JP2017181269A - Sensor correction device and program - Google Patents
Sensor correction device and program Download PDFInfo
- Publication number
- JP2017181269A JP2017181269A JP2016068059A JP2016068059A JP2017181269A JP 2017181269 A JP2017181269 A JP 2017181269A JP 2016068059 A JP2016068059 A JP 2016068059A JP 2016068059 A JP2016068059 A JP 2016068059A JP 2017181269 A JP2017181269 A JP 2017181269A
- Authority
- JP
- Japan
- Prior art keywords
- frequency
- section
- sections
- control voltage
- characteristic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Radar Systems Or Details Thereof (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
Description
本発明は、センサ補正装置に係り、特に、物体に向かって放射する送信信号の周波数を変調させるための制御電圧特性を補正するセンサ補正装置及びプログラムに関する。 The present invention relates to a sensor correction device, and more particularly to a sensor correction device and a program for correcting a control voltage characteristic for modulating the frequency of a transmission signal radiated toward an object.
従来より、ビート信号のサンプリングデータから周波数変調器の非線形歪みを測定するFM−CWレーダの周波数変調特性測定方法が知られている(特許文献1)。この方法では、ビート信号のサンプリングデータを得て、複数の部分区間でFFT処理を行ない、部分区間のビート周波数を抽出する。各部分区画の周波数の和を正規化し、各部分区間の代表点における微分値を求め、電圧―周波数特性を多項式でモデル化する。さらに、求められた微分値を2次回帰分析して得られる近似式の係数から3次関数の係数を求める。この3次関数の逆特性を与えることで線形補正を実現する。 Conventionally, a frequency modulation characteristic measurement method of FM-CW radar that measures nonlinear distortion of a frequency modulator from beat signal sampling data is known (Patent Document 1). In this method, sampling data of a beat signal is obtained, FFT processing is performed in a plurality of partial sections, and beat frequencies in the partial sections are extracted. The sum of the frequencies of each partial section is normalized, the differential value at the representative point of each partial section is obtained, and the voltage-frequency characteristic is modeled by a polynomial. Further, the coefficient of the cubic function is obtained from the coefficient of the approximate expression obtained by subjecting the obtained differential value to the quadratic regression analysis. Linear correction is realized by giving the inverse characteristic of this cubic function.
また、特許文献2に記載の高周波発振装置では、VCOから出力された発振信号が伝送線路を介して共振器に入力される。共振器が励振されると発振信号の周波数に応じたレベルのRF信号が出力される。共振器の共振周波数をVCOの発振周波数変調範囲よりも高い周波数に設定することにより、発振周波数とRF信号レベルとは一意に定まる関係となる。このRF信号を検波して、検波信号レベルに基づいてVCOに対する制御電圧信号を補正してVCOに出力し、VCOの発振周波数を補正する。 In the high-frequency oscillation device described in Patent Document 2, an oscillation signal output from the VCO is input to the resonator via the transmission line. When the resonator is excited, an RF signal having a level corresponding to the frequency of the oscillation signal is output. By setting the resonance frequency of the resonator to a frequency higher than the oscillation frequency modulation range of the VCO, the oscillation frequency and the RF signal level are uniquely determined. This RF signal is detected, the control voltage signal for the VCO is corrected based on the detected signal level, and output to the VCO to correct the oscillation frequency of the VCO.
しかしながら、上記特許文献1に記載の技術では、線形特性を得るために発振器を制御する電圧の特性を、3次曲線で表すことができない場合がある。3次曲線で線形に近い特性が得られても一部がまだ非線形の場合、ビート周波数に複数の周波数成分が表れ、FFTして得られるピークが複数に割れてしまう、又はスペクトルのピーク幅が広がり、ピークが検出しづらくなる可能性がある。 However, in the technique described in Patent Document 1, the voltage characteristic for controlling the oscillator in order to obtain the linear characteristic may not be represented by a cubic curve. If some characteristics are close to linear in the cubic curve, but some of them are still non-linear, multiple frequency components will appear in the beat frequency, and the peak obtained by FFT will be broken into multiple or the peak width of the spectrum will be There is a possibility that the peak spreads and it is difficult to detect the peak.
また、上記特許文献2に記載の技術では、VCOに共振器を接続することにより、発振周波数をRF信号の強度で検出することができるが、このためには発振周波数を検知するための共振器を回路構成に追加する必要がある。システムの精度の安定性、製造コスト削減などを考えると部品点数は可能な限り少ない方が望ましい。また、VCOからの信号は共振器と送信部に分配されるため、ターゲットに向けて放射される電力が低下してしまう。さらに、共振器から出力されるRF信号レベルと発振周波数が一意に定まる関係にあるが、温度変化に伴い、共振器の発振特性が変化し、関係性が変化する可能性がある。 In the technique described in Patent Document 2, the oscillation frequency can be detected by the intensity of the RF signal by connecting a resonator to the VCO. For this purpose, a resonator for detecting the oscillation frequency is used. Must be added to the circuit configuration. Considering system stability and manufacturing cost reduction, it is desirable to have as few parts as possible. In addition, since the signal from the VCO is distributed to the resonator and the transmitter, the power radiated toward the target is reduced. Furthermore, although the RF signal level output from the resonator and the oscillation frequency are uniquely determined, the oscillation characteristics of the resonator may change with changes in temperature, and the relationship may change.
本発明では、簡易な構成で、送信信号の周波数変調特性が線形特性となるように、制御電圧特性を安定して補正することができるセンサ補正装置及びプログラムを提供することを目的とする。 An object of the present invention is to provide a sensor correction apparatus and a program capable of stably correcting a control voltage characteristic so that a frequency modulation characteristic of a transmission signal becomes a linear characteristic with a simple configuration.
上記目的を達成するために、本発明のセンサ補正装置は、物体に向かって放射する周波数変調された送信信号と、前記物体から反射して戻ってきた受信信号とのビート信号を出力するセンサと、前記ビート信号のうち、一方向に変調されているときに出力された前記ビート信号の時系列を複数区画に分けて、各区画のビート信号に対して周波数解析を行って、各区画のビート信号の周波数を算出する周波数解析部と、前記周波数解析部で算出した各区画のビート信号の周波数に基づいて、前記区画より粗い区画で、前記送信信号の周波数変調特性が線形特性となるように、前記送信信号の周波数を変調させるための制御電圧特性を補正した後に、各区画で、前記送信信号の周波数変調特性が線形特性となるように、前記制御電圧特性を補正する補正部と、を含んで構成されている。 In order to achieve the above object, a sensor correction apparatus of the present invention includes a sensor that outputs a beat signal of a frequency-modulated transmission signal radiated toward an object and a reception signal reflected back from the object. The beat signal output when the beat signal is modulated in one direction is divided into a plurality of sections, and a frequency analysis is performed on the beat signal of each section to obtain a beat of each section. Based on the frequency of the beat signal of each section calculated by the frequency analysis section that calculates the frequency of the signal, the frequency modulation characteristic of the transmission signal is a linear characteristic in a section coarser than the section. After correcting the control voltage characteristic for modulating the frequency of the transmission signal, the control voltage characteristic is corrected so that the frequency modulation characteristic of the transmission signal becomes a linear characteristic in each section. It is configured to include a correction unit.
本発明のプログラムは、コンピュータを、物体に向かって放射する周波数変調された送信信号と、前記物体から反射して戻ってきた受信信号とのビート信号を出力するセンサから出力された前記ビート信号のうち、一方向に変調されているときに出力された前記ビート信号の時系列を複数区画に分けて、各区画のビート信号に対して周波数解析を行って、各区画のビート信号の周波数を算出する周波数解析部、及び前記周波数解析部で算出した各区画のビート信号の周波数に基づいて、前記区画より粗い区画で、前記送信信号の周波数変調特性が線形特性となるように、前記送信信号の周波数を変調させるための制御電圧特性を補正した後に、各区画で、前記送信信号の周波数変調特性が線形特性となるように、前記制御電圧特性を補正する補正部として機能させるためのプログラムである。 The program of the present invention causes the computer to output the beat signal output from a sensor that outputs a beat signal of a frequency-modulated transmission signal radiated toward the object and a reception signal reflected back from the object. Of these, the time series of the beat signal output when modulated in one direction is divided into multiple sections, and the frequency of the beat signal in each section is analyzed to calculate the frequency of the beat signal in each section Based on the frequency of the beat signal of each section calculated by the frequency analysis section, and in the section coarser than the section, the frequency modulation characteristic of the transmission signal becomes a linear characteristic in the section that is coarser than the section. After correcting the control voltage characteristic for modulating the frequency, the control voltage characteristic is corrected so that the frequency modulation characteristic of the transmission signal becomes a linear characteristic in each section. Is a program for functioning as Tadashibu.
本発明によれば、周波数解析部によって、ビート信号を出力するセンサから出力された前記ビート信号のうち、一方向に変調されているときに出力された前記ビート信号の時系列を複数区画に分けて、各区画のビート信号に対して周波数解析を行って、各区画のビート信号の周波数を算出する。そして、補正部によって、前記周波数解析部で算出した各区画のビート信号の周波数に基づいて、前記区画より粗い区画で、前記送信信号の周波数変調特性が線形特性となるように、前記送信信号の周波数を変調させるための制御電圧特性を補正した後に、各区画で、前記送信信号の周波数変調特性が線形特性となるように、前記制御電圧特性を補正する。 According to the present invention, among the beat signals output from the sensor that outputs the beat signal by the frequency analysis unit, the time series of the beat signal output when modulated in one direction is divided into a plurality of sections. Thus, frequency analysis is performed on the beat signal of each section, and the frequency of the beat signal of each section is calculated. Then, based on the beat signal frequency of each section calculated by the frequency analysis section by the correction section, the frequency modulation characteristic of the transmission signal becomes a linear characteristic in a section coarser than the section. After correcting the control voltage characteristic for modulating the frequency, the control voltage characteristic is corrected so that the frequency modulation characteristic of the transmission signal becomes a linear characteristic in each section.
このように、各区画のビート信号の周波数に基づいて、前記区画より粗い区画で、前記送信信号の周波数変調特性が線形特性となるように、制御電圧特性を補正した後に、各区画で、前記送信信号の周波数変調特性が線形特性となるように、制御電圧特性を補正することにより、簡易な構成で、送信信号の周波数変調特性が線形特性となるように、制御電圧特性を安定して補正することができる。 Thus, based on the frequency of the beat signal of each section, after correcting the control voltage characteristic so that the frequency modulation characteristic of the transmission signal is a linear characteristic in a section coarser than the section, in each section, By correcting the control voltage characteristics so that the frequency modulation characteristics of the transmission signal become linear characteristics, the control voltage characteristics can be stably corrected with a simple configuration so that the frequency modulation characteristics of the transmission signal become linear characteristics. can do.
また、本発明に係るセンサ補正装置は、前記周波数解析部で算出した各区画のビート信号の周波数に基づいて、各区画について、前記区画のビート信号の周波数と全区画のビート信号の周波数の平均値との差を算出し、少なくとも1つの区画において、前記区画の差の絶対値が、予め定められた閾値以上である場合には、補正が必要であると判定し、補正が必要であると判定された場合、前記複数区画を前半と後半の2区画にまとめ、前記2区画それぞれで、前記区画のビート信号の周波数と全区画のビート信号の周波数の平均値との差を算出し、前記2区画の少なくのとも一方の区画において、前記区画の差の絶対値が、予め定められた閾値以上であるか否かを判定する判定部を更に含み、前記補正部は、前記判定部により前記2区画の少なくとも一方の区画において、前記区画の差の絶対値が、前記予め定められた閾値以上であると判定された場合には、前記2区画で、前記送信信号の周波数変調特性が線形特性となるように、前記制御電圧特性を補正し、前記判定部により前記2区画それぞれにおいて、前記区画の差の絶対値が、前記予め定められた閾値未満であると判定された場合には、各区画で、前記送信信号の周波数変調特性が線形特性となるように、前記制御電圧特性を補正するようにすることができる。 Further, the sensor correction device according to the present invention is based on the beat signal frequency of each section calculated by the frequency analysis unit, and for each section, the average of the beat signal frequency of the section and the beat signal frequency of all sections. When the absolute value of the difference between the sections is greater than or equal to a predetermined threshold in at least one section, it is determined that correction is necessary, and correction is necessary. If determined, the plurality of sections are grouped into two sections, the first half and the second half, and in each of the two sections, the difference between the beat signal frequency of the section and the average value of the beat signal frequencies of all sections is calculated, In at least one of the two sections, the information processing apparatus further includes a determination unit that determines whether or not an absolute value of the difference between the sections is equal to or greater than a predetermined threshold, Small number of 2 sections In at least one section, when it is determined that the absolute value of the difference between the sections is equal to or greater than the predetermined threshold, the frequency modulation characteristics of the transmission signal are linear characteristics in the two sections. As described above, when the control voltage characteristics are corrected and the determination unit determines that the absolute value of the difference between the sections is less than the predetermined threshold value in each of the two sections, The control voltage characteristic can be corrected so that the frequency modulation characteristic of the transmission signal becomes a linear characteristic.
上記の送信信号を、物体に向かって放射されるレーザを周波数変調したものとすることができる。 The transmission signal may be a frequency-modulated laser emitted toward the object.
上記の送信信号を、物体に向かって放射される電波を周波数変調したものとすることができる。 The transmission signal may be a frequency-modulated radio wave radiated toward the object.
以上説明したように、本発明のセンサ補正装置及びプログラムによれば、各区画のビート信号の周波数に基づいて、前記区画より粗い区画で、前記送信信号の周波数変調特性が線形特性となるように、制御電圧特性を補正した後に、各区画で、前記送信信号の周波数変調特性が線形特性となるように、制御電圧特性を補正することにより、簡易な構成で、送信信号の周波数変調特性が線形特性となるように、制御電圧特性を安定して補正することができる。 As described above, according to the sensor correction apparatus and the program of the present invention, the frequency modulation characteristics of the transmission signal are linear characteristics in a section coarser than the section based on the frequency of the beat signal in each section. After correcting the control voltage characteristic, the frequency modulation characteristic of the transmission signal is linear with a simple configuration by correcting the control voltage characteristic so that the frequency modulation characteristic of the transmission signal becomes a linear characteristic in each section. The control voltage characteristic can be stably corrected so as to obtain the characteristic.
以下、本発明の実施形態について図面を参照しつつ説明する。尚、各図面において、実質的に同一又は等価な構成要素又は部分には同一の参照符号を付している。 Embodiments of the present invention will be described below with reference to the drawings. In the drawings, substantially the same or equivalent components or parts are denoted by the same reference numerals.
<第1の実施の形態>
本発明の第1の実施の形態に係るレーザレーダ装置について説明する。図1に示すように、本発明の第1の実施の形態に係るレーザレーダ装置100は、レーザ信号を出力する、波長が可変な信号発振器10と、信号発振器10のレーザ信号を分岐する方向性結合器12と、方向性結合器12からのレーザ信号が送信波として透過するレンズ14、ターゲットで反射したレーザ信号が受信波として透過するレンズ18と、受信波と方向性結合器12からのレーザ信号を合成するハーフミラー22と、合成された信号の波長差であるビート信号を電気信号に変換するフォトダイオード24と、フォトダイオード24で変換された電気信号をAD変換するAD変換器26と、AD変換された信号を解析し、信号発振器10を制御する制御部28とで構成される。
<First Embodiment>
A laser radar device according to a first embodiment of the present invention will be described. As shown in FIG. 1, the laser radar device 100 according to the first embodiment of the present invention outputs a laser signal, a variable-wavelength signal oscillator 10, and a directivity for branching the laser signal of the signal oscillator 10. The coupler 12, the lens 14 through which the laser signal from the directional coupler 12 passes as a transmission wave, the lens 18 through which the laser signal reflected by the target passes as a reception wave, and the laser from the reception wave and the directional coupler 12. A half mirror 22 that synthesizes signals, a photodiode 24 that converts a beat signal, which is a wavelength difference between the synthesized signals, into an electrical signal, an AD converter 26 that AD converts the electrical signal converted by the photodiode 24, The control unit 28 is configured to analyze the AD-converted signal and control the signal oscillator 10.
なお、方位検出を行いたい場合は、送信側及び受信側の少なくとも一方にフェーズドアレイアンテナを設置し、アレイ間の位相を変化させることで、光を送受する方向を制御することができる。この場合、方向性結合器12からのレーザ信号と受信したレーザ信号を方向性結合器(図示省略)で合波させ、フォトダイオード24に入力する方法がある。 When it is desired to perform azimuth detection, a phased array antenna is installed on at least one of the transmission side and the reception side, and the direction of light transmission / reception can be controlled by changing the phase between the arrays. In this case, there is a method in which the laser signal from the directional coupler 12 and the received laser signal are combined by a directional coupler (not shown) and input to the photodiode 24.
また、信号発振器10、方向性結合器12と、レンズ14、18と、ハーフミラー22と、フォトダイオード24と、AD変換器26とが、センサの一例である。 The signal oscillator 10, the directional coupler 12, the lenses 14 and 18, the half mirror 22, the photodiode 24, and the AD converter 26 are examples of sensors.
(送信信号)
レーザレーダ装置100はFMCW方式を採用しており、送信するレーザ信号の周波数は図2に示すように、中心周波数をf0、変調帯域をΔFとして、時間T[sec]の間に線形的に周波数が上昇する区画(Up)と周波数が下降する区画(Down)の2種類の送信パターンのどちらか一方、もしくは両方を繰り返す。本実施の形態では、信号発振器10は、Downの送信パターンを時間T[sec]で繰り返し出力することとする。本実施の形態では、信号発振器10は、レーザ発振素子で構成されている。
(Transmission signal)
The laser radar apparatus 100 employs the FMCW method, and the frequency of the laser signal to be transmitted is linearly expressed during the time T [sec], with the center frequency f 0 and the modulation band ΔF, as shown in FIG. Either one or both of the two types of transmission patterns of the section in which the frequency increases (Up) and the section in which the frequency decreases (Down) are repeated. In the present embodiment, the signal oscillator 10 repeatedly outputs the Down transmission pattern at time T [sec]. In the present embodiment, the signal oscillator 10 is composed of a laser oscillation element.
(受信信号)
前方にターゲットが存在する場合、ターゲットによって送信波が反射され、その反射波を受信する。このときにターゲットとレーザレーダ装置100間の距離をRとすると、レーザレーダ装置100が送信したレーザ信号は2R/c[sec]の遅延で受信される。レーザレーダ装置100が送信する送信信号の周波数と受信する受信信号の周波数の差は、
(Received signal)
When there is a target ahead, the transmission wave is reflected by the target and the reflected wave is received. At this time, if the distance between the target and the laser radar apparatus 100 is R, the laser signal transmitted by the laser radar apparatus 100 is received with a delay of 2R / c [sec]. The difference between the frequency of the transmission signal transmitted by the laser radar apparatus 100 and the frequency of the reception signal received is:
となり、ハーフミラー22及びフォトダイオード24により、これをビート信号として検出する。このビート信号をAD変換器26にてデジタル信号としてサンプリングし、制御部28内に取り込む。
The half mirror 22 and the photodiode 24 detect this as a beat signal. The beat signal is sampled as a digital signal by the AD converter 26 and taken into the control unit 28.
(信号処理)
制御部28は、取り組んだビート信号より、送信信号が線形的に変調されているか判別し、送信信号の周波数変調特性が非線形と判別された場合は自動で補正する。図3に示すように、制御部28は、区画周波数解析部40、ずれ判定部44、第1補正部46、第2補正部48、周波数発振制御部50、及び測定部52を備えている。
(Signal processing)
The control unit 28 determines whether or not the transmission signal is linearly modulated based on the beat signal that has been worked on, and automatically corrects if the frequency modulation characteristic of the transmission signal is determined to be nonlinear. As shown in FIG. 3, the control unit 28 includes a partition frequency analysis unit 40, a shift determination unit 44, a first correction unit 46, a second correction unit 48, a frequency oscillation control unit 50, and a measurement unit 52.
ここで、送信信号の周波数変調特性を判別する原理について説明する。 Here, the principle of discriminating the frequency modulation characteristic of the transmission signal will be described.
(測定環境)
まず、測定環境について説明する。送信信号の線形性を評価する際は、相対速度0のターゲットが一つの状況である必要がある。ターゲットが複数存在するとターゲットの数に応じてビート信号に含まれる周波数が増えてしまう。また、相対速度が生じると、一つの周期内でビート信号のドップラ周波数成分が変化してしまう。このような状況では、周波数変調特性の線形性評価が難しくなるため、本実施の形態では、相対速度0のターゲットが一つの状況であることを前提する。
(Measurement environment)
First, the measurement environment will be described. When evaluating the linearity of the transmission signal, it is necessary that the target of the relative speed 0 is one situation. When there are a plurality of targets, the frequency included in the beat signal increases according to the number of targets. In addition, when a relative speed occurs, the Doppler frequency component of the beat signal changes within one period. In such a situation, it is difficult to evaluate the linearity of the frequency modulation characteristic. Therefore, in the present embodiment, it is assumed that the target having a relative speed of 0 is one situation.
(区画毎のずれ・線形性の判断)
本実施の形態での周波数変調特性の線形性評価では、取得したDownの送信パターンに対応するビート信号の時系列を、図4に示すように、あらかじめ決めた区画数に等分割する。ただし、Downの送信パターンの時間をTとする。等分割された両端を除く各区画毎にビート信号の周波数解析を行い、各区画の平均周波数を算出する。両端の区画では周波数が不連続に変化したり、急激に周波数が変化しており、信号発振器10が安定していないことがあるため、両端の区画を解析対象から除外する。なお、以降では、全区画と述べる場合は両端を除いた全区画を表す。
(Judgment of deviation and linearity for each section)
In the linearity evaluation of the frequency modulation characteristics in the present embodiment, the time series of beat signals corresponding to the acquired Down transmission pattern is equally divided into a predetermined number of sections as shown in FIG. However, T is the time of the transmission pattern of Down. The frequency analysis of the beat signal is performed for each section excluding the equally divided ends, and the average frequency of each section is calculated. Since the frequency changes discontinuously or rapidly in the sections at both ends, the signal oscillator 10 may not be stable, so the sections at both ends are excluded from the analysis target. In the following, when all sections are described, all sections excluding both ends are represented.
Downの送信パターンに対応するビート信号全体における平均周波数と、各区画での平均周波数との差d21を求める。差d21の絶対値が全区画にわたり、予め定められた閾値r22以下である場合はビート信号の周波数変動が少なく、送信信号の周波数変調特性が線形であると判断し、補正が必要ではないと判断する。差d21の絶対値が全区画のいずれかであらかじめ決めた閾値r22より大きい場合は送信信号の周波数変調特性が非線形状態にあると判断し、補正が必要であると判断する。 A difference d21 between the average frequency in the whole beat signal corresponding to the down transmission pattern and the average frequency in each section is obtained. If the absolute value of the difference d21 is equal to or less than a predetermined threshold value r22 over all sections, it is determined that the frequency variation of the beat signal is small and the frequency modulation characteristic of the transmission signal is linear, and no correction is necessary. To do. If the absolute value of the difference d21 is greater than the predetermined threshold value r22 in any of the sections, it is determined that the frequency modulation characteristic of the transmission signal is in a non-linear state and correction is necessary.
(前半・後半のずれ)
また、補正が必要と判断された場合、次に全区画を前半と後半の2区画にまとめ、2区画それぞれで平均周波数を算出する。2区画それぞれでの平均周波数とビート信号全体の平均周波数との差d23を求める。差d23の絶対値が前半と後半両方であらかじめ決めた閾値r24以下である場合は送信信号の周波数変調特性の線形性はある程度確保されており、微調整のみが必要と判断する。差d23の絶対値が前半及び後半の少なくとも一方であらかじめ決めた閾値r24より大きい場合は送信信号の周波数変調特性の線形性が大きく崩れていると判断する。
(Difference between the first half and the second half)
If it is determined that correction is necessary, all the sections are then grouped into two sections, the first half and the second half, and an average frequency is calculated for each of the two sections. A difference d23 between the average frequency in each of the two sections and the average frequency of the entire beat signal is obtained. When the absolute value of the difference d23 is less than or equal to the threshold r24 determined in advance in both the first half and the second half, it is determined that the linearity of the frequency modulation characteristic of the transmission signal is secured to some extent, and only fine adjustment is necessary. If the absolute value of the difference d23 is greater than the threshold r24 determined in advance in at least one of the first half and the second half, it is determined that the linearity of the frequency modulation characteristic of the transmission signal is greatly broken.
以上説明した原理に従って、本実施の形態では、区画周波数解析部40は、取得したビート信号の時系列のうち、Downの送信パターンに対応するビート信号の時系列を複数区画に分けて、各区画のビート信号に対して周波数解析を行って、各区画の平均周波数を算出する。また、全区画を前半と後半の2区画にまとめ、2区画それぞれで、当該区画の平均周波数を算出する。 In accordance with the principle described above, in this embodiment, the partition frequency analysis unit 40 divides the time series of beat signals corresponding to the transmission pattern of Down among the acquired beat signal time series into a plurality of sections. The frequency analysis is performed on the beat signal, and the average frequency of each section is calculated. Also, all the sections are grouped into two sections, the first half and the latter half, and the average frequency of the section is calculated for each of the two sections.
ずれ判定部44は、区画周波数解析部40で算出した各区画の平均周波数に基づいて、各区画について、当該区画の平均周波数と全区画の平均周波数との差d21を算出し、少なくとも1つの区画において、当該区画の差d21の絶対値が、予め定められた閾値r22より大きい場合には、補正が必要であると判定する。一方、全区画において、当該区画の差d21の絶対値が、予め定められた閾値r22以下である場合には、補正が必要でないと判定する The deviation determination unit 44 calculates, for each partition, a difference d21 between the average frequency of the partition and the average frequency of all the partitions based on the average frequency of each partition calculated by the partition frequency analysis unit 40, and at least one partition When the absolute value of the difference d21 of the section is larger than a predetermined threshold value r22, it is determined that correction is necessary. On the other hand, in all the sections, when the absolute value of the difference d21 between the sections is equal to or smaller than a predetermined threshold r22, it is determined that no correction is necessary.
また、ずれ判定部44は、補正が必要であると判定した場合、全区画を前半と後半にまとめた2区画それぞれで、当該区画の平均周波数と全区画の平均周波数との差d23を算出し、2区画の少なくとも一方の区画において、当該区画の差d23の絶対値が、予め定められた閾値r24より大きい場合には、送信信号の周波数変調特性の線形性が大きく崩れていると判断する。一方、2区画それぞれで、当該区画の差d23の絶対値が、予め定められた閾値r24以下である場合には、微調整のみが必要と判断する。 In addition, when it is determined that the correction is necessary, the shift determination unit 44 calculates a difference d23 between the average frequency of the section and the average frequency of all the sections in each of the two sections in which all the sections are collected in the first half and the second half. In at least one of the two sections, if the absolute value of the difference d23 between the sections is larger than a predetermined threshold value r24, it is determined that the linearity of the frequency modulation characteristic of the transmission signal is greatly broken. On the other hand, if the absolute value of the difference d23 between the two sections is less than or equal to a predetermined threshold r24, it is determined that only fine adjustment is necessary.
(線形性が崩れる原因)
ここで、線形性が崩れる原因について説明する。線形性が崩れる最も大きな要因は信号発振器10自身が駆動することによる発熱や周囲温度上昇などが考えられる。さらに、信号発振器10がレーザ発振素子の場合、波長変調は素子内の温度で制御することが多い。波長を長くする場合(周波数を低下させる場合)は流す電流の量で温度を下げ、波長を短くする場合(周波数を上昇させる場合)は温度を上げる。上記図2の周期Tを短くすると、波長を変化させるための温度変動制御が間に合わず、波長が線形的に変化しなかったり、所望の波長変動範囲が得られないことがある。特に、温度上昇と比較して温度低下では素子が冷める時間を要するため、波長を短くするときと長くするときの特性が異なる。
(Cause of loss of linearity)
Here, the cause of the loss of linearity will be described. The biggest factor for the loss of linearity may be heat generated by the signal oscillator 10 itself being driven or an increase in ambient temperature. Further, when the signal oscillator 10 is a laser oscillation element, the wavelength modulation is often controlled by the temperature inside the element. When the wavelength is lengthened (when the frequency is lowered), the temperature is lowered by the amount of current flowing, and when the wavelength is shortened (when the frequency is raised), the temperature is raised. If the period T in FIG. 2 is shortened, temperature fluctuation control for changing the wavelength may not be in time, the wavelength may not change linearly, or a desired wavelength fluctuation range may not be obtained. In particular, since the time required for the device to cool down is required when the temperature is lowered as compared with the temperature rise, the characteristics when the wavelength is shortened are different from those when the wavelength is lengthened.
例として、周波数を低下させるために素子の温度を下げる際、素子内に電流を流すために印加する電圧を線形的に変化させると、最初は温度が低下しにくいため、周波数は緩やかに低下する。図5に、このときの送受信信号の周波数、制御電圧、及びビート信号の周波数の時間特性を示す。ターゲットから反射して受信される受信信号は距離に比例して遅延した送信信号のため、ビート信号は図5(A)の送信信号と受信信号の差に相当する。このビート信号の周波数特性は経時的に変化しており、複数の周波数成分が混在しているため、FFT処理しても急峻なピークが得られず、測定精度が低下してしまう。 As an example, when the temperature of an element is lowered to lower the frequency, if the voltage applied to flow a current in the element is linearly changed, the temperature does not drop easily at first, so the frequency gradually decreases. . FIG. 5 shows the time characteristics of the frequency of the transmission / reception signal, the control voltage, and the frequency of the beat signal at this time. Since the reception signal reflected and received from the target is a transmission signal delayed in proportion to the distance, the beat signal corresponds to the difference between the transmission signal and the reception signal in FIG. The frequency characteristics of the beat signal change with time, and since a plurality of frequency components are mixed, a steep peak cannot be obtained even if FFT processing is performed, resulting in a decrease in measurement accuracy.
(前半・後半での補正)
図5(A)のような場合、前半は緩やかに変動する周波数をより早く変動させるために、制御電圧を大きく変化させる(傾き大にする)必要がある。一方、後半はビート周波数が高くなってしまうため、周波数の変動が緩やかになるよう制御電圧を変化させる(傾き小にする)必要がある。制御電圧の始端と終端は、素子の許容範囲や変調させたい帯域により決まっているため、補正された制御電圧特性は図6に示すような弓状の曲線になる。なお、この例では電圧を上げると周波数が下がる素子で説明しているが、異なる特性をもつ素子の場合、弓状の凸の向きが異なる場合がある。さらに、以降の説明で用いる正負の符号が逆になる場合がある。用いる素子の特性に応じて符号を変える必要がある。
(Correction in the first and second half)
In the case shown in FIG. 5A, the control voltage needs to be greatly changed (increase the slope) in order to change the gradually changing frequency earlier in the first half. On the other hand, since the beat frequency becomes higher in the second half, it is necessary to change the control voltage (to reduce the slope) so that the fluctuation of the frequency becomes gentle. Since the start and end of the control voltage are determined by the allowable range of the element and the band to be modulated, the corrected control voltage characteristic is an arcuate curve as shown in FIG. In this example, an element whose frequency decreases when the voltage is increased is described. However, in the case of an element having different characteristics, the direction of the arcuate protrusion may be different. Further, the positive and negative signs used in the following description may be reversed. It is necessary to change the sign according to the characteristics of the element to be used.
第1補正部46は、両端の電圧の2点、前後半の2区画からそれぞれ1点、そして全区画の中点の1点からなる合計5点の電圧から、上述した弓状の曲線を3次関数近似し、補正用の制御電圧特性を大雑把に算出する。 The first correction unit 46 calculates the above-mentioned arcuate curve from 3 points of voltage consisting of 2 points of voltage at both ends, 1 point each from 2 sections in the first and second half, and 1 point in the middle point of all sections. A control voltage characteristic for correction is roughly calculated by approximating the next function.
具体的には、第1補正部46は、まず、前後半の2区画の電圧値を決めるために、2区画それぞれにおいて、区画の差d23の絶対値が、予め定められた閾値th32のN倍(Nは整数)であることを算出する。そして、2区画それぞれにおいて、この倍数Nに、予め定められた電圧v32を乗じる。 Specifically, the first correction unit 46 first determines the absolute value of the difference d23 between the sections in each of the two sections to be N times the predetermined threshold th32 in order to determine the voltage values of the two sections in the first and second half. (N is an integer) is calculated. In each of the two sections, this multiple N is multiplied by a predetermined voltage v32.
次に、凸の向きを決めて、正負を付加する。例えば、前半の差d23が負で後半の差d23が正の場合は、図5(C)に示す周波数特性が得られているため、さきほど述べたように上向きに凸がある補正曲線を作る必要がある。このため、正負を付加するために、電圧v32を乗じた値に、前半は-1, 後半は+1を乗じ、計算後の電圧が正になるようにする。 Next, the convex direction is determined and positive and negative are added. For example, when the difference d23 in the first half is negative and the difference d23 in the second half is positive, the frequency characteristic shown in FIG. 5C is obtained, and as described above, it is necessary to create a correction curve that is convex upward. There is. Therefore, in order to add positive / negative, the value multiplied by the voltage v32 is multiplied by -1 in the first half and +1 in the second half so that the calculated voltage becomes positive.
一方、前半の差d23が正で後半の差d23が負の場合は図7(B)に示す周波数特性が得られる。この場合は前半の電圧は緩やかに、後半は大きく変化させる必要があるため、下向きに凸がある補正曲線を作る必要がある。このときも、電圧v32を乗じた値に、前半は-1、後半は+1を乗じ、計算後の電圧が負になるようにする。なお、Upの送信パターンに対応する制御電圧特性を補正する場合は、電圧v32を乗じた値に、前半は-1、後半は-1を乗じるようにすればよい。 On the other hand, when the difference d23 in the first half is positive and the difference d23 in the second half is negative, the frequency characteristics shown in FIG. 7B are obtained. In this case, the voltage in the first half needs to be gradually changed and greatly changed in the second half, so that it is necessary to create a correction curve having a downward convexity. Also at this time, the value multiplied by the voltage v32 is multiplied by -1 in the first half and +1 in the second half so that the calculated voltage becomes negative. When correcting the control voltage characteristic corresponding to the Up transmission pattern, the value obtained by multiplying the voltage v32 may be multiplied by -1 in the first half and -1 in the second half.
そして、2区画それぞれにおいて、当該区画内における、特定の時刻に対応する周波数を変調させるための制御電圧値に、正負が付加された、電圧v32を乗じた値を加える。例えば、 前後半で算出された符号付きの電圧値を、それぞれ前後半におけるあらかじめ定めた時刻(前半の開始点+Δ1、後半の終了点-Δ2)における制御電圧に加え、これをその時刻における近似用制御電圧値とする。図8に近似用制御電圧値と時刻の関係を示す。前後半におけるあらかじめ定めた時刻は両端に近ければ近いほど急激な電圧の立ち上がり、または立下りが得られる。 Then, in each of the two sections, a value obtained by multiplying the control voltage value for modulating the frequency corresponding to a specific time in the section by the voltage v32 added with positive and negative is added. For example, the signed voltage value calculated in the first half is added to the control voltage at the predetermined time in the first half (first half start point + Δ1, second half end point -Δ2), and this is approximated at that time Control voltage value. FIG. 8 shows the relationship between the approximate control voltage value and time. The closer to the both ends of the predetermined time in the first and second half, the more rapidly the voltage rises or falls.
更に、2区画それぞれにおいて算出された近似用制御電圧値の平均値に、予め定められた係数を乗じて制御電圧特性全体の中央値とする。例えば、1周期の中央からあらかじめ定めた時刻Δc分ずれた点における近似用制御電圧値を中央点として、前後半の近似用制御電圧値の平均値を算出した後に、あらかじめ定めた係数k33を乗算した値とする。前後半の近似用制御電圧値の平均値を中央点として用いると中央において凸が得にくくなるため、係数k33を乗じている。なお、凸の向きに応じてこの係数k33を使い分けても良い。 Further, the average value of the approximate control voltage values calculated in each of the two sections is multiplied by a predetermined coefficient to obtain the median value of the entire control voltage characteristics. For example, an approximate control voltage value at a point shifted by a predetermined time Δc from the center of one cycle is used as a central point, and then the average value of the approximate control voltage values in the first and second half is calculated and then multiplied by a predetermined coefficient k33. Value. When the average value of the approximate control voltage values in the first and second half is used as the center point, it becomes difficult to obtain a convex at the center, and therefore, the coefficient k33 is multiplied. The coefficient k33 may be properly used according to the convex direction.
そして、両端の制御電圧値、前後半の近似用制御電圧値、そして中央点の近似用制御電圧値の計5点分を時系列順に並べ、3次関数近似する。なお、近似曲線では両端の制御電圧値は必ず通るようにし、両端間の制御電圧値の最大最小は両端の制御電圧値を超えないようにする。次回の制御電圧特性を、近似された3次曲線で表される制御電圧特性に補正する。 Then, the control voltage values at both ends, the approximate control voltage values in the first and second half, and the approximate control voltage value at the center point are arranged in chronological order and approximated by a cubic function. In the approximate curve, the control voltage values at both ends always pass, and the maximum and minimum of the control voltage values at both ends do not exceed the control voltage values at both ends. The next control voltage characteristic is corrected to the control voltage characteristic represented by the approximated cubic curve.
(各区画毎での補正)
上記の第1補正部46では発振素子の特性を考慮した補正により、ある程度線形特性が得られるが、精度の高い線形特性を得るためには微調整が必要である。この微調整を、第2補正部48で行う。
(Correction for each section)
In the first correction unit 46, linear characteristics can be obtained to some extent by correction in consideration of the characteristics of the oscillation element, but fine adjustment is necessary to obtain highly accurate linear characteristics. This fine adjustment is performed by the second correction unit 48.
第2補正部48は、以下に説明するように、各区画で、送信信号の周波数変調特性が線形特性となるように、制御電圧特性を補正する。 As will be described below, the second correction unit 48 corrects the control voltage characteristic so that the frequency modulation characteristic of the transmission signal becomes a linear characteristic in each section.
まず、差d21の絶対値が閾値r22より大きい区画それぞれにおいて、差d21の絶対値が閾値th41のN倍(整数)であることを算出する。この倍数Nにあらかじめ決めた電圧v42を乗じる。 First, in each section where the absolute value of the difference d21 is larger than the threshold value r22, it is calculated that the absolute value of the difference d21 is N times (integer) the threshold value th41. This multiple N is multiplied by a predetermined voltage v42.
次に、現在の制御電圧値に補正値を足すか、引くかを決める。例として図9に、周期の前半で素子内の温度が十分下がらずに、前半のみ、第1補正部46により補正しても補正し切れていないときの特性を示す。ビート周波数特性に示すように、差d21の絶対値が、各区画のうちの2つの区画で閾値r22より大きい。この2つの区画において、第1補正部46と同様に、電圧v42を乗じた値に、最初の方の区画は-1、後の方の区画は+1を乗じる。このように、補正が必要な各区画において、補正する電圧の符号を決定し、各区画の中央における時刻の現在の制御電圧値に加え、近似用制御電圧値とする。補正が必要ない各区画では中央における時刻の現在の制御電圧値を近似用制御電圧値とする。図10に時刻と近似用制御電圧値の関係を示す。 Next, it is determined whether the correction value is added to or subtracted from the current control voltage value. As an example, FIG. 9 shows the characteristics when the temperature in the element is not sufficiently lowered in the first half of the cycle, and only the first half is not completely corrected even by correction by the first correction unit 46. As shown in the beat frequency characteristic, the absolute value of the difference d21 is larger than the threshold value r22 in two of the sections. In these two sections, similarly to the first correction unit 46, the value obtained by multiplying the voltage v42 is multiplied by -1 for the first section and +1 for the latter section. In this way, the sign of the voltage to be corrected is determined in each section requiring correction, and the approximate control voltage value is added to the current control voltage value at the center of each section. In each section that does not require correction, the current control voltage value at the time at the center is set as the approximate control voltage value. FIG. 10 shows the relationship between the time and the approximate control voltage value.
そして、両端の制御電圧値を含めた近似用制御電圧値を用い、3次スプライン曲線にフィットさせ、補正された区画の前後の曲線が滑らかになるようにする。第1補正部46と同様に、このときも曲線は両端の制御電圧値を必ず通るようにする。さらに、各区画の中央における時刻以外の制御電圧値を求めるために、上記図10に示すように、3次スプライン曲線にフィットした電圧値とその時刻を用いて6次関数近似し、次回の制御電圧特性を、近似された6次関数で表わされる制御電圧特性に補正する。第2補正部46では1回の処理で線形特性は得にくいが、複数回繰り返すことで微調整が行われ、全区画にわたり同じビート周波数が得られるようになる。 Then, the control voltage values for approximation including the control voltage values at both ends are used to fit the cubic spline curve so that the curves before and after the corrected section become smooth. Similarly to the first correction unit 46, the curve always passes through the control voltage values at both ends. Further, in order to obtain a control voltage value other than the time at the center of each section, as shown in FIG. 10, a sixth order function approximation is performed using the voltage value fitted to the cubic spline curve and the time, and the next control is performed. The voltage characteristic is corrected to a control voltage characteristic represented by an approximated sixth order function. In the second correction unit 46, it is difficult to obtain linear characteristics by one process, but fine adjustment is performed by repeating a plurality of times so that the same beat frequency can be obtained over all sections.
周波数発振制御部50は、Downの送信パターン毎に、第1補正部46及び第2補正部48で新たに作成された制御電圧特性を用いて信号発振器10を制御して、レーザの送信信号を送信させる。また、繰り返し取得されるビート信号を解析することにより、第1補正部46及び第2補正部48により制御電圧特性が補正され、周波数変調特性の線形特性が得られる。 The frequency oscillation control unit 50 controls the signal oscillator 10 using the control voltage characteristics newly created by the first correction unit 46 and the second correction unit 48 for each transmission pattern of Down, and transmits the laser transmission signal. Send it. Further, by analyzing the beat signal repeatedly acquired, the control voltage characteristic is corrected by the first correction unit 46 and the second correction unit 48, and the linear characteristic of the frequency modulation characteristic is obtained.
測定部52は、区画周波数解析部40によって得られた各区画の平均周波数から、全区画の平均周波数を求め、全区画の平均周波数から、ターゲットまでの距離及び相対速度を測定する。 The measuring unit 52 obtains the average frequency of all the sections from the average frequency of each section obtained by the section frequency analyzing unit 40, and measures the distance to the target and the relative speed from the average frequency of all the sections.
<レーザレーダ装置100の動作>
次に、レーザレーダ装置100の動作について説明する。
<Operation of Laser Radar Device 100>
Next, the operation of the laser radar device 100 will be described.
まず、レーザレーダ装置100の制御部28には、初期設定として、線形な制御電圧特性が与えられ、制御部28は、図11に示す制御電圧特性補正処理ルーチンを実行する。 First, a linear control voltage characteristic is given to the control unit 28 of the laser radar device 100 as an initial setting, and the control unit 28 executes a control voltage characteristic correction processing routine shown in FIG.
まず、ステップS100において、初期設定として与えられ、又は後述するステップS112、114で前回補正された制御電圧特性に従って、信号発振器10の周波数変調を制御して、送信信号を送信させ、更に、Downの送信パターンに対応するビート信号の時系列を取得する。 First, in step S100, the frequency modulation of the signal oscillator 10 is controlled according to the control voltage characteristics given as initial settings or previously corrected in steps S112 and S114 described later, and a transmission signal is transmitted. A time series of beat signals corresponding to the transmission pattern is acquired.
ステップS102では、上記ステップS100で取得した、Downの送信パターンに対応するビート信号の時系列を、複数区画に分割する。ステップS104では、両端の区画を除いた各区画のビート信号に基づいて、各区画について、ビート信号の周波数解析を行って、各区画の平均周波数、及び全区画の平均周波数を計算する。また、各区画を前半と後半の2区画にまとめ、2区画のそれぞれで平均周波数を計算する。 In step S102, the time series of beat signals corresponding to the Down transmission pattern acquired in step S100 is divided into a plurality of sections. In step S104, frequency analysis of the beat signal is performed for each section based on the beat signal of each section excluding both ends, and the average frequency of each section and the average frequency of all sections are calculated. Further, each section is divided into two sections, the first half and the latter half, and the average frequency is calculated in each of the two sections.
次のステップS106では、各区画で、当該区画の平均周波数と全区画の平均周波数との差の絶対値が、予め定めた閾値以下であるか否かを判定する。全ての区画で、当該区画の平均周波数と全区画の平均周波数との差の絶対値が、予め定めた閾値以下である場合には、補正が必要ないと判断し、ステップS108で、前回の制御電圧特性をそのまま使用すると決定し、上記ステップS100へ戻る。 In the next step S106, it is determined in each section whether or not the absolute value of the difference between the average frequency of the section and the average frequency of all sections is equal to or less than a predetermined threshold value. In all the sections, when the absolute value of the difference between the average frequency of the section and the average frequency of all the sections is equal to or less than a predetermined threshold value, it is determined that correction is not necessary, and in step S108, the previous control It is determined that the voltage characteristic is used as it is, and the process returns to step S100.
一方、少なくとも1つの区画で、当該区画の平均周波数と全区画の平均周波数との差の絶対値が、予め定めた閾値より大きい場合には、補正が必要であると判断し、ステップS110へ移行する。 On the other hand, if the absolute value of the difference between the average frequency of the section and the average frequency of all sections is greater than a predetermined threshold in at least one section, it is determined that correction is necessary, and the process proceeds to step S110. To do.
ステップS110では、2区画のそれぞれで、当該区画の平均周波数と全区画の平均周波数との差の絶対値が、予め定めた閾値以下であるか否かを判定する。2区画の双方で、当該区画の平均周波数と全区画の平均周波数との差の絶対値が、予め定めた閾値以下である場合には、微調整が必要であると判断し、ステップS114へ移行する。 In step S110, in each of the two sections, it is determined whether or not the absolute value of the difference between the average frequency of the section and the average frequency of all sections is equal to or less than a predetermined threshold value. In both of the two sections, if the absolute value of the difference between the average frequency of the section and the average frequency of all sections is equal to or less than a predetermined threshold, it is determined that fine adjustment is necessary, and the process proceeds to step S114. To do.
一方、2区画の少なくとも一方で、当該区画の平均周波数と全区画の平均周波数との差の絶対値が、予め定めた閾値より大きい場合には、大雑把な補正が必要であると判断し、ステップS112へ移行する。 On the other hand, if at least one of the two sections has an absolute value of the difference between the average frequency of the section and the average frequency of all sections larger than a predetermined threshold, it is determined that rough correction is necessary, and step The process proceeds to S112.
ステップS112では、2区画それぞれの、当該区画の平均周波数と全区画の平均周波数との差に応じて、制御電圧特性を補正する。 In step S112, the control voltage characteristics are corrected according to the difference between the average frequency of the two sections and the average frequency of all sections in each of the two sections.
ステップS114では、各区画の、当該区画の平均周波数と全区画の平均周波数との差に応じて、制御電圧特性を補正する。 In step S114, the control voltage characteristic is corrected in accordance with the difference between the average frequency of each section and the average frequency of all sections.
ステップS116では、補正された制御電圧特性を、次回の制御電圧特性として使用することを決定し、上記ステップS100へ戻る。 In step S116, it is determined that the corrected control voltage characteristic is used as the next control voltage characteristic, and the process returns to step S100.
上記ステップS112は、図12に示す処理ルーチンにより実現される。 Step S112 is realized by the processing routine shown in FIG.
ステップS120において、2区画それぞれにおいて、区画の差d23の絶対値が、予め定められた閾値th32のN倍(Nは整数)であることを算出する。そして、ステップS122において、2区画それぞれにおいて、上記ステップS120で算出された倍数Nに、予め定められた電圧v32を乗じる。 In step S120, in each of the two sections, it is calculated that the absolute value of the section difference d23 is N times (N is an integer) a predetermined threshold th32. In step S122, in each of the two sections, the multiple N calculated in step S120 is multiplied by a predetermined voltage v32.
次のステップS124では、2区画それぞれの区画の差d23の正負に応じて、2区画それぞれの値に付加する正負を決定し、上記ステップS122で得られた、倍数Nに電圧v32を乗じた値に、決定した正負を付加した電圧値を求める。 In the next step S124, the positive / negative to be added to the value of each of the two sections is determined according to the sign d23 of the section of each of the two sections, and the value obtained by multiplying the multiple N by the voltage v32 obtained in step S122. Then, a voltage value obtained by adding the determined positive and negative is obtained.
そして、ステップS126において、2区画それぞれにおいて、当該区画内における、特定の時刻に対応する周波数を変調させるための制御電圧値に、上記ステップS124で求められた電圧値を加えて、近似用制御電圧値を求める。更に、2区画それぞれにおいて算出された近似用制御電圧値の平均値に、予め定められた係数を乗じて制御電圧特性全体の中央値とする。 In step S126, the approximate control voltage is obtained by adding the voltage value obtained in step S124 to the control voltage value for modulating the frequency corresponding to a specific time in each of the two sections. Find the value. Further, the average value of the approximate control voltage values calculated in each of the two sections is multiplied by a predetermined coefficient to obtain the median value of the entire control voltage characteristics.
そして、ステップS128において、制御電圧特性の両端の制御電圧値、上記ステップS126で得られた、2区画のぞれぞれの特定時刻の近似用制御電圧値、及び中央点の近似用電圧の計5点分を時系列順に並べ、3次関数近似を行って、制御電圧特性を、近似された3次曲線で表わされる制御電圧特性に補正し、処理ルーチンを終了する。 In step S128, the control voltage value at both ends of the control voltage characteristic, the approximate control voltage value at each specific time in each of the two sections obtained in step S126, and the approximate voltage at the center point are calculated. The five points are arranged in time series, and a cubic function approximation is performed to correct the control voltage characteristic to the control voltage characteristic represented by the approximated cubic curve, and the processing routine is terminated.
上記ステップS114は、図13に示す処理ルーチンにより実現される。 Step S114 is realized by the processing routine shown in FIG.
ステップS130において、差d21の絶対値が予め定められた閾値より大きい、補正が必要な区画それぞれにおいて、差d21の絶対値が閾値th41のN倍(整数)であることを算出する。ステップS132では、各区画について、上記ステップS130で算出された倍数Nにあらかじめ決めた電圧v42を乗じる。 In step S130, it is calculated that the absolute value of the difference d21 is N times (integer) the threshold th41 in each of the sections that need to be corrected where the absolute value of the difference d21 is larger than a predetermined threshold. In step S132, for each section, the multiple N calculated in step S130 is multiplied by a predetermined voltage v42.
ステップS134では、補正が必要な区画それぞれの差d21の正負に応じて、区画それぞれの値に付加する正負を決定し、上記ステップS132で得られた、倍数Nに電圧v42を乗じた値に、決定した正負を付加した電圧値を求める。 In step S134, the sign to be added to the value of each section is determined according to the sign d21 of each section requiring correction, and the value obtained by multiplying the multiple N by the voltage v42, obtained in step S132, The voltage value with the determined positive / negative added is obtained.
そして、ステップS136において、補正が必要な区画それぞれにおいて、当該区画内における、特定の時刻に対応する周波数を変調させるための制御電圧値に、上記ステップS134で求められた値を加えて、近似用制御電圧値とする。補正が必要ない各区画では中央における時刻の現在の制御電圧を近似用制御電圧値とする。そして、両端の制御電圧値を含めた近似用制御電圧値を用い、3次スプライン曲線にフィットさせ、補正された区画の前後の曲線が滑らかになるようにする。 In step S136, in each of the sections that need to be corrected, the value obtained in step S134 is added to the control voltage value for modulating the frequency corresponding to a specific time in the section. Control voltage value. In each section that does not require correction, the current control voltage at the center is set as the approximate control voltage value. Then, the control voltage values for approximation including the control voltage values at both ends are used to fit the cubic spline curve so that the curves before and after the corrected section become smooth.
次のステップS138では、さらに、各区画の中央における時刻以外の制御電圧値を求めるために、3次スプライン曲線にフィットした制御電圧値とその時刻を用いて6次関数近似し、制御電圧特性を、近似された6次関数で表わされる制御電圧特性に補正し、処理ルーチンを終了する。 In the next step S138, in order to obtain a control voltage value other than the time at the center of each section, the control voltage value fitted to the cubic spline curve and the time are used to approximate a sixth-order function, and the control voltage characteristics are obtained. Then, the control voltage characteristic represented by the approximated sixth-order function is corrected, and the processing routine is terminated.
周波数発振制御部50は、上記の制御電圧特性補正処理ルーチンにおいて繰り返し作成された制御電圧特性を用いて信号発振器10を制御して、送信信号の送信を行わせる。 The frequency oscillation control unit 50 controls the signal oscillator 10 using the control voltage characteristics repeatedly generated in the control voltage characteristic correction processing routine, and causes the transmission signal to be transmitted.
測定部52は、区画周波数解析部40によって得られた各区画の平均周波数から、全区画の平均周波数を求め、全区画の平均周波数から、ターゲットまでの距離及び相対速度を測定する。 The measuring unit 52 obtains the average frequency of all the sections from the average frequency of each section obtained by the section frequency analyzing unit 40, and measures the distance to the target and the relative speed from the average frequency of all the sections.
ここで、図12、13の処理ルーチンの違いについて説明する。 Here, the difference between the processing routines of FIGS. 12 and 13 will be described.
図12の処理ルーチンによる補正を用いずに図13の処理ルーチンによる補正のみを用いて制御電圧特性を補正すると、正しく補正できない場合がある。例えば、上記図5(C)のビート信号の周波数特性では前半では差d21が負、後半では正の値となり、端に近いほど差d21の絶対値が大きくなる。このため、 図13の処理ルーチンによる補正では両端に近づくにつれて補正する電圧値が大きくなり、前半では負の値である差d21に-1を乗じ、後半では正の値である差d21に+1を乗じ、元の制御電圧値に加えるため、次の制御電圧特性は、図14に示すような特性になる。この制御電圧特性では補正前の周波数特性よりも複雑な非線形特性になり、図13の処理ルーチンによる補正のみでは線形補正が難しいことが分かる。以上より、図12の処理ルーチンによる補正では、区画全体の特性を考慮したうえで補正を行い、図13の処理ルーチンによる補正は、局所補正する、という特徴を有する。 If the control voltage characteristic is corrected using only the correction according to the processing routine of FIG. 13 without using the correction according to the processing routine of FIG. For example, in the frequency characteristic of the beat signal in FIG. 5C, the difference d21 is negative in the first half and positive in the second half, and the absolute value of the difference d21 increases as it is closer to the end. For this reason, in the correction by the processing routine of FIG. 13, the voltage value to be corrected increases as it approaches both ends. In the first half, the negative value difference d21 is multiplied by −1, and in the second half, the positive value difference d21 is +1. Is multiplied by and added to the original control voltage value, the next control voltage characteristic is as shown in FIG. This control voltage characteristic is a more complex non-linear characteristic than the frequency characteristic before correction, and it can be seen that linear correction is difficult only by correction by the processing routine of FIG. As described above, the correction by the processing routine of FIG. 12 has a feature that correction is performed in consideration of the characteristics of the entire section, and the correction by the processing routine of FIG. 13 performs local correction.
以上説明したように、第1の実施の形態に係るレーザレーダ装置によれば、各区画のビート信号の周波数に基づいて、前半、後半の2区画で、送信信号の周波数変調特性が線形特性となるように、制御電圧特性を補正した後に、各区画で、送信信号の周波数変調特性が線形特性となるように、制御電圧特性を補正することにより、簡易な構成で、送信信号の周波数変調特性が線形特性となるように、制御電圧特性を安定して補正することができる。 As described above, according to the laser radar device according to the first embodiment, the frequency modulation characteristic of the transmission signal is linear in the first half and the second half based on the frequency of the beat signal in each section. Thus, after correcting the control voltage characteristics, by correcting the control voltage characteristics so that the frequency modulation characteristics of the transmission signal become linear characteristics in each section, the frequency modulation characteristics of the transmission signal can be obtained with a simple configuration. The control voltage characteristic can be stably corrected so that becomes a linear characteristic.
また、レーザなどの素子は波長(=周波数)変調を素子内部の温度を制御することで、実現している。このため、素子の種類に応じて変調特性が異なる。また、周波数を上昇、下降させるためには一方は温度を上げ、一方は下げる必要があり、制御するために素子に流す電流の特性が変調方向でも異なる。これらの特性を考慮してまずは3次関数を用いて素子に流す電流の特性を大雑把に補正する。これにより、素子特有の特性を考慮した、1段階目の補正を行うことができる。 Further, an element such as a laser realizes wavelength (= frequency) modulation by controlling the temperature inside the element. For this reason, the modulation characteristics differ depending on the type of element. In order to increase or decrease the frequency, one of them needs to raise the temperature and the other one needs to be lowered, and the characteristics of the current passed through the element for control also differ in the modulation direction. Considering these characteristics, first, the characteristic of the current flowing through the element is roughly corrected using a cubic function. Thereby, the first-stage correction can be performed in consideration of the characteristics peculiar to the element.
また、大雑把に補正した後に、より線形性を確保するために細かな電流の微調整を2段階目に行うことで、素子の種類、変調幅に捉われず、線形補正が可能になる。 Further, after roughly correcting, performing fine current fine adjustment in the second stage in order to secure more linearity, linear correction is possible regardless of the type of element and the modulation width.
また、熱などの影響により信号を発振する素子の特性が変化し、FMCWの線形特性が崩れても、自動で歪みを検知し、2段階に分けて線形補正することができる。 Further, even if the characteristics of the element that oscillates a signal change due to the influence of heat or the like, and the linear characteristics of the FMCW collapse, the distortion can be automatically detected and linearly corrected in two stages.
なお、上記の実施の形態では、ターゲットからの反射信号を用いる場合を例に説明したが、これに限定されるものではない。例えば、送信信号を、遅延の役割を果たす光ファイバに入射させ、光ファイバからの出射信号を受信信号として用いるようにしてもよい。 In the above-described embodiment, the case where the reflected signal from the target is used has been described as an example. However, the present invention is not limited to this. For example, the transmission signal may be incident on an optical fiber that plays a role of delay, and the output signal from the optical fiber may be used as a reception signal.
<第2の実施の形態>
次に、第2の実施の形態について説明する。第2の実施の形態では、電波レーダ装置に本発明を適用した場合について説明する。なお、第1の実施の形態と同様の構成となる部分については、同一符号を付して説明を省略する。
<Second Embodiment>
Next, a second embodiment will be described. In the second embodiment, a case where the present invention is applied to a radio wave radar device will be described. In addition, about the part which becomes the structure similar to 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.
図15に示すように、第2の実施の形態に係る電波レーダ装置200は、発振周波数が可変の信号発振器210と、信号発振器210の出力信号を分岐する方向性結合器212と、方向性結合器212からの信号に応じた送信波を送信する送信アンテナ214と、受信アンテナ218からの信号と方向性結合器212からの信号を混合するミキサ222と、ミキサ222の出力から送信信号の周波数と受信信号の周波数との差の周波数のビート信号を取り出すためのバンドパスフィルタ224と、AD変換器26と、AD変換された信号を解析し、信号発振器210を制御する制御部28とを備えている。 As shown in FIG. 15, the radio wave radar apparatus 200 according to the second embodiment includes a signal oscillator 210 having a variable oscillation frequency, a directional coupler 212 that branches an output signal of the signal oscillator 210, and a directional coupling. A transmission antenna 214 for transmitting a transmission wave corresponding to the signal from the mixer 212, a mixer 222 for mixing the signal from the reception antenna 218 and the signal from the directional coupler 212, and the frequency of the transmission signal from the output of the mixer 222. A band pass filter 224 for extracting a beat signal having a frequency different from the frequency of the received signal, an AD converter 26, and a control unit 28 that analyzes the AD converted signal and controls the signal oscillator 210 are provided. Yes.
なお、方位検出を行いたい場合は受信アンテナ218を複数本設置し、複数本の受信アンテナ218とミキサ222の間にスイッチを入れ、スイッチを切り替えることでそれぞれの受信アンテナ218からの受信信号を入力し、位相の違いからターゲットの方位を検出することができる。 If it is desired to detect the azimuth, a plurality of receiving antennas 218 are installed, a switch is inserted between the plurality of receiving antennas 218 and the mixer 222, and the received signal from each receiving antenna 218 is input by switching the switch. Then, the orientation of the target can be detected from the difference in phase.
また、信号発振器210、方向性結合器212と、送信アンテナ214と、受信アンテナ218と、ミキサ222と、バンドパスフィルタ224と、AD変換器26とが、センサの一例である。 Further, the signal oscillator 210, the directional coupler 212, the transmission antenna 214, the reception antenna 218, the mixer 222, the band pass filter 224, and the AD converter 26 are examples of sensors.
なお、第2の実施の形態に係る電波レーダ装置200の他の構成及び作用については、第1の実施の形態に係るレーザレーダ装置100と同様であるため、説明を省略する。 Since the other configuration and operation of the radio wave radar apparatus 200 according to the second embodiment are the same as those of the laser radar apparatus 100 according to the first embodiment, the description thereof is omitted.
以上説明したように、第2の実施の形態に係る電波レーダ装置によれば、各区画のビート信号の周波数に基づいて、前半、後半の2区画で、送信信号の周波数変調特性が線形特性となるように、制御電圧特性を補正した後に、各区画で、送信信号の周波数変調特性が線形特性となるように、制御電圧特性を補正することにより、簡易な構成で、送信信号の周波数変調特性が線形特性となるように、制御電圧特性を安定して補正することができる。 As described above, according to the radio wave radar apparatus according to the second embodiment, the frequency modulation characteristic of the transmission signal is linear in the first half and the second half based on the frequency of the beat signal in each section. Thus, after correcting the control voltage characteristics, by correcting the control voltage characteristics so that the frequency modulation characteristics of the transmission signal become linear characteristics in each section, the frequency modulation characteristics of the transmission signal can be obtained with a simple configuration. The control voltage characteristic can be stably corrected so that becomes a linear characteristic.
なお、本発明は、上述した実施形態に限定されるものではなく、この発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。 Note that the present invention is not limited to the above-described embodiment, and various modifications and applications are possible without departing from the gist of the present invention.
例えば、上記の実施の形態においては、1段階目の補正として、前半、後半の2区画で、送信信号の周波数変調特性が線形特性となるように、制御電圧特性を補正する場合を例に説明したが、これに限定されるものではなく、1段階目の補正において、粗い区画であれば、3区画以上で制御電圧特性を補正してもよい。 For example, in the above embodiment, the case where the control voltage characteristic is corrected so that the frequency modulation characteristic of the transmission signal becomes a linear characteristic in the first half and the second half as the first stage correction will be described as an example. However, the present invention is not limited to this, and in the first stage correction, the control voltage characteristics may be corrected in three or more sections as long as they are rough sections.
また、信号発振器は、Downの送信パターンを時間T[sec]で繰り返し出力する場合を例に説明したが、これに限定されるものではない。例えば、信号発振器は、UPの送信パターンを時間T[sec]で繰り返し出力するようにし、UPの送信パターン毎に、周波数変調特性を線形にするように、制御電圧特性を補正するようにしてもよい。また、信号発振器は、UPとDownの2種類の送信パターンを時間2T[sec]で繰り返し出力するようにし、UPの送信パターン毎に、周波数変調特性を線形にするように、制御電圧特性を補正し、Downの送信パターン毎に、周波数変調特性を線形にするように、制御電圧特性を補正するようにしてもよい。 In addition, the signal oscillator has been described as an example in which the Down transmission pattern is repeatedly output at time T [sec], but the present invention is not limited to this. For example, the signal oscillator may repeatedly output the UP transmission pattern at time T [sec], and correct the control voltage characteristic so that the frequency modulation characteristic is linear for each UP transmission pattern. Good. In addition, the signal oscillator repeatedly outputs two types of transmission patterns, UP and Down, at time 2T [sec], and corrects the control voltage characteristics so that the frequency modulation characteristics are linear for each UP transmission pattern. Then, the control voltage characteristic may be corrected so that the frequency modulation characteristic is linear for each transmission pattern of Down.
10、210 信号発振器
12、212 方向性結合器
14、18 レンズ
22 ハーフミラー
24 フォトダイオード
26 変換器
28 制御部
40 区画周波数解析部
44 ずれ判定部
46 第1補正部
48 第2補正部
50 周波数発振制御部
52 測定部
100 レーザレーダ装置
200 電波レーダ装置
214 送信アンテナ
218 受信アンテナ
222 ミキサ
224 バンドパスフィルタ
10, 210 Signal oscillator 12, 212 Directional coupler 14, 18 Lens 22 Half mirror 24 Photo diode 26 Converter 28 Control unit 40 Division frequency analysis unit 44 Deviation determination unit 46 First correction unit 48 Second correction unit 50 Frequency oscillation Control unit 52 Measuring unit 100 Laser radar device 200 Radio wave radar device 214 Transmitting antenna 218 Receiving antenna 222 Mixer 224 Band pass filter
Claims (8)
前記ビート信号のうち、一方向に変調されているときに出力された前記ビート信号の時系列を複数区画に分けて、各区画のビート信号に対して周波数解析を行って、各区画のビート信号の周波数を算出する周波数解析部と、
前記周波数解析部で算出した各区画のビート信号の周波数に基づいて、前記区画より粗い区画で、前記送信信号の周波数変調特性が線形特性となるように、前記送信信号の周波数を変調させるための制御電圧特性を補正した後に、各区画で、前記送信信号の周波数変調特性が線形特性となるように、前記制御電圧特性を補正する補正部と、
を含むセンサ補正装置。 A sensor for outputting a beat signal of a frequency-modulated transmission signal radiated toward an object and a reception signal reflected back from the object;
Of the beat signal, the time series of the beat signal output when modulated in one direction is divided into a plurality of sections, and frequency analysis is performed on the beat signal of each section. A frequency analysis unit for calculating the frequency of
Based on the frequency of the beat signal of each section calculated by the frequency analysis unit, for modulating the frequency of the transmission signal so that the frequency modulation characteristic of the transmission signal is a linear characteristic in a section coarser than the section A correction unit that corrects the control voltage characteristic so that the frequency modulation characteristic of the transmission signal is a linear characteristic in each section after correcting the control voltage characteristic;
A sensor correction apparatus including:
補正が必要であると判定された場合、前記複数区画を前半と後半の2区画にまとめ、前記2区画それぞれで、前記区画のビート信号の周波数と全区画のビート信号の周波数の平均値との差を算出し、
前記2区画の少なくのとも一方の区画において、前記区画の差の絶対値が、予め定められた閾値以上であるか否かを判定する判定部を更に含み、
前記補正部は、前記判定部により前記2区画の少なくとも一方の区画において、前記区画の差の絶対値が、前記予め定められた閾値以上であると判定された場合には、前記2区画で、前記送信信号の周波数変調特性が線形特性となるように、前記制御電圧特性を補正し、
前記判定部により前記2区画それぞれにおいて、前記区画の差の絶対値が、前記予め定められた閾値未満であると判定された場合には、各区画で、前記送信信号の周波数変調特性が線形特性となるように、前記制御電圧特性を補正する請求項1記載のセンサ補正装置。 Based on the beat signal frequency of each section calculated by the frequency analysis unit, for each section, the difference between the beat signal frequency of the section and the average value of the beat signal frequencies of all sections is calculated, and at least one In the section, when the absolute value of the difference between the sections is equal to or greater than a predetermined threshold, it is determined that correction is necessary,
When it is determined that correction is necessary, the plurality of sections are grouped into two sections of the first half and the latter half, and in each of the two sections, the frequency of the beat signal of the section and the average value of the beat signal frequency of all sections Calculate the difference,
A determination unit for determining whether or not an absolute value of the difference between the sections is at least a predetermined threshold value in at least one of the two sections;
When the determination unit determines that the absolute value of the difference between the sections is equal to or greater than the predetermined threshold in at least one of the two sections, the correction section uses the two sections, The control voltage characteristic is corrected so that the frequency modulation characteristic of the transmission signal becomes a linear characteristic,
When the determination unit determines that the absolute value of the difference between the two sections is less than the predetermined threshold in each of the two sections, the frequency modulation characteristic of the transmission signal is a linear characteristic in each section. The sensor correction apparatus according to claim 1, wherein the control voltage characteristic is corrected so that
前記2区画それぞれにおいて、前記区画の差の絶対値が、予め定められた閾値のN倍(Nは整数)であることを算出し、
前記2区画それぞれにおいて、前記N倍に予め定められた電圧を乗じ、
前記2区画それぞれにおいて、前記2区画での差の正負に応じて、前記N倍が乗じられた前記電圧に正負を付加し、
前記2区画それぞれにおいて、前記区画内の特定の時刻に対応する周波数を変調させるための制御電圧値に、前記正負が付加されたN倍が乗じられた前記電圧を加え、
前記2区画それぞれにおいて算出された前記制御電圧値の平均値に、予め定められた係数を乗じて制御電圧特性全体の中央値とし、
予め定められた制御電圧特性の始点と終点、前記2区画それぞれにおいて算出された前記制御電圧値、及び前記算出した中央値を時系列に並べて3次関数近似し、
前記制御電圧特性を、前記近似された3次関数で表される制御電圧特性に補正する請求項2記載のセンサ補正装置。 When the correction unit corrects the control voltage characteristic so that the frequency modulation characteristic of the transmission signal is a linear characteristic in the two sections,
In each of the two sections, calculate that the absolute value of the difference between the sections is N times a predetermined threshold (N is an integer);
In each of the two sections, multiply the N times by a predetermined voltage,
In each of the two sections, depending on whether the difference between the two sections is positive or negative, the voltage multiplied by the N times is added to the voltage,
In each of the two sections, the control voltage value for modulating the frequency corresponding to a specific time in the section is added with the voltage multiplied by N times with the positive and negative added,
The average value of the control voltage values calculated in each of the two sections is multiplied by a predetermined coefficient to be the median value of the entire control voltage characteristics,
Approximating a cubic function by arranging the start and end points of the predetermined control voltage characteristics, the control voltage value calculated in each of the two sections, and the calculated median in time series,
The sensor correction apparatus according to claim 2, wherein the control voltage characteristic is corrected to a control voltage characteristic represented by the approximated cubic function.
各区画において、前記区画の差の絶対値が、予め定められた閾値のN倍(Nは整数)であることを算出し、
各区画において、前記N倍に予め定められた電圧を乗じ、
各区画において、各区画での差の正負に応じて前記N倍が乗じられた前記電圧に正負を付加し、
各区画において、前記区画内の特定の時刻に対応する周波数を変調させるための制御電圧値に、前記正負が付加された前記N倍が乗じられた前記電圧を加え、
予め定められた制御電圧特性の始点と終点、及び各区画において算出された前記制御電圧値を時系列に並べて点間を結ぶ曲線が滑らかになるよう曲線近似し、
前記曲線近似で得られた各点の制御電圧値を用いて、3次より高次の高次曲線近似し、
前記制御電圧特性を、前記近似された高次関数で表される制御電圧特性に補正する請求項2又は3記載のセンサ補正装置。 When the correction unit corrects the control voltage characteristic so that the frequency modulation characteristic of the transmission signal is a linear characteristic in each section,
In each section, the absolute value of the difference between the sections is calculated to be N times a predetermined threshold (N is an integer),
In each section, multiply the N times by a predetermined voltage,
In each section, positive / negative is added to the voltage multiplied by the N times according to the positive / negative of the difference in each section,
In each section, the control voltage value for modulating the frequency corresponding to a specific time in the section is added with the voltage multiplied by the N times with the positive and negative added,
Approximate the curve so that the curve connecting the points by arranging the control voltage value calculated in each section in time series with the start point and end point of the predetermined control voltage characteristic is smooth,
Using the control voltage value of each point obtained by the curve approximation, approximate a higher order curve higher than the third order,
4. The sensor correction device according to claim 2, wherein the control voltage characteristic is corrected to a control voltage characteristic represented by the approximated higher order function.
物体に向かって放射する周波数変調された送信信号と、前記物体から反射して戻ってきた受信信号とのビート信号を出力するセンサから出力された前記ビート信号のうち、一方向に変調されているときに出力された前記ビート信号の時系列を複数区画に分けて、各区画のビート信号に対して周波数解析を行って、各区画のビート信号の周波数を算出する周波数解析部、及び
前記周波数解析部で算出した各区画のビート信号の周波数に基づいて、前記区画より粗い区画で、前記送信信号の周波数変調特性が線形特性となるように、前記送信信号の周波数を変調させるための制御電圧特性を補正した後に、各区画で、前記送信信号の周波数変調特性が線形特性となるように、前記制御電圧特性を補正する補正部
として機能させるためのプログラム。 Computer
Of the beat signal output from the sensor that outputs the beat signal of the frequency-modulated transmission signal radiated toward the object and the reception signal reflected back from the object, the beat signal is modulated in one direction. A frequency analysis unit that divides a time series of the beat signal output from time to time into a plurality of sections, performs frequency analysis on the beat signal in each section, and calculates the frequency of the beat signal in each section; and the frequency analysis Control voltage characteristics for modulating the frequency of the transmission signal so that the frequency modulation characteristic of the transmission signal is a linear characteristic in a section coarser than the section based on the frequency of the beat signal of each section calculated in the section After the correction, the program for functioning as a correction unit for correcting the control voltage characteristic so that the frequency modulation characteristic of the transmission signal becomes a linear characteristic in each section. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016068059A JP6759660B2 (en) | 2016-03-30 | 2016-03-30 | Sensor compensator and program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016068059A JP6759660B2 (en) | 2016-03-30 | 2016-03-30 | Sensor compensator and program |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017181269A true JP2017181269A (en) | 2017-10-05 |
JP6759660B2 JP6759660B2 (en) | 2020-09-23 |
Family
ID=60006897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016068059A Active JP6759660B2 (en) | 2016-03-30 | 2016-03-30 | Sensor compensator and program |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6759660B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020110779A1 (en) * | 2018-11-28 | 2020-06-04 | 国立研究開発法人産業技術総合研究所 | Optical measurement device and measurement method |
WO2023026920A1 (en) * | 2021-08-26 | 2023-03-02 | パナソニックIpマネジメント株式会社 | Sensing device, processing device and data processing method |
WO2023176371A1 (en) * | 2022-03-15 | 2023-09-21 | 株式会社小糸製作所 | Measurement apparatus and measurement method |
WO2024090071A1 (en) * | 2022-10-25 | 2024-05-02 | ソニーセミコンダクタソリューションズ株式会社 | Ranging device, optical detection device, and signal processing device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08304532A (en) * | 1995-05-12 | 1996-11-22 | Mitsubishi Electric Corp | Fm-cw radar |
JPH11271428A (en) * | 1998-03-23 | 1999-10-08 | Toyota Motor Corp | Fm-cw radar apparatus |
JP2001174548A (en) * | 1999-12-16 | 2001-06-29 | Fujitsu Ltd | Frequency modulation characteristic measuring method and device of fm-cw radar |
JP2005164287A (en) * | 2003-11-28 | 2005-06-23 | Mitsubishi Electric Corp | Frequency modulation radar system |
WO2009028010A1 (en) * | 2007-08-28 | 2009-03-05 | Fujitsu Limited | Phase-locked oscillator and radar device including the same |
-
2016
- 2016-03-30 JP JP2016068059A patent/JP6759660B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08304532A (en) * | 1995-05-12 | 1996-11-22 | Mitsubishi Electric Corp | Fm-cw radar |
JPH11271428A (en) * | 1998-03-23 | 1999-10-08 | Toyota Motor Corp | Fm-cw radar apparatus |
JP2001174548A (en) * | 1999-12-16 | 2001-06-29 | Fujitsu Ltd | Frequency modulation characteristic measuring method and device of fm-cw radar |
JP2005164287A (en) * | 2003-11-28 | 2005-06-23 | Mitsubishi Electric Corp | Frequency modulation radar system |
WO2009028010A1 (en) * | 2007-08-28 | 2009-03-05 | Fujitsu Limited | Phase-locked oscillator and radar device including the same |
US20100213993A1 (en) * | 2007-08-28 | 2010-08-26 | Fujitsu Limited | Phase Locked Oscillator And Radar Unit Having The Same |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020110779A1 (en) * | 2018-11-28 | 2020-06-04 | 国立研究開発法人産業技術総合研究所 | Optical measurement device and measurement method |
JP2020085723A (en) * | 2018-11-28 | 2020-06-04 | 国立研究開発法人産業技術総合研究所 | Optical measurement device and measurement device |
JP7169642B2 (en) | 2018-11-28 | 2022-11-11 | 国立研究開発法人産業技術総合研究所 | Optical measuring device and measuring method |
WO2023026920A1 (en) * | 2021-08-26 | 2023-03-02 | パナソニックIpマネジメント株式会社 | Sensing device, processing device and data processing method |
WO2023176371A1 (en) * | 2022-03-15 | 2023-09-21 | 株式会社小糸製作所 | Measurement apparatus and measurement method |
WO2024090071A1 (en) * | 2022-10-25 | 2024-05-02 | ソニーセミコンダクタソリューションズ株式会社 | Ranging device, optical detection device, and signal processing device |
Also Published As
Publication number | Publication date |
---|---|
JP6759660B2 (en) | 2020-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6759660B2 (en) | Sensor compensator and program | |
EP3627184B1 (en) | Laser radar device and frequency modulation control method | |
JP7010304B2 (en) | Distance measuring device and control method | |
KR20030079690A (en) | Radar system | |
CN106341182A (en) | Microwave source phase noise measurement device based on optical carrier radio frequency link | |
US11333760B2 (en) | Frequency modulation for interference free optical time of flight system | |
US10310070B2 (en) | Radio altimeter | |
CN110806576B (en) | Microwave photon large-range automatic focusing radar imaging system and method | |
JP3719202B2 (en) | Radar characteristic adjustment method | |
CN102007713A (en) | Method and device for processing terahertz waves | |
JP7326730B2 (en) | distance speed measuring device | |
EP3961257A1 (en) | Lidar device using time delayed local oscillator light and operating method thereof | |
CN111289994B (en) | Frequency modulation continuous wave laser radar ranging method based on double heterodyne mixing | |
CN106559142B (en) | Light emitting, optical receiver apparatus and method, the generation method of millimeter wave and local vibration source | |
US20230417884A1 (en) | Apparatus and method for measuring distant to and/or velocity of physical object | |
JP6947294B2 (en) | Distance measuring device and control method | |
EP1458089A1 (en) | High-frequency oscillation apparatus, radio apparatus, and radar | |
CN116338704A (en) | Laser radar system, intelligent device and laser radar detection method | |
KR101604477B1 (en) | Millimeter-wave band detector and receive path error calibration method thereof | |
KR101986993B1 (en) | an imaging system using a method for switching a terahertz frequency | |
JP6879032B2 (en) | Laser radar device and laser radar optical integrated circuit | |
JP5966475B2 (en) | Radar apparatus and measuring method thereof | |
JP2004198306A (en) | Ranging device | |
JPH0755925A (en) | Distance correcting method for fmcw radar and the same radar | |
KR101766765B1 (en) | System for Linear Phase shift Type Reflectometer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190129 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200204 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200401 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200804 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200817 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6759660 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |