JP2017181301A - ガスセンサの制御装置 - Google Patents
ガスセンサの制御装置 Download PDFInfo
- Publication number
- JP2017181301A JP2017181301A JP2016068842A JP2016068842A JP2017181301A JP 2017181301 A JP2017181301 A JP 2017181301A JP 2016068842 A JP2016068842 A JP 2016068842A JP 2016068842 A JP2016068842 A JP 2016068842A JP 2017181301 A JP2017181301 A JP 2017181301A
- Authority
- JP
- Japan
- Prior art keywords
- cell
- voltage
- gas sensor
- electromotive force
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 claims abstract description 143
- 238000005259 measurement Methods 0.000 claims abstract description 90
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 17
- 239000007789 gas Substances 0.000 claims description 347
- 230000006866 deterioration Effects 0.000 claims description 160
- 239000001301 oxygen Substances 0.000 claims description 67
- 229910052760 oxygen Inorganic materials 0.000 claims description 67
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 63
- 238000012937 correction Methods 0.000 claims description 34
- 238000010438 heat treatment Methods 0.000 claims description 4
- 238000005086 pumping Methods 0.000 claims description 4
- 230000015556 catabolic process Effects 0.000 abstract description 39
- 238000006731 degradation reaction Methods 0.000 abstract description 39
- 238000000034 method Methods 0.000 description 41
- 238000012986 modification Methods 0.000 description 36
- 230000004048 modification Effects 0.000 description 36
- 230000008569 process Effects 0.000 description 35
- 238000012545 processing Methods 0.000 description 35
- 239000010410 layer Substances 0.000 description 34
- 239000003792 electrolyte Substances 0.000 description 22
- 239000000446 fuel Substances 0.000 description 17
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 15
- 230000008859 change Effects 0.000 description 13
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- -1 oxygen ion Chemical class 0.000 description 4
- 230000005856 abnormality Effects 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 101001090150 Equus caballus Sperm histone P2a Proteins 0.000 description 1
- 101001016600 Equus caballus Sperm histone P2b Proteins 0.000 description 1
- 101000852968 Homo sapiens Interleukin-1 receptor-like 1 Proteins 0.000 description 1
- 101000585365 Homo sapiens Sulfotransferase 2A1 Proteins 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000011796 hollow space material Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
Images
Landscapes
- Combined Controls Of Internal Combustion Engines (AREA)
- Measuring Oxygen Concentration In Cells (AREA)
Abstract
Description
これにより、測定室内ガスの酸素濃度の影響を受けることなく、劣化の影響を受けた起電力セルの第1セルインピーダンスに対応した第1セル電圧を、適切にかつ短時間で検知できる。そして、この第1セル電圧を用いることで、起電力セルを含むガスセンサの劣化の程度を、適切にかつ短時間で検知することができる。
第1時刻において第1セル電圧を検知した後は、第1電流パルスの印加を速やかに停止するのが好ましく、第1時刻は長くとも50msec以下、従って、第1電流パルスの長さも50msec以下とすると良い。長すぎると、第1電流パルスの印加に伴う測定室の酸素分圧の変化が大きくなり、第1電流パルスの終了後、直ちに、酸素濃度の検知に戻れなくなるためである。
この制御装置では、第1セル電圧を検知するのと同じ第1電流パルスにおける第2時刻に起電力セルに生じた第2セル電圧を検知し、第1セル電圧と第2セル電圧との差電圧に基づいて、ガスセンサの劣化を判定する。このため、測定室内ガスの酸素濃度、被測定ガスの温度変化などの外乱要因による影響をキャンセルして、劣化の判定を行うことができ、より適切に劣化の有無や程度を判定することができる。
しかも、同じ第1電流パルスを印加した場合のうち、比較的時間経過の短い段階の第2時刻における第2セル電圧と、比較的時間経過の長い第1時刻における第1セル電圧との差電圧を得るので、低周波領域におけるセルインピーダンスの劣化によるセル電圧の変化が現れやすく、この点からも、より適切に劣化の有無や程度を判定することができる。
この制御装置では、同じ第1電流パルスにおける開始時刻に起電力セルに生じた開始時セル電圧を検知し、第1セル電圧と開始時セル電圧との差電圧に基づいて、ガスセンサの劣化を判定する。このため、被測定ガスの温度変化などの外乱要因による影響をキャンセルして、劣化の判定を行うことができ、より適切に劣化の有無や程度を判定することができる。
これに対し、このガスセンサの制御装置では、検知した第1セル電圧に基づく量で、取得したポンプ電流に対応した量を補正するので、ガスセンサに劣化が生じていても、これを補正して適切なガス検出信号を外部に出力することができる。
また、第1セル電圧に基づく量としては、例えば、前述の第1セル電圧と第2セル電圧との差電圧や、第1セル電圧と開始時セル電圧との差電圧や、第1セル電圧と新品第1セル電圧との差電圧などの量が挙げられる。また、これらの差電圧を、第1電流で除したインピーダンス差も挙げられる。
これに対し、このガスセンサの制御装置では、ヒータ制御補正手段により、ヒータ制御手段の制御を第1セル電圧に基づく量で補正する。これにより、ガスセンサの劣化に伴うヒータ温度のずれが無くなり、ヒータ温度のずれによるポンプ電流の増加が是正され、適切なガス検出信号を外部に出力することができる。
第2電流の大きさは、第1電流と異なっていても良いが、同じとすると良い。第1電流(第2電流)を流す回路構成を容易にできるからである。
第3セル電圧を検知する第3時刻は、第2電流パルスの印加開始から0.2msec経過前で有れば良いが、前述の第2検知手段を備える場合には、前述の第2セル電圧を検知する第2時刻と同じとすると良い。このようにすると、第2セル電圧の検知を、第3セル電圧の検知を同じ回路で行わせることができる。なお、第3時刻での起電力セルのセルインピーダンスは、当該第3時刻での第3セル電圧から第2電流パルスの印加開始時点でのセル電圧を差し引いて、第2電流で除すれば得られる。
これに対し、上述のガスセンサの制御装置では、第1セル電圧に基づく量でヒータ制御手段における目標値を補正するので、一旦補正をすれば、次に目標値を補正するまで(次に第1セル電圧を取得するまで)、補正を行う必要が無く、処理が容易である。具体的には、劣化による第1セル電圧の増加から、劣化による第3セル電圧の変化(増加)を推定し、その増加分を目標値に加えて、これを大きくする手法が挙げられる。また、取得した第1セル電圧に応じた補正係数を、目標値に乗ずることもできる。
以下、本発明の実施の形態を、図面を参照しつつ説明する。図1は、本実施形態に係るガスセンサ制御装置1及びガスセンサ2をエンジンの制御に用いた場合の全体構成を示す図である。また、図2は、ガスセンサ制御装置1の概略構成を示す図である。
ガスセンサ2は、車両(図示しない)のエンジンENGの排気管EPに装着され、排気ガスEG(被測定ガス)中の酸素濃度(空燃比)を検出して、エンジンENGにおける空燃比フィードバック制御に用いる全領域空燃比センサ(酸素センサ)である。このガスセンサ2は、図2に示すように、酸素濃度を検出するセンサ部3、及びセンサ部3を加熱するヒータ部4を有する。
ガスセンサ制御装置1は、このガスセンサ2に接続され、これを制御する。また、ガスセンサ制御装置1は、接続バス101を介して、車両のCANバス102に接続され、ECU100との間でデータの送受信が可能とされている。ガスセンサ制御装置1は、マイクロプロセッサ50と、ガスセンサ2のセンサ部3を制御するセンサ制御回路60と、ヒータ部4を通電制御するヒータ制御回路70とを備えている。
また、ポンプセル10も、ジルコニアを主体とした酸素イオン伝導性を有する板状の固体電解質体からなる電解質層11を基体とし、その両面に多孔質の白金を主体とする一対の電極12,13(多孔質電極)が形成されている。具体的には、電解質層11の一方の面(図中、上面)である外側面11eに外側電極12が、他方の面(図中、下面)である測定室側面11iに第2測定室電極13が、それぞれ形成されている。
また、ポンプ電流Ipの大きさは、電圧信号に変換されたガス検出信号Vipとして差動増幅回路61で検出され、出力端子60bからマイクロプロセッサ50に向けて出力される。
加えてセンサ制御回路60は、このガス検出信号Vipの検出のほかに、後述するように電流パルスを利用して、センサ部3の起電力セル20のセルインピーダンスRvsに応じて変化する差電圧ΔVsの検出を行い、差電圧出力端子60cから出力する。マイクロプロセッサ50は、ガス検出信号Vip及び差電圧ΔVsを、A/D入力ポート51,52を通じて入力可能にされている。なお、検出されたガス検出信号Vipの値は、接続バス101を通じて、ECU100に向けて送出される。
センサ部3の端子COMは、接続配線83を介してVcent点に接続している。また、端子Ip+は、接続配線82を介して、第2オペアンプOP2の出力端子に接続している。さらに、端子Vs+は、接続配線81を介して、第4オペアンプOP4の非反転入力端子+に接続している。また、端子Vs+は、Icp供給回路62にも接続している。このIcp供給回路62は、前述した所定値の微小電流Icpを起電力セル20に流す定電流回路である。さらに、Icp供給回路62、接続配線81、起電力セル20、接続配線83は、この順に接続されて、微小電流Icpを流す電流路を構成している。
センサ制御回路60において、第1オペアンプOP1は、第1スイッチSW1及びコンデンサC1と共にサンプルホールド回路を形成している。セルインピーダンスRvsの検知(差電圧ΔVsの検知)を行う際には、第1スイッチSW1を、制御部67によりオンからオフに切り換える。これにより、このサンプルホールド回路は、差電圧ΔVsの検出動作を行う直前(開始時刻t0)のセンサ部3の端子Vs+(起電力セル20の基準電極23)の電位(第4オペアンプOP4の出力)を保持する。このため、後述する差電圧ΔVsの検出動作を行っている間(第1スイッチSW1がオフの間)は、差電圧ΔVsの検出動作を行う直前の端子Vs+の電位(第1オペアンプOP1に保持されたホールド電圧)が、PID制御回路69の入力端子ITに入力されてPID制御に用いられる。また、このホールド電圧を用いてPID制御されたガス検出信号Vipが、出力端子60bから出力される。
なお、起電力セル20に開始時刻t0以降、電流パルスを印加し続けた場合、起電力セル電圧Vsは、図4に示すように、徐々に増加する傾向を示す。また、図4において、新品(破線)と劣化品(実線)の2つのグラフで示すように、起電力セル電圧Vsは(従って、セルインピーダンスRvs及び差電圧ΔVsも)、ガスセンサ2(センサ部3)の使用と共に、即ち劣化と共に、その大きさが増加する傾向を示す。
なお、第2スイッチSW2をオンとして、定電流−Iconstの電流パルスを流す期間、即ち、差電圧ΔVsの検出動作の期間(電流パルスの印加の開始時刻t0及び終了時刻)は、制御部67により制御される。本実施形態では、後述するように、印加終了時刻を、第1時刻t1=5000μsec(=5.0msec)、及び第3時刻t3=60μsecの2種類使い分ける。
一方、長時間使用してセンサ部3(起電力セル20,ポンプセル10)に劣化を生じた劣化品のガスセンサ2について、同様に定電流−Iconstの電流パルスを開始時刻t0から印加し続けた場合も、起電力セル20に生じる起電力セル電圧Vsは、図4に太い実線で示すように、電流パルスの印加時間tの増加と共に増加する。
また、劣化品のガスセンサ2について、第2時刻t2=60μsecに、前述の第5オペアンプOP5から得られる劣化0−2差電圧ΔVs02Dは、開始時刻t0における起電力セル電圧である劣化開始時セル電圧Vs0Dと、第2時刻t2における起電力セル電圧である劣化第2セル電圧Vs2Dとの差電圧である。
また、第2時刻t2における起電力セル20の第2セルインピーダンスRpvs(RpvsN,RpvsD)は、新品0−2差電圧ΔVs02Nあるいは劣化0−2差電圧ΔVs02Dを、定電流−Iconstで除することで得ることができる。
また、第3時刻t3における起電力セル20の第3セルインピーダンスRpvsは、0−3差電圧ΔVs03を、第2パルス電流で流す定電流−Iconstで除することで得ることができる。
また、劣化品のガスセンサ2について、第1時刻t1=5000μsecに、前述の第5オペアンプOP5から得られる劣化0−1差電圧ΔVs01Dは、開始時刻t0における起電力セル電圧である劣化開始時セル電圧Vs0Dと、第1時刻t1における起電力セル電圧である劣化第1セル電圧Vs1Dとの差電圧である。
また、第1時刻t1における起電力セル20の第1セルインピーダンスRivs(RivsN,RivsD)は、新品0−1差電圧ΔVs01Nあるいは劣化0−1差電圧ΔVs01Dを、同じく定電流−Iconstで除することで得ることができる。
なお、本実施形態では、第1時刻t1をt1=5000μsecとしたが、このように第1時刻t1を200μsecよりも大きい時刻とし、第1セルインピーダンスRivsを、電流パルスの印加から200μsec以上経過した後に取得するとよい。セルインピーダンスRvsの劣化に伴う周波数特性の変化を考慮すると、50Hz以下の低周波領域で,大きなセルインピーダンスとなるので、この影響が現れる電流パルスの印加から200μsec以降に得たセルインピーダンスRivs(あるいは劣化0−2差電圧ΔVs02D)を用いて、劣化の大きさを評価すると、適切にかつ短時間で劣化を評価できるからである。
なお以下では、上述した新品と劣化品との対比を離れて、使用中のガスセンサ2についてのセルインピーダンス、セル電圧、差電圧等に、新品ではないという意味で劣化の文字を含んだ各符号を流用して説明することとする。
劣化0−2差電圧ΔVs02Dは、劣化開始時セル電圧Vs0Dと劣化第2セル電圧Vs2Dとの差電圧である(ΔVs02D=Vs2D−Vs0D)から、ステップS83は、間接に、劣化第2セル電圧Vs2Dを検知している。即ち、ステップS83は、第2検出手段に相当する。
劣化0−1差電圧ΔVs01Dは、劣化開始時セル電圧Vs0Dと劣化第1セル電圧Vs1Dとの差電圧である(ΔVs01D=Vs1D−Vs0D)から、ステップS92は、間接に、劣化第1セル電圧Vs1Dを検知している。即ち、ステップS92は、第1検出手段に相当する。
このようにして本実施形態では、キースイッチをOFFとする毎に、マイクロプロセッサ50内のメモリに2−1差電圧DVs21D(2−1インピーダンス差ΔRvs)が記憶される。
なお、上述のステップSS2が劣化判定手段に相当し、ステップSS3が劣化警告手段に相当する。
本実施形態の制御装置1では、同じ第1電流パルスにおける第2時刻t2に起電力セルに生じた劣化第2セル電圧Vs2Dと、第1時刻t1に生じた劣化第1セル電圧Vs1Dとを検知し、これらの差電圧である2−1差電圧DVs21Dに基づいて、ガスセンサの劣化を判定する。このため、排気ガスEGの温度など起電力セル20の外乱要因による影響をキャンセルして、劣化の判定を行うことができ、より適切に劣化の有無や程度を判定することができる。
しかも、同じ第1電流パルスを印加した場合のうち、比較的時間経過の短い段階の第2時刻t2(=60μsec)における第2セル電圧Vs2Dと、比較的時間経過の長い第1時刻t1(=5000μsec)における第1セル電圧Vs1Dとの間の2−1差電圧DVs21Dを判定に用いるので、低周波領域におけるセルインピーダンスの劣化によるセル電圧の変化が反映されやすく、この点からも、より適切に劣化の有無や程度を判定することができる。
なお、上述のステップST2がポンプ電流補正手段に相当し、ステップST3が出力手段に相当する。
なお、上述のステップSV1が第3検知手段に相当し、ステップSV2がヒータ制御手段に相当する。また、ステップSU1がヒータ制御補正手段に相当する。
次いで、変形形態1のガスセンサ2の制御装置1Aについて、図11〜図15のフローチャートを参照して説明する。
上述した実施形態の制御装置1では、ガスセンサ2の劣化を検知するに当たり、ステップS5により、起電力セル電圧Vsがストイキ時電圧Vssであるタイミングに、起電力セル20に第1電流パルスを印加した。そして、劣化開始時セル電圧Vs0Dと劣化第2セル電圧Vs2Dとの差電圧である劣化0−2差電圧ΔVs02Dと、劣化開始時セル電圧Vs0Dと劣化第1セル電圧Vs1Dとの差電圧である劣化0−1差電圧ΔVs01Dとを得た。そして、これらの差である2−1差電圧DVs21D(あるいは、2−1インピーダンス差ΔRvs)を算出し、これを用いてガスセンサ2(起電力セル20)の劣化の有無を判断し、あるいは、ガス検出信号Vipやヒータ温度制御の補正を行った。
そこで、以下では、実施形態と異なる部分を中心に説明し、同様な部分の説明は省略あるいは簡略化する。
ステップS9aでは、第1電流パルスの印加開始(開始時刻t0)から第1時刻t1=5000μsec経過時点で第5オペアンプOP5から得られた劣化0−1差電圧ΔVs01Dを、A/D入力ポート52を通じてマイクロプロセッサ50で取得する。具体的には、図12に示すように、第1パルスの印加と共に、ステップS90aで第2タイマをスタートさせ、ステップS91で第2タイマT2がT2≧5000μsecとなるまで待ち、ステップS92で劣化0−1差電圧ΔVs01Dを取得する。なお、取得した劣化0−1差電圧ΔVs01Dを定電流Iconstで除し、劣化第1セルインピーダンスRivsDを得ても良い。
エンジンENGの始動をさせると、マイクロプロセッサ50が起動し、ステップSS1aでは、マイクロプロセッサ50に記憶されていた劣化0−1差電圧ΔVs01D(あるいは劣化第1セルインピーダンスRivsD)を読み出す。
なお、上述のステップSS2aも劣化判定手段に相当する。
本変形形態1の制御装置1Aでも、開始時刻t0に起電力セルに生じた劣化開始時セル電圧Vs0Dと、その後の第1時刻に生じた劣化第1セル電圧Vs1Dとの差電圧である0−1差電圧ΔVs01Dに基づいて、ガスセンサの劣化を判定する。このため、起電力セル20の外乱要因による影響をキャンセルして、劣化の判定を行うことができ、より適切に劣化の有無や程度を判定することができる。
しかも、1つの第1電流パルスのうち、開始時刻t0における開始時セル電圧Vs0Dと、比較的時間経過の長い第1時刻t1(=5000μsec)における第1セル電圧Vs1Dとの間の0−1差電圧ΔVs01Dを判定に用いるので、低周波領域におけるセルインピーダンスの劣化によるセル電圧の変化が反映されやすく、この点からも、より適切に劣化の有無や程度を判定することができる。
次いで、変形形態1のガスセンサ2の制御装置1Bについて、図16〜図19のフローチャートを参照して説明する。
前述した実施形態及び変形形態1の制御装置1,1Aでは、ガスセンサ2の劣化を検知するに当たり、ステップS5により、起電力セル電圧Vsがストイキ時電圧Vssであるタイミングで、起電力セル20に第1電流パルスを印加した。そして、実施形態では、劣化0−2差電圧ΔVs02Dと劣化0−1差電圧ΔVs01Dを得て、2−1差電圧DVs21D(あるいは、2−1インピーダンス差ΔRvs)を算出し、これを用いてガスセンサ2(起電力セル20)の劣化の有無を判断し、あるいは、ガス検出信号Vipやヒータ温度制御の補正を行った。また、変形形態1では、劣化0−1差電圧ΔVs01Dのみを得て、これを用いてガスセンサ2(起電力セル20)の劣化の有無を判断し、あるいは、ガス検出信号Vipやヒータ温度制御の補正を行った。
但し、本変形形態2の制御装置1Bでは、予め得ておいた新品のガスセンサ2についての新品0−1差電圧ΔVs01N(あるいは新品第1セルインピーダンスRivsN)を記憶しておく。そして、各時点で取得する劣化0−1差電圧ΔVs01Dと記憶していた新品0−1差電圧ΔVs01Nとの差電圧である第1差電圧SVs1(あるいは、劣化第1セルインピーダンスRivsDと新品第1セルインピーダンスRivsNとの差電圧である第1インピーダンス差SRivs)を用いて、ガスセンサ2(起電力セル20)の劣化の有無を判断し、あるいは、ガス検出信号Vipやヒータ温度制御の補正を行う点で異なり、他は同じである。
そこで、以下では、実施形態あるいは変形形態1と異なる部分を中心に説明し、同様な部分の説明は省略あるいは簡略化する。
変形形態1と同じく(図11,図12参照)、起電力セル電圧Vsがストイキ時電圧Vssである条件(ステップS5でYes)下で、ステップS9a(ステップS92)で、第5オペアンプOP5から得られた劣化0−1差電圧ΔVs01D(あるいは、劣化第1セルインピーダンスRivsD)を取得する。
エンジンENGの始動をさせると、マイクロプロセッサ50が起動し、ステップSS1bでは、マイクロプロセッサ50に記憶されていた第1差電圧SVs1(あるいは第1インピーダンス差SRivs)を読み出す。
なお、上述のステップSS2bも劣化判定手段に相当する。
本変形形態2の制御装置1Bでも、劣化開始時セル電圧Vs0Dと劣化第1セル電圧Vs1Dとの差電圧である0−1差電圧ΔVs01Dに基づいて、ガスセンサの劣化を判定するので、外乱要因による影響をキャンセルして、劣化の判定を行うことができ、より適切に劣化の有無や程度を判定することができる。
しかも、1つの第1電流パルスのうち、開始時刻t0における開始時セル電圧Vs0Dと、比較的時間経過の長い第1時刻t1(=5000μsec)における第1セル電圧Vs1Dとの間の0−1差電圧ΔVs01Dに基づく第1差電圧SVs1を判定に用いるので、低周波領域におけるセルインピーダンスの劣化によるセル電圧の変化が反映されやすく、この点からも、より適切に劣化の有無や程度を判定することができる。
さらに、劣化0−1差電圧ΔVs01Dから新品0−1差電圧ΔVs01Nを差し引いて、第1差電圧SVs1を得るので、個々のガスセンサ2における新品0−1差電圧ΔVs01N(従って、新品第1セル電圧Vs1N)のばらつきをキャンセルでき、劣化によって生じた起電力セル20のセルインピーダンスの増加分が明確になり、より適切に劣化の有無や程度を判定することができる。
例えば、実施形態等では、ガスセンサ2として、排気ガスEG中の酸素濃度(空燃比)を検出する空燃比センサに本発明を適用した例を示したが、「ガスセンサ」は、空燃比センサに限られず、窒素酸化物(NOx)の濃度を検出するNOxセンサなどであっても良い。
また、ガスセンサは排気管に装着されるものに限定されず、EGR装置を備えるエンジンの吸気管に装着されて、吸気ガス中の酸素濃度を検出するガスセンサに本発明を適用しても良い。
2 ガスセンサ
3 センサ部
3S 測定室
4 ヒータ部(ヒータ)
10 ポンプセル
11 電解質層(第2固体電解質体)
12 外側電極(ポンプ電極)
13 第2測定室電極
20 起電力セル
21 電解質層(第1固体電解質体)
22 第1測定室電極
23 基準電極
24 基準酸素室
Ip ポンプ電流
Vs 起電力セル電圧
Vss (測定室内ガスがストイキ状態であるときの起電力セル電圧である)ストイキ時電圧
Vs1N (第1時刻t1における、新品の起電力セル電圧である)新品第1セル電圧
Vs2N (第2時刻t2における、新品の起電力セル電圧である)新品第2セル電圧
Vs0N (開始時刻t0における、新品の起電力セル電圧である)新品開始時セル電圧
Vs1D (第1時刻t1における、劣化品の起電力セル電圧である)劣化第1セル電圧(第1セル電圧)
Vs2D (第2時刻t2における、劣化品の起電力セル電圧である)劣化第2セル電圧
Vs0D (開始時刻t0における、劣化品の起電力セル電圧である)劣化開始時セル電圧
Vs0 (開始時刻t0における、起電力セル電圧である)開始時セル電圧
Vs3 (第3時刻t3における起電力セル電圧である)第3セル電圧
ΔVs 差電圧
ΔVstg 目標差電圧(ヒータ制御手段の目標値)
ΔVs01N (第1セル電圧Vs1Nと開始時セル電圧Vs0Nとの)新品0−1差電圧
ΔVs02N (第2セル電圧Vs2Nと開始時セル電圧Vs0Nとの)新品0−2差電圧
ΔVs01D (第1セル電圧Vs1Dと開始時セル電圧Vs0Dとの)劣化0−1差電圧
ΔVs02D (第2セル電圧Vs2Dと開始時セル電圧Vs0Dとの)劣化0−2差電圧
ΔVs03 (第3セル電圧Vs3Dと開始時セル電圧Vs0Dとの)0−3差電圧
DVs21D (第1セル電圧Vs1Dと第2セル電圧Vs2Dとの)2−1差電圧
SVs1 (第1セル電圧Vs1Dと新品第1セル電圧Vs1Nとの)第1差電圧
SVs2 (第2セル電圧Vs2Dと新品第2セル電圧Vs2Nとの)第2差電圧
Rvs セルインピーダンス
Rivs,RivsN,RivsD (起電力セルの第1時刻t1における)第1セルインピーダンス
RivsN 新品第1セルインピーダンス
RivsD 劣化第1セルインピーダンス
Rpvs,RpvsN,RpvsD (起電力セルの第2時刻t2における,第3時刻t3における)第2セルインピーダンス,第3セルインピーダンス
RpvsN 新品第2セルインピーダンス
RpvsD 劣化第2セルインピーダンス
ΔRvs (起電力セルの第2時刻t2におけるセルインピーダンスRpvsDと、第1時刻t1におけるセルインピーダンスRivsDとの)2−1インピーダンス差
SRivs (起電力セルの第1時刻t1における、新品セルインピーダンスRivsNと劣化セルインピーダンスRivsDとの)第1インピーダンス差
DVs21D,ΔVs01D,SVs1,ΔRvs,RivsD,SRivs 第1セル電圧に基づく量
Vip ガス検出信号(酸素濃度信号、ポンプ電流に対応した量)
50 マイクロプロセッサ
60 センサ制御回路(電流制御手段、第1検知手段、第2検知手段)
70 ヒータ制御回路
81,82,83 接続配線
t0 開始時刻
t1 第1時刻
t2 第2時刻
t3 第3時刻
ENG エンジン
EP 排気管
EG 排気ガス(被測定ガス)
EGS 測定室内ガス
RG 基準ガス
100 ECU
Vrf 目標電圧
TH1 第1しきい値
TH2 第2しきい値
TH3 第3しきい値)
Rtg 目標インピーダンス(ヒータ制御手段の目標値)
S92 第1検知手段
S8 第2検知手段
S7 初期検知手段
S5 検知指示手段
SS2,SS2a,SS2b 劣化判定手段
SS3,SS4 劣化警告手段
ST2,ST2a,ST2b ポンプ電流補正手段
ST3 出力手段
SV1 第3検知手段
SV2 ヒータ制御手段
SU1,SU1a,SU1b ヒータ制御補正手段
Claims (8)
- 第1固体電解質体、
この第1固体電解質体上にそれぞれ形成され基準酸素分圧の基準ガスに曝される基準電極、及び
被測定ガスが流入する測定室内の測定室内ガスに曝される第1測定室電極を有し、
上記基準酸素分圧と上記測定室内ガスの酸素分圧との差に応じた起電力を発生する起電力セル、及び、
第2固体電解質体、
この第2固体電解質体上にそれぞれ形成され上記測定室内ガスに曝される第2測定室電極、及び
上記被測定ガスまたは外気に曝されるポンプ電極を有し、
上記測定室内の酸素を、上記被測定ガスまたは上記外気に汲み出しまたは汲み入れるポンプセル、を備える
ガスセンサの制御装置であって、
上記基準電極と上記第1測定室電極との間に生じる起電力セル電圧が、上記測定室内ガスがストイキオメトリーであるときに上記起電力セルに生じるストイキ時電圧になるように、上記ポンプセルを流れるポンプ電流を制御する電流制御手段と、
一定の第1電流を流す第1電流パルスを上記起電力セルに加え、上記第1電流パルスの印加中で、かつ、上記第1電流パルスの印加開始から0.2msec以上経過した第1時刻に、上記起電力セルに生じる第1セル電圧を検知する第1検知手段と、
上記起電力セル電圧が上記ストイキ時電圧であるときに、上記第1検知手段による上記第1セル電圧の検知を指示する検知指示手段と、を備える
ガスセンサの制御装置。 - 請求項1に記載のガスセンサの制御装置であって、
前記第1電流パルスの印加開始から経過時間が0.2msec経過前の第2時刻に上記起電力セルに生じた第2セル電圧を検知する第2検知手段と、
前記第1セル電圧と上記第2セル電圧との差電圧に基づいて、ガスセンサの劣化を判定する劣化判定手段と、を備える
ガスセンサの制御装置。 - 請求項1に記載のガスセンサの制御装置であって、
前記第1電流パルス印加直前の開始時刻に上記起電力セルに生じた開始時セル電圧を検知する初期検知手段と、
前記第1セル電圧と上記開始時セル電圧との差電圧に基づいて、ガスセンサ2の劣化を判定する劣化判定手段と、を備える
ガスセンサの制御装置。 - 請求項1に記載のガスセンサの制御装置であって、
前記第1セル電圧と予め記憶していた上記ガスセンサが新品時の新品第1セル電圧との差電圧に基づいて、ガスセンサの劣化を判定する劣化判定手段と、を備える
ガスセンサの制御装置。 - 請求項2〜請求項4のいずれか1項に記載のガスセンサの制御装置であって、
前記劣化判定手段で前記ガスセンサの劣化と判定されたときに、上記ガスセンサの劣化を警告する劣化警告手段、を備える
ガスセンサの制御装置。 - 請求項1〜請求項5のいずれか一項に記載のガスセンサの制御装置であって、
前記ポンプ電流に対応した量を、前記第1セル電圧に基づく量で補正するポンプ電流補正手段と、
上記補正済のポンプ電流に対応した量を、外部に向けて出力する出力手段と、を備える
ガスセンサの制御装置。 - 請求項1〜請求項6のいずれか1項に記載のガスセンサの制御装置であって、
前記ガスセンサは、前記起電力セル及び前記ポンプセルを加熱するヒータを有し、
前記第1電流パルスよりも短く一定の第2電流を流す第2電流パルスを上記起電力セルに印加し、上記第2電流パルス印加中で、かつ、上記第2電流パルスの印加開始から0.2msec経過前の第3時刻に、前記起電力セルに生じる第3セル電圧を検知する第3検知手段と、
上記第3セル電圧を用いて、上記ヒータの通電を制御するヒータ制御手段と、
前記第1検知手段で検知した前記第1セル電圧に基づく量で、上記ヒータ制御手段における制御を補正するヒータ制御補正手段と、を備える
ガスセンサの制御装置。 - 請求項7に記載のガスセンサの制御装置であって、
前記ヒータ制御補正手段は、
前記第1セル電圧に基づく量で、前記ヒータ制御手段における目標値を補正する
ガスセンサの制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016068842A JP6700910B2 (ja) | 2016-03-30 | 2016-03-30 | ガスセンサの制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016068842A JP6700910B2 (ja) | 2016-03-30 | 2016-03-30 | ガスセンサの制御装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017181301A true JP2017181301A (ja) | 2017-10-05 |
JP6700910B2 JP6700910B2 (ja) | 2020-05-27 |
Family
ID=60004425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016068842A Active JP6700910B2 (ja) | 2016-03-30 | 2016-03-30 | ガスセンサの制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6700910B2 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019056673A (ja) * | 2017-09-22 | 2019-04-11 | 日本特殊陶業株式会社 | センサ制御装置 |
JP2019074510A (ja) * | 2017-10-11 | 2019-05-16 | 日本特殊陶業株式会社 | センサ制御装置 |
CN111141799A (zh) * | 2020-02-19 | 2020-05-12 | 浙江百岸科技有限公司 | 氮氧传感器的芯片 |
US11119075B2 (en) | 2018-10-05 | 2021-09-14 | Samsung Electronics Co., Ltd. | Gas sensor and gas sensing method for providing self-calibration |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63138256A (ja) * | 1986-11-29 | 1988-06-10 | Ngk Insulators Ltd | 内燃機関の排気ガスの空燃比測定方法 |
JP2000258387A (ja) * | 1999-03-04 | 2000-09-22 | Toyota Motor Corp | 空燃比センサの制御装置 |
JP2007198901A (ja) * | 2006-01-26 | 2007-08-09 | Ngk Spark Plug Co Ltd | センサ制御装置、センサユニット |
JP2012117832A (ja) * | 2010-11-29 | 2012-06-21 | Ngk Spark Plug Co Ltd | ガスセンサの制御装置 |
JP2015094331A (ja) * | 2013-11-14 | 2015-05-18 | 日産自動車株式会社 | 内燃機関用酸素濃度センサの劣化判定装置及び方法 |
-
2016
- 2016-03-30 JP JP2016068842A patent/JP6700910B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63138256A (ja) * | 1986-11-29 | 1988-06-10 | Ngk Insulators Ltd | 内燃機関の排気ガスの空燃比測定方法 |
JP2000258387A (ja) * | 1999-03-04 | 2000-09-22 | Toyota Motor Corp | 空燃比センサの制御装置 |
JP2007198901A (ja) * | 2006-01-26 | 2007-08-09 | Ngk Spark Plug Co Ltd | センサ制御装置、センサユニット |
JP2012117832A (ja) * | 2010-11-29 | 2012-06-21 | Ngk Spark Plug Co Ltd | ガスセンサの制御装置 |
JP2015094331A (ja) * | 2013-11-14 | 2015-05-18 | 日産自動車株式会社 | 内燃機関用酸素濃度センサの劣化判定装置及び方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019056673A (ja) * | 2017-09-22 | 2019-04-11 | 日本特殊陶業株式会社 | センサ制御装置 |
JP2019074510A (ja) * | 2017-10-11 | 2019-05-16 | 日本特殊陶業株式会社 | センサ制御装置 |
US11119075B2 (en) | 2018-10-05 | 2021-09-14 | Samsung Electronics Co., Ltd. | Gas sensor and gas sensing method for providing self-calibration |
CN111141799A (zh) * | 2020-02-19 | 2020-05-12 | 浙江百岸科技有限公司 | 氮氧传感器的芯片 |
Also Published As
Publication number | Publication date |
---|---|
JP6700910B2 (ja) | 2020-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4768796B2 (ja) | ガスセンサ制御装置及びガスセンサ制御方法 | |
JP4723444B2 (ja) | センサ制御装置およびセンサ制御方法 | |
JP4646129B2 (ja) | ガス濃度測定装置の異常診断方法及びガス濃度測定装置の異常診断装置 | |
JP2009063329A (ja) | ガスセンサの劣化シミュレータ | |
JP6700910B2 (ja) | ガスセンサの制御装置 | |
US10656115B2 (en) | Controller and abnormality detecting method of air-fuel-ratio sensor | |
US9541523B2 (en) | Sensor control apparatus and gas detection system | |
US10261060B2 (en) | Sensor control apparatus and gas detection system | |
JP5795998B2 (ja) | ガスセンサ制御装置 | |
US9921180B2 (en) | Gas sensor system | |
JP6379000B2 (ja) | ガスセンサシステム | |
JPH1048180A (ja) | 全領域酸素センサの温度制御方法及び装置 | |
JP6147630B2 (ja) | ガスセンサのヒータ制御装置 | |
JP2010071898A (ja) | センサ制御装置 | |
JP4106369B2 (ja) | ガスセンサ制御装置 | |
JP2008070116A (ja) | センサ制御装置、センサ制御方法 | |
JP6871080B2 (ja) | 制御状態設定装置およびセンサ制御システム | |
JP4016964B2 (ja) | ガス濃度検出装置 | |
JP2004258043A (ja) | 全領域空燃比センサの劣化状態検出方法及び装置 | |
US10928357B2 (en) | Sensor control apparatus | |
JP4669369B2 (ja) | ガスセンサの異常診断方法及び異常診断装置 | |
JP2002257772A (ja) | 空燃比センサの異常検出方法およびセンサ制御回路の保護方法 | |
JP4321409B2 (ja) | ガス濃度検出装置 | |
US10920700B2 (en) | Sensor control apparatus | |
JPH10221182A (ja) | 全領域空燃比センサを用いた温度測定方法及び装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190322 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200121 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200319 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200407 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200501 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6700910 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |