JP2017178665A - Porous ceramic, gas dispersion sheet and member for absorption - Google Patents
Porous ceramic, gas dispersion sheet and member for absorption Download PDFInfo
- Publication number
- JP2017178665A JP2017178665A JP2016067791A JP2016067791A JP2017178665A JP 2017178665 A JP2017178665 A JP 2017178665A JP 2016067791 A JP2016067791 A JP 2016067791A JP 2016067791 A JP2016067791 A JP 2016067791A JP 2017178665 A JP2017178665 A JP 2017178665A
- Authority
- JP
- Japan
- Prior art keywords
- porous ceramic
- main surface
- ceramic
- region
- roughness curve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 105
- 239000006185 dispersion Substances 0.000 title claims description 18
- 238000010521 absorption reaction Methods 0.000 title 1
- 238000005520 cutting process Methods 0.000 claims description 28
- 238000001179 sorption measurement Methods 0.000 claims description 4
- 239000002245 particle Substances 0.000 abstract description 29
- 238000005498 polishing Methods 0.000 description 18
- 238000005259 measurement Methods 0.000 description 7
- 239000006061 abrasive grain Substances 0.000 description 5
- 229910003460 diamond Inorganic materials 0.000 description 5
- 239000010432 diamond Substances 0.000 description 5
- 238000000635 electron micrograph Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 4
- 229910001018 Cast iron Inorganic materials 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 229910052878 cordierite Inorganic materials 0.000 description 3
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 3
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 3
- 238000009616 inductively coupled plasma Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910052863 mullite Inorganic materials 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000007088 Archimedes method Methods 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 101150029963 Rrm2 gene Proteins 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- 229910000754 Wrought iron Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910001174 tin-lead alloy Inorganic materials 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Landscapes
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
Abstract
Description
本開示は、多孔質セラミックスおよびガス分散板ならびに吸着用部材に関するものである。 The present disclosure relates to a porous ceramic, a gas dispersion plate, and an adsorbing member.
従来、ガス分散板には多孔質セラミックスと緻密質セラミックスとを接合した接合体が用いられている。このような接合体を得るための製造方法の例として、特許文献1では、平均粒径が10〜50[μm]であるセラミックス粗粒の成形体を加圧焼結させ、多孔質セラミックスを得る第1焼結工程と、平均粒径が0.1〜1[μm]であるセラミックス微粒の環状成形体に多孔質セラミックスを嵌め込み、環状成形体を緻密化させるとともに、環状の緻密質セラミックスと多孔質セラミックスとを直接接合させる第2焼結工程と、を含むセラミック接合体の製造方法が提案されている。 Conventionally, a joined body obtained by joining porous ceramics and dense ceramics is used for the gas dispersion plate. As an example of a manufacturing method for obtaining such a joined body, in Patent Document 1, a ceramic coarse-grained compact having an average particle size of 10 to 50 [μm] is pressure-sintered to obtain a porous ceramic. In the first sintering step, porous ceramics are fitted into an annular molded body of ceramic fine particles having an average particle size of 0.1 to 1 [μm] to densify the annular molded body, and the annular dense ceramic and porous There has been proposed a method for manufacturing a ceramic joined body including a second sintering step in which a ceramic material is directly joined.
特許文献1で提案された製造方法によって得られるガス分散板の多孔質セラミックスの主面は、焼き肌面であって表面の凹凸が大きい。この凹凸にはパーティクル等が引っ掛かり易く、多孔質セラミックスの主面にはパーティクルが付着し易かった。付着したパーティクルは、気体等が多孔質セラミックスに供給された場合などに、多孔質セラミックスの表面から離れ、処理装置内部を汚染しやすいという問題があった。上述したような問題は、真空チャック等の吸着用部材においても同様に発生していた。 The main surface of the porous ceramic of the gas dispersion plate obtained by the manufacturing method proposed in Patent Document 1 is a burnt skin surface, and the surface has large irregularities. Particles and the like were easily caught on the irregularities, and particles were easily attached to the main surface of the porous ceramic. The adhered particles are separated from the surface of the porous ceramic when the gas or the like is supplied to the porous ceramic, and there is a problem that the inside of the processing apparatus is easily contaminated. The above-described problem has occurred in the suction member such as a vacuum chuck as well.
本開示は、表面の少なくとも一部に、粗さ曲線における25%の負荷長さ率での切断レベルと、前記粗さ曲線における75%の負荷長さ率での切断レベルとの差を表す、前記粗さ曲線における切断レベル差(Rδc)の平均値が、1μm以下(但し、0μmを除く)である領域を有することを特徴とする多孔質セラミックスを提供する。 The present disclosure represents, on at least a portion of a surface, a difference between a cutting level at a load length rate of 25% in the roughness curve and a cutting level at a load length rate of 75% in the roughness curve. Provided is a porous ceramic characterized in that it has a region where the average value of the cutting level difference (Rδc) in the roughness curve is 1 μm or less (excluding 0 μm).
本開示の多孔質セラミックスは、パーティクル等の付着が抑制されている。 In the porous ceramic of the present disclosure, adhesion of particles and the like is suppressed.
以下、図面を参照して、本発明の実施形態について詳細に説明する。図1は、多孔質セラミックスの表面写真であり、(a)は本実施形態の多孔質セラミックス10の一例の表面の電子顕微鏡写真であり、(b)は多孔質セラミックス表面の比較例の電子顕微鏡写真である。図2(a)は図1(a)の一部の拡大写真であり、図2(b)は図1(b)の一部の拡大写真である。本実施形態の多孔質セラミックスは、例えば、ガス分散板および吸着用部材の一部として用いられる。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a surface photograph of a porous ceramic, (a) is an electron micrograph of the surface of an example of the porous ceramic 10 of the present embodiment, and (b) is an electron microscope of a comparative example of the surface of the porous ceramic. It is a photograph. 2A is an enlarged photograph of a part of FIG. 1A, and FIG. 2B is an enlarged photograph of a part of FIG. The porous ceramic of the present embodiment is used as, for example, a part of a gas dispersion plate and an adsorption member.
本実施形態の多孔質セラミックス10は、少なくとも表面の一部に、粗さ曲線における25%の負荷長さ率での切断レベルと、この粗さ曲線における75%の負荷長さ率での切断レベルとの差を表す、この粗さ曲線における切断レベル差(Rδc)の平均値が、1μm以下(但し、0μmを除く)である領域20を有する。領域20は、例えばセラミックス10の表面の、2.6mm×2mm四方の範囲をいう。より具体的には、本実施形態の多孔質セラミックスの表面における領域とは、電子顕微鏡またはレーザー顕微鏡を用い、倍率を100倍として観察した表面のうち、その表面の特徴を示す代表的な表面状態を示す2.6mm×2mm四方の領域をいう。 The porous ceramic 10 of the present embodiment has a cutting level at a load length rate of 25% in the roughness curve and a cutting level at a load length rate of 75% in the roughness curve on at least a part of the surface. In this roughness curve, the average value of the cutting level difference (Rδc) is 1 μm or less (excluding 0 μm). The region 20 refers to a 2.6 mm × 2 mm square range of the surface of the ceramic 10, for example. More specifically, the region on the surface of the porous ceramic of the present embodiment is a representative surface state indicating the characteristics of the surface among the surfaces observed using an electron microscope or a laser microscope at a magnification of 100 times. Is a 2.6 mm × 2 mm square area.
本明細書の切断レベル差とは、JIS B0601:2001で規定されている、粗さ曲線における切断レベル差(Rδc)に対応する。すなわち、本実施形態の多孔質セラミックスはより詳細には、少なくとも表面の一部に、粗さ曲線Rにおける25%の負荷長さ率Rmr1での、この粗さ曲線Rの切断レベルC(Rrm1)と、粗さ曲線Rにおける75%の負荷長さ率Rmr2での、この粗さ曲線Rの切断レベルC(Rrm2)との、粗さ曲線の高さ方向の差を表す、粗さ曲線の切断レベル差(Rδc)(以降、単に、切断レベル差(Rδc’)ともいう)が、1μm以下(但し、0μmを除く)である領域を有する。 The cutting level difference in this specification corresponds to the cutting level difference (Rδc) in the roughness curve defined in JIS B0601: 2001. That is, more specifically, the porous ceramic of this embodiment has a cutting level C (Rrm1) of the roughness curve R at a load length ratio Rmr1 of 25% in the roughness curve R at least on a part of the surface. And the cutting of the roughness curve representing the difference in the height direction of the roughness curve with the cutting level C (Rrm2) of this roughness curve R at a load length ratio Rmr2 of 75% in the roughness curve R It has a region where the level difference (Rδc) (hereinafter, also simply referred to as cutting level difference (Rδc ′)) is 1 μm or less (excluding 0 μm).
負荷長さ率Rmrとは、以下の式(1)に示されるように、JIS B0601:2001で規定されている粗さ曲線から、その平均線の方向に基準長さLだけ抜き取り、この抜き取り部分の粗さ曲線を山頂線に平行な切断レベルで切断したときに得られる切断長さη1,η2,・・・、ηnの和(負荷長さηp)の、基準長さLに対する比を百分率で表
した値であり、高さ方向およびこの高さ方向に垂直な方向の表面性状を示すものである。本実施形態での基準長さLは、例えば50μm〜250μmの範囲、好ましくは200μmに設定すればよい。
The load length ratio Rmr is, as shown in the following formula (1), extracted from the roughness curve defined in JIS B0601: 2001 by the reference length L in the direction of the average line, and this extracted portion Of the cutting lengths η 1 , η 2 ,..., Η n (load length ηp) obtained when cutting the roughness curve at a cutting level parallel to the peak line with respect to the reference length L Is a value expressed as a percentage, and indicates surface properties in the height direction and in a direction perpendicular to the height direction. The reference length L in the present embodiment may be set, for example, in the range of 50 μm to 250 μm, preferably 200 μm.
Rmr=ηp/L×100・・・(1)
ηp:η1+η2+・・・・+ηn
このような負荷長さ率Rmrに対応する、2種類の負荷長さ率それぞれに対応する切断レベルC(Rrmr)、およびこれら切断レベルC(Rrmr)同士の差を表す切断レベル差(Rδc)も、表面の高さ方向およびこの高さ方向に垂直な方向の表面性状に対応する。切断レベル差(Rδc’)が大きい場合、測定の対象とする表面の凹凸は大きいが、小さい場合には、その表面の凹凸は小さく比較的平坦といえる。
Rmr = ηp / L × 100 (1)
ηp: η 1 + η 2 +... + η n
The cutting level C (Rrmr) corresponding to each of the two types of load length ratios corresponding to the load length ratio Rmr, and the cutting level difference (Rδc) representing the difference between the cutting levels C (Rrmr) are also included. Corresponds to the surface texture in the height direction of the surface and in the direction perpendicular to the height direction. When the cutting level difference (Rδc ′) is large, the surface unevenness to be measured is large, but when it is small, the surface unevenness is small and can be said to be relatively flat.
本実施形態では、粗さ曲線における切断レベル差(Rδc)、二乗平均平方根粗さ(Rq)および最大山高さ(Rp)は、いずれもJIS B 0601:2001に準拠した測定モードを有するレーザー顕微鏡装置(例えば、(株)キーエンス社製(VK−9510))を用いて求めてもよい。レーザー顕微鏡VK−9510を用いる場合、例えば、測定モードをカラー超深度、測定倍率を1000倍、1箇所当りの測定範囲を280μm×210μm、測定ピッチを0.05μm、λs輪郭曲線フィルタを2.5μm、λc輪郭曲線フィルタを0.08mmとして測定範囲毎に上記各表面性状を示す値を求めればよい。 In the present embodiment, the cutting level difference (Rδc), the root mean square roughness (Rq), and the maximum peak height (Rp) in the roughness curve all have measurement modes in accordance with JIS B 0601: 2001. (For example, Keyence Co., Ltd. (VK-9510)) may be used. When using the laser microscope VK-9510, for example, the measurement mode is color depth, the measurement magnification is 1000 times, the measurement range per place is 280 μm × 210 μm, the measurement pitch is 0.05 μm, and the λs contour curve filter is 2.5 μm. Λc contour curve filter is set to 0.08 mm, and values indicating the above surface properties may be obtained for each measurement range.
セラミック多孔質体の表面の領域20での平均値とは、例えばセラミックス10の表面
の、2.6mm×2mm四方の領域20内でそれぞれ異なる10箇所を測定し、求められた10箇所の測定値の算術平均値のことをいう。10箇所の測定箇所は、レーザー顕微鏡による観察画像(倍率100倍での画像)において、セラミックス粒子間12に存在する空隙13(図1参照)を外した位置を選べばよい。
The average value in the region 20 on the surface of the ceramic porous body is, for example, 10 different measured values in the 2.6 mm × 2 mm square region 20 on the surface of the ceramic 10, and 10 measured values obtained. It means the arithmetic average value. The ten measurement locations may be selected by removing the voids 13 (see FIG. 1) existing between the ceramic particles 12 in the observation image (image at a magnification of 100) with a laser microscope.
図1(a)および図2(a)に電子顕微鏡写真で示した多孔質セラミックス10の表面は、切断レベル差(Rδc’)の平均値が1μm以下である領域20を有する。一方、図1(b)および図2(b)に電子顕微鏡写真で示した多孔質セラミックスの表面は、このような領域を有していない。 The surface of the porous ceramic 10 shown in the electron micrographs in FIGS. 1A and 2A has a region 20 in which the average value of the cutting level difference (Rδc ′) is 1 μm or less. On the other hand, the surface of the porous ceramics shown by the electron micrographs in FIGS. 1B and 2B does not have such a region.
図1(b)および図2(b)に示す写真では、多孔質セラミックスを構成するセラミックス粒子12の表面に細かな凹凸が表れていることが分かるが、図1(a)および図2(a)に示す写真では、多孔質セラミックス10を構成するセラミックス粒子12の表面は、このような細かな凹凸は存在せず平坦になっている。本実施形態の多孔質セラミックス10は、表面に露出したセラミックス粒子12の表面のほぼ全てに、切断レベル差(Rδc’)の平均値が1μm以下である領域20を有する。いいかえると、多孔質セラミックス10は、表面が全面的に領域20となっている。 In the photographs shown in FIG. 1 (b) and FIG. 2 (b), it can be seen that fine irregularities appear on the surface of the ceramic particles 12 constituting the porous ceramic, but FIG. 1 (a) and FIG. In the photograph shown in (2), the surface of the ceramic particles 12 constituting the porous ceramic 10 is flat without such fine irregularities. The porous ceramic 10 of the present embodiment has a region 20 in which the average value of the cutting level difference (Rδc ′) is 1 μm or less on almost the entire surface of the ceramic particles 12 exposed on the surface. In other words, the surface of the porous ceramic 10 is a region 20 entirely.
図1(a)および図2(a)に示す写真の多孔質セラミックス10は、これら領域20に対応する表面部分がいわゆる鏡面状になっている。このような鏡面状の表面を有する多孔質セラミックスは従来得られていなかった。図1(a)および図2(a)の多孔質セラミックス10における鏡面とは、いわゆる光沢をもった表面である。光沢をもった表面とは、自然光等の白色光に当てた際の反射の程度が大きく、輝きを呈する表面をいう。より具体的には、自然光を照射しても不要な散乱が少ない表面であり、可視光を散乱させるような、可視光の波長範囲の大きさの凹凸が少ない状態の表面である。 In the porous ceramics 10 in the photograph shown in FIGS. 1A and 2A, the surface portions corresponding to these regions 20 are so-called mirror-like. A porous ceramic having such a mirror-like surface has not been obtained conventionally. The mirror surface in the porous ceramics 10 in FIGS. 1A and 2A is a surface having a so-called gloss. A glossy surface refers to a surface that exhibits a high degree of reflection when exposed to white light such as natural light and exhibits a brightness. More specifically, it is a surface with little unnecessary scattering even when irradiated with natural light, and a surface with few irregularities in the wavelength range of visible light that scatters visible light.
図1(a)および図2(a)に示す表面のうち、切断レベル差(Rδc’)の平均値が1μm以下(但し、0μmを除く)である領域20は、散乱が特に少なく、反射によって生じる表面の光沢が強い。光沢が強いので、付着したゴミ等を比較的容易に判別することができる。併せて、上記領域20は比較的平坦であり、この領域20にはパーティクル等のゴミが付着し難い。このため、この領域20からパーティクル等が発生し難く、この領域20に載置された対象物等へのパーティクルの付着等も抑制されている。 Of the surfaces shown in FIGS. 1 (a) and 2 (a), the region 20 in which the average value of the cutting level difference (Rδc ′) is 1 μm or less (excluding 0 μm) is particularly low in scattering and is reflected by reflection. The resulting surface gloss is strong. Since the gloss is strong, attached dust and the like can be distinguished relatively easily. In addition, the region 20 is relatively flat, and particles such as particles are difficult to adhere to the region 20. For this reason, it is difficult for particles or the like to be generated from the region 20, and adhesion of particles to an object or the like placed in the region 20 is suppressed.
本実施形態の多孔質セラミックス10は、この領域20の粗さ曲線における二乗平均平方根粗さ(Rq)の平均値が2μm以下(但し、0μmを除く)である。このような多孔質セラミックス10は、表面の細かい凹凸における局部的な傾斜が緩やかであり、細かいパーティクルが凹凸に引っかかり難いので、パーティクルがより付着し難い。 In the porous ceramic 10 of the present embodiment, the average value of the root mean square roughness (Rq) in the roughness curve of the region 20 is 2 μm or less (excluding 0 μm). In such a porous ceramic 10, the local inclination in the fine unevenness of the surface is gentle, and the fine particles are not easily caught by the unevenness, so that the particles are more difficult to adhere.
また、本実施形態の多孔質セラミックス10は、この領域の粗さ曲線における最大山高さ(Rp)の平均値が8μm以下(但し、0μmを除く)である。このような多孔質セラミックス10は、表面の細かい凹凸が小さいため、パーティクルがさらに凹凸に引っかかり難いので、パーティクルがより付着し難い。 Further, in the porous ceramic 10 of the present embodiment, the average value of the maximum peak height (Rp) in the roughness curve of this region is 8 μm or less (however, excluding 0 μm). Since such porous ceramics 10 have small surface irregularities, the particles are less likely to be caught by the irregularities, and thus the particles are less likely to adhere.
なお、本実施形態の多孔質セラミックス10は、連続した三次元網目構造を有する気孔を備え、例えば、気孔率が25体積%以上50体積%以下である。この気孔率はアルキメデス法を用いて求めることができる。また、多孔質セラミックス10の平均気孔径は、20μm以上100μm以下であることが好適である。この平均気孔径は、JIS R 1655:2003に準拠した水銀圧入法により求めることができる。 The porous ceramic 10 of the present embodiment includes pores having a continuous three-dimensional network structure. For example, the porosity is 25 volume% or more and 50 volume% or less. This porosity can be determined using the Archimedes method. The average pore size of the porous ceramic 10 is preferably 20 μm or more and 100 μm or less. This average pore diameter can be determined by a mercury intrusion method according to JIS R 1655: 2003.
また、本実施形態の多孔質セラミックス10は、例えば、酸化アルミニウム、炭化珪素
、窒化珪素、コージェライトまたはムライトを主成分とするセラミックスである。
In addition, the porous ceramic 10 of the present embodiment is a ceramic mainly composed of aluminum oxide, silicon carbide, silicon nitride, cordierite, or mullite, for example.
本実施形態の多孔質セラミックス10および後述する緻密質セラミックスにおける主成分とは、それぞれのセラミックスを構成する成分の含有量の合計100質量%のうち、50質量%を超える成分をいう。 The main component in the porous ceramic 10 of the present embodiment and the dense ceramic described later refers to a component exceeding 50% by mass, out of a total of 100% by mass of the components constituting each ceramic.
それぞれのセラミックスを構成する成分は、まず、X線回折装置を用いて同定する。次に、ICP(Inductively Coupled Plasma)発光分光分析装置(ICP)または蛍光X線分析装置(XRF)を用いて金属元素の含有量を測定する。そして、金属元素の含有量はX線回折装置を用いて同定された化合物の成分に換算することにより求められ、主成分の含有量も求められる。 Components constituting each ceramic are first identified using an X-ray diffractometer. Next, the content of the metal element is measured using an ICP (Inductively Coupled Plasma) emission spectroscopic analyzer (ICP) or a fluorescent X-ray analyzer (XRF). And the content of a metal element is calculated | required by converting into the component of the compound identified using the X-ray-diffraction apparatus, and content of a main component is also calculated | required.
図3は、本実施形態の多孔質セラミックス10が、ガス分散板としてガス導入部材2に装着された状態の一例を示す、(a)は斜視図であり、(b)は断面図である。 3A and 3B show an example of a state in which the porous ceramic 10 of the present embodiment is mounted on the gas introduction member 2 as a gas dispersion plate, where FIG. 3A is a perspective view and FIG. 3B is a cross-sectional view.
本実施形態のガス分散板は、上述の多孔質セラミックス10を主成分とする板部材1b(ガス分散部1bともいう)を有し、板部材1bの一方主面1Aから他方主面1Bに向けてガスを供給することで、多孔質セラミックス10内でガスを分散させて他方主面1Bからガスを放出するガス分散板であって、他方主面1Bの少なくとも一部に領域20を備える。ガス分散板1は、緻密質セラミックスからなる枠状部1aを有し、枠状部1aの内側にガス分散部1bが配置されている。 The gas dispersion plate of the present embodiment has a plate member 1b (also referred to as a gas dispersion portion 1b) mainly composed of the above-described porous ceramic 10, and is directed from one main surface 1A to the other main surface 1B of the plate member 1b. By supplying the gas, the gas dispersion plate disperses the gas in the porous ceramic 10 and releases the gas from the other main surface 1B, and the region 20 is provided on at least a part of the other main surface 1B. The gas dispersion plate 1 has a frame-like portion 1a made of dense ceramic, and the gas dispersion portion 1b is disposed inside the frame-like portion 1a.
ガス導入部材2は、緻密質セラミックスからなり、上方に向って開口する凹部2aと、下面から凹部2aの底面まで貫通するガス導入孔2bとを備えてなる。ガス分散板1は、凹部2a内に収容され、接合あるいは嵌合によって固定されている。枠状部1aおよびガス導入部材2を構成する緻密質セラミックスは、例えば、酸化アルミニウム、炭化珪素、窒化珪素、コージェライトまたはムライトを主成分とする、相対密度が98体積%以上のセラミックスである。 The gas introduction member 2 is made of dense ceramics, and includes a recess 2a that opens upward, and a gas introduction hole 2b that penetrates from the lower surface to the bottom surface of the recess 2a. The gas dispersion plate 1 is accommodated in the recess 2a and is fixed by joining or fitting. The dense ceramic constituting the frame-like portion 1a and the gas introduction member 2 is, for example, a ceramic having a relative density of 98% by volume or more, mainly composed of aluminum oxide, silicon carbide, silicon nitride, cordierite, or mullite.
ガス分散板1がガス導入部材2に配置されて構成された、図3に示すガス導入装置では、ガス導入孔2bを通じて板部材1bの一方主面1Aから他方主面1Bに向けてガスを供給する。供給されたガスは、多孔質セラミックス10内で分散されて他方主面1Bから放出される。ガス分散板1は、他方主面1Bに、切断レベル差(Rδc)の平均値が1μm以下(但し、0μmを除く)である領域20を有するので、他方主面1Bへのパーティクルの付着が少なく、多孔質セラミックス10を通過したガスによるパーティクルの巻き上げも少ない。このため、図3に示すガス導入装置では、他方主面1Bの周辺環境の汚染が抑制されている。 In the gas introduction device shown in FIG. 3 in which the gas dispersion plate 1 is arranged on the gas introduction member 2, gas is supplied from one main surface 1A to the other main surface 1B of the plate member 1b through the gas introduction hole 2b. To do. The supplied gas is dispersed in the porous ceramic 10 and released from the other main surface 1B. Since the gas dispersion plate 1 has the region 20 in which the average value of the cutting level difference (Rδc) is 1 μm or less (excluding 0 μm) on the other main surface 1B, there is little adhesion of particles to the other main surface 1B. Further, there is little rolling up of particles by the gas that has passed through the porous ceramics 10. For this reason, in the gas introducing device shown in FIG. 3, contamination of the surrounding environment of the other main surface 1B is suppressed.
図4は、本実施形態の吸着用部材の一例である真空チャックを示す、(a)は斜視図であり、(b)は断面図である。 4A and 4B show a vacuum chuck which is an example of a suction member according to the present embodiment. FIG. 4A is a perspective view, and FIG. 4B is a cross-sectional view.
図4に示す真空チャック5は、多孔質セラミックス10を主成分とする板部材4(吸着部4ともいう)を有し、板部材4の一方主面4Aの側から多孔質セラミックス10内の気体を吸引して、他方主面4Bに配置された対象物を吸着する吸着用部材であって、他方主面4Bの少なくとも一部に領域20を備える。 A vacuum chuck 5 shown in FIG. 4 includes a plate member 4 (also referred to as an adsorbing portion 4) mainly composed of a porous ceramic 10, and gas in the porous ceramic 10 from the one main surface 4A side of the plate member 4. Is a sucking member that sucks the object disposed on the other main surface 4B, and includes a region 20 on at least a part of the other main surface 4B.
真空チャック5は、緻密質セラミックスからなる凹部3aを備える。吸着部4は、凹部3a内に収容されている。この吸着部4は、他方主面4Bが、例えば半導体ウエハ等の被吸着物(不図示)を吸着する吸着面となっている。また、支持部3は吸引路3bを備えている。支持部3を構成する緻密質セラミックスは、例えば、酸化アルミニウム、炭化珪素
、窒化珪素、コージェライトまたはムライトを主成分とする、相対密度が98体積%以上のセラミックスである。
The vacuum chuck 5 includes a recess 3a made of dense ceramic. The adsorption part 4 is accommodated in the recess 3a. In the suction portion 4, the other main surface 4 </ b> B is a suction surface that sucks an object (not shown) such as a semiconductor wafer. Moreover, the support part 3 is provided with the suction path 3b. The dense ceramic constituting the support portion 3 is, for example, a ceramic having a relative density of 98% by volume or more, mainly composed of aluminum oxide, silicon carbide, silicon nitride, cordierite, or mullite.
図4に示す真空チャック5では、吸引路3bを通じて板部材4の一方主面4Aの側から多孔質セラミックス10内の気体を吸引して、他方主面4Bに配置された対象物を吸着する。載置された対象物は、他方主面4Bに比較的強い力で吸い付けられる。他方主面4Bにパーティクル等が付着している場合は、このパーティクルが対象物に付着し易い。真空チャック10の板部材4は、吸着面である他方主面4Bに、切断レベル差(Rδc)の平均値が1μm以下(但し、0μmを除く)である領域20を有するので、他方主面4Bから対象物へのパーティクルの付着が少ない。このため、図4に示す真空チャック10では、吸着する対象物の汚染が抑制されている。また板部材4は、表面の細かい凹凸における局部的な傾斜が緩やかであり、かつ表面の細かい凹凸の大きさが小さいため、吸着した対象物に与える局所的な外力が抑制されており、対象物に生じる傷や欠けが少ない。 In the vacuum chuck 5 shown in FIG. 4, the gas in the porous ceramics 10 is sucked from the one main surface 4A side of the plate member 4 through the suction path 3b to adsorb the object arranged on the other main surface 4B. The placed object is sucked to the other main surface 4B with a relatively strong force. When particles or the like adhere to the other main surface 4B, the particles easily adhere to the object. Since the plate member 4 of the vacuum chuck 10 has the region 20 in which the average value of the cutting level difference (Rδc) is 1 μm or less (excluding 0 μm) on the other main surface 4B which is the suction surface, the other main surface 4B. There is little adhesion of particles to the object. For this reason, in the vacuum chuck 10 shown in FIG. 4, the contamination of the object to be adsorbed is suppressed. Further, since the plate member 4 has a gentle local inclination in the fine irregularities on the surface and the small size of the fine irregularities on the surface, the local external force applied to the adsorbed object is suppressed. There are few scratches and chips.
次に、本実施形態の多孔質セラミックスの製造方法の一例について説明する。まず、主面が焼き肌面である円板形状の多孔質セラミックスと、多孔質セラミックスの周囲を囲む環状の緻密質セラミックスとを準備する。 Next, an example of the manufacturing method of the porous ceramic of this embodiment is demonstrated. First, a disk-shaped porous ceramic whose main surface is a burnt skin surface and an annular dense ceramic surrounding the porous ceramic are prepared.
環状の緻密質セラミックスは、後述する研磨で、多孔質セラミックスの研磨速度を制御するために用いられるものであり、研磨後に緻密質セラミックスが不要となる場合には、円筒研削盤等で緻密質セラミックスを削除すればよい。 The annular dense ceramic is used to control the polishing rate of the porous ceramic in the polishing described later. If the dense ceramic is not required after polishing, the dense ceramic is removed with a cylindrical grinder or the like. Should be deleted.
次に、多孔質セラミックスと緻密質セラミックスとを組み合わせて円板状部材を形成し、この円板状部材を研磨治具上に配置して接着して固定する。この円板状部材では、多孔質セラミックスの外周面と、環状の緻密質セラミックスの内周面とが当接している。 Next, a disk-shaped member is formed by combining porous ceramics and dense ceramics, and the disk-shaped member is placed on a polishing jig and bonded and fixed. In this disk-shaped member, the outer peripheral surface of the porous ceramic and the inner peripheral surface of the annular dense ceramic are in contact.
この状態で、まず平均粒径が8μm以上12μm以下のダイヤモンド砥粒と、鍛鉄または鋳鉄製の研磨定盤とを用いて第1の研磨を行う。次に、平均粒径が2μm以上6μm以下のダイヤモンド砥粒と、銅製または鋳鉄製の研磨定盤とを用いて第2の研磨を行う。
第1の研磨および第2の研磨に用いられる研磨定盤は、特に、球状黒鉛含有鋳鉄製であることが好適である。
In this state, first, first polishing is performed using diamond abrasive grains having an average particle diameter of 8 μm or more and 12 μm or less and a polishing surface plate made of wrought iron or cast iron. Next, second polishing is performed using diamond abrasive grains having an average particle diameter of 2 μm or more and 6 μm or less and a polishing surface plate made of copper or cast iron.
The polishing surface plate used for the first polishing and the second polishing is particularly preferably made of spheroidal graphite-containing cast iron.
最後に、平均粒径が1μm以上3μm以下のダイヤモンド砥粒と、錫製または錫鉛合金製の研磨定盤を用いて第3の研磨を行った後、研磨治具から多孔質セラミックスを取り外すことによって、本実施形態の多孔質セラミックスを得ることができる。 Finally, after performing the third polishing using diamond abrasive grains having an average particle diameter of 1 μm or more and 3 μm or less and a polishing surface plate made of tin or tin-lead alloy, the porous ceramic is removed from the polishing jig. Thus, the porous ceramic of the present embodiment can be obtained.
ここで、領域の粗さ曲線における二乗平均平方根粗さ(Rq)の平均値が2μm以下(但し、0μmを除く)である多孔質セラミックスを得るには、平均粒径が1μm以上3μm以下のダイヤモンド砥粒と、錫製の研磨定盤を用いればよい。 Here, in order to obtain porous ceramics having an average value of root mean square roughness (Rq) of 2 μm or less (excluding 0 μm) in the roughness curve of the region, diamond having an average particle diameter of 1 μm or more and 3 μm or less Abrasive grains and a polishing surface plate made of tin may be used.
また、領域の粗さ曲線における最大山高さ(Rp)の平均値が8μm以下(但し、0μmを除く)である多孔質セラミックスを得るには、平均粒径が1μm以上2μm以下のダイヤモンド砥粒と、錫製の研磨定盤を用いればよい。 Further, in order to obtain a porous ceramic having an average value of the maximum peak height (Rp) in the region roughness curve of 8 μm or less (excluding 0 μm), diamond abrasive grains having an average particle size of 1 μm to 2 μm and A polishing plate made of tin may be used.
次に、本実施形態のガス分散板の製造方法の一例について説明する。 Next, an example of the manufacturing method of the gas dispersion plate of this embodiment is demonstrated.
まず、主面が焼き肌面である円板形状の多孔質セラミックスと、環状(枠状)の緻密質セラミックスの生成形体との組立体(前駆体)を準備する。この組立体を所定温度および所定時間だけ昇温して緻密質セラミックスの生成形体を焼成し、多孔質セラミックスの外周面と緻密質セラミックスの内周面とが直接接合したセラミック接合体を形成する。 First, an assembly (precursor) of a disk-shaped porous ceramic whose main surface is a baked skin surface and an annular (frame-shaped) dense ceramic produced shape is prepared. The assembly is heated for a predetermined temperature and for a predetermined time, and the formed body of the dense ceramic is fired to form a ceramic bonded body in which the outer peripheral surface of the porous ceramic and the inner peripheral surface of the dense ceramic are directly bonded.
このセラミック接合体を、緻密質セラミックスからなり、上方に向って開口する凹部2aを備えるガス導入部材2の、凹部2a内に配置して固定する。そして、セラミック接合体とガス導入部材2との組立体を研磨治具に固定して、上述した研磨方法によって研磨することによって、ガス導入部材に収容された、本実施形態のガス分散板を得ることができる。 This ceramic joined body is made of dense ceramics and is disposed and fixed in the recess 2a of the gas introduction member 2 provided with the recess 2a opening upward. Then, the assembly of the ceramic joined body and the gas introduction member 2 is fixed to a polishing jig and polished by the above-described polishing method, thereby obtaining the gas dispersion plate of the present embodiment accommodated in the gas introduction member. be able to.
本発明は前述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良、組合せ等が可能である。 The present invention is not limited to the above-described embodiments, and various modifications, improvements, combinations, and the like can be made without departing from the scope of the present invention.
10 多孔質セラミックス
12 セラミックス粒子
13 空隙
20 領域
10 porous ceramics 12 ceramic particles 13 void 20 region
Claims (5)
粗さ曲線における25%の負荷長さ率での切断レベルと、前記粗さ曲線における75%の負荷長さ率での切断レベルとの差を表す、前記粗さ曲線における切断レベル差(Rδc)の平均値が、1μm以下(但し、0μmを除く)である領域を有することを特徴とする多孔質セラミックス。 On at least part of the surface,
Cutting level difference (Rδc) in the roughness curve representing the difference between the cutting level at a load length rate of 25% in the roughness curve and the cutting level at a load length rate of 75% in the roughness curve A porous ceramic characterized in that it has a region where the average value of is 1 μm or less (excluding 0 μm).
前記板部材の一方主面から他方主面に向けてガスを供給することで、前記多孔質セラミックス内でガスを分散させて前記他方主面から前記ガス放出するガス分散板であって、
前記他方主面の少なくとも一部に前記領域を備えることを特徴とするガス分散板。 A plate member mainly comprising the porous ceramic according to any one of claims 1 to 3,
A gas dispersion plate that disperses gas in the porous ceramic and discharges the gas from the other main surface by supplying gas from the one main surface to the other main surface of the plate member,
A gas dispersion plate comprising the region in at least a part of the other main surface.
前記板部材の一方主面の側から前記多孔質セラミックス内の気体を吸引して、前記他方主面に配置された対象物を吸着する吸着用部材であって
前記他方主面の少なくとも一部に前記領域を備えることを特徴とする吸着用部材。 A plate member mainly comprising the porous ceramic according to any one of claims 1 to 3,
A suction member that sucks the gas in the porous ceramic from the one main surface side of the plate member and adsorbs an object disposed on the other main surface, and is attached to at least a part of the other main surface An adsorption member comprising the region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016067791A JP6708460B2 (en) | 2016-03-30 | 2016-03-30 | Method for manufacturing joined body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016067791A JP6708460B2 (en) | 2016-03-30 | 2016-03-30 | Method for manufacturing joined body |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017178665A true JP2017178665A (en) | 2017-10-05 |
JP6708460B2 JP6708460B2 (en) | 2020-06-10 |
Family
ID=60003954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016067791A Expired - Fee Related JP6708460B2 (en) | 2016-03-30 | 2016-03-30 | Method for manufacturing joined body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6708460B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110098143A (en) * | 2018-01-31 | 2019-08-06 | 上海微电子装备(集团)股份有限公司 | A kind of chip adsorbent equipment and chip bonding system |
JP2020094257A (en) * | 2018-12-14 | 2020-06-18 | 京セラ株式会社 | Conductive member for electrochemical polishing and sliding ring |
WO2020158730A1 (en) * | 2019-01-29 | 2020-08-06 | 京セラ株式会社 | Ceramic nozzle and winding machine |
JP2020147489A (en) * | 2019-03-08 | 2020-09-17 | キヤノン株式会社 | Article including made of inorganic compound, and method of manufacturing article made of inorganic compound |
WO2021220943A1 (en) * | 2020-04-27 | 2021-11-04 | 京セラ株式会社 | Air-permeable member, member for semiconductor production device, plug, and adsorption member |
CN114126784A (en) * | 2019-07-25 | 2022-03-01 | 京瓷株式会社 | Forming die and manufacturing method thereof |
WO2022075093A1 (en) * | 2020-10-07 | 2022-04-14 | 京セラ株式会社 | Clamping tool and washing device |
JPWO2022092022A1 (en) * | 2020-10-28 | 2022-05-05 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0292879A (en) * | 1988-09-30 | 1990-04-03 | Toshiba Ceramics Co Ltd | Ceramic porous body having smooth surface and production thereof |
JPH04202064A (en) * | 1990-11-29 | 1992-07-22 | Kyocera Corp | Ceramic member-metal member joined body |
JP2011151306A (en) * | 2010-01-25 | 2011-08-04 | Kyocera Corp | Vacuum suction nozzle |
JP2012232863A (en) * | 2011-04-28 | 2012-11-29 | Kyocera Corp | Silicon carbide sintered body, electrostatic adsorbing member and member for semiconductor producing device constituted of the silicon carbide sintered body |
JP2014148435A (en) * | 2013-01-31 | 2014-08-21 | Tokyo Yogyo Co Ltd | Burning tool |
JP2014148436A (en) * | 2013-01-31 | 2014-08-21 | Tokyo Yogyo Co Ltd | Method for manufacturing burned tool |
JP2015187042A (en) * | 2012-08-13 | 2015-10-29 | 旭硝子株式会社 | Glass substrate and method for manufacturing glass substrate |
JP2017183470A (en) * | 2016-03-30 | 2017-10-05 | 京セラ株式会社 | Placement member |
-
2016
- 2016-03-30 JP JP2016067791A patent/JP6708460B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0292879A (en) * | 1988-09-30 | 1990-04-03 | Toshiba Ceramics Co Ltd | Ceramic porous body having smooth surface and production thereof |
JPH04202064A (en) * | 1990-11-29 | 1992-07-22 | Kyocera Corp | Ceramic member-metal member joined body |
JP2011151306A (en) * | 2010-01-25 | 2011-08-04 | Kyocera Corp | Vacuum suction nozzle |
JP2012232863A (en) * | 2011-04-28 | 2012-11-29 | Kyocera Corp | Silicon carbide sintered body, electrostatic adsorbing member and member for semiconductor producing device constituted of the silicon carbide sintered body |
JP2015187042A (en) * | 2012-08-13 | 2015-10-29 | 旭硝子株式会社 | Glass substrate and method for manufacturing glass substrate |
JP2014148435A (en) * | 2013-01-31 | 2014-08-21 | Tokyo Yogyo Co Ltd | Burning tool |
JP2014148436A (en) * | 2013-01-31 | 2014-08-21 | Tokyo Yogyo Co Ltd | Method for manufacturing burned tool |
JP2017183470A (en) * | 2016-03-30 | 2017-10-05 | 京セラ株式会社 | Placement member |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110098143B (en) * | 2018-01-31 | 2021-06-04 | 上海微电子装备(集团)股份有限公司 | Chip adsorption device and chip bonding system |
CN110098143A (en) * | 2018-01-31 | 2019-08-06 | 上海微电子装备(集团)股份有限公司 | A kind of chip adsorbent equipment and chip bonding system |
JP7138035B2 (en) | 2018-12-14 | 2022-09-15 | 京セラ株式会社 | Conductive member for electropolishing and sliding ring |
JP2020094257A (en) * | 2018-12-14 | 2020-06-18 | 京セラ株式会社 | Conductive member for electrochemical polishing and sliding ring |
WO2020158730A1 (en) * | 2019-01-29 | 2020-08-06 | 京セラ株式会社 | Ceramic nozzle and winding machine |
JPWO2020158730A1 (en) * | 2019-01-29 | 2021-11-18 | 京セラ株式会社 | Ceramic nozzle and winding machine |
JP7158507B2 (en) | 2019-01-29 | 2022-10-21 | 京セラ株式会社 | ceramic nozzle and winding machine |
JP7575876B2 (en) | 2019-03-08 | 2024-10-30 | キヤノン株式会社 | Articles made of inorganic compounds and methods for manufacturing articles made of inorganic compounds |
JP2020147489A (en) * | 2019-03-08 | 2020-09-17 | キヤノン株式会社 | Article including made of inorganic compound, and method of manufacturing article made of inorganic compound |
CN114126784A (en) * | 2019-07-25 | 2022-03-01 | 京瓷株式会社 | Forming die and manufacturing method thereof |
CN114126784B (en) * | 2019-07-25 | 2023-09-19 | 京瓷株式会社 | Forming die and manufacturing method thereof |
JPWO2021220943A1 (en) * | 2020-04-27 | 2021-11-04 | ||
JP7397974B2 (en) | 2020-04-27 | 2023-12-13 | 京セラ株式会社 | Air permeable parts, semiconductor manufacturing equipment parts, plugs and adsorption parts |
WO2021220943A1 (en) * | 2020-04-27 | 2021-11-04 | 京セラ株式会社 | Air-permeable member, member for semiconductor production device, plug, and adsorption member |
WO2022075093A1 (en) * | 2020-10-07 | 2022-04-14 | 京セラ株式会社 | Clamping tool and washing device |
WO2022092022A1 (en) * | 2020-10-28 | 2022-05-05 | 京セラ株式会社 | Gap pin |
JPWO2022092022A1 (en) * | 2020-10-28 | 2022-05-05 | ||
JP7398011B2 (en) | 2020-10-28 | 2023-12-13 | 京セラ株式会社 | gap pin |
Also Published As
Publication number | Publication date |
---|---|
JP6708460B2 (en) | 2020-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2017178665A (en) | Porous ceramic, gas dispersion sheet and member for absorption | |
JP6592188B2 (en) | Adsorption member | |
JP4666656B2 (en) | Vacuum adsorption apparatus, method for producing the same, and method for adsorbing an object to be adsorbed | |
JP4741375B2 (en) | Components for vacuum suction of semiconductor wafers | |
KR102188440B1 (en) | Handle substrate for composite substrate for semiconductor | |
JP2008132562A (en) | Vacuum chuck and vacuum suction device using it | |
JP5597524B2 (en) | Mounting member and manufacturing method thereof | |
JP2012178447A (en) | Adsorption member | |
JP2017200872A (en) | Porous ceramic body, member for adsorption and method for producing porous ceramic body | |
JP5697813B1 (en) | Handle substrate for composite substrates for semiconductors | |
JP2014103359A (en) | Vacuum chuck | |
JP2017095339A (en) | Alumina particle, alumina powder, alumina porous body and adsorption member | |
JP2004283936A (en) | Vacuum sucking device | |
JP2005205507A (en) | Vacuum-sucking device and its manufacturing method | |
KR101282839B1 (en) | A porous chuck of improved vacuum suction power | |
JP2020196662A (en) | Mounting member, inspection device and processing device | |
JP2009033001A (en) | Vacuum chuck and vacuum sucker and working device using the same | |
JP7111566B2 (en) | Pellicle frame and pellicle | |
JP4704971B2 (en) | Vacuum adsorption device | |
JP2009107880A (en) | Joined body, adsorption member, adsorption device, and working apparatus | |
JP6179030B2 (en) | Vacuum adsorption apparatus and method for manufacturing the same | |
JP2008006529A (en) | Vacuum chuck and vacuum suction device using the same | |
JP2009147384A (en) | Vacuum suction device and method of manufacturing the same | |
JP7538635B2 (en) | Suction pad | |
JP2015065356A (en) | Suction pad |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181025 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190821 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190827 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191023 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200107 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200306 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200421 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200521 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6708460 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |