upper unit 14 in a state where the cooling lower mold 52 does not exist on the upper part 50, the workpiece 100 can be pressurized while being heated. From another viewpoint, in this embodiment, the upper unit 14 is moved up and down by the lifting mechanism to control the execution / release of pressurization, and the cooling lower mold 52 is moved horizontally by the horizontal mechanism. The lower mold contributing to the pressure can be switched to the lower mold 50 for heating or the lower mold 52 for cooling. The driving of the elevating mechanism and the horizontal mechanism is controlled by the control unit 18.

次に、こうした加圧装置10での被加工物100の加圧処理について図3〜図7を参照して説明する。被加工物100を加圧する際には、予め、加熱用下型50をヒータ54で加熱し、所定の処理温度Tpまで加熱しておく。また、上型20や、サイド型28、冷却用下型52は、冷媒を用いて冷却しておき、被加工物100に設けられた接着剤114のガラス転移温度Tgよりも十分に低い温度、例えば常温にしておく。   Next, the pressurization process of the workpiece 100 by such a pressurization apparatus 10 is demonstrated with reference to FIGS. When pressurizing the workpiece 100, the heating lower mold 50 is heated in advance by the heater 54 and heated to a predetermined processing temperature Tp. Further, the upper mold 20, the side mold 28, and the cooling lower mold 52 are cooled using a refrigerant, and are sufficiently lower than the glass transition temperature Tg of the adhesive 114 provided on the workpiece 100. For example, it is kept at room temperature.

被加工物100が載置された載置台12が、上型20の真下に搬送されれば、制御部18は、まず、図3に示すように、上側ユニット14を下降、または、載置台12を上昇させて、サイド型28の底面を載置台12に密着させる。このとき、上型20や介在パッド24が被加工物100に当接しないように、制御部18は、エアシリンダ40に空気圧を付与して伸長させ、サイド型28を上型20等よりも下方に突出した状態にしておく。また、このとき、加熱用下型50および冷却用下型52は、いずれも、載置台12から離間している。したがって、この状態において、被加工物100には、加圧力は付与されていない。   If the mounting table 12 on which the workpiece 100 is mounted is conveyed directly below the upper mold 20, the control unit 18 first lowers the upper unit 14 or places the mounting table 12 as shown in FIG. 3. And the bottom surface of the side mold 28 is brought into close contact with the mounting table 12. At this time, the control unit 18 applies air pressure to the air cylinder 40 and extends it so that the upper mold 20 and the interposition pad 24 do not contact the workpiece 100, and the side mold 28 is positioned below the upper mold 20 and the like. Leave it protruding. At this time, the lower heating mold 50 and the lower cooling mold 52 are both separated from the mounting table 12. Accordingly, in this state, no pressure is applied to the workpiece 100.

サイド型28の底面を載置台12に密着させることで、サイド型28、上型20、枠体26、載置台12で囲まれる密閉空間が形成される。この状態になれば、制御部18は、吸引ポンプ44を駆動して、密閉空間の内部の空気を吸引し、密閉空間を真空状態とする。これにより、被加工物100の周囲の空気が除去される。接着剤114が軟化する前に接着剤114の周囲の空気が除去されることで、軟化後の接着剤114の内部に空気が入り込むエア噛みが効果的に防止される。   By bringing the bottom surface of the side mold 28 into close contact with the mounting table 12, a sealed space surrounded by the side mold 28, the upper mold 20, the frame body 26, and the mounting table 12 is formed. If it will be in this state, the control part 18 will drive the suction pump 44, will attract | suck the air inside sealed space, and will make a sealed space into a vacuum state. Thereby, the air around the workpiece 100 is removed. By removing the air around the adhesive 114 before the adhesive 114 is softened, air biting into the air after the softening of the adhesive 114 is effectively prevented.

密閉空間の真空吸引が完了すれば、制御部18は、エアシリンダ40の圧力を解除し、エアシリンダ40を収縮可能にする。エアシリンダ40が収縮可能になると、上型20およびサイド型28は、真空圧により(密閉空間と外部空間との圧力差により)、被加工物100が載置台12に向かって相対移動する。そして、最終的に、介在パッド24が被加工物100に接触し、被加工物100は、真空圧に応じた荷重Pbで予備加圧されることになる。この予備加圧の荷重Pbは、後述する本加圧で付与されるプレス荷重Ppよりも十分に低い。また、これまでの説明や図4から明らかな通り、この予備加圧は、載置台12と加熱用下型50とが離間した状態で行われる。換言すれば、予備加圧は、被加工物100が加熱されず、接着剤114が軟化する前の状態で行われる。かかる予備加圧を行うことで、介在パッド24は、被加工物100の表面形状に応じて変形し、被加工物100の周囲、特に、軟化前の接着剤114の周囲に回り込んで、被加工物100をホールドする。   When the vacuum suction of the sealed space is completed, the control unit 18 releases the pressure of the air cylinder 40 and allows the air cylinder 40 to contract. When the air cylinder 40 can be contracted, the upper mold 20 and the side mold 28 are relatively moved toward the mounting table 12 by the vacuum pressure (due to a pressure difference between the sealed space and the external space). Finally, the interposing pad 24 comes into contact with the workpiece 100, and the workpiece 100 is pre-pressurized with a load Pb corresponding to the vacuum pressure. The pre-pressurization load Pb is sufficiently lower than the press load Pp applied by the main pressurization described later. Further, as is apparent from the above description and FIG. 4, this pre-pressurization is performed in a state where the mounting table 12 and the heating lower mold 50 are separated from each other. In other words, the pre-pressurization is performed in a state before the workpiece 100 is not heated and the adhesive 114 is softened. By performing such pre-pressurization, the intervening pad 24 is deformed according to the surface shape of the workpiece 100, wraps around the workpiece 100, particularly around the adhesive 114 before softening, and Hold the workpiece 100.

予備加圧により、介在パッド24が、被加工物100に密着することに、続いて、制御部18は、図5に示すように、載置台12が真空吸着された上側ユニット14を下降させて、載置台12を加熱用下型50で下側から押圧する本加圧を実施する。本加圧において、被加工物100は、上型20および加熱用下型50で挟持され、規定のプレス荷重Ppで加圧される。また、既述した通り、加熱用下型50は、予め、所定の処理温度Tpまで加熱されている。この加熱用下型50の熱は、伝熱性に優れた載置台12を介して被加工物100に伝達される。つまり、本加圧において、被加工物100は、規定のプレス荷重Ppで加圧されつつ規定の処理温度Tpまで加熱される。この本加圧を所定の時間実行することで、被加工物100に設けられた熱硬化性の接着剤114は、ガラス転移温度Tgに達して軟化した後、硬化温度Tcに達して、硬化する。そして、これにより、電子部品112と基板110とが接着される。なお、このとき、加熱用下型50の熱は、載置台12、被加工物100を介して介在パッド24にも伝達される。ただし、介在パッド24の下部には断熱層36が設けられているため、柔軟層34には、熱は伝わりにくく、柔軟層34やその上に位置する上型20が過度に高温になることが防止されている。   As the interposing pad 24 comes into close contact with the workpiece 100 due to the pre-pressurization, the control unit 18 lowers the upper unit 14 on which the mounting table 12 is vacuum-adsorbed as shown in FIG. The main pressurization for pressing the mounting table 12 from the lower side with the lower die 50 for heating is performed. In the main pressurization, the workpiece 100 is sandwiched between the upper mold 20 and the heating lower mold 50 and is pressed with a prescribed press load Pp. Further, as described above, the lower heating mold 50 is heated in advance to a predetermined processing temperature Tp. The heat of the lower mold 50 for heating is transmitted to the workpiece 100 through the mounting table 12 having excellent heat conductivity. In other words, in the main pressurization, the workpiece 100 is heated to a predetermined processing temperature Tp while being pressed with a predetermined press load Pp. By performing this main pressurization for a predetermined time, the thermosetting adhesive 114 provided on the workpiece 100 reaches the glass transition temperature Tg and softens, and then reaches the curing temperature Tc and is cured. . As a result, the electronic component 112 and the substrate 110 are bonded. At this time, the heat of the lower heating mold 50 is also transmitted to the interposing pad 24 via the mounting table 12 and the workpiece 100. However, since the heat insulating layer 36 is provided in the lower part of the intervening pad 24, heat is not easily transmitted to the flexible layer 34, and the flexible layer 34 and the upper mold 20 positioned on the flexible layer 34 may become excessively hot. It is prevented.

十分な時間、本加圧が実行できれば、制御部18は、図6に示すように、上側ユニット14を上昇させて、加熱用下型50を載置台12から離間させる。加熱用下型50と載置台12との間に十分な空間が形成できれば、制御部18は、図7に示すように、載置台12と加熱用下型50の間に冷却用下型52を配置する。そして、この状態で、載置台12とともに上側ユニット14を下降させて、被加工物100を規定の冷却時荷重Pcで加圧する。このとき、冷却用下型52は、冷媒により予め冷却されているため、被加工物100を迅速に冷却することができる。また、冷却期間中、被加工物100は、冷却用下型52および上型20で挟持され、加圧されているため、熱膨張差に起因する反り等が効果的に防止される。なお、冷却時荷重Pcは、被加工物100の変形を防止できればよいため、プレス荷重Ppよりも小さくてもよい。被加工物100が、取り出し可能な温度(例えば常温)まで冷却できれば、制御部18は、載置台12とともに上側ユニット14を上昇させて、加圧を解除する。また、制御部18は、エアシリンダ40に圧力を付与して当該エアシリンダ40を伸長させることで、上型20を上昇させ、介在パッド24と被加工物100とを離間させる。また、吸引孔42を大気解放し、密閉空間を大気圧にする。そして、最後に、上側ユニット14をさらに上昇させて、上型20ユニットを載置台12から離間させれば、載置台12を、所定の搬出位置(図示せず)へと搬送する。   If the main pressurization can be performed for a sufficient time, the control unit 18 raises the upper unit 14 and separates the heating lower mold 50 from the mounting table 12 as shown in FIG. If a sufficient space can be formed between the lower heating mold 50 and the mounting table 12, the control unit 18 places the lower cooling mold 52 between the mounting table 12 and the lower heating mold 50 as shown in FIG. 7. Deploy. In this state, the upper unit 14 is lowered together with the mounting table 12, and the workpiece 100 is pressurized with a prescribed cooling load Pc. At this time, since the cooling lower mold 52 is cooled in advance by the refrigerant, the workpiece 100 can be rapidly cooled. Further, during the cooling period, the workpiece 100 is sandwiched and pressurized by the cooling lower mold 52 and the upper mold 20, so that warpage caused by a difference in thermal expansion is effectively prevented. The cooling load Pc may be smaller than the press load Pp as long as the deformation of the workpiece 100 can be prevented. If the workpiece 100 can be cooled to a temperature at which it can be taken out (for example, room temperature), the control unit 18 raises the upper unit 14 together with the mounting table 12 to release the pressure. Further, the control unit 18 applies pressure to the air cylinder 40 to extend the air cylinder 40, thereby raising the upper mold 20 and separating the interposition pad 24 and the workpiece 100. Further, the suction hole 42 is released to the atmosphere, and the sealed space is set to atmospheric pressure. Finally, when the upper unit 14 is further raised and the upper mold 20 unit is separated from the mounting table 12, the mounting table 12 is transported to a predetermined unloading position (not shown).

図8は、加圧処理の実行中における被加工物100の周辺環境の圧力、被加工物100の温度、被加工物100に付与される荷重の変化の一例を示すグラフである。これまでの説明で明らかな通り、加圧処理の開始時(時刻t0)において、被加工物100の周辺環境の圧力は、大気圧Paである。また、時刻t0において、被加工物100の加熱や加圧は開始されていないため、被加工物100の温度は常温Tnであり、加圧力はゼロである。   FIG. 8 is a graph illustrating an example of changes in the pressure in the surrounding environment of the workpiece 100, the temperature of the workpiece 100, and the load applied to the workpiece 100 during the execution of the pressurizing process. As is apparent from the above description, the pressure in the surrounding environment of the workpiece 100 is the atmospheric pressure Pa at the start of the pressurizing process (time t0). Further, since heating and pressurization of the workpiece 100 are not started at time t0, the temperature of the workpiece 100 is normal temperature Tn and the pressing force is zero.

その後、時刻t1において真空吸引が開始され、真空吸引完了後に、エアシリンダ40の圧力を解除すると、時刻t2において、被加工物100には、真空圧Pvに応じた荷重Pbが付与され、予備加圧される。そして、時刻t3において、加熱済みの加熱用下型50で載置台12に押圧する本加圧を開始する。本加圧を開始すると、被加工物100の温度は、急激に上昇し、比較的、短時間で、規定の処理温度Tpに達する。この処理温度Tpは、被加工物100に設けられた接着剤114のガラス転移温度Tgや、接着剤の硬化温度Tcよりも高い。したがって、被加工物100は、処理温度Tpに達する過程で、ガラス転移温度Tgに達して軟化し、その後、硬化温度Tcに達して、硬化する。   Thereafter, vacuum suction is started at time t1, and after the vacuum suction is completed, when the pressure of the air cylinder 40 is released, a load Pb corresponding to the vacuum pressure Pv is applied to the workpiece 100 at time t2, and preliminarily applied. Pressed. Then, at time t3, the main pressurization for pressing the mounting table 12 with the heated lower mold 50 is started. When the main pressurization is started, the temperature of the workpiece 100 rapidly rises and reaches a prescribed processing temperature Tp in a relatively short time. This processing temperature Tp is higher than the glass transition temperature Tg of the adhesive 114 provided on the workpiece 100 and the curing temperature Tc of the adhesive. Accordingly, the workpiece 100 reaches the glass transition temperature Tg and softens in the process of reaching the processing temperature Tp, and then reaches the curing temperature Tc and hardens.

また、加熱用下型50で押圧することで、時刻t4において、被加工物100は、所定のプレス荷重Ppで加圧される。このプレス荷重Ppは、電子部品112のバンプ113と基板110の配線との導通を得るのに十分な大きさで、例えば、20トンである。その後、時刻t5になれば、本加圧を終了する。すなわち、時刻t5において、制御部18は、上側ユニット14を上昇させて、被加工物100の加圧を解除する。   Further, by pressing with the lower mold 50 for heating, the workpiece 100 is pressurized with a predetermined press load Pp at time t4. This press load Pp is large enough to obtain conduction between the bump 113 of the electronic component 112 and the wiring of the substrate 110, and is, for example, 20 tons. Thereafter, at time t5, the main pressurization is terminated. That is, at time t <b> 5, the control unit 18 raises the upper unit 14 to release the pressurization of the workpiece 100.

上側ユニット14を上昇させると、被加工物100に付与される加圧力は、急激に低下する。一方で、自然冷却では、被加工物100の温度は、低下しにくく、被加工物100は、処理温度Tpのままである。そこで、被加工物100を冷却するために、制御部18は、加熱用下型50に替えて、冷却用下型52で被加工物100を押圧し、冷却する。時刻t6において、冷却用下型52が載置台12に接触すると、被加工物100は、急激に温度低下する。また、上側ユニット14が下降することで、被加工物100の加圧力も上昇し、被加工物100の反り等の変形が効果的に防止される。このとき付与される冷却時荷重Pcは、例えば、10トン程度である。   When the upper unit 14 is raised, the applied pressure applied to the workpiece 100 is rapidly reduced. On the other hand, with natural cooling, the temperature of the workpiece 100 is unlikely to decrease, and the workpiece 100 remains at the processing temperature Tp. Therefore, in order to cool the workpiece 100, the control unit 18 presses and cools the workpiece 100 with the cooling lower mold 52 instead of the heating lower mold 50. When the cooling lower mold 52 comes into contact with the mounting table 12 at time t6, the temperature of the workpiece 100 is rapidly decreased. Moreover, when the upper unit 14 is lowered, the pressing force of the workpiece 100 is also increased, and deformation such as warpage of the workpiece 100 is effectively prevented. The cooling load Pc applied at this time is, for example, about 10 tons.

被加工物100を常温まで冷却できれば、制御部18は、上側ユニット14を上昇させて、被加工物100の加圧を解除する。その後は、被加工物100の周囲を大気圧解放する。そして、時刻t8において、被加工物100の周囲が大気圧に戻れば、上側ユニット14を被加工物100から離間して、載置台12ごと被加工物100を排出位置に搬送させる。   If the workpiece 100 can be cooled to room temperature, the control unit 18 raises the upper unit 14 to release the pressurization of the workpiece 100. After that, the atmospheric pressure is released around the workpiece 100. At time t8, when the periphery of the workpiece 100 returns to the atmospheric pressure, the upper unit 14 is separated from the workpiece 100, and the workpiece 100 is transported to the discharge position together with the mounting table 12.

以上の説明から明らかな通り、本実施形態では、被加工物100の加圧に寄与する下型を、予め加熱された加熱用下型50と、予め冷却された冷却用下型52と、で切り替えている。かかる構成とする理由について、従来技術と比較して説明する。   As is clear from the above description, in the present embodiment, the lower mold that contributes to the pressurization of the workpiece 100 is composed of a heating lower mold 50 preheated and a cooling lower mold 52 cooled in advance. Switching. The reason for this configuration will be described in comparison with the prior art.

従来の加圧装置10でも、上型20と下型とで被加工物100を挟持し、必要に応じて、被加工物100を加熱や冷却していた。従来の加熱装置では、被加工物100を加熱および冷却するために、下型の内部に、加熱手段と冷却手段の双方を設け、下型を必要に応じて加熱および冷却していた。この場合、冷却された下型を、所定の処理温度Tpまで加熱する時間、および、加熱された下型を所定の冷却温度まで冷却する時間が必要となる。その結果、従来の加圧装置10では、処理時間の長期化を招いていた。特に、加圧装置10では、高い圧力に耐えるために、下型は、厚みが大きく、熱容量の大きい形状にならざるを得ない。かかる大型の下型の加熱および冷却には時間がかかっていた。   Even in the conventional pressure device 10, the workpiece 100 is sandwiched between the upper mold 20 and the lower mold, and the workpiece 100 is heated or cooled as necessary. In the conventional heating apparatus, in order to heat and cool the workpiece 100, both the heating means and the cooling means are provided inside the lower mold, and the lower mold is heated and cooled as necessary. In this case, a time for heating the cooled lower mold to the predetermined processing temperature Tp and a time for cooling the heated lower mold to the predetermined cooling temperature are required. As a result, in the conventional pressurizing apparatus 10, the processing time is prolonged. In particular, in the pressurizing device 10, in order to withstand a high pressure, the lower mold has to have a large thickness and a large heat capacity. It took time to heat and cool the large lower mold.

もちろん、加熱能力の高いヒータを用いることで加熱に要する時間を短縮することはできる。しかし、こうしたヒータは、高価でコストの増加を招く。また、一度冷却した下型を加熱温度まで短時間で上昇させようとすると、上昇の過程で、希望の処理温度Tpを越える、オーバーシュートが生じやすかった。その結果、被加工物100が、一時的とはいえ、過剰に加熱されるおそれがあった。   Of course, the time required for heating can be shortened by using a heater having a high heating capacity. However, such a heater is expensive and causes an increase in cost. Further, when the lower mold once cooled is to be raised to the heating temperature in a short time, an overshoot easily exceeding the desired processing temperature Tp is likely to occur in the course of the rise. As a result, the workpiece 100 may be excessively heated although it is temporary.

本実施形態では、既述した通り、予め加熱した加熱用下型50と、予め冷却した冷却用下型52とを、処理の進行状況に応じて切り替えている。その結果、下型を加熱または冷却するための時間が不要であり、被加工物100を迅速に加熱および冷却できる。すなわち、図8を参照して説明した通り、本実施形態では、加熱用下型50が載置台12に接触すれば(図8の時刻t3前後を参照)、被加工物100は、迅速に温度上昇し、冷却用下型52が載置台12に接触すれば(図8の時刻t6前後を参照)、被加工物100は、迅速に温度低下する。換言すれば、本実施形態によれば、下型を、希望の温度まで加熱したり冷却したりする時間が不要となる。その結果、加圧処理に要する時間を大幅に低減できる。   In the present embodiment, as described above, the heating lower mold 50 heated in advance and the cooling lower mold 52 cooled in advance are switched according to the progress of the process. As a result, time for heating or cooling the lower mold is unnecessary, and the workpiece 100 can be heated and cooled quickly. That is, as described with reference to FIG. 8, in this embodiment, if the lower heating mold 50 comes into contact with the mounting table 12 (see around time t <b> 3 in FIG. 8), the workpiece 100 is quickly heated. If the lower die 52 for cooling is brought into contact with the mounting table 12 (see around time t6 in FIG. 8), the temperature of the workpiece 100 is quickly lowered. In other words, according to the present embodiment, time for heating or cooling the lower mold to a desired temperature is not required. As a result, the time required for the pressure treatment can be greatly reduced.

また、下型を加熱用と冷却用とに分けることにより、エネルギー損失を低減でき、また、蒸気の発生を低減できる。すなわち、一つの下型を加熱および冷却する従来の加圧装置10では、熱容量の大きな下型を加熱および冷却する必要があり、エネルギーの損失が大きかった。また、下型を加熱した後に、冷媒として水等の液体を流して冷却しようとすると、液体が蒸気になり、冷媒流路内の圧力上昇等を招く。こうした問題を防止するために、液体の供給に先だって冷却用のエアを流したり、液体を供給後に発生した蒸気を一時的に貯留冷却するためのバッファを別途設けたりする必要があり、構成の複雑化を招いていた。本実施形態では、高温部材の内部に冷媒を流す必要はないため、蒸気の発生がなく、構成を簡易化できる。   Moreover, energy loss can be reduced and generation of steam can be reduced by dividing the lower mold into heating and cooling. That is, in the conventional pressurizing apparatus 10 that heats and cools one lower mold, it is necessary to heat and cool the lower mold having a large heat capacity, and energy loss is large. Further, when the lower mold is heated and then a liquid such as water is allowed to flow as a refrigerant to be cooled, the liquid becomes a vapor, leading to an increase in pressure in the refrigerant flow path. In order to prevent such problems, it is necessary to flow cooling air prior to supplying the liquid, or to separately provide a buffer for temporarily storing and cooling the vapor generated after supplying the liquid. Was inviting. In this embodiment, since it is not necessary to flow a refrigerant into the high temperature member, no steam is generated, and the configuration can be simplified.

また、本実施形態では、被加工物100を、下側からのみ加熱し、上側からは加熱しない。換言すれば、本実施形態では、上型20には、加熱手段を設けていない。これにより、介在パッド24の温度を上げることなく、被加工物100を、従来よりも高温に加熱することが可能となる。   Further, in the present embodiment, the workpiece 100 is heated only from the lower side and is not heated from the upper side. In other words, in the present embodiment, the upper mold 20 is not provided with a heating means. Thereby, the workpiece 100 can be heated to a higher temperature than before without increasing the temperature of the interposing pad 24.

すなわち、従来の加圧装置10では、迅速な加熱を可能にするために、下型だけでなく、上型20にも加熱手段を設けることがあった。この場合、被加工物100を迅速に加熱できる一方で、当該上型20と被加工物100の間に介在する介在パッド24も加熱されることになる。ここで、本実施形態の介在パッド24は、断熱層36を有しているが、従来の介在パッド24は、断熱層36を有しておらず、シリコーン系の有機物が主成分の柔軟層で主に構成されていた。かかる柔軟層34の耐熱温度は、200度未満であることが多い。一方、近年、被加工物100に設けられている接着剤114の硬化温度Tcは、高くなり、150度〜300度であることが多い。つまり、接着剤114を硬化させて、電子部品112を基板110に接着するためには、被加工物100を150度〜300度まで加熱する必要がある。   That is, in the conventional pressurizing apparatus 10, in order to enable rapid heating, not only the lower mold but also the upper mold 20 may be provided with heating means. In this case, while the workpiece 100 can be heated quickly, the intervening pad 24 interposed between the upper mold 20 and the workpiece 100 is also heated. Here, the intervening pad 24 of the present embodiment has a heat insulating layer 36, but the conventional intervening pad 24 does not have the heat insulating layer 36, and is a flexible layer mainly composed of silicone-based organic matter. It was mainly composed. The heat resistant temperature of the flexible layer 34 is often less than 200 degrees. On the other hand, in recent years, the curing temperature Tc of the adhesive 114 provided on the workpiece 100 has increased and is often 150 to 300 degrees. That is, in order to cure the adhesive 114 and bond the electronic component 112 to the substrate 110, it is necessary to heat the workpiece 100 to 150 degrees to 300 degrees.

上型20に設けられた加熱手段で、被加工物100を150度〜300度まで加熱しようとすると、上型20と被加工物100の間に設けられた介在パッド24(柔軟層34)も、加熱されることになる。この場合、介在パッド24が、耐熱温度を越えてしまい、破損する恐れがあった。つまり、上型20に加熱手段を設けた従来の加圧装置10では、介在パッド24の破損を招く恐れがあった。そのため、上型20に加熱手段を設けた従来の加圧装置10では、被加工物100を介在パッド24(柔軟層34)の耐熱温度よりも高温に加熱することができなかった。   When the workpiece 100 is heated to 150 degrees to 300 degrees by the heating means provided in the upper mold 20, the interposition pad 24 (flexible layer 34) provided between the upper mold 20 and the workpiece 100 is also used. Will be heated. In this case, the interposing pad 24 may exceed the heat resistance temperature and may be damaged. That is, in the conventional pressurizing apparatus 10 in which the heating means is provided in the upper mold 20, the intervening pad 24 may be damaged. Therefore, in the conventional pressure device 10 in which the upper die 20 is provided with heating means, the workpiece 100 cannot be heated to a temperature higher than the heat resistance temperature of the intervening pad 24 (flexible layer 34).

一方、本実施形態では、既述した通り、加熱手段は、加熱用下型50にのみ設けており、上型20には加熱手段を設けていない。したがって、耐熱性の低い柔軟層34が、上型20から加熱されることがない。また、本実施形態では、耐熱性の低い柔軟層34と、高温に加熱される被加工物100と、の間に断熱層36を設けている。また、上型20は、冷媒流路30aに冷媒を流すことで一定の温度に保たれるようになっている。その結果、柔軟層34への伝熱が効果的に防止され、柔軟層34の温度上昇、ひいては、熱破損を効果的に防止できる。別の見方をすれば、本実施形態によれば、被加工物100を、柔軟層34の耐熱温度よりも高い温度に加熱することができ、取り扱い可能な被加工物100の範囲が広がる。   On the other hand, in the present embodiment, as described above, the heating means is provided only in the lower mold 50 for heating, and the upper mold 20 is not provided with the heating means. Therefore, the flexible layer 34 having low heat resistance is not heated from the upper mold 20. Moreover, in this embodiment, the heat insulation layer 36 is provided between the flexible layer 34 with low heat resistance, and the workpiece 100 heated to high temperature. The upper mold 20 is maintained at a constant temperature by flowing a refrigerant through the refrigerant flow path 30a. As a result, heat transfer to the flexible layer 34 is effectively prevented, and the temperature rise of the flexible layer 34 and consequently thermal damage can be effectively prevented. From another viewpoint, according to the present embodiment, the workpiece 100 can be heated to a temperature higher than the heat-resistant temperature of the flexible layer 34, and the range of the workpiece 100 that can be handled is expanded.

また、これまでの説明で明らかな通り、本実施形態では、被加工物100の加熱に先だって、被過去物の周辺環境を真空吸引している。これにより、加熱・加圧後の接着剤114の内部にエアが残存するエア噛みを防止できる。ここで、こうした真空吸引は、接着剤が溶融する前、すなわち、接着剤114がガラス転移温度Tgに達する前に行うことが望ましい。上型20に加熱手段を設けた従来の加圧装置10の場合、真空吸引に際して、高温の上型20が被加工物100に近接するため、接着剤114が溶融し、適切にエア抜きができないという問題がある。もちろん、真空吸引の際に、上型20の加熱を停止していれば、こうした問題は避けられるが、この場合、真空吸引の後に、上型20を加熱する必要があり、処理に要する時間が長期化する問題があった。   Further, as is apparent from the above description, in this embodiment, prior to heating the workpiece 100, the surrounding environment of the workpiece is vacuum-sucked. As a result, it is possible to prevent air from being stuck inside the adhesive 114 after being heated and pressurized. Here, such vacuum suction is preferably performed before the adhesive melts, that is, before the adhesive 114 reaches the glass transition temperature Tg. In the case of the conventional pressure device 10 in which the upper die 20 is provided with heating means, the adhesive 114 is melted and the air cannot be properly vented because the high temperature upper die 20 is close to the workpiece 100 during vacuum suction. There is a problem. Of course, such a problem can be avoided if heating of the upper mold 20 is stopped at the time of vacuum suction. In this case, however, the upper mold 20 needs to be heated after the vacuum suction, and the time required for processing is reduced. There was a problem of prolonged.

また、本実施形態では、真空吸引後、被加工物100の加熱の前に、被過去物を上型20および介在パッド24で、プレス荷重Ppより低い予備荷重Pbで加圧する予備加圧を行っている。加熱前に予備加圧することで、被加工物100が、介在パッド24でホールドされる。その結果、接着剤114が溶融しても、電子部品112の動きが介在パッド24で規制され、電子部品112のズレが効果的に防止できる。すなわち、従来の加圧装置10では、予備加圧を行うことなく、被加工物100の加圧および加熱を行っていた。そのため、被加工物100が、介在パッド24で十分にホールドされる前に、接着剤114がガラス転移温度Tgに達して軟化する恐れがあった。介在パッド24でホールドされていない状態で、接着剤114が軟化すると、電子部品112は、比較的自由に動けるため、電子部品112の位置ズレ等を招く。一方、本実施形態では、加熱されていない上型20および介在パッド24で、被加工物100を予備加圧し、被加工物100を介在パッド24でホールドしてから、被加工物100の加熱を行っている。そのため、加熱により接着剤が軟化しても、電子部品112の動きが規制され、電子部品112の位置ズレが効果的に防止できる。   Further, in the present embodiment, after the vacuum suction, before the workpiece 100 is heated, pre-pressurization is performed by pressing the workpiece with the upper mold 20 and the intervening pad 24 with a pre-load Pb lower than the press load Pp. ing. By pre-pressurizing before heating, the workpiece 100 is held by the interposing pad 24. As a result, even if the adhesive 114 is melted, the movement of the electronic component 112 is restricted by the intervening pad 24, and displacement of the electronic component 112 can be effectively prevented. That is, the conventional pressurizing apparatus 10 pressurizes and heats the workpiece 100 without performing preliminary pressurization. Therefore, the adhesive 114 may reach the glass transition temperature Tg and soften before the workpiece 100 is sufficiently held by the intervening pad 24. If the adhesive 114 is softened in a state where it is not held by the intervening pad 24, the electronic component 112 can move relatively freely. On the other hand, in the present embodiment, the workpiece 100 is pre-pressurized with the unheated upper mold 20 and the intervening pad 24, the workpiece 100 is held by the intervening pad 24, and then the workpiece 100 is heated. Is going. For this reason, even if the adhesive is softened by heating, the movement of the electronic component 112 is restricted, and displacement of the electronic component 112 can be effectively prevented.

次に、第二実施形態について図9〜図12を参照して説明する。図9〜図12は、第二実施形態における加圧処理の流れを示す図である。第二実施形態は、加熱用下型50および冷却用下型52の双方が、水平移動できる点で第一実施形態と相違する。図9は、第二実施形態における加圧処理の開始時を示している。図9に示すように、この場合、冷却用下型52は、上型20に対して水平方向にずれた位置に、加熱用下型50は、上型20の下方に位置している。この状態において、被加工物100が載置された載置台12は、冷却用下型52の上に搬送される。この場合、冷却用下型52は、上型20から水平方向にずれた位置にあるため、冷却用下型52の上側に広い空間が確保でき、載置台12の搬送のためのスペース(例えば載置台12を搬送する機構の設置スペース等)を十分に確保できる。   Next, a second embodiment will be described with reference to FIGS. 9-12 is a figure which shows the flow of the pressurization process in 2nd embodiment. The second embodiment is different from the first embodiment in that both the lower heating mold 50 and the lower cooling mold 52 can move horizontally. FIG. 9 shows the start of the pressurizing process in the second embodiment. As shown in FIG. 9, in this case, the cooling lower mold 52 is located at a position shifted in the horizontal direction with respect to the upper mold 20, and the heating lower mold 50 is located below the upper mold 20. In this state, the mounting table 12 on which the workpiece 100 is mounted is conveyed onto the cooling lower mold 52. In this case, since the cooling lower mold 52 is in a position shifted in the horizontal direction from the upper mold 20, a large space can be secured above the cooling lower mold 52, and a space for transporting the mounting table 12 (for example, mounting) A sufficient installation space for the mechanism for transporting the mounting table 12 can be secured.

冷却用下型52の上に載置台12が搬送されれば、続いて、制御部18は、図10に示すように、加熱用下型50を上型20から水平方向にずれた位置に移動させる。同時に、制御部18は、冷却用下型52を、上型20の真下位置に水平移動させる。その後、上側ユニット14を下降させて、サイド型28の底面を、載置台12の上面に密着させる。その後は、第一実施形態と同様に、被加工物100の周囲の密閉空間を真空吸引した後、当該密閉空間と外部空間との差圧を利用して、被加工物を予備荷重Pbで予備加圧する。予備加圧が完了すれば、制御部18は、再び、冷却用下型52を上型20から水平方向にずれた位置に移動するとともに、加熱用下型50を上型20の真下位置に移動させる。そして、図11に示すように、加熱用下型50で載置台12を押圧して、被加工物100を規定のプレス荷重Ppで加圧しつつ加熱する本加圧を実行する。本加圧が完了すれば、図12に示すように、加熱用下型50と冷却用下型52とを入れ替え、冷却用下型52で被加工物100を加圧しつつ冷却させる。そして、被加工物100の冷却が完了すれば、上側ユニット14を上昇させて、上側ユニット14と載置台12とを離間させた後、載置台12が載置された冷却用下型52を水平方向に移動させる。その後、載置台12を所定の排出位置へと搬送する。   If the mounting table 12 is transported onto the cooling lower mold 52, the control unit 18 then moves the heating lower mold 50 to a position shifted in the horizontal direction from the upper mold 20, as shown in FIG. Let At the same time, the control unit 18 horizontally moves the cooling lower mold 52 to a position directly below the upper mold 20. Thereafter, the upper unit 14 is lowered to bring the bottom surface of the side mold 28 into close contact with the upper surface of the mounting table 12. After that, similarly to the first embodiment, after vacuuming the sealed space around the workpiece 100, the workpiece is preliminarily reserved with the preload Pb using the pressure difference between the sealed space and the external space. Pressurize. When the pre-pressurization is completed, the control unit 18 again moves the lower cooling mold 52 to a position shifted in the horizontal direction from the upper mold 20 and moves the lower heating mold 50 to a position directly below the upper mold 20. Let Then, as shown in FIG. 11, the main pressurization is performed in which the mounting table 12 is pressed by the lower heating mold 50 to heat the workpiece 100 while pressing the workpiece 100 with a predetermined press load Pp. When the main pressurization is completed, as shown in FIG. 12, the lower mold 50 for heating and the lower mold 52 for cooling are exchanged, and the workpiece 100 is cooled while being pressurized with the lower mold 52 for cooling. When the cooling of the workpiece 100 is completed, the upper unit 14 is raised, the upper unit 14 and the mounting table 12 are separated from each other, and then the cooling lower mold 52 on which the mounting table 12 is mounted is horizontally disposed. Move in the direction. Thereafter, the mounting table 12 is transported to a predetermined discharge position.

以上の説明、および、図10、図12等から明らかな通り、第二実施形態によれば、加熱用下型50と冷却用下型52とが上下に並ぶことがないため、両下型50,52間での伝熱が防止される。結果として、各下型50,52を規定の温度に保つことが容易となる。   As is clear from the above description and FIGS. 10, 12, etc., according to the second embodiment, the lower mold 50 for heating and the lower mold 52 for cooling do not line up and down. , 52 is prevented from transferring heat. As a result, it becomes easy to keep the lower dies 50 and 52 at a specified temperature.

また、第二実施形態でも、第一実施形態と同様に、加熱や冷却に要する時間、ひいては、加圧処理の時間を大幅に短縮できる。また、接着剤114が軟化する前に、真空吸引・予備加圧を行っているため、エア噛みや部品のズレ等をより確実に防止できる。   Also in the second embodiment, as in the first embodiment, the time required for heating and cooling, and in turn, the time for pressure treatment can be greatly reduced. Further, since vacuum suction and pre-pressurization are performed before the adhesive 114 is softened, it is possible to more reliably prevent air biting and component displacement.

なお、これまで説明した構成は、一例であり、本加圧に先だって、少なくとも一部が、載置台12、サイド型28、上型20で囲まれた密閉空間を形成した後、当該密閉空間を真空吸引し、この密閉空間の内外の圧力差により被加工物100を予備荷重Pbで予備加圧するのであれば、その他の構成は、適宜、変更されてもよい。例えば、本実施形態では、加熱用および冷却用に二つの下型を設けているが、冷却手段および加熱手段を有した単一の下型を設けてもよい。また、本実施形態では、介在パッド24に柔軟層34と断熱層36とを設けているが、柔軟層34を耐熱温度以下に保つことができるのであれば、断熱層36は、省略されてもよい。また、これまでの説明では、上側ユニット14を昇降させて加圧の実行/解除を切り替えていたが、上側ユニット14に替えて、または、加えて、下側ユニット16を昇降させて、加圧の実行/解除を切り替えるようにしてもよい。また、各種駆動機構や、冷却手段、加熱手段の構成は、公知の他の構成に替えてもよい。   In addition, the structure demonstrated so far is an example, and prior to the main pressurization, after forming a sealed space at least partially surrounded by the mounting table 12, the side mold 28, and the upper mold 20, the sealed space is Other configurations may be appropriately changed as long as the workpiece 100 is preliminarily pressurized with the preload Pb by the pressure difference between the inside and outside of the sealed space by vacuum suction. For example, in the present embodiment, two lower molds are provided for heating and cooling, but a single lower mold having cooling means and heating means may be provided. In the present embodiment, the flexible layer 34 and the heat insulating layer 36 are provided on the intervening pad 24. However, the heat insulating layer 36 may be omitted as long as the flexible layer 34 can be kept at a heat resistant temperature or lower. Good. In the description so far, the upper unit 14 is moved up and down to switch the execution / release of pressurization. However, in place of or in addition to the upper unit 14, the lower unit 16 is moved up and down to pressurize. Execution / cancellation may be switched. Moreover, you may replace the structure of various drive mechanisms, a cooling means, and a heating means with another well-known structure.

10 加圧装置、12 載置台、14 上側ユニット、16 下側ユニット、18 制御部、20 上型、22 ベース部材、24 介在パッド、26 枠体、28 サイド型、30 冷媒流路、32 バネ部材、34 柔軟層、36 断熱層、38 中間シート、40 エアシリンダ、42 吸引孔、44 吸引ポンプ、50 加熱用下型、52 冷却用下型、54 ヒータ、56,58,60 断熱部材、100 被加工物、110 基板、111 配線、112 電子部品、113 バンプ、114 接着剤。
DESCRIPTION OF SYMBOLS 10 Pressure apparatus, 12 Mounting base, 14 Upper unit, 16 Lower unit, 18 Control part, 20 Upper mold | type, 22 Base member, 24 Interposition pad, 26 Frame body, 28 Side type | mold, 30 Refrigerant flow path, 32 Spring member , 34 Flexible layer, 36 Thermal insulation layer, 38 Intermediate sheet, 40 Air cylinder, 42 Suction hole, 44 Suction pump, 50 Lower mold for heating, 52 Lower mold for cooling, 54 Heater, 56, 58, 60 Thermal insulation member, 100 Cover Workpiece, 110 substrate, 111 wiring, 112 electronic component, 113 bump, 114 adhesive.

Claims (6)

載置台を上型および下型で挟持することで、前記載置台に載置された被加工物を規定のプレス荷重で加圧する加圧方法であって、
前記上型の周囲に配されたサイド型を前記載置台に密着させることで、前記被加工物の周囲に、少なくとも一部が、前記載置台、サイド型、上型で囲まれた密閉空間を形成する密閉ステップと、
前記密閉空間内の空気を吸引することで前記被加工物の周囲を真空状態にする吸引ステップと、
前記密閉空間の内外の圧力差により、前記上型を前記載置台に向かって相対的に移動させて、前記被加工物を、前記プレス荷重よりも小さい予備荷重で加圧する予備加圧ステップと、
前記予備加圧ステップの後に、前記下型で前記載置台を押圧することで、前記被加工物を前記プレス荷重で加圧する本加圧ステップと、
を備えることを特徴とする加圧方法。
It is a pressurizing method for pressurizing a work piece placed on the mounting table with a prescribed press load by sandwiching the mounting table between an upper mold and a lower mold,
By adhering a side mold disposed around the upper mold to the mounting table, a sealed space surrounded at least in part by the mounting table, the side mold, and the upper mold is formed around the workpiece. A sealing step to form,
A suction step for vacuuming the periphery of the workpiece by sucking air in the sealed space; and
A pre-pressurizing step of pressing the workpiece with a pre-load smaller than the press load by relatively moving the upper mold toward the mounting table due to a pressure difference inside and outside the sealed space;
After the preliminary pressurizing step, the main pressurizing step of pressurizing the workpiece with the press load by pressing the mounting table with the lower mold,
A pressurizing method comprising:
請求項1に記載の加圧方法であって、
前記被加工物を前記上型との間には、柔軟な材料からなる介在パッドが設けられており、
前記予備加圧ステップにおいて、前記介在パッドは、前記被加工物の表面形状に追従して変形し、
前記本加圧ステップにおいて、前記被加工物は、前記変形した介在パッドを介して加圧される、
ことを特徴とする加圧方法。
The pressurizing method according to claim 1,
An intervening pad made of a flexible material is provided between the workpiece and the upper mold,
In the preliminary pressurizing step, the interposed pad is deformed following the surface shape of the workpiece,
In the main pressurizing step, the workpiece is pressed through the deformed interposition pad.
A pressurizing method characterized by the above.
請求項1または2に記載の加圧方法であって、
前記上型は、ベース部材に取り付けられており、
前記サイド型は、空気圧または油圧が付与されることで伸長し、前記空気圧または油圧が解除されることで収縮可能となるシリンダを介して前記ベース部材に取り付けられており、
前記上型は、前記予備加圧ステップにおいて、前記シリンダの収縮を許容することで前記載置台に向かって相対的に移動する、
ことを特徴とする加圧方法。
The pressurizing method according to claim 1 or 2,
The upper mold is attached to a base member,
The side mold is attached to the base member via a cylinder that expands when pneumatic pressure or hydraulic pressure is applied, and can contract when the pneumatic pressure or hydraulic pressure is released,
The upper mold moves relatively toward the mounting table by allowing the cylinder to contract in the preliminary pressurizing step.
A pressurizing method characterized by the above.
請求項1から3のいずれか1項に記載の加圧方法であって、
前記下型は、予め、加熱手段により加熱された加熱用下型を含み、
前記被加工物は、本加圧ステップにおいて、前記加熱用下型により加熱されつつ加圧される一方で、本加圧開始前においては加熱されない、
ことを特徴とする加圧方法。
The pressurizing method according to any one of claims 1 to 3,
The lower mold includes a lower mold for heating previously heated by a heating means,
The workpiece is pressed while being heated by the lower mold for heating in the main pressing step, but is not heated before the start of main pressing.
A pressurizing method characterized by the above.
請求項4に記載の加圧方法であって、
前記下型は、さらに、冷却手段により冷却された冷却用下型を含み、
さらに、前記本加圧ステップの後に、前記載置台を前記冷却用下型および前記上型で挟持することで前記被加工物を加圧しつつ冷却する冷却ステップを備える、
ことを特徴とする加圧方法。
The pressurizing method according to claim 4,
The lower mold further includes a lower mold for cooling cooled by a cooling means,
Furthermore, after the main pressurizing step, a cooling step of cooling the workpiece while pressurizing the workpiece by sandwiching the mounting table between the lower mold for cooling and the upper mold,
A pressurizing method characterized by the above.
被加工物を規定のプレス荷重で加圧する加圧装置であって、
前記被加工物が載置される載置台と、
前記被加工粒を上側から加圧する上型と、
前記上型の周囲に配され、前記載置台に密着することで、前記上型、載置台とともに前記被加工物の周囲に密閉空間を形成するサイド型と、
前記密閉空間の空気を吸引して前記被加工物の周囲を真空状態にする吸引装置と、
前記上型と協働して前記載置台を挟持することで、前記被加工物を加圧する下型と、
を備え、
前記被加工物を前記プレス荷重で加圧する本加圧に先だって、前記吸引装置により前記密閉空間を真空状態にした後に、前記密閉空間の内外の圧力差により前記上型を前記載置台に向かって相対移動させることで前記被加工物を前記プレス荷重より小さい予備荷重で加圧する予備加圧を行う、
ことを特徴とする加圧装置。
A pressurizing device that pressurizes a workpiece with a prescribed press load,
A mounting table on which the workpiece is mounted;
An upper mold for pressurizing the workpiece grain from above;
A side mold that is arranged around the upper mold and forms a sealed space around the workpiece together with the upper mold and the mounting table by being in close contact with the mounting table,
A suction device that sucks air in the sealed space and places a vacuum around the workpiece;
A lower mold that pressurizes the workpiece by sandwiching the mounting table in cooperation with the upper mold;
With
Prior to the main pressurization to pressurize the workpiece with the press load, after the sealed space is evacuated by the suction device, the upper die is moved toward the mounting table due to a pressure difference between the inside and the outside of the sealed space. Performing pre-pressurization to pressurize the workpiece with a pre-load smaller than the press load by relatively moving;
A pressure device characterized by that.
JP2016089813A 2016-04-27 2016-04-27 Pressurizing method and pressurizing apparatus Active JP6336510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016089813A JP6336510B2 (en) 2016-04-27 2016-04-27 Pressurizing method and pressurizing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016089813A JP6336510B2 (en) 2016-04-27 2016-04-27 Pressurizing method and pressurizing apparatus

Publications (2)

Publication Number Publication Date
JP2017196645A true JP2017196645A (en) 2017-11-02
JP6336510B2 JP6336510B2 (en) 2018-06-06

Family

ID=60238561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016089813A Active JP6336510B2 (en) 2016-04-27 2016-04-27 Pressurizing method and pressurizing apparatus

Country Status (1)

Country Link
JP (1) JP6336510B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102294911B1 (en) * 2021-05-03 2021-08-26 오광민 hot press

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269777A (en) * 1992-03-27 1993-10-19 Hitachi Ltd Hot press
JP2002096199A (en) * 2000-09-19 2002-04-02 Mikado Technos Kk High vacuum drawing processing method and device by press device
JP2005246417A (en) * 2004-03-03 2005-09-15 Mikado Technos Kk Vacuum press gluing mechanism
JP2005324200A (en) * 2004-05-12 2005-11-24 Tanken Seal Seiko Co Ltd Negative pressure press apparatus
JP2010089141A (en) * 2008-10-09 2010-04-22 Hitachi Industrial Equipment Systems Co Ltd Precision press device and press load control method used for the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269777A (en) * 1992-03-27 1993-10-19 Hitachi Ltd Hot press
JP2002096199A (en) * 2000-09-19 2002-04-02 Mikado Technos Kk High vacuum drawing processing method and device by press device
JP2005246417A (en) * 2004-03-03 2005-09-15 Mikado Technos Kk Vacuum press gluing mechanism
JP2005324200A (en) * 2004-05-12 2005-11-24 Tanken Seal Seiko Co Ltd Negative pressure press apparatus
JP2010089141A (en) * 2008-10-09 2010-04-22 Hitachi Industrial Equipment Systems Co Ltd Precision press device and press load control method used for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102294911B1 (en) * 2021-05-03 2021-08-26 오광민 hot press

Also Published As

Publication number Publication date
JP6336510B2 (en) 2018-06-06

Similar Documents

Publication Publication Date Title
KR20120109963A (en) Bonding apparatus and bonding method
TWI237335B (en) Bonding method and apparatus
JP5193198B2 (en) Press device and press device system
JP2011136471A (en) Apparatus and method for thermo-forming by hot plate heating
KR20160149000A (en) Vacuum laminator and vaccum laminating method
TW201735194A (en) Semiconductor mounting apparatus, head thereof, and method for manufacturing laminated chip
JP6234277B2 (en) Crimping head, mounting apparatus and mounting method using the same
WO2015166889A1 (en) Thermoforming apparatus
JP6181807B1 (en) Pressurizing device and pressurizing method
JP6336510B2 (en) Pressurizing method and pressurizing apparatus
KR20130096133A (en) Laminating device
TWM607461U (en) Heating apparatus of lamination fixture
JP2022122403A (en) Substrate bonding device and substrate bonding method
WO2022029916A1 (en) Mounting device and mounting method
KR102372519B1 (en) mounting device
JP6442363B2 (en) Transport device
JP2002355835A (en) Method for producing heat conductive substrate
JP5892686B2 (en) Crimping apparatus and temperature control method
TW202119539A (en) Resin protection member forming apparatus
KR20230030535A (en) Manufacturing method of semiconductor products, workpiece integration devices, film laminate, and semiconductor products

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180502

R150 Certificate of patent or registration of utility model

Ref document number: 6336510

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250