JP2017164903A - Glass laminate, support substrate with inorganic layer, method for producing electronic device, and method for producing support substrate with inorganic layer - Google Patents
Glass laminate, support substrate with inorganic layer, method for producing electronic device, and method for producing support substrate with inorganic layer Download PDFInfo
- Publication number
- JP2017164903A JP2017164903A JP2015090550A JP2015090550A JP2017164903A JP 2017164903 A JP2017164903 A JP 2017164903A JP 2015090550 A JP2015090550 A JP 2015090550A JP 2015090550 A JP2015090550 A JP 2015090550A JP 2017164903 A JP2017164903 A JP 2017164903A
- Authority
- JP
- Japan
- Prior art keywords
- metal element
- inorganic layer
- glass
- support substrate
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Laminated Bodies (AREA)
- Joining Of Glass To Other Materials (AREA)
- Liquid Crystal (AREA)
Abstract
Description
本発明は、ガラス基板を用いて液晶表示体、有機EL表示体などの電子デバイスを製造する際に使用されるガラス基板と支持基板との積層体であるガラス積層体に関する。 The present invention relates to a glass laminate that is a laminate of a glass substrate and a support substrate that is used when an electronic device such as a liquid crystal display or an organic EL display is produced using the glass substrate.
近年、太陽電池(PV)、液晶パネル(LCD)、有機ELパネル(OLED)などの電子デバイス(電子機器)の薄型化、軽量化が進行しており、これらの電子デバイスに用いるガラス基板の薄板化が進行している。一方、薄板化によりガラス基板の強度が不足すると、電子デバイスの製造工程において、ガラス基板のハンドリング性が低下する。 In recent years, electronic devices (electronic devices) such as solar cells (PV), liquid crystal panels (LCD), and organic EL panels (OLED) have been made thinner and lighter, and a thin glass substrate used for these electronic devices. Progress is being made. On the other hand, when the strength of the glass substrate is insufficient due to the thin plate, the handling property of the glass substrate is deteriorated in the manufacturing process of the electronic device.
そこで、最近では、上記の課題に対応するため、無機薄膜付き支持ガラスの無機薄膜上にガラス基板を積層した積層体を用意し、積層体のガラス基板上に素子の製造処理を施した後、積層体からガラス基板を分離する方法が提案されている(特許文献1)。この方法によれば、ガラス基板の取扱い性を向上させ、適切な位置決めを可能とすると共に、所定の処理後に素子が配置されたガラス基板を積層体から容易に剥離することができる旨が開示されている。 Therefore, recently, in order to cope with the above-mentioned problem, after preparing a laminate in which a glass substrate is laminated on an inorganic thin film of a supporting glass with an inorganic thin film, and after performing a manufacturing process of an element on the glass substrate of the laminate, A method for separating a glass substrate from a laminate has been proposed (Patent Document 1). According to this method, it is disclosed that the handleability of the glass substrate can be improved, proper positioning can be performed, and the glass substrate on which the elements are arranged can be easily peeled off from the laminate after a predetermined process. ing.
一方、近年、電子デバイスの高性能化の要求に伴い、電子デバイスの製造の際により高温条件下(例えば、400℃以上)での処理の実施が望まれている。
本発明者らは、特許文献1で具体的に記載される金属酸化物(例えば、インジウムスズオキサイド)で構成された無機薄膜を備える無機薄膜付き支持ガラスの無機薄膜上にガラス基板が配置された積層体を用いて、高温条件下(例えば、550℃、10分間)での加熱処理を施したところ、加熱処理後に積層体からガラス基板を剥離することができなかった。このような態様では、高温条件下でのデバイス製造後に、素子が形成されたガラス基板を積層体から剥離することができないという問題が生じる。
On the other hand, in recent years, with the demand for higher performance of electronic devices, it is desired to carry out processing under high temperature conditions (for example, 400 ° C. or higher) when manufacturing electronic devices.
The present inventors have arranged a glass substrate on an inorganic thin film of a supporting glass with an inorganic thin film comprising an inorganic thin film composed of a metal oxide (for example, indium tin oxide) specifically described in Patent Document 1. When the laminated body was subjected to heat treatment under high temperature conditions (for example, 550 ° C., 10 minutes), the glass substrate could not be peeled from the laminated body after the heat treatment. In such an embodiment, there arises a problem that the glass substrate on which the element is formed cannot be peeled off from the laminated body after the device is manufactured under a high temperature condition.
本発明は、上記課題に鑑みてなされたものであって、ガラス基板を容易に剥離することができるガラス積層体、該ガラス積層体の製造に用いられる無機層付き支持基板、該ガラス積層体を用いた電子デバイスの製造方法、および、無機層付き支持基板の製造方法を提供することを目的とする。 This invention is made | formed in view of the said subject, Comprising: The glass laminated body which can peel a glass substrate easily, the support substrate with an inorganic layer used for manufacture of this glass laminated body, and this glass laminated body It is an object of the present invention to provide a method for producing an electronic device used and a method for producing a support substrate with an inorganic layer.
本発明者らは、上記課題を解決するために鋭意検討を行った結果、ガラス基板上に所定の構成の無機層を形成することにより上記課題を解決できることを見出し、本発明を完成するに至った。
すなわち、本発明の第1の態様は、支持基板および支持基板上に配置された無機層を備える無機層付き支持基板と、無機層上に剥離可能に積層されたガラス基板とを備え、無機層が、2種以上の金属元素を含む金属酸化物層であり、金属元素が、金属元素のうち電気陰性度が最も大きい第1金属元素と、第1金属元素よりも電気陰性度が小さく、その値が1.65以下である第2金属元素とを含むガラス積層体である。
第1の態様において、第1金属元素が3価の金属元素であることが好ましい。
第1の態様において、第1金属元素が、In、Al、Bi、Fe、Mn、Cr、Co、Sc、Y、および、Gaからなる群から選択される少なくとも1つを含むことが好ましい。
第1の態様において、第1金属元素が、Inを含むことが好ましい。
第1の態様において、第2金属元素が、Ce、Zr、Mn、Ta、Hf、Be、Nb、La、Sc、Y、Ti、および、Ce以外のLからなる群から選択される少なくとも1つを含むことが好ましい。なお、Lはランタノイドを表す。
第1の態様において、第2金属元素が、Ce、または、Zrを含むことが好ましい。
第1の態様において、無機層の平均厚さが、10〜100nmであることが好ましい。
本発明の第2の態様は、支持基板、無機層、脆弱層、および、ガラス基板をこの順で有し、無機層には、2種以上の金属元素(ただし、ホウ素元素を除く)が含まれ、金属元素には、金属元素のうち電気陰性度が最も大きい金属元素Aと、金属元素のうち電気陰性度が最も小さい金属元素Bとが少なくとも含まれ、脆弱層には、金属元素Aおよび金属元素Bが含まれ、無機層中における金属元素Bと金属元素Aとの原子比X(金属元素B/金属元素A)に対する、脆弱層中における金属元素Bと金属元素Aとの原子比Y(金属元素B/金属元素A)の比(原子比Y/原子比X)が1.05超である、ガラス積層体である。
第2の態様において、ガラス基板を剥離する際の剥離強度が2.0N/25mm以下であることが好ましい。
第2の態様において、金属元素Aが、In、Al、Bi、Fe、Mn、Cr、Co、Sc、Yおよび、Gaからなる群から選択される少なくとも1つを含み、無機層には、第1元素の酸化物が含まれることが好ましい。
第2の態様において、金属元素AがInを含み、無機層にはIn2O3が含まれることが好ましい。
第2の態様において、金属元素Bが、電気陰性度が1.65以下である金属元素(ただし、周期律表第1族および第2族の金属元素を除く)を含むことが好ましい。
第2の態様において、金属元素Bが、Ce、Zr、Mn、Ta、Hf、Nb、La、V、Ti、および、Ce以外のLからなる群から選択される少なくとも1つを含むことが好ましい。
第2の態様において、金属元素Bが、Ce、または、Zrを含むことが好ましい。
第1の態様または第2の態様において、支持基板がガラス基板であることが好ましい。
本発明の第3の態様は、第1の態様のガラス積層体中のガラス基板の表面上に電子デバイス用部材を形成し、電子デバイス用部材付き積層体を得る部材形成工程と、電子デバイス用部材付き積層体から無機層付き支持基板を分離し、ガラス基板と電子デバイス用部材とを有する電子デバイスを得る分離工程と、を備える電子デバイスの製造方法である。
本発明の第4の態様は、支持基板と、支持基板上に配置された無機層とを備え、無機層が、2種以上の金属元素を含む金属酸化物層であり、金属元素が、金属元素のうち電気陰性度が最も大きい第1金属元素と、第1金属元素よりも電気陰性度が小さく、その値が1.65以下である第2金属元素とを含み、無機層上にガラス基板を積層してガラス積層体を製造するために使用される、無機層付き支持基板である。
第4の態様において、第1金属元素が、In、Al、Bi、Fe、Mn、Cr、Co、Sc、Y、および、Gaからなる群から選択される少なくとも1つを含むことが好ましい。
第4の態様において、第1金属元素が、Inを含むことが好ましい。
第4の態様において、第2金属元素が、Ce、Zr、Mn、Ta、Hf、Be、Nb、La、Sc、Y、V、Ti、および、Ce以外のLからなる群から選択される少なくとも1つを含むことが好ましい。
第4の態様において、第2金属元素が、Ce、または、Zrを含むことが好ましい。
本発明の第5の態様は、支持基板および支持基板上に配置された無機層を備える無機層付き支持基板とガラス基板とを、無機層とガラス基板とが接触するように積層して、ガラス積層体を製造する工程と、ガラス積層体を400℃以上の温度で加熱する工程と、加熱が施されたガラス積層体から無機層付き支持基板を剥離して回収する工程と、回収された無機層付き支持基板の無機層表面に表面処理を施す工程と、を有し、無機層が2種以上の金属元素を含む金属酸化物層であり、金属元素が、金属元素のうち電気陰性度が最も大きい第1金属元素と、第1金属元素よりも電気陰性度が小さく、その値が1.65以下である第2金属元素とを含む、無機層付き支持基板の製造方法(無機層付き支持基板の再生方法)である。
第5の態様において、表面処理が酸化処理であることが好ましい。
As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by forming an inorganic layer having a predetermined configuration on a glass substrate, and the present invention has been completed. It was.
That is, a first aspect of the present invention includes a support substrate and a support substrate with an inorganic layer provided on the support substrate, and a glass substrate that is detachably laminated on the inorganic layer, and includes an inorganic layer. Is a metal oxide layer containing two or more kinds of metal elements, the metal element having the highest electronegativity among the metal elements and the electronegativity smaller than the first metal element, It is a glass laminated body containing the 2nd metal element whose value is 1.65 or less.
In the first aspect, the first metal element is preferably a trivalent metal element.
In the first aspect, it is preferable that the first metal element includes at least one selected from the group consisting of In, Al, Bi, Fe, Mn, Cr, Co, Sc, Y, and Ga.
In the first aspect, the first metal element preferably contains In.
In the first aspect, the second metal element is at least one selected from the group consisting of Ce, Zr, Mn, Ta, Hf, Be, Nb, La, Sc, Y, Ti, and L other than Ce. It is preferable to contain. L represents a lanthanoid.
In the first aspect, it is preferable that the second metal element contains Ce or Zr.
1st aspect WHEREIN: It is preferable that the average thickness of an inorganic layer is 10-100 nm.
The second aspect of the present invention has a support substrate, an inorganic layer, a fragile layer, and a glass substrate in this order, and the inorganic layer contains two or more metal elements (excluding boron element). The metal element includes at least a metal element A having the highest electronegativity among the metal elements and a metal element B having the smallest electronegativity among the metal elements. The atomic ratio Y of the metal element B and the metal element A in the fragile layer with respect to the atomic ratio X (metal element B / metal element A) of the metal element B and the metal element A in the inorganic layer, including the metal element B A glass laminate having a ratio of (metal element B / metal element A) (atomic ratio Y / atomic ratio X) exceeding 1.05.
2nd aspect WHEREIN: It is preferable that the peeling strength at the time of peeling a glass substrate is 2.0 N / 25mm or less.
In the second aspect, the metal element A includes at least one selected from the group consisting of In, Al, Bi, Fe, Mn, Cr, Co, Sc, Y, and Ga, and the inorganic layer includes One element oxide is preferably included.
In the second embodiment, the metal element A preferably contains In, and the inorganic layer preferably contains In 2 O 3 .
In the second embodiment, it is preferable that the metal element B includes a metal element having an electronegativity of 1.65 or less (excluding metal elements of Groups 1 and 2 of the periodic table).
In the second aspect, it is preferable that the metal element B contains at least one selected from the group consisting of Ce, Zr, Mn, Ta, Hf, Nb, La, V, Ti, and L other than Ce. .
In the second aspect, the metal element B preferably contains Ce or Zr.
In the first aspect or the second aspect, the support substrate is preferably a glass substrate.
According to a third aspect of the present invention, there is provided a member forming step of forming a member for an electronic device on the surface of the glass substrate in the glass laminate of the first aspect to obtain a laminate with a member for an electronic device; A separation step of separating a support substrate with an inorganic layer from a laminated body with members to obtain an electronic device having a glass substrate and a member for electronic devices.
A 4th aspect of this invention is equipped with a support substrate and the inorganic layer arrange | positioned on a support substrate, an inorganic layer is a metal oxide layer containing 2 or more types of metal elements, and a metal element is a metal A glass substrate on the inorganic layer, comprising: a first metal element having the highest electronegativity among the elements; and a second metal element having an electronegativity lower than that of the first metal element and a value of 1.65 or less. It is a support substrate with an inorganic layer used in order to laminate | stack and manufacture a glass laminated body.
In the fourth aspect, the first metal element preferably contains at least one selected from the group consisting of In, Al, Bi, Fe, Mn, Cr, Co, Sc, Y, and Ga.
In the fourth aspect, the first metal element preferably contains In.
In the fourth aspect, the second metal element is at least selected from the group consisting of Ce, Zr, Mn, Ta, Hf, Be, Nb, La, Sc, Y, V, Ti, and L other than Ce. Preferably one is included.
In the fourth aspect, it is preferable that the second metal element contains Ce or Zr.
According to a fifth aspect of the present invention, a support substrate and a support substrate with an inorganic layer provided with an inorganic layer disposed on the support substrate and a glass substrate are laminated so that the inorganic layer and the glass substrate are in contact with each other. A step of manufacturing a laminate, a step of heating the glass laminate at a temperature of 400 ° C. or more, a step of separating and collecting the support substrate with an inorganic layer from the heated glass laminate, and the recovered inorganic A step of performing a surface treatment on the surface of the inorganic layer of the support substrate with a layer, wherein the inorganic layer is a metal oxide layer containing two or more metal elements, and the metal element has an electronegativity of the metal elements. A method for producing a support substrate with an inorganic layer (the support with an inorganic layer) comprising the largest first metal element and a second metal element having an electronegativity smaller than that of the first metal element and a value of 1.65 or less Substrate recycling method).
In the fifth aspect, the surface treatment is preferably an oxidation treatment.
本発明によれば、ガラス基板を容易に剥離することができるガラス積層体、該ガラス積層体の製造に用いられる無機層付き支持基板、該ガラス積層体を用いた電子デバイスの製造方法、および、および、無機層付き支持基板の製造方法を提供することができる。 According to the present invention, a glass laminate capable of easily peeling a glass substrate, a support substrate with an inorganic layer used for production of the glass laminate, a method for producing an electronic device using the glass laminate, and And the manufacturing method of the support substrate with an inorganic layer can be provided.
以下、本発明のガラス積層体および電子デバイスの製造方法の好適形態について図面を参照して説明するが、本発明は、以下の実施形態に制限されることはなく、本発明の範囲を逸脱することなく、以下の実施形態に種々の変形および置換を加えることができる。 Hereinafter, preferred embodiments of the glass laminate and the electronic device manufacturing method of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments and departs from the scope of the present invention. Without limitation, various modifications and substitutions can be made to the following embodiments.
本発明のガラス積層体の一実施態様においては、支持基板とガラス基板との間に、2種以上の金属元素を含む金属酸化物層であり、金属元素が、金属元素のうち電気陰性度が最も大きい第1金属元素と、第1金属元素よりも電気陰性度が小さく、その値が1.65以下である第2金属元素とを含む無機層を介在させることを特徴の1つとする。本発明にて所望の効果が得られる機構としては、以下のように推測される。
無機層中に含まれる、第2金属元素は、加水分解され易く、かつ、高温でイオン拡散しやすい。そのため、上記無機層を含むガラス積層体に対して高温加熱処理を施すと、無機層中のガラス基板側の領域において、加水分解および元素の拡散が生じやすく、結果として、第2金属元素の含有量が多い層(脆弱層に該当)が形成される。より具体的には、例えば、第1金属元素としてInを、第2金属元素としてCeを含む金属酸化物(インジウムセリウムオキサイド)を使用した場合は、高温加熱処理を施すと、無機層中のガラス基板側の領域において、In−O−Ce+H2O→In−OH+Ce−OHで表される加水分解が進行し、Ce−OHといった結合が弱まったセリウムが生じる。イオン化したセリウムがガラス基板側に多く拡散して、結果としてセリウムの含有量が多い脆弱層が形成される。ガラス基板を剥離する際、この脆弱層は凝集破壊しやすく、ガラス基板の剥離強度を低下させる機能を有する。つまり、無機層中のガラス基板側の領域が、脆弱層となり、ガラス基板を剥離しやすくする。言い換えれば、高温加熱処理を施して得られるガラス積層体は、支持基板と無機層と脆弱層とガラス基板とを少なくとも有する構成となる。脆弱層の構成については、後段で詳述する。
In one embodiment of the glass laminate of the present invention, a metal oxide layer containing two or more metal elements between the support substrate and the glass substrate, and the metal element has an electronegativity of the metal elements. One of the characteristics is that an inorganic layer including the largest first metal element and a second metal element having an electronegativity smaller than that of the first metal element and having a value of 1.65 or less is interposed. The mechanism for obtaining the desired effect in the present invention is presumed as follows.
The second metal element contained in the inorganic layer is easily hydrolyzed and ion diffuses easily at a high temperature. Therefore, when high-temperature heat treatment is performed on the glass laminate including the inorganic layer, hydrolysis and element diffusion are likely to occur in the region on the glass substrate side in the inorganic layer, and as a result, the second metal element is contained. A layer with a large amount (corresponding to a vulnerable layer) is formed. More specifically, for example, when a metal oxide (indium cerium oxide) containing In as the first metal element and Ce as the second metal element is used, the glass in the inorganic layer is subjected to high-temperature heat treatment. In the region on the substrate side, hydrolysis represented by In—O—Ce + H 2 O → In—OH + Ce—OH proceeds, and cerium with weak bonds such as Ce—OH is generated. A large amount of ionized cerium diffuses toward the glass substrate, and as a result, a fragile layer having a high cerium content is formed. When the glass substrate is peeled off, the fragile layer is easily cohesive and has a function of reducing the peel strength of the glass substrate. That is, the area | region by the side of the glass substrate in an inorganic layer becomes a weak layer, and makes it easy to peel a glass substrate. In other words, the glass laminate obtained by performing the high-temperature heat treatment has a configuration including at least a support substrate, an inorganic layer, a fragile layer, and a glass substrate. The structure of the vulnerable layer will be described in detail later.
以下においては、まず、ガラス積層体の好適形態について詳述し、その後、このガラス積層体を使用した電子デバイスの製造方法の好適形態について詳述する。 Below, the suitable form of a glass laminated body is explained in full detail first, and the suitable form of the manufacturing method of the electronic device using this glass laminated body is explained in full detail after that.
<ガラス積層体>
図1は、本発明に係るガラス積層体の一実施形態の模式的断面図である。
図1に示すように、ガラス積層体10は、支持基板12および無機層14からなる無機層付き支持基板16と、ガラス基板18とを有する。ガラス積層体10中において、無機層付き支持基板16の無機層14の表面14a(支持基板12側とは反対側の表面)と、ガラス基板18の第1主面18aとを積層面として、無機層付き支持基板16とガラス基板18とが剥離可能に積層している。つまり、無機層14は、その一方の面が支持基板12の層に固定されると共に、その他方の面がガラス基板18の第1主面18aに接し、無機層14とガラス基板18との界面は剥離可能に密着している。言い換えると、無機層14は、ガラス基板18の第1主面18aに対して易剥離性を具備している。
<Glass laminate>
FIG. 1 is a schematic cross-sectional view of an embodiment of a glass laminate according to the present invention.
As shown in FIG. 1, the glass laminate 10 includes a support substrate 16 with an inorganic layer composed of a support substrate 12 and an inorganic layer 14, and a glass substrate 18. In the glass laminate 10, the surface 14 a (surface opposite to the support substrate 12 side) of the inorganic layer 14 of the support substrate 16 with an inorganic layer and the first main surface 18 a of the glass substrate 18 are used as the laminate surfaces. The support substrate 16 with a layer and the glass substrate 18 are laminated | stacked so that peeling is possible. That is, the inorganic layer 14 has one surface fixed to the layer of the support substrate 12 and the other surface in contact with the first main surface 18 a of the glass substrate 18, and the interface between the inorganic layer 14 and the glass substrate 18. Are in close contact with each other. In other words, the inorganic layer 14 is easily peelable from the first main surface 18 a of the glass substrate 18.
また、このガラス積層体10は、後述する部材形成工程まで使用される。即ち、このガラス積層体10は、そのガラス基板18の第2主面18b表面上に液晶表示装置などの電子デバイス用部材が形成されるまで使用される。その後、無機層付き支持基板16はガラス基板18と分離され、無機層付き支持基板16は電子デバイスを構成する部材とはならない。分離された無機層付き支持基板16は新たなガラス基板18と積層され、新たなガラス積層体10として再利用することができる。
再利用の際には、後段で詳述するように、再利用の効率を向上させるために、分離された無機層付き支持基板16の無機層14表面に表面処理を施す場合がある。表面処理は、加熱焼成やプラズマ処理といった酸化処理、還元処理、研磨処理などが挙げられる。
Moreover, this glass laminated body 10 is used until the member formation process mentioned later. That is, the glass laminate 10 is used until an electronic device member such as a liquid crystal display device is formed on the surface of the second main surface 18b of the glass substrate 18. Thereafter, the support substrate 16 with the inorganic layer is separated from the glass substrate 18, and the support substrate 16 with the inorganic layer does not become a member constituting the electronic device. The separated support substrate 16 with an inorganic layer is laminated with a new glass substrate 18 and can be reused as a new glass laminate 10.
In the case of reuse, as will be described in detail later, in order to improve the efficiency of reuse, surface treatment may be performed on the surface of the separated inorganic layer 14 of the support substrate 16 with an inorganic layer. Examples of the surface treatment include oxidation treatment such as heat baking and plasma treatment, reduction treatment, and polishing treatment.
本発明において、上記固定と(剥離可能な)密着は剥離強度(すなわち、剥離に要する応力)に違いがあり、固定は密着に対し剥離強度が大きいことを意味する。具体的には、無機層14と支持基板12との界面の剥離強度が、無機層14とガラス基板18との界面の剥離強度よりも大きくなる。
また、剥離可能な密着とは、剥離可能であると同時に、固定されている面の剥離を生じさせることなく剥離可能であることも意味する。つまり、本発明のガラス積層体10において、ガラス基板18と支持基板12とを分離する操作を行った場合、密着された面(無機層14とガラス基板18との界面)で剥離し、固定された面では剥離しないことを意味する。したがって、ガラス積層体10をガラス基板18と支持基板12とに分離する操作を行うと、ガラス積層体10はガラス基板18と無機層付き支持基板16との2つに分離される。
In the present invention, the above-mentioned fixing and (separable) adhesion have a difference in peeling strength (that is, stress required for peeling), and fixing means that the peeling strength is larger than the adhesion. Specifically, the peel strength at the interface between the inorganic layer 14 and the support substrate 12 is greater than the peel strength at the interface between the inorganic layer 14 and the glass substrate 18.
Further, the peelable adhesion means that it can be peeled at the same time that it can be peeled without causing peeling of the fixed surface. That is, in the glass laminate 10 of the present invention, when the operation of separating the glass substrate 18 and the support substrate 12 is performed, the glass substrate 10 is peeled and fixed on the closely contacted surface (interface between the inorganic layer 14 and the glass substrate 18). It means that it does not peel on the surface. Therefore, when the operation of separating the glass laminate 10 into the glass substrate 18 and the support substrate 12 is performed, the glass laminate 10 is separated into two, the glass substrate 18 and the support substrate 16 with an inorganic layer.
以下では、まず、ガラス積層体10を構成する無機層付き支持基板16およびガラス基板18について詳述し、その後、ガラス積層体10の製造の手順について詳述する。 Below, the support substrate 16 with an inorganic layer and the glass substrate 18 which comprise the glass laminated body 10 are explained in full detail first, and the procedure of manufacture of the glass laminated body 10 is explained in full detail after that.
[無機層付き支持基板]
無機層付き支持基板16は、支持基板12と、その表面上に配置(固定)される無機層14とを備える。無機層14は、後述するガラス基板18と剥離可能に密着するように、無機層付き支持基板16中の最外側に配置される。なお、無機層14と支持基板12との間には、無機層14の密着性を高める、または、無機層14の結晶性・構造などの膜質制御のために、下地層が別途配置されていてもよい。
以下に、支持基板12、および、無機層14の形態について詳述する。
[Support substrate with inorganic layer]
The support substrate 16 with an inorganic layer includes a support substrate 12 and an inorganic layer 14 disposed (fixed) on the surface thereof. The inorganic layer 14 is arrange | positioned in the outermost side in the support substrate 16 with an inorganic layer so that it may closely_contact | adhere with the glass substrate 18 mentioned later so that peeling. A base layer is separately disposed between the inorganic layer 14 and the support substrate 12 in order to improve the adhesion of the inorganic layer 14 or to control the film quality such as the crystallinity and structure of the inorganic layer 14. Also good.
Below, the form of the support substrate 12 and the inorganic layer 14 is explained in full detail.
(支持基板)
支持基板12は、第1主面と第2主面とを有し、第1主面上に配置された無機層14と協働して、ガラス基板18を支持して補強し、後述する部材形成工程(電子デバイス用部材を製造する工程)において電子デバイス用部材の製造の際にガラス基板18の変形、傷付き、破損などを防止する基板である。
支持基板12としては、例えば、ガラス基板、プラスチック板、SUS板などの金属板などが用いられる。支持基板12は、部材形成工程が熱処理を伴う場合、ガラス基板18との線膨張係数の差の小さい材料で形成されることが好ましく、ガラス基板18と同一材料で形成されることがより好ましく、支持基板12はガラス基板であることが好ましい。特に、支持基板12は、ガラス基板18と同じガラス材料からなるガラス基板であることが好ましい。
(Support substrate)
The support substrate 12 has a first main surface and a second main surface, cooperates with the inorganic layer 14 disposed on the first main surface, supports and reinforces the glass substrate 18, and a member to be described later It is a substrate that prevents the glass substrate 18 from being deformed, scratched or damaged during the production of the electronic device member in the forming step (the step of producing the electronic device member).
As the support substrate 12, for example, a metal plate such as a glass substrate, a plastic plate, or a SUS plate is used. When the member forming step involves heat treatment, the support substrate 12 is preferably formed of a material having a small difference in linear expansion coefficient from the glass substrate 18, and more preferably formed of the same material as the glass substrate 18, The support substrate 12 is preferably a glass substrate. In particular, the support substrate 12 is preferably a glass substrate made of the same glass material as the glass substrate 18.
支持基板12の厚さは、後述するガラス基板18よりも厚くてもよいし、薄くてもよい。好ましくは、ガラス基板18の厚さ、無機層14の厚さ、および後述するガラス積層体10の厚さに基づいて、支持基板12の厚さが選択される。例えば、現行の部材形成工程が厚さ0.5mmの基板を処理するように設計されたものであって、ガラス基板18の厚さおよび無機層14の厚さの和が0.1mmの場合、支持基板12の厚さを0.4mmとする。支持基板12の厚さは、通常の場合、0.2〜5.0mmであることが好ましい。 The thickness of the support substrate 12 may be thicker or thinner than a glass substrate 18 described later. Preferably, the thickness of the support substrate 12 is selected based on the thickness of the glass substrate 18, the thickness of the inorganic layer 14, and the thickness of the glass laminate 10 described later. For example, when the current member forming process is designed to process a substrate having a thickness of 0.5 mm, and the sum of the thickness of the glass substrate 18 and the thickness of the inorganic layer 14 is 0.1 mm, The thickness of the support substrate 12 is 0.4 mm. In general, the thickness of the support substrate 12 is preferably 0.2 to 5.0 mm.
支持基板12がガラス基板の場合、ガラス基板の厚さは、扱いやすく、割れにくいなどの理由から、0.08mm以上であることが好ましい。また、ガラス基板の厚さは、電子デバイス用部材形成後に分離する際に、割れずに適度に撓むような剛性が望まれる理由から、1.0mm以下であることが好ましい。 When the support substrate 12 is a glass substrate, the thickness of the glass substrate is preferably 0.08 mm or more because it is easy to handle and difficult to break. Further, the thickness of the glass substrate is preferably 1.0 mm or less because the rigidity is desired so that the glass substrate can be appropriately bent without being broken when it is separated after the formation of the electronic device member.
(無機層)
無機層14は、支持基板12の主面上に配置(固定)され、ガラス基板18の第1主面18aと接触する層である。無機層14を支持基板12上に設けることにより、高温条件下の長時間処理後においても、ガラス基板18の接着を抑制することができる。
なお、本明細書において、金属元素は、いわゆる半金属元素(例えば、B、Si、Ge、As、Sb、Te、Po)も含む概念である。なお、金属元素としてはB(ホウ素元素)は含まれないことが好ましい。
(Inorganic layer)
The inorganic layer 14 is a layer disposed (fixed) on the main surface of the support substrate 12 and in contact with the first main surface 18 a of the glass substrate 18. By providing the inorganic layer 14 on the support substrate 12, adhesion of the glass substrate 18 can be suppressed even after long-time treatment under high temperature conditions.
In the present specification, the metal element is a concept including so-called metalloid elements (for example, B, Si, Ge, As, Sb, Te, Po). In addition, it is preferable that B (boron element) is not contained as a metal element.
無機層14は、2種以上の金属元素を含む金属酸化物層(2種以上の金属元素を含む金属酸化物から構成される層)である。
金属元素としては、金属元素のうち電気陰性度が最も大きい第1金属元素と、第1金属元素よりも電気陰性度が小さく、その値が1.65以下である第2金属元素とを含む。なお、無機層14は、第1金属元素の酸化物中に第2金属元素がドーピングされた層であることが好ましい。
第1金属元素は、無機層14中に含まれる金属元素のうち最も電気陰性度が大きい元素である。第1金属元素の種類は特に制限されないが、ガラス基板の剥離性がより容易である点(以後、単に「本発明の効果がより優れる点」とも称する)から、3価の金属元素が好ましく、In、Al、Bi、Fe、Mn、Cr、Co、Sc、Y、および、Gaからなる群から選択される少なくとも1つがより好ましく挙げられ、Inがさらに好ましく挙げられる。
The inorganic layer 14 is a metal oxide layer containing two or more kinds of metal elements (a layer composed of metal oxides containing two or more kinds of metal elements).
The metal element includes a first metal element having the highest electronegativity among the metal elements and a second metal element having an electronegativity smaller than that of the first metal element and having a value of 1.65 or less. The inorganic layer 14 is preferably a layer in which a second metal element is doped in an oxide of the first metal element.
The first metal element is the element having the highest electronegativity among the metal elements contained in the inorganic layer 14. The type of the first metal element is not particularly limited, but a trivalent metal element is preferable from the point that the releasability of the glass substrate is easier (hereinafter, also simply referred to as “the effect of the present invention is more excellent”). More preferred is at least one selected from the group consisting of In, Al, Bi, Fe, Mn, Cr, Co, Sc, Y, and Ga, and more preferred is In.
第2金属元素は、上記第1金属元素よりも電気陰性度が小さい金属元素である。第2金属元素の電気陰性度は1.65以下であるが、本発明の効果がより優れる点で、1.5以下が好ましく、1.4以下がより好ましく、1.3以下がさらに好ましく、1.2以下が特に好ましい。下限は特に制限されないが、0.7以上の場合が多く、1.0以上の場合がより多い。
第2金属元素の価数は特に制限されず、例えば、2〜4価の金属元素が挙げられ、本発明の効果がより優れる点で、4価の金属元素が挙げられる。
第2金属元素の種類は上記のように電気陰性度が1.65以下の金属元素であればよいが、本発明の効果がより優れる点で、Ce、Mn、Zr、Ta、Hf、Be、Nb、La、Sc、Y、V、Ti、および、Ce以外のLからなる群から選択される少なくとも1つがより好ましく挙げられ、CeまたはZrがさらに好ましく挙げられる。なお、ここでLはランタノイド(ランタノイド元素)を表す。また、上記第2金属元素の他の好適態様としては、周期律表第1族および第2族の金属元素を除く電気陰性度が1.65以下の金属元素が挙げられる。
なお、第2金属元素は、上記第1金属元素とは、種類の異なる金属元素が使用される。第2金属元素としては、上記要件を満たしていれば、無機層14に2種以上含まれていてもよい。つまり、例えば、無機層14中の3種の金属元素が含まれる場合、その中で最も電気陰性度が大きい金属元素が第1金属元素に該当し、残りの2種の金属元素の電気陰性度が1.65以下であれば、この2種の金属元素は両方とも第2金属元素に該当する。
また、無機層14には第1金属元素および第2金属元素に該当しない他の金属元素(例えば、第1金属元素よりも電気陰性度が小さく、かつ、その電気陰性度が1.65超の金属元素)が含まれていてもよい。
The second metal element is a metal element having a smaller electronegativity than the first metal element. The electronegativity of the second metal element is 1.65 or less, but is preferably 1.5 or less, more preferably 1.4 or less, and even more preferably 1.3 or less, in terms of more excellent effects of the present invention. 1.2 or less is particularly preferable. The lower limit is not particularly limited, but is often 0.7 or more, more often 1.0 or more.
The valence of the second metal element is not particularly limited, and examples thereof include a divalent to tetravalent metal element, and a tetravalent metal element is mentioned in that the effect of the present invention is more excellent.
The kind of the second metal element may be any metal element having an electronegativity of 1.65 or less as described above. However, Ce, Mn, Zr, Ta, Hf, Be, More preferable examples include at least one selected from the group consisting of Nb, La, Sc, Y, V, Ti, and L other than Ce, and further preferable examples include Ce or Zr. Here, L represents a lanthanoid (lanthanoid element). In addition, as another preferred embodiment of the second metal element, a metal element having an electronegativity of 1.65 or less excluding the metal elements of Groups 1 and 2 of the periodic table can be given.
As the second metal element, a metal element of a different type from the first metal element is used. As the second metal element, two or more kinds may be contained in the inorganic layer 14 as long as the above requirements are satisfied. That is, for example, when three kinds of metal elements in the inorganic layer 14 are included, the metal element having the largest electronegativity corresponds to the first metal element, and the electronegativity of the remaining two kinds of metal elements. Is equal to or less than 1.65, both of the two metal elements correspond to the second metal element.
Further, the inorganic layer 14 has other metal elements not corresponding to the first metal element and the second metal element (for example, the electronegativity is smaller than that of the first metal element and the electronegativity is more than 1.65). Metal element) may be included.
無機層14中における第2金属元素の含有量は特に制限されないが、本発明の効果がより優れる点で、全金属元素合計量に対して、90at%以下が好ましく、本発明の効果がより優れる点で、80at%以下がより好ましく、50at%以下がさらに好ましく、30at%以下が特に好ましい。下限は特に制限されないが、5at%以上の場合が多い。
なお、無機層14中における第1金属元素の含有量は特に制限されないが、本発明の効果がより優れる点で、全金属元素合計量に対して、10at%以上が好ましく、本発明の効果がより優れる点で、20at%以上がより好ましく、50at%以上がさらに好ましく、70at%以上が特に好ましい。上限は特に制限されないが、95at%以下の場合が多い。
The content of the second metal element in the inorganic layer 14 is not particularly limited, but 90 at% or less is preferable with respect to the total amount of all metal elements, and the effect of the present invention is more excellent in that the effect of the present invention is more excellent. In this respect, 80 at% or less is more preferable, 50 at% or less is further preferable, and 30 at% or less is particularly preferable. The lower limit is not particularly limited, but is often 5 at% or more.
In addition, although content of the 1st metal element in the inorganic layer 14 is not restrict | limited in particular, 10 at% or more is preferable with respect to the total amount of all the metal elements by the point which the effect of this invention is more excellent, and the effect of this invention is effective. In terms of more excellent, 20 at% or more is more preferable, 50 at% or more is further preferable, and 70 at% or more is particularly preferable. The upper limit is not particularly limited, but is often 95 at% or less.
無機層14の好適態様の1つとしては、インジウムセリウムオキサイド(Indium Cerium Oxide:ICO)を少なくとも含有する態様が挙げられる。インジウムセリウムオキサイドとは、第1金属元素としてインジウム元素と、第2金属元素としてセリウム元素とを含む酸化物である。 One preferred embodiment of the inorganic layer 14 includes an embodiment containing at least indium cerium oxide (ICO). Indium cerium oxide is an oxide containing an indium element as a first metal element and a cerium element as a second metal element.
無機層14の平均厚さは特に制限されないが、生産性の点から、5〜200nmが好ましい。なかでも、本発明の効果がより優れる点で、10〜100nmが好ましく、10〜80nmがより好ましく、15〜50nmがさらに好ましい。なお、無機層の平均厚さが厚すぎると、透明性、生産性、および、ガラス基板の積層性の点でやや劣り、無機層の平均厚さが薄すぎると、ガラス基板の剥離性、および、制御性の点でやや劣る。
無機層14の平均厚さは、10点以上の任意の位置における無機層14の厚さを測定し、それらを算術平均したものである。
The average thickness of the inorganic layer 14 is not particularly limited, but is preferably 5 to 200 nm from the viewpoint of productivity. Especially, 10-100 nm is preferable at the point which the effect of this invention is more excellent, 10-80 nm is more preferable, and 15-50 nm is further more preferable. In addition, if the average thickness of the inorganic layer is too thick, the transparency, productivity, and the laminate properties of the glass substrate are slightly inferior. If the average thickness of the inorganic layer is too thin, the peelability of the glass substrate, and Somewhat inferior in controllability.
The average thickness of the inorganic layer 14 is obtained by measuring the thickness of the inorganic layer 14 at an arbitrary position of 10 points or more and arithmetically averaging them.
無機層14は、通常、図1に示すように支持基板12の全面に設けられるが、本発明の効果を損なわない範囲で、支持基板12表面上の一部に設けられていてもよい。例えば、無機層14が、支持基板12表面上に、島状や、ストライプ状に設けられていてもよい。 The inorganic layer 14 is usually provided on the entire surface of the support substrate 12 as shown in FIG. 1, but may be provided on a part of the surface of the support substrate 12 as long as the effects of the present invention are not impaired. For example, the inorganic layer 14 may be provided on the surface of the support substrate 12 in an island shape or a stripe shape.
さらに、無機層14のガラス基板18に接した面(すなわち、無機層14の表面14a)の表面粗さ(Ra)は2.0nm以下であることが好ましく、1.0nm以下であることがより好ましい。下限値は特に制限されないが、0が最も好ましい。上記範囲であれば、ガラス基板18との密着性がより良好となり、ガラス基板18の位置ずれなどをより抑制することができる。
RaはJIS B 0601(2001年改正)に従って測定される。なお、測定にはAFMなどを用いることができる。
Furthermore, the surface roughness (Ra) of the surface of the inorganic layer 14 in contact with the glass substrate 18 (that is, the surface 14a of the inorganic layer 14) is preferably 2.0 nm or less, and more preferably 1.0 nm or less. preferable. The lower limit is not particularly limited, but 0 is most preferable. If it is the said range, adhesiveness with the glass substrate 18 will become more favorable, and position shift of the glass substrate 18 etc. can be suppressed more.
Ra is measured according to JIS B 0601 (revised 2001). In addition, AFM etc. can be used for a measurement.
(無機層付き支持基板の製造方法)
無機層付き支持基板16の製造方法は特に制限されず、公知の方法を採用することができる。例えば、蒸着法、スパッタリング法、または、CVD法により、支持基板12上に所定の成分からなる無機層14を設ける方法が挙げられる。
なお、必要に応じて、支持基板12上に形成された無機層14の表面性状(例えば、表面粗さRa)を制御するために、無機層14の表面を削る処理を施してもよい。該処理としては、例えば、イオンスパッタリング法などが挙げられる。
(Method for producing support substrate with inorganic layer)
The manufacturing method in particular of the support substrate 16 with an inorganic layer is not restrict | limited, A well-known method is employable. For example, the method of providing the inorganic layer 14 which consists of a predetermined component on the support substrate 12 by the vapor deposition method, sputtering method, or CVD method is mentioned.
In addition, in order to control the surface property (for example, surface roughness Ra) of the inorganic layer 14 formed on the support substrate 12, you may process the surface of the inorganic layer 14 as needed. Examples of the treatment include an ion sputtering method.
[ガラス基板]
ガラス基板18は、第1主面18aが無機層14と密着し、無機層14側とは反対側の第2主面18bに後述する電子デバイス用部材が設けられる。
ガラス基板18の種類は、一般的なものであってよく、例えば、LCD、OLEDといった表示装置用のガラス基板などが挙げられる。ガラス基板18は耐薬品性、耐透湿性に優れ、且つ、熱収縮率が低い。熱収縮率の指標としては、JIS R 3102(1995年改正)に規定されている線膨張係数が用いられる。
[Glass substrate]
As for the glass substrate 18, the 1st main surface 18a closely_contact | adheres to the inorganic layer 14, The member for electronic devices mentioned later is provided in the 2nd main surface 18b on the opposite side to the inorganic layer 14 side.
The kind of the glass substrate 18 may be a common one, and examples thereof include a glass substrate for a display device such as an LCD or an OLED. The glass substrate 18 is excellent in chemical resistance and moisture permeability and has a low thermal shrinkage rate. As an index of the heat shrinkage rate, a linear expansion coefficient defined in JIS R 3102 (revised in 1995) is used.
ガラス基板18は、ガラス原料を溶融し、溶融ガラスを板状に成形して得られる。このような成形方法は、一般的なものであってよく、例えば、フロート法、フュージョン法、スロットダウンドロー法、フルコール法、ラバース法などが用いられる。また、特に厚さが薄いガラス基板は、いったん板状に成形したガラスを成形可能温度に加熱し、延伸などの手段で引き伸ばして薄くする方法(リドロー法)で成形して得られる。 The glass substrate 18 is obtained by melting a glass raw material and molding the molten glass into a plate shape. Such a molding method may be a general one, and for example, a float method, a fusion method, a slot down draw method, a full call method, a rubber method, or the like is used. In addition, a glass substrate having a particularly small thickness can be obtained by heating a glass once formed into a plate shape to a moldable temperature, and stretching it by means of stretching or the like to make it thin (redraw method).
ガラス基板18のガラスは、特に限定されないが、無アルカリホウケイ酸ガラス、ホウケイ酸ガラス、ソーダライムガラス、高シリカガラス、その他の酸化ケイ素を主な成分とする酸化物系ガラスが好ましい。酸化物系ガラスとしては、酸化物換算による酸化ケイ素の含有量が40〜90質量%のガラスが好ましい。 The glass of the glass substrate 18 is not particularly limited, but non-alkali borosilicate glass, borosilicate glass, soda lime glass, high silica glass, and other oxide-based glasses mainly composed of silicon oxide are preferable. As the oxide glass, a glass having a silicon oxide content of 40 to 90% by mass in terms of oxide is preferable.
ガラス基板18のガラスとしては、デバイスの種類やその製造工程に適したガラスが採用される。例えば、液晶パネル用のガラス基板は、アルカリ金属成分の溶出が液晶に影響を与えやすいことから、アルカリ金属成分を実質的に含まないガラス(無アルカリガラス)からなる(ただし、通常アルカリ土類金属成分は含まれる)。このように、ガラス基板18のガラスは、適用されるデバイスの種類およびその製造工程に基づいて適宜選択される。 As the glass of the glass substrate 18, glass suitable for the type of device and its manufacturing process is adopted. For example, a glass substrate for a liquid crystal panel is made of glass (non-alkali glass) that does not substantially contain an alkali metal component because the elution of an alkali metal component easily affects the liquid crystal (however, usually an alkaline earth metal) Ingredients are included). Thus, the glass of the glass substrate 18 is appropriately selected based on the type of device to be applied and its manufacturing process.
ガラス基板18の厚さは、特に限定されないが、ガラス基板18の薄型化および/または軽量化の観点から、通常、0.8mm以下であり、好ましくは0.3mm以下であり、さらに好ましくは0.15mm以下である。0.3mm以下の場合、ガラス基板18に良好なフレキシブル性を与えることが可能である。0.15mm以下の場合、ガラス基板18をロール状に巻き取ることが可能である。また、ガラス基板18の厚さは、ガラス基板18の製造が容易であること、ガラス基板18の取り扱いが容易であることなどの理由から、0.03mm以上であることが好ましい。 The thickness of the glass substrate 18 is not particularly limited, but is usually 0.8 mm or less, preferably 0.3 mm or less, and more preferably 0 from the viewpoint of reducing the thickness and / or weight of the glass substrate 18. .15 mm or less. In the case of 0.3 mm or less, it is possible to give good flexibility to the glass substrate 18. In the case of 0.15 mm or less, the glass substrate 18 can be wound into a roll. The thickness of the glass substrate 18 is preferably 0.03 mm or more for reasons such as easy manufacture of the glass substrate 18 and easy handling of the glass substrate 18.
なお、ガラス基板18は2層以上からなっていてもよく、この場合、各々の層を形成する材料は同種材料であってもよいし、異種材料であってもよい。また、この場合、「ガラス基板の厚さ」は全ての層の合計の厚さを意味するものとする。 The glass substrate 18 may be composed of two or more layers. In this case, the material forming each layer may be the same material or a different material. In this case, “the thickness of the glass substrate” means the total thickness of all the layers.
<ガラス積層体およびその製造方法>
本発明のガラス積層体10は、上述した無機層付き支持基板16の無機層14の表面14aとガラス基板18の第1主面18aとを積層面として(無機層14とガラス基板18とが接触するように)、無機層付き支持基板16とガラス基板18とを剥離可能に積層してなる積層体である。言い換えると、支持基板12とガラス基板18との間に、無機層14が介在する積層体である。
本発明のガラス積層体10の製造方法は特に制限されないが、無機層付き支持基板16の無機層14上に剥離可能にガラス基板18を積層する工程を有する態様が挙げられ、具体的には、常圧環境下で無機層付き支持基板16とガラス基板18とを重ねた後、ロールやプレスを用いて圧着させる方法が挙げられる。ロールやプレスで圧着することにより無機層付き支持基板16とガラス基板18とがより密着するので好ましい。また、ロールまたはプレスによる圧着により、無機層付き支持基板16とガラス基板18との間に混入している気泡が比較的容易に除去されるので好ましい。
<Glass laminate and production method thereof>
The glass laminate 10 of the present invention has the surface 14a of the inorganic layer 14 of the support substrate 16 with an inorganic layer and the first main surface 18a of the glass substrate 18 as a laminated surface (the inorganic layer 14 and the glass substrate 18 are in contact with each other). Thus, it is a laminate formed by laminating the support substrate 16 with an inorganic layer and the glass substrate 18 in a peelable manner. In other words, it is a laminate in which the inorganic layer 14 is interposed between the support substrate 12 and the glass substrate 18.
Although the manufacturing method in particular of the glass laminated body 10 of this invention is not restrict | limited, The aspect which has the process of laminating | stacking the glass substrate 18 on the inorganic layer 14 of the support substrate 16 with an inorganic layer so that peeling is mentioned, Specifically, An example is a method in which the support substrate 16 with an inorganic layer and the glass substrate 18 are stacked under a normal pressure environment, and then bonded using a roll or a press. It is preferable because the support substrate 16 with an inorganic layer and the glass substrate 18 are more closely bonded by pressure bonding with a roll or a press. Moreover, since the air bubbles mixed between the support substrate 16 with an inorganic layer and the glass substrate 18 are relatively easily removed by pressure bonding with a roll or a press, it is preferable.
真空ラミネート法や真空プレス法により圧着すると、気泡の混入の抑制や良好な密着の確保が行われるのでより好ましい。真空下で圧着することにより、微小な気泡が残存した場合でも、加熱により気泡が成長することがなく、ゆがみ欠陥につながりにくいという利点もある。 When pressure bonding is performed by a vacuum laminating method or a vacuum pressing method, it is more preferable because it suppresses mixing of bubbles and secures good adhesion. By press-bonding under vacuum, even if minute bubbles remain, there is an advantage that the bubbles do not grow by heating and are less likely to cause distortion defects.
無機層付き支持基板16とガラス基板18とを剥離可能に密着させる際には、無機層14およびガラス基板18の互いに接触する側の面を十分に洗浄し、クリーン度の高い環境で積層することが好ましい。クリーン度が高いほどその平坦性は良好となるので好ましい。
洗浄の方法は特に制限されないが、例えば、無機層14またはガラス基板18の表面をアルカリ水溶液で洗浄した後、さらに水を用いて洗浄する方法が挙げられる。
When the support substrate 16 with the inorganic layer and the glass substrate 18 are detachably adhered, the surfaces of the inorganic layer 14 and the glass substrate 18 that are in contact with each other are sufficiently washed and laminated in a clean environment. Is preferred. The higher the degree of cleanness, the better the flatness.
The cleaning method is not particularly limited, and examples thereof include a method of cleaning the surface of the inorganic layer 14 or the glass substrate 18 with an alkaline aqueous solution and further using water.
さらに、得られたガラス積層体10に高温条件下(例えば、400℃以上)での処理を施すことにより、脆弱層26を含むガラス積層体11が得られる。
より具体的には、無機層中のガラス基板側の領域の組成が変化して、図2に示すように、無機層14とガラス基板18との間に、脆弱層26が形成される。つまり、支持基板12と、無機層14と、脆弱層26と、ガラス基板18とを含むガラス積層体11が形成されている。
脆弱層26は、凝集破壊を生じやすい層である。そのため、後述する分離工程を実施すると、脆弱層26にて凝集破壊が生じて、無機層付き支持基板16と電子デバイス24とにより容易に分離される。
なお、後述するように、部材形成工程では、通常、高温条件下(例えば、400℃以上)での処理の実施が実施される。よって、ガラス積層体10は、ガラス積層体11に構成を変化する場合がある。つまり、部材形成工程では、支持基板12と、無機層14と、脆弱層26と、ガラス基板18と、電子デバイス用部材20を含むガラス積層体(電子デバイス用部材付き積層体22)が形成されている。
また、部材形成工程を実施する前に、ガラス積層体10に対して、別途加熱処理を施して、脆弱層26を形成させてガラス積層体11を得て、得られたガラス積層体11を部材形成工程に使用してもよい。
Furthermore, the glass laminated body 11 containing the weak layer 26 is obtained by processing the obtained glass laminated body 10 on high temperature conditions (for example, 400 degreeC or more).
More specifically, the composition of the region on the glass substrate side in the inorganic layer changes, and a fragile layer 26 is formed between the inorganic layer 14 and the glass substrate 18 as shown in FIG. That is, the glass laminate 11 including the support substrate 12, the inorganic layer 14, the fragile layer 26, and the glass substrate 18 is formed.
The fragile layer 26 is a layer that easily causes cohesive failure. Therefore, when a separation step described later is performed, cohesive failure occurs in the fragile layer 26, and the separation is easily performed by the support substrate 16 with the inorganic layer and the electronic device 24.
In addition, as will be described later, in the member forming step, the processing is usually performed under a high temperature condition (for example, 400 ° C. or higher). Therefore, the glass laminate 10 may change its configuration to the glass laminate 11. That is, in the member forming step, a glass laminate (a laminate 22 with an electronic device member) including the support substrate 12, the inorganic layer 14, the fragile layer 26, the glass substrate 18, and the electronic device member 20 is formed. ing.
Moreover, before implementing a member formation process, with respect to the glass laminated body 10, it heat-processes separately, the brittle layer 26 is formed, the glass laminated body 11 is obtained, and the obtained glass laminated body 11 is made into a member. You may use for a formation process.
以下、脆弱層26の構成について詳述する。
無機層14中に含まれる2種以上の金属元素(ただし、ホウ素元素を除く)のうち、電気陰性度が最も大きい金属元素を金属元素Aと、電気陰性度が最も小さい金属元素を金属元素Bとした場合に、脆弱層26の構成には金属元素Aと金属元素Bとが含まれる。つまり、無機層14中に含まれる金属元素Aおよび金属元素Bと同じ金属元素が、脆弱層にも含まれる。なお、脆弱層26は、金属元素Aおよび金属元素Bを含む金属酸化物層であることが好ましい。
なお、金属元素Aとしては、上述した無機層14中の第1金属元素(好ましくは、3価の金属元素)が該当する場合が多く、金属元素Bとしては、上述した無機層14中の第2金属元素が該当する場合が多い。
より具体的には、金属元素Aとしては、3価の金属元素が好ましく挙げられ、In、Al、Bi、Fe、Mn、Cr、Co、Sc、Yおよび、Gaからなる群から選択される少なくとも1つがより好ましく、Inがさらに好ましい。なお、脆弱層26は、金属元素Aの金属酸化物が含まれることが好ましく、例えば、金属元素AとしてInを含む場合は、In2O3が脆弱層26に含まれることが好ましい。
また、金属元素Bとしては、本発明の効果がより優れる点で、電気陰性度が1.65以下の金属元素が好ましく、周期律表第1族および第2族の金属元素を除く電気陰性度が1.65以下の金属元素がより好ましく、Ce、Zr、Mn、Ta、Hf、Nb、La、Sc、Y、V、Ti、および、Ce以外のLからなる群から選択される少なくとも1つがさらに好ましく、CeまたはZrが特に好ましい。なお、ここでLはランタノイド(ランタノイド元素)を表す。なお、脆弱層26は、金属元素Bの金属酸化物が含まれることが好ましい。
なお、脆弱層26には、3種以上の金属元素が含まれていてもよい。
Hereinafter, the configuration of the fragile layer 26 will be described in detail.
Of the two or more kinds of metal elements (excluding boron element) contained in the inorganic layer 14, the metal element having the highest electronegativity is the metal element A, and the metal element having the lowest electronegativity is the metal element B. In this case, the configuration of the fragile layer 26 includes the metal element A and the metal element B. That is, the same metal element as the metal element A and the metal element B contained in the inorganic layer 14 is also contained in the fragile layer. The fragile layer 26 is preferably a metal oxide layer containing the metal element A and the metal element B.
In many cases, the metal element A corresponds to the first metal element (preferably a trivalent metal element) in the inorganic layer 14 described above, and the metal element B is the first metal element A in the inorganic layer 14 described above. Two metal elements are often applicable.
More specifically, the metal element A is preferably a trivalent metal element, and at least selected from the group consisting of In, Al, Bi, Fe, Mn, Cr, Co, Sc, Y, and Ga. One is more preferable, and In is more preferable. The fragile layer 26 preferably includes a metal oxide of the metal element A. For example, when In is included as the metal element A, the fragile layer 26 preferably includes In 2 O 3 .
Further, as the metal element B, a metal element having an electronegativity of 1.65 or less is preferable in that the effect of the present invention is more excellent, and an electronegativity excluding metal elements of Groups 1 and 2 of the periodic table. Is more preferably 1.65 or less, and at least one selected from the group consisting of Ce, Zr, Mn, Ta, Hf, Nb, La, Sc, Y, V, Ti, and L other than Ce is Further preferred is Ce or Zr. Here, L represents a lanthanoid (lanthanoid element). The fragile layer 26 preferably contains a metal oxide of the metal element B.
The fragile layer 26 may contain three or more metal elements.
脆弱層26中における金属元素Bと金属元素Aとの原子比X(金属元素B/金属元素A)に対する、脆弱層中における金属元素Bと金属元素Aとの原子比Y(金属元素B/金属元素A)の比(原子比Y/原子比X)は、1.05超であり、本発明の効果がより優れる点で、1.1以上が好ましく、1.3以上がより好ましく、1.5以上がさらに好ましい。上限は特に制限されないが、通常、10以下の場合が多い。 Atomic ratio Y (metal element B / metal) of metal element B and metal element A in the fragile layer to atomic ratio X (metal element B / metal element A) of metal element B and metal element A in fragile layer 26 The ratio of the element A) (atomic ratio Y / atomic ratio X) is more than 1.05, and is preferably 1.1 or more, more preferably 1.3 or more, in view of more excellent effects of the present invention. 5 or more is more preferable. The upper limit is not particularly limited, but is usually 10 or less in many cases.
金属元素Aとして上述した無機層14中の第1金属元素(好ましくは、3価の金属元素)が該当し、金属元素Bとして無機層14中の第2金属元素が該当する場合、脆弱層26中の金属元素Bは一部が還元されていてもよい。より具体的には、例えば、金属元素Bとして、セリウム(4価)を使用した場合、脆弱層にはセリウム(4価)とセリウム(3価)が併存していてもよい。特に、脆弱層26と無機層14とでは、脆弱層26において還元により価数が低下した金属元素Bがより多く存在していてもよい。 When the first metal element (preferably a trivalent metal element) in the inorganic layer 14 described above corresponds to the metal element A and the second metal element in the inorganic layer 14 corresponds to the metal element B, the fragile layer 26 The metal element B therein may be partially reduced. More specifically, for example, when cerium (tetravalent) is used as the metal element B, cerium (tetravalent) and cerium (trivalent) may coexist in the fragile layer. In particular, the fragile layer 26 and the inorganic layer 14 may contain more metal element B whose valence is reduced by reduction in the fragile layer 26.
脆弱層26の厚みは特に制限されないが、本発明の効果がより優れる点で、1〜10nmが好ましく、2〜7nmがより好ましい。 Although the thickness of the fragile layer 26 is not particularly limited, 1 to 10 nm is preferable and 2 to 7 nm is more preferable in that the effect of the present invention is more excellent.
ガラス積層体11の製造方法は特に制限されないが、上述したように、ガラス積層体10に対して加熱処理を施すことにより、形成することができる。
加熱処理の条件は特に制限されないが、加熱温度としては400℃以上(好ましくは、450℃以上)が好ましく、加熱時間としては5分間以上が好ましく、10分間以上がより好ましい。
なお、加熱温度の上限は特に制限されないが、ガラス積層体の耐熱性の点から、700℃以下の場合が多い。加熱時間の条件は特に制限されないが、生産性の点から、60分間以下の場合が多い。
Although the manufacturing method in particular of the glass laminated body 11 is not restrict | limited, as mentioned above, it can form by performing heat processing with respect to the glass laminated body 10. As shown in FIG.
The conditions for the heat treatment are not particularly limited, but the heating temperature is preferably 400 ° C. or higher (preferably 450 ° C. or higher), and the heating time is preferably 5 minutes or longer, more preferably 10 minutes or longer.
The upper limit of the heating temperature is not particularly limited, but is often 700 ° C. or less from the viewpoint of the heat resistance of the glass laminate. The conditions for the heating time are not particularly limited, but are often 60 minutes or less from the viewpoint of productivity.
本発明のガラス積層体10およびガラス積層体11は、種々の用途に使用することができ、例えば、後述する表示装置用パネル、PV、薄膜2次電池、表面に回路が形成された半導体ウェハ等の電子部品を製造する用途などが挙げられる。なお、該用途では、ガラス積層体10およびガラス積層体11が高温条件(例えば、400℃以上)で曝される(例えば、10分間以上)場合が多い。
ここで、表示装置用パネルとは、LCD、OLED、電子ペーパー、プラズマディスプレイパネル、フィールドエミッションパネル、量子ドットLEDパネル、MEMS(Micro Electro Mechanical Systems)シャッターパネル等が含まれる。
The glass laminate 10 and the glass laminate 11 of the present invention can be used for various applications, such as a display device panel, PV, a thin film secondary battery, a semiconductor wafer having a circuit formed on the surface, and the like. The use which manufactures these electronic components is mentioned. In this application, the glass laminate 10 and the glass laminate 11 are often exposed (for example, 10 minutes or more) under high temperature conditions (for example, 400 ° C. or more).
Here, the display device panel includes LCD, OLED, electronic paper, plasma display panel, field emission panel, quantum dot LED panel, MEMS (Micro Electro Mechanical Systems) shutter panel, and the like.
<電子デバイスおよびその製造方法>
次に、電子デバイスおよびその製造方法の好適形態について詳述する。
図3は、本発明の電子デバイスの製造方法の好適形態における各製造工程を順に示す模式的断面図である。本発明の電子デバイスの好適形態は、部材形成工程および分離工程を備える。
以下に、図3を参照しながら、各工程で使用される材料およびその手順について詳述する。まず、部材形成工程について詳述する。
<Electronic device and manufacturing method thereof>
Next, preferred embodiments of the electronic device and the manufacturing method thereof will be described in detail.
FIG. 3 is a schematic cross-sectional view sequentially showing each manufacturing process in the preferred embodiment of the method for manufacturing an electronic device of the present invention. The suitable form of the electronic device of this invention is equipped with a member formation process and a isolation | separation process.
Hereinafter, the materials used in each step and the procedure thereof will be described in detail with reference to FIG. First, a member formation process is explained in full detail.
[部材形成工程]
部材形成工程は、ガラス積層体中のガラス基板上に電子デバイス用部材を形成する工程である。
より具体的には、図3(A)に示すように、本工程において、ガラス基板18の第2主面18b上に電子デバイス用部材20が形成され、電子デバイス用部材付き積層体22が製造される。
まず、本工程で使用される電子デバイス用部材20について詳述し、その後工程の手順について詳述する。
[Member forming process]
A member formation process is a process of forming the member for electronic devices on the glass substrate in a glass laminated body.
More specifically, as shown in FIG. 3A, in this step, the electronic device member 20 is formed on the second main surface 18b of the glass substrate 18, and the electronic device member laminated body 22 is manufactured. Is done.
First, the electronic device member 20 used in this step will be described in detail, and the procedure of the subsequent steps will be described in detail.
(電子デバイス用部材(機能性素子))
電子デバイス用部材20は、ガラス積層体10中のガラス基板18の第2主面18b上に形成され電子デバイスの少なくとも一部を構成する部材である。より具体的には、電子デバイス用部材20としては、表示装置用パネル、太陽電池、薄膜2次電池、表面に回路が形成された半導体ウェハ等の電子部品などに用いられる部材が挙げられる。表示装置用パネルとしては、有機ELパネル、プラズマディスプレイパネル、フィールドエミッションパネル等が含まれる。
(Electronic device components (functional elements))
The electronic device member 20 is a member that is formed on the second main surface 18b of the glass substrate 18 in the glass laminate 10 and constitutes at least a part of the electronic device. More specifically, examples of the electronic device member 20 include a member used for an electronic component such as a display panel, a solar cell, a thin film secondary battery, or a semiconductor wafer having a circuit formed on the surface thereof. Examples of the display device panel include an organic EL panel, a plasma display panel, a field emission panel, and the like.
例えば、太陽電池用部材としては、シリコン型では、正極の酸化スズなど透明電極、p層/i層/n層で表されるシリコン層、および負極の金属等が挙げられ、その他に、化合物型、色素増感型、量子ドット型などに対応する各種部材等を挙げることができる。
また、薄膜2次電池用部材としては、リチウムイオン型では、正極および負極の金属または金属酸化物等の透明電極、電解質層のリチウム化合物、集電層の金属、封止層としての樹脂等が挙げられ、その他に、ニッケル水素型、ポリマー型、セラミックス電解質型などに対応する各種部材等を挙げることができる。
また、電子部品用部材としては、CCDやCMOSでは、導電部の金属、絶縁部の酸化ケイ素や窒化珪素等が挙げられ、その他に圧力センサ・加速度センサなど各種センサやリジッドプリント基板、フレキシブルプリント基板、リジッドフレキシブルプリント基板などに対応する各種部材等を挙げることができる。
For example, as a member for a solar cell, a silicon type includes a transparent electrode such as tin oxide of a positive electrode, a silicon layer represented by p layer / i layer / n layer, a metal of a negative electrode, and the like. And various members corresponding to the dye-sensitized type, the quantum dot type, and the like.
Further, as a member for a thin film secondary battery, in the lithium ion type, a transparent electrode such as a metal or a metal oxide of a positive electrode and a negative electrode, a lithium compound of an electrolyte layer, a metal of a current collecting layer, a resin as a sealing layer In addition, various members corresponding to nickel hydrogen type, polymer type, ceramic electrolyte type and the like can be mentioned.
In addition, as a member for electronic components, in CCD and CMOS, metal of conductive part, silicon oxide and silicon nitride of insulating part, etc., other various sensors such as pressure sensor and acceleration sensor, rigid printed board, flexible printed board And various members corresponding to a rigid flexible printed circuit board.
(工程の手順)
上述した電子デバイス用部材付き積層体22の製造方法は特に限定されず、電子デバイス用部材の構成部材の種類に応じて従来公知の方法にて、ガラス基板18の第2主面18b上に、電子デバイス用部材20を形成する。
なお、電子デバイス用部材20は、ガラス基板18の第2主面18bに最終的に形成される部材の全部(以下、「全部材」という)ではなく、全部材の一部(以下、「部分部材」という)であってもよい。部分部材付きガラス基板を、その後の工程で全部材付きガラス基板(後述する電子デバイスに相当)とすることもできる。また、全部材付きガラス基板には、その剥離面(第1主面)に他の電子デバイス用部材が形成されてもよい。また、全部材付き積層体を組み立て、その後、全部材付き積層体から無機層付き支持基板16を分離して、電子デバイスを製造することもできる。さらに、全部材付き積層体を2枚用いて電子デバイスを組み立て、その後、全部材付き積層体から2枚の無機層付き支持基板16を分離して、電子デバイスを製造することもできる。
(Process procedure)
The manufacturing method of the laminated body 22 with the member for electronic devices mentioned above is not specifically limited, According to the conventionally well-known method according to the kind of structural member of the member for electronic devices, on the 2nd main surface 18b of the glass substrate 18, The electronic device member 20 is formed.
The electronic device member 20 is not all of the members finally formed on the second main surface 18b of the glass substrate 18 (hereinafter referred to as “all members”), but a part of all members (hereinafter referred to as “parts”). May be referred to as a member. The glass substrate with partial members can be made into a glass substrate with all members (corresponding to an electronic device described later) in the subsequent steps. Moreover, the member for electronic devices may be formed in the peeling surface (1st main surface) in the glass substrate with all the members. Moreover, an electronic device can also be manufactured by assembling a laminate with all members and then separating the support substrate 16 with an inorganic layer from the laminate with all members. Furthermore, an electronic device can also be manufactured by assembling an electronic device using two laminates with all members, and then separating the two support substrates 16 with inorganic layers from the laminate with all members.
例えば、OLEDを製造する場合を例にとると、ガラス積層体10のガラス基板18の第2主面18bの表面上に有機EL構造体を形成するために、透明電極を形成する、さらに透明電極を形成した面上にホール注入層・ホール輸送層・発光層・電子輸送層等を蒸着する、裏面電極を形成する、封止板を用いて封止する、等の各種の層形成や処理が行われる。これらの層形成や処理として、具体的には、成膜処理、蒸着処理、封止板の接着処理等が挙げられる。 For example, taking the case of manufacturing an OLED as an example, in order to form an organic EL structure on the surface of the second main surface 18b of the glass substrate 18 of the glass laminate 10, a transparent electrode is further formed. Various layer formation and processing such as vapor-depositing hole injection layer, hole transport layer, light emitting layer, electron transport layer, etc. on the surface on which is formed, forming a back electrode, sealing with a sealing plate, etc. Done. Specific examples of these layer formation and treatment include film formation treatment, vapor deposition treatment, sealing plate adhesion treatment, and the like.
また、例えば、TFT−LCDの製造方法は、ガラス積層体10のガラス基板18の第2主面18b上に、レジスト液を用いて、CVD法およびスパッタ法など、一般的な成膜法により形成される金属膜および金属酸化膜等にパターン形成して薄膜トランジスタ(TFT)を形成するTFT形成工程と、別のガラス積層体10のガラス基板18の第2主面18b上に、レジスト液をパターン形成に用いてカラーフィルタ(CF)を形成するCF形成工程と、TFT付きデバイス基板とCF付きデバイス基板とを積層する貼り合わせ工程等の各種工程を有する。 Further, for example, the TFT-LCD manufacturing method is formed on the second main surface 18b of the glass substrate 18 of the glass laminate 10 by using a resist solution by a general film forming method such as a CVD method or a sputtering method. Forming a thin film transistor (TFT) by patterning a metal film and a metal oxide film to be formed, and patterning a resist solution on the second main surface 18b of the glass substrate 18 of another glass laminate 10 And a CF forming step for forming a color filter (CF) and a bonding step for laminating a device substrate with TFT and a device substrate with CF.
TFT形成工程やCF形成工程では、周知のフォトリソグラフィ技術やエッチング技術等を用いて、ガラス基板18の第2主面18bにTFTやCFを形成する。この際、パターン形成用のコーティング液としてレジスト液が用いられる。
なお、TFTやCFを形成する前に、必要に応じて、ガラス基板18の第2主面18bを洗浄してもよい。洗浄方法としては、周知のドライ洗浄やウェット洗浄を用いることができる。
In the TFT formation process and the CF formation process, the TFT and CF are formed on the second main surface 18b of the glass substrate 18 by using a well-known photolithography technique, etching technique, or the like. At this time, a resist solution is used as a coating solution for pattern formation.
In addition, before forming TFT and CF, you may wash | clean the 2nd main surface 18b of the glass substrate 18 as needed. As a cleaning method, known dry cleaning or wet cleaning can be used.
貼り合わせ工程では、TFT付き積層体と、CF付き積層体との間に液晶材を注入して積層する。液晶材を注入する方法としては、例えば、減圧注入法、滴下注入法がある。 In the bonding step, a liquid crystal material is injected and laminated between the laminated body with TFT and the laminated body with CF. Examples of the method for injecting the liquid crystal material include a reduced pressure injection method and a drop injection method.
なお、部材形成工程では、上述したように、通常、高温条件下(例えば、400℃以上)での処理の実施が実施される。
このような高温処理が実施されると、無機層中のガラス基板側の領域の組成が変化して、図3(A)に示すように、無機層14とガラス基板18との間に、脆弱層26が形成される。つまり、支持基板12と、無機層14と、脆弱層26と、ガラス基板18と、電子デバイス用部材20を含むガラス積層体(電子デバイス用部材付き積層体22)が形成されている。
脆弱層26は、凝集破壊を生じやすい層である。そのため、後述する分離工程を実施すると、脆弱層26にて凝集破壊が生じて、無機層付き支持基板16と電子デバイス24とに容易に分離される。
脆弱層26の説明は、上述の通りである。
In the member forming step, as described above, the processing is usually performed under a high temperature condition (for example, 400 ° C. or higher).
When such a high temperature treatment is carried out, the composition of the region on the glass substrate side in the inorganic layer changes, and as shown in FIG. 3 (A), between the inorganic layer 14 and the glass substrate 18 fragile. Layer 26 is formed. That is, the glass laminated body (laminated body 22 with an electronic device member) containing the support substrate 12, the inorganic layer 14, the weak layer 26, the glass substrate 18, and the electronic device member 20 is formed.
The fragile layer 26 is a layer that easily causes cohesive failure. Therefore, when a separation step described later is performed, cohesive failure occurs in the fragile layer 26, and the inorganic substrate-supported substrate 16 and the electronic device 24 are easily separated.
The description of the fragile layer 26 is as described above.
[分離工程]
分離工程は、図3(B)に示すように、上記部材形成工程で得られた電子デバイス用部材付き積層体22から無機層付き支持基板16を分離して、電子デバイス用部材20およびガラス基板18を含む電子デバイス24(電子デバイス用部材付きガラス基板)を得る工程である。つまり、電子デバイス用部材付き積層体22を、無機層付き支持基板16と電子デバイス24とに分離する工程である。なお、上記処理の際には、脆弱層26において凝集破壊が起こることによって、無機層付き支持基板16と電子デバイス24とに分離する場合が多い。
分離時のガラス基板18上の電子デバイス用部材20が必要な全構成部材の形成の一部である場合には、分離後、残りの構成部材をガラス基板18上に形成することもできる。
[Separation process]
In the separation step, as shown in FIG. 3B, the support substrate 16 with the inorganic layer is separated from the laminate 22 with the electronic device member obtained in the member forming step, and the electronic device member 20 and the glass substrate are separated. 18 is a step of obtaining an electronic device 24 including 18 (a glass substrate with a member for electronic devices). That is, it is a step of separating the laminated body 22 with the electronic device member into the supporting substrate 16 with the inorganic layer and the electronic device 24. In addition, in the case of the said process, it often isolate | separates into the support substrate 16 with an inorganic layer, and the electronic device 24 by cohesive failure occurring in the weak layer 26. FIG.
In the case where the electronic device member 20 on the glass substrate 18 at the time of separation is a part of the formation of all necessary constituent members, the remaining constituent members can be formed on the glass substrate 18 after separation.
無機層付き支持基板16と電子デバイス24とに分離する方法は、特に限定されない。例えば、無機層14とガラス基板18との間に位置する脆弱層26近辺に鋭利な刃物状のものを差し込み、分離のきっかけを与えた上で、水と圧縮空気との混合流体を吹き付けたりして分離することができる。好ましくは、電子デバイス用部材付き積層体22の支持基板12が上側、電子デバイス用部材20側が下側となるように定盤上に設置し、電子デバイス用部材20側を定盤上に真空吸着し(両面に支持基板が積層されている場合は順次行う)、この状態でまず刃物を脆弱層26近辺に刃物を侵入させる。そして、その後に支持基板12側を複数の真空吸着パッドで吸着し、刃物を差し込んだ箇所付近から順に真空吸着パッドを上昇させる。そうすると、脆弱層26にて凝集破壊が起こって、無機層付き支持基板16を容易に剥離することができる。 The method of separating into the support substrate 16 with an inorganic layer and the electronic device 24 is not specifically limited. For example, a sharp blade-like object is inserted in the vicinity of the fragile layer 26 located between the inorganic layer 14 and the glass substrate 18 and given a trigger for separation, and then a mixed fluid of water and compressed air is sprayed. Can be separated. Preferably, the laminate 22 with electronic device members is placed on a surface plate so that the support substrate 12 is on the upper side and the electronic device member 20 side is on the lower side, and the electronic device member 20 side is vacuum-adsorbed on the surface plate. (In the case where support substrates are laminated on both sides, the steps are sequentially performed). In this state, first, the cutter is allowed to enter the vicinity of the fragile layer 26. Then, the support substrate 12 side is sucked by a plurality of vacuum suction pads, and the vacuum suction pads are raised in order from the vicinity of the place where the blade is inserted. If it does so, cohesive failure will occur in the weak layer 26, and the support substrate 16 with an inorganic layer can be peeled easily.
上記電子デバイス24を剥離する際の剥離強度の大きさは特に制限されないが、工業的な点からは、2.0N/25mm以下であることが好ましく、1.2N/25mm以下であることがより好ましい。
なお、上記剥離強度の大きさは、ガラス基板18を剥離する際の剥離強度の大きさとも言い換えることができる。つまり、支持基板12と、無機層14と、脆弱層26と、ガラス基板18とを含むガラス積層体(必要に応じて、電子デバイス用部材20を含む)からガラス基板18を剥離する際の剥離強度は、上記範囲であることが好ましい。
Although the magnitude | size of the peeling strength at the time of peeling the said electronic device 24 is not restrict | limited in particular, it is preferable that it is 2.0 N / 25mm or less from an industrial point, and it is more preferable that it is 1.2 N / 25mm or less preferable.
In addition, the magnitude | size of the said peeling strength can be paraphrased with the magnitude | size of the peeling strength at the time of peeling the glass substrate 18. FIG. That is, peeling when the glass substrate 18 is peeled from the glass laminate (including the electronic device member 20 as necessary) including the support substrate 12, the inorganic layer 14, the fragile layer 26, and the glass substrate 18. The strength is preferably in the above range.
上記工程によって得られた電子デバイス24は、携帯電話やPDAのようなモバイル端末に使用される小型の表示装置の製造に好適である。表示装置は主としてLCDまたはOLEDであり、LCDとしては、TN型、STN型、FE型、TFT型、MIM型、IPS型、VA型等を含む。基本的にパッシブ駆動型、アクティブ駆動型のいずれの表示装置の場合でも適用することができる。 The electronic device 24 obtained by the above process is suitable for manufacturing a small display device used for a mobile terminal such as a mobile phone or a PDA. The display device is mainly an LCD or an OLED, and the LCD includes a TN type, STN type, FE type, TFT type, MIM type, IPS type, VA type, and the like. Basically, the present invention can be applied to both passive drive type and active drive type display devices.
なお、上記手順にて分離された無機層付き支持基板16には、さらに新たなガラス基板を積層してガラス積層体としてもよい。
新たなガラス基板を積層する際には、ガラス積層体より分離された無機層付き支持基板に表面処理を施すことが好ましく、特に酸化処理や研磨処理を施すことが好ましい。上述したように、脆弱層においては還元により価数が低下した金属元素Bが多く含まれる場合があり、この元素が脆弱層の凝集破壊性を付与している。例えば、金属元素Bとしてセリウム(4価)を使用した場合、脆弱層にはセリウム(3価)が含まれる場合がある。上記手順により分離された無機層付き支持基板16の無機層上には、脆弱層の凝集破壊により、脆弱層の一部が残存している場合があり、価数の低下した金属元素Bが付着している場合がある。このような価数の低下している金属元素Bに対して酸化処理を施して元の価数に戻すことにより、新たな積層されるガラス基板との剥離性がより向上する。研磨処理を行った場合には無機層付き支持基板表面に残存した脆弱層を取り除き、価数が低下していないセリウム(4価)が含まれる面を得ると同時に、表面の平坦性も向上させることにより、新たな積層されるガラス基板との密着性、および剥離性がより向上する。
In addition, it is good also as a glass laminated body by further laminating | stacking a new glass substrate on the support substrate 16 with an inorganic layer isolate | separated in the said procedure.
When a new glass substrate is laminated, it is preferable to subject the support substrate with an inorganic layer separated from the glass laminate to a surface treatment, and particularly preferably an oxidation treatment or a polishing treatment. As described above, the fragile layer may contain a large amount of the metal element B whose valence is reduced by reduction, and this element imparts the cohesiveness of the fragile layer. For example, when cerium (tetravalent) is used as the metal element B, the fragile layer may contain cerium (trivalent). On the inorganic layer of the support substrate 16 with the inorganic layer separated by the above procedure, a part of the fragile layer may remain due to the cohesive failure of the fragile layer, and the metal element B having a reduced valence adheres. May have. By subjecting the metal element B having such a valence to an oxidation treatment to return to the original valence, the peelability from the newly laminated glass substrate is further improved. When the polishing treatment is performed, the fragile layer remaining on the surface of the support substrate with the inorganic layer is removed to obtain a surface containing cerium (tetravalent) whose valence is not lowered, and at the same time, the flatness of the surface is improved. Thereby, adhesiveness with a newly laminated glass substrate and releasability are further improved.
以下に、実施例などにより本発明を具体的に説明するが、本発明はこれらの例によって限定されるものではない。
以下の実施例および比較例では、ガラス基板として、無アルカリホウケイ酸ガラスからなるガラス板(縦100mm、横100mm、板厚0.3mm、線膨張係数38×10-7/℃、旭硝子社製商品名「AN100」)を使用した。また、支持基板としては、同じく無アルカリホウケイ酸ガラスからなるガラス板(縦100mm、横100mm、板厚0.4mm、線膨張係数38×10-7/℃、旭硝子社製商品名「AN100」)を使用した。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
In the following examples and comparative examples, a glass plate made of non-alkali borosilicate glass (length 100 mm, width 100 mm, plate thickness 0.3 mm, linear expansion coefficient 38 × 10 −7 / ° C., manufactured by Asahi Glass Co., Ltd.) The name “AN100”) was used. Further, as a support substrate, a glass plate made of non-alkali borosilicate glass (length 100 mm, width 100 mm, plate thickness 0.4 mm, linear expansion coefficient 38 × 10 −7 / ° C., trade name “AN100” manufactured by Asahi Glass Co., Ltd.) It was used.
<実施例1>
支持基板の一方の主面を純水洗浄し、その後アルカリ洗浄して清浄化した。さらに、清浄化した面に、マグネトロンスパッタリング法により、平均厚さ20nmのインジウムセリウムオキサイド層(無機層に該当)を形成し、無機層付き支持基板を得た。なお、上記マグネトロンスパッタリング法においては、ターゲット材料として酸化インジウムおよび酸化セリウムを混合・焼結したものを用い、それぞれの含有量は、酸化インジウムおよび酸化セリウムの合計質量に対して、酸化インジウムが80質量%であり、酸化セリウムが20質量%であった。得られた無機層中におけるセリウム元素の含有量は、無機層中の全金属元素に対して、12at%であった。また、インジウムセリウムオキサイド層(無機層)の表面粗さRaは0.2nmであった。
次に、ガラス基板の一方の主面を純水洗浄し、その後アルカリ洗浄して清浄化した。無機層付き支持基板の無機層の露出表面とガラス基板の清浄化した表面とに、アルカリ水溶液による洗浄および水による洗浄を施した後、清浄化された両面を室温下で真空プレスにより貼り合わせ、ガラス積層体A1を得た。
得られたガラス積層体A1においては、無機層付き支持基板とガラス基板とは、気泡を発生することなく密着しており、歪み状欠点もなく、平滑性も良好であった。また、支持基板と無機層との界面の剥離強度は、無機層とガラス基板との界面の剥離強度よりも高かった。
<Example 1>
One main surface of the support substrate was cleaned with pure water and then cleaned with alkali. Furthermore, an indium cerium oxide layer (corresponding to an inorganic layer) having an average thickness of 20 nm was formed on the cleaned surface by a magnetron sputtering method to obtain a support substrate with an inorganic layer. In the magnetron sputtering method, a target material in which indium oxide and cerium oxide are mixed and sintered is used, and each content is 80 mass of indium oxide with respect to the total mass of indium oxide and cerium oxide. %, And cerium oxide was 20% by mass. Content of the cerium element in the obtained inorganic layer was 12 at% with respect to all the metal elements in an inorganic layer. Further, the surface roughness Ra of the indium cerium oxide layer (inorganic layer) was 0.2 nm.
Next, one main surface of the glass substrate was cleaned with pure water and then cleaned with alkali to be cleaned. The exposed surface of the inorganic layer of the support substrate with an inorganic layer and the cleaned surface of the glass substrate are washed with an alkaline aqueous solution and washed with water, and then the cleaned surfaces are bonded together by a vacuum press at room temperature. A glass laminate A1 was obtained.
In the obtained glass laminate A1, the support substrate with an inorganic layer and the glass substrate were in close contact with each other without generating bubbles, had no distortion-like defects, and had good smoothness. Further, the peel strength at the interface between the support substrate and the inorganic layer was higher than the peel strength at the interface between the inorganic layer and the glass substrate.
ガラス積層体A1に対して、窒素雰囲気にて、550℃で10分間加熱処理を施した。この加熱処理を実施することにより、無機層とガラス基板との間に、脆弱層(厚み5nm)が形成された。
次に、以下の剥離試験を行い、ガラス基板の剥離強度(N/25mm)を測定した。測定方法は、幅25mm・長さ70mmのガラス積層体A1を用意し、オートグラフAG−20/50kNXDplus(島津製作所)を用いて、ガラス基板の剥離を行った。
この際、加熱処理後のガラス積層体A1のガラス基板と無機層との間の界面に厚さ0.4mmのステンレス製ナイフを挿入させて剥離の切欠部を形成した後、ガラス基板を完全に固定し、支持基板を引き上げることで強度の測定を行った。なお、剥離速度は30mm/minであった。荷重を検知した地点を0とし、その位置から2.0mm引き上げた位置での剥離強度を測定値とした。その際の剥離強度は、1.07N/25mmであった。
The glass laminate A1 was heat-treated at 550 ° C. for 10 minutes in a nitrogen atmosphere. By carrying out this heat treatment, a fragile layer (thickness 5 nm) was formed between the inorganic layer and the glass substrate.
Next, the following peel test was performed, and the peel strength (N / 25 mm) of the glass substrate was measured. As a measuring method, a glass laminate A1 having a width of 25 mm and a length of 70 mm was prepared, and the glass substrate was peeled off using Autograph AG-20 / 50kNXDplus (Shimadzu Corporation).
At this time, a stainless steel knife having a thickness of 0.4 mm was inserted into the interface between the glass substrate A1 and the inorganic layer of the glass laminate A1 after the heat treatment to form a notch for peeling, and then the glass substrate was completely The strength was measured by fixing and pulling up the support substrate. The peeling speed was 30 mm / min. The point where the load was detected was set to 0, and the peel strength at a position where the load was lifted by 2.0 mm was taken as the measured value. The peel strength at that time was 1.07 N / 25 mm.
なお、剥離後の無機層表層には脆弱層が形成され、インジウム元素およびセリウム元素が含まれていた。脆弱層におけるセリウム元素とインジウム元素との原子比Y(セリウム元素の量/インジウム元素の量)は0.849であり、無機層中におけるセリウム元素とインジウム元素との原子比X(セリウム元素の量/インジウム元素の量)は0.140であり、原子比Yと原子比Xとの比(原子比Y/原子比X)は6.06であった。
なお、原子比の測定には、X線光電子分光装置(PHI5000VersaProbe、アルバックファイ社製)を用いた(以下、同様)。
なお、剥離したガラス基板の表面には無機層成分が観察され、この結果より、無機層と支持基板の層との界面の剥離強度が、脆弱層中の凝集破壊強度よりも大きいことが確認された。
In addition, the weak layer was formed in the inorganic layer surface layer after peeling, and the indium element and the cerium element were contained. The atomic ratio Y (the amount of cerium element / the amount of indium element) of the cerium element and the indium element in the fragile layer is 0.849, and the atomic ratio X of the cerium element and the indium element in the inorganic layer (the amount of the cerium element) / Amount of indium element) was 0.140, and the ratio of atomic ratio Y to atomic ratio X (atomic ratio Y / atomic ratio X) was 6.06.
The atomic ratio was measured using an X-ray photoelectron spectrometer (PHI5000 VersaProbe, manufactured by ULVAC-PHI) (hereinafter the same).
In addition, an inorganic layer component was observed on the surface of the peeled glass substrate, and from this result, it was confirmed that the peel strength at the interface between the inorganic layer and the support substrate layer was larger than the cohesive failure strength in the fragile layer. It was.
上記手順により剥離した無機層付き支持基板を用い、同様の手順にて新たなガラス基板と積層を行ったガラス積層体を作製し、再度、加熱処理を行った後、無機層付き支持基板の剥離を行ったところ、多くの部分で再度の剥離が可能であったが、部分的に剥離が容易には進行しない部分があった。
そこで、上記手順により剥離した無機層付き支持基板に対して550℃の焼成を行って酸化処理を施した後、上記と同様の手順でガラス積層体を作製して、加熱処理を行い、無機層付き支持基板の剥離を実施したところ、全面で剥離が容易に可能となった。
その際の剥離力は1.22N/25mmであった。
また、上記酸化処理の代わりに、剥離した無機層付き支持基板に10Wのパワーにてプラズマ酸化処理を施した場合でも、無機層付き支持基板の剥離が全面で容易に可能となった。
Using the support substrate with an inorganic layer peeled by the above procedure, a glass laminate that was laminated with a new glass substrate by the same procedure was prepared, and after heat treatment again, the support substrate with an inorganic layer was peeled off. As a result, re-peeling was possible in many parts, but there was a part where peeling did not proceed easily.
Therefore, after firing at 550 ° C. for the support substrate with an inorganic layer peeled by the above procedure and performing an oxidation treatment, a glass laminate is produced by the same procedure as described above, and heat treatment is performed. When the attached support substrate was peeled off, peeling was easily possible on the entire surface.
The peeling force at that time was 1.22 N / 25 mm.
Moreover, even when the plasma oxidation treatment was performed on the peeled support substrate with an inorganic layer at a power of 10 W instead of the oxidation treatment, the support substrate with an inorganic layer could be easily peeled over the entire surface.
<実施例2>
セリウム元素の含有量が18at%となるようなターゲット材料を使用した以外は、実施例1と同様の手順に従って、ガラス積層体を作製し、各種評価を実施した。
<Example 2>
A glass laminate was prepared according to the same procedure as in Example 1 except that a target material having a cerium element content of 18 at% was used, and various evaluations were performed.
<実施例3>
無機層の厚みを変更した以外は、実施例1と同様の手順に従って、ガラス積層体を作製し、各種評価を実施した。
<Example 3>
Except having changed the thickness of the inorganic layer, the glass laminated body was produced according to the procedure similar to Example 1, and various evaluation was implemented.
<実施例4〜6>
In2O3ターゲットとZrO2ターゲットまたはTiO2ターゲットを同時スパッタリングで混合膜を成膜して、表1に示す添加濃度および膜厚にした以外は、実施例1と同様の手順に従って、ガラス積層体を作製し、各種評価を実施した。
<Examples 4 to 6>
Glass lamination was carried out in the same manner as in Example 1 except that a mixed film was formed by simultaneous sputtering of an In 2 O 3 target and a ZrO 2 target or a TiO 2 target to obtain the additive concentration and film thickness shown in Table 1. A body was prepared and subjected to various evaluations.
<比較例1>
ITOをターゲットとして用いて、表1に示す添加濃度および膜厚にした以外は、実施例1と同様の手順に従って、ガラス積層体を作製し、各種評価を実施した。
<Comparative Example 1>
A glass laminate was prepared and subjected to various evaluations according to the same procedure as in Example 1 except that ITO was used as a target and the addition concentration and film thickness shown in Table 1 were used.
<比較例2〜4>
単金属酸化物ターゲットを用いて、表1に示す金属元素種および膜厚にした以外は、実施例1と同様の手順に従って、ガラス積層体を作製し、各種評価を実施した。
<Comparative Examples 2-4>
A glass laminate was prepared according to the same procedure as in Example 1 except that the metal element species and film thickness shown in Table 1 were used using a single metal oxide target, and various evaluations were performed.
上記実施例1〜6および比較例1〜4の結果を以下の表1にまとめて示す。
なお、実施例2〜6においては、実施例1と同様に、上記ガラス基板の剥離の結果より、無機層と支持基板との界面の剥離強度が、無機層とガラス基板との界面の剥離強度よりも大きいことが確認された。
表1中、「第2金属元素(又は、他の金属元素)の濃度(at%)」は、第2金属元素(又は、他の金属元素)の全金属元素合計量に対する濃度(at%)を表す。
表1中、「膜厚」は無機層の平均厚さ(nm)を表す。
表1中、「Ra(nm)」欄は、支持基板上に配置(固定)された無機層の表面(支持基板側とは反対側の表面)の表面粗さRa(nm)を表す。
The results of Examples 1 to 6 and Comparative Examples 1 to 4 are summarized in Table 1 below.
In Examples 2 to 6, as in Example 1, the peel strength at the interface between the inorganic layer and the support substrate was determined as the peel strength at the interface between the inorganic layer and the glass substrate, as a result of the peeling of the glass substrate. It was confirmed that it was larger than.
In Table 1, “Concentration (at%) of second metal element (or other metal element)” is the concentration (at%) of the second metal element (or other metal element) relative to the total amount of all metal elements. Represents.
In Table 1, “film thickness” represents the average thickness (nm) of the inorganic layer.
In Table 1, the “Ra (nm)” column represents the surface roughness Ra (nm) of the surface of the inorganic layer disposed (fixed) on the support substrate (surface opposite to the support substrate side).
表1中の「積層」欄において、「○」は気泡を発生することなく密着しており、歪み状欠点もなく、平滑性も良好であったことを意図し、「×」はそれ以外の場合を意図する。
表1中の「剥離」欄において、「○」はガラス基板をガラス積層体から剥離できる場合を意図し、「×」はガラス基板をガラス積層体から剥離しようとすると、ガラス基板が割れてしまう場合を意図し、「××」はガラス積層体にステンレス製ナイフを挿入できず、ガラス基板の剥離ができない場合を意図する。
In the “Lamination” column of Table 1, “◯” indicates that the bubbles are in close contact without generating bubbles, that there is no distorted defect and smoothness is good, and “x” indicates other than that Intended case.
In the “peeling” column in Table 1, “◯” means a case where the glass substrate can be peeled from the glass laminate, and “x” means that the glass substrate breaks when trying to peel the glass substrate from the glass laminate. “XX” means a case where a stainless steel knife cannot be inserted into the glass laminate and the glass substrate cannot be peeled off.
なお、表1中の各実施例および各比較例の金属元素Aは第1金属元素と同じであり、金属元素Bは第2金属元素と同じである。つまり、実施例1において、Inが第1金属元素および金属元素Aであり、Ceが第2金属元素および金属元素Bである。 In addition, the metal element A of each Example and each comparative example in Table 1 is the same as the first metal element, and the metal element B is the same as the second metal element. That is, in Example 1, In is the first metal element and metal element A, and Ce is the second metal element and metal element B.
表1に示すように、所定の無機層を有する実施例1〜6では、支持基板上の無機層とガラス基板との積層性に優れ、かつ、高温条件下の処理後においてもガラス積層体からガラス基板を容易に剥離することができた。
これに対して、所定の要件を満たさない無機層を使用した比較例1〜4は、積層性は良好であったものの、剥離性が劣っていた。
As shown in Table 1, in Examples 1 to 6 having a predetermined inorganic layer, the laminate between the inorganic layer on the support substrate and the glass substrate is excellent, and even after treatment under high temperature conditions, the glass laminate is used. The glass substrate could be easily peeled off.
On the other hand, Comparative Examples 1-4 using the inorganic layer which does not satisfy | fill predetermined requirements were inferior in peelability, although the lamination property was favorable.
<実施例7>
本例では、実施例1で製造された、ガラス積層体A1を用いてOLEDを作製した。なお、以下のプロセスにおける加熱処理温度としては400℃以上の処理が実施される。
より具体的には、ガラス積層体A1におけるガラス基板の第2主面上に、スパッタリング法によりモリブデンを成膜し、フォトリソグラフィ法を用いたエッチングによりゲート電極を形成した。次に、プラズマCVD法により、ゲート電極を設けたガラス基板の第2主面側に、さらに窒化シリコン、真性アモルファスシリコン、n型アモルファスシリコンの順に成膜し、続いてスパッタリング法によりモリブデンを成膜し、フォトリソグラフィ法を用いたエッチングにより、ゲート絶縁膜、半導体素子部およびソース/ドレイン電極を形成した。次に、プラズマCVD法により、ガラス基板の第2主面側に、さらに窒化シリコンを成膜してパッシベーション層を形成した後に、スパッタリング法により酸化インジウム錫を成膜して、フォトリソグラフィ法を用いたエッチングにより、画素電極を形成した。
続いて、ガラス基板の第2主面側に、さらに蒸着法により正孔注入層として4,4’,4”−トリス(3−メチルフェニルフェニルアミノ)トリフェニルアミン、正孔輸送層としてビス[(N−ナフチル)−N−フェニル]ベンジジン、発光層として8−キノリノールアルミニウム錯体(Alq3)に2,6−ビス[4−[N−(4−メトキシフェニル)−N−フェニル]アミノスチリル]ナフタレン−1,5−ジカルボニトリル(BSN−BCN)を40体積%混合したもの、電子輸送層としてAlq3をこの順に成膜した。次に、ガラス基板の第2主面側にスパッタリング法によりアルミニウムを成膜し、フォトリソグラフィ法を用いたエッチングにより対向電極を形成した。次に、対向電極を形成したガラス基板の第2主面上に、紫外線硬化型の接着層を介してもう一枚のガラス基板を貼り合わせて封止した。上記手順によって得られた、ガラス基板上に有機EL構造体を有するガラス積層体は、電子デバイス用部材付き積層体に該当する。
続いて、得られたガラス積層体の封止体側を定盤に真空吸着させたうえで、ガラス積層体のコーナー部の脆弱層近辺に、厚さ0.1mmのステンレス製刃物を差し込み、無機層付き支持基板を分離して、OLEDパネル(電子デバイスに該当。以下パネルAという)を得た。作製したパネルAにICドライバを接続し、常温常圧下で駆動させたところ、駆動領域内において表示ムラは認められなかった。
<Example 7>
In this example, an OLED was produced using the glass laminate A1 produced in Example 1. In addition, the process of 400 degreeC or more is implemented as heat processing temperature in the following processes.
More specifically, a molybdenum film was formed by sputtering on the second main surface of the glass substrate in the glass laminate A1, and a gate electrode was formed by etching using a photolithography method. Next, silicon nitride, intrinsic amorphous silicon, and n-type amorphous silicon are formed in this order on the second main surface side of the glass substrate provided with the gate electrode by plasma CVD, and then molybdenum is formed by sputtering. Then, a gate insulating film, a semiconductor element portion, and source / drain electrodes were formed by etching using a photolithography method. Next, after forming a passivation layer by further forming silicon nitride on the second main surface side of the glass substrate by plasma CVD, indium tin oxide is formed by sputtering and photolithography is used. A pixel electrode was formed by etching.
Subsequently, on the second main surface side of the glass substrate, 4,4 ′, 4 ″ -tris (3-methylphenylphenylamino) triphenylamine as a hole injection layer and bis [ (N-naphthyl) -N-phenyl] benzidine, 8-quinolinol aluminum complex (Alq 3 ) as a light emitting layer, 2,6-bis [4- [N- (4-methoxyphenyl) -N-phenyl] aminostyryl] A mixture of 40% by volume of naphthalene-1,5-dicarbonitrile (BSN-BCN) and Alq 3 as an electron transport layer were formed in this order, and then formed on the second main surface side of the glass substrate by sputtering. Aluminum was deposited, and a counter electrode was formed by etching using a photolithography method.Next, ultraviolet light was formed on the second main surface of the glass substrate on which the counter electrode was formed. Another glass substrate was bonded and sealed through a chemical adhesive layer, and the glass laminate having the organic EL structure on the glass substrate obtained by the above procedure was laminated with an electronic device member. Applies to the body.
Then, after vacuum-adsorbing the sealing body side of the obtained glass laminated body to a surface plate, a stainless steel knife having a thickness of 0.1 mm is inserted in the vicinity of the fragile layer at the corner of the glass laminated body, and an inorganic layer The attached support substrate was separated to obtain an OLED panel (corresponding to an electronic device, hereinafter referred to as panel A). When an IC driver was connected to the manufactured panel A and driven under normal temperature and normal pressure, display unevenness was not observed in the driving region.
<実施例8>
本例では、実施例1で製造された、ガラス積層体A1を用いてLCDを作製した。なお、以下のプロセスにおける加熱処理温度としては400℃以上の処理が実施される。
ガラス積層体A1を2枚用意し、まず、片方のガラス積層体A1におけるガラス基板の第2主面上に、スパッタリング法によりモリブデンを成膜し、フォトリソグラフィ法を用いたエッチングによりゲート電極を形成した。次に、プラズマCVD法により、ゲート電極を設けたガラス基板の第2主面側に、さらに窒化シリコン、真性アモルファスシリコン、n型アモルファスシリコンの順に成膜し、続いてスパッタリング法によりモリブデンを成膜し、フォトリソグラフィ法を用いたエッチングにより、ゲート絶縁膜、半導体素子部およびソース/ドレイン電極を形成した。次に、プラズマCVD法により、ガラス基板の第2主面側に、さらに窒化シリコンを成膜してパッシベーション層を形成した後に、スパッタリング法により酸化インジウム錫を成膜し、フォトリソグラフィ法を用いたエッチングにより、画素電極を形成した。次に、画素電極を形成したガラス基板の第2主面上に、ロールコート法によりポリイミド樹脂液を塗布し、熱硬化により配向層を形成し、ラビングを行った。得られたガラス積層体を、ガラス積層体X1と呼ぶ。
次に、もう片方のガラス積層体A1におけるガラス基板の第2主面上に、スパッタリング法によりクロムを成膜し、フォトリソグラフィ法を用いたエッチングにより遮光層を形成した。次に、遮光層を設けたガラス基板の第2主面側に、さらにダイコート法によりカラーレジストを塗布し、フォトリソグラフィ法および熱硬化によりカラーフィルタ層を形成した。次に、ガラス基板の第2主面側に、さらにスパッタリング法により酸化インジウム錫を成膜し、対向電極を形成した。次に、対向電極を設けたガラス基板の第2主面上に、ダイコート法により紫外線硬化樹脂液を塗布し、フォトリソグラフィ法および熱硬化により柱状スペーサを形成した。次に、柱状スペーサを形成したガラス基板の第2主面上に、ロールコート法によりポリイミド樹脂液を塗布し、熱硬化により配向層を形成し、ラビングを行った。次に、ガラス基板の第2主面側に、ディスペンサ法によりシール用樹脂液を枠状に描画し、枠内にディスペンサ法により液晶を滴下した後に、上述したガラス積層体X1を用いて、2枚のガラス積層体のガラス基板の第2主面側同士を貼り合わせ、紫外線硬化および熱硬化によりLCDパネルを有する積層体を得た。ここでのLCDパネルを有する積層体を以下、パネル付き積層体X2という。
次に、実施例1と同様にパネル付き積層体X2から両面の無機層付き支持基板を剥離し、TFTアレイを形成した基板およびカラーフィルタを形成した基板からなるLCDパネルB(電子デバイスに該当)を得た。
作製したLCDパネルBにICドライバを接続し、常温常圧下で駆動させたところ、駆動領域内において表示ムラは認められなかった。
<Example 8>
In this example, an LCD was produced using the glass laminate A1 produced in Example 1. In addition, the process of 400 degreeC or more is implemented as heat processing temperature in the following processes.
Two glass laminates A1 are prepared. First, a molybdenum film is formed on the second main surface of the glass substrate of one glass laminate A1 by sputtering, and a gate electrode is formed by etching using photolithography. did. Next, silicon nitride, intrinsic amorphous silicon, and n-type amorphous silicon are formed in this order on the second main surface side of the glass substrate provided with the gate electrode by plasma CVD, and then molybdenum is formed by sputtering. Then, a gate insulating film, a semiconductor element portion, and source / drain electrodes were formed by etching using a photolithography method. Next, after forming a passivation layer by further forming silicon nitride on the second main surface side of the glass substrate by plasma CVD, indium tin oxide was formed by sputtering and photolithography was used. A pixel electrode was formed by etching. Next, a polyimide resin liquid was applied on the second main surface of the glass substrate on which the pixel electrode was formed by a roll coating method, an alignment layer was formed by thermosetting, and rubbing was performed. The obtained glass laminate is referred to as a glass laminate X1.
Next, a chromium film was formed by sputtering on the second main surface of the glass substrate in the other glass laminate A1, and a light-shielding layer was formed by etching using photolithography. Next, a color resist was further applied by a die coating method to the second main surface side of the glass substrate provided with the light shielding layer, and a color filter layer was formed by a photolithography method and thermal curing. Next, an indium tin oxide film was further formed on the second main surface side of the glass substrate by a sputtering method to form a counter electrode. Next, an ultraviolet curable resin liquid was applied to the second main surface of the glass substrate provided with the counter electrode by a die coating method, and columnar spacers were formed by a photolithography method and heat curing. Next, a polyimide resin solution was applied on the second main surface of the glass substrate on which the columnar spacers were formed by a roll coating method, an alignment layer was formed by thermosetting, and rubbing was performed. Next, after the sealing resin liquid is drawn in a frame shape on the second main surface side of the glass substrate by the dispenser method, and the liquid crystal is dropped in the frame by the dispenser method, the above-described glass laminate X1 is used. The 2nd main surface side of the glass substrate of a sheet of glass laminated body was bonded together, and the laminated body which has an LCD panel by ultraviolet curing and thermosetting was obtained. Hereinafter, the laminate having the LCD panel is referred to as a laminate X2 with a panel.
Next, LCD panel B (corresponding to an electronic device) composed of a substrate on which a TFT array is formed and a substrate on which a color filter is formed is peeled off from the laminate X2 with a panel in the same manner as in Example 1 and the substrate with the inorganic layer is peeled off Got.
When an IC driver was connected to the manufactured LCD panel B and driven under normal temperature and normal pressure, no display unevenness was observed in the driving region.
10,11 ガラス積層体
12 支持基板
14 無機層
16 無機層付き支持基板
18 ガラス基板
20 電子デバイス用部材
22 電子デバイス用部材付き積層体
24 電子デバイス
26 脆弱層
DESCRIPTION OF SYMBOLS 10,11 Glass laminated body 12 Support substrate 14 Inorganic layer 16 Support substrate 18 with an inorganic layer Glass substrate 20 Electronic device member 22 Laminated body 24 with electronic device member 24 Electronic device 26 Fragile layer
Claims (24)
前記無機層上に剥離可能に積層されたガラス基板とを備え、
前記無機層が、2種以上の金属元素を含む金属酸化物層であり、
前記金属元素が、前記金属元素のうち電気陰性度が最も大きい第1金属元素と、前記第1金属元素よりも電気陰性度が小さく、その値が1.65以下である第2金属元素とを含む、ガラス積層体。 A support substrate with an inorganic layer comprising a support substrate and an inorganic layer disposed on the support substrate;
A glass substrate that is detachably laminated on the inorganic layer,
The inorganic layer is a metal oxide layer containing two or more metal elements;
The metal element includes a first metal element having the largest electronegativity among the metal elements, and a second metal element having an electronegativity smaller than that of the first metal element and having a value of 1.65 or less. Including a glass laminate.
前記無機層には、2種以上の金属元素(ただし、ホウ素元素を除く)が含まれ、前記金属元素には、前記金属元素のうち電気陰性度が最も大きい金属元素Aと、前記金属元素のうち電気陰性度が最も小さい金属元素Bとが少なくとも含まれ、
前記脆弱層には、前記金属元素Aおよび前記金属元素Bが含まれ、
前記無機層中における前記金属元素Bと前記金属元素Aとの原子比X(前記金属元素B/前記金属元素A)に対する、前記脆弱層中における前記金属元素Bと前記金属元素Aとの原子比Y(前記金属元素B/前記金属元素A)の比(原子比Y/原子比X)が1.05超である、ガラス積層体。 It has a support substrate, an inorganic layer, a fragile layer, and a glass substrate in this order,
The inorganic layer includes two or more kinds of metal elements (excluding boron element), and the metal elements include the metal element A having the highest electronegativity among the metal elements and the metal elements. Among them, at least the metal element B having the smallest electronegativity is included,
The fragile layer includes the metal element A and the metal element B,
The atomic ratio of the metal element B and the metal element A in the fragile layer to the atomic ratio X (the metal element B / the metal element A) of the metal element B and the metal element A in the inorganic layer A glass laminate in which a ratio of Y (the metal element B / the metal element A) (atomic ratio Y / atomic ratio X) is greater than 1.05.
前記無機層には、前記金属元素Aの酸化物が含まれる、請求項8または9に記載のガラス積層体。 The metal element A includes at least one selected from the group consisting of In, Al, Bi, Fe, Mn, Cr, Co, Sc, Y, and Ga;
The glass laminate according to claim 8 or 9, wherein the inorganic layer contains an oxide of the metal element A.
前記電子デバイス用部材付き積層体から前記無機層付き支持基板を分離し、前記ガラス基板と前記電子デバイス用部材とを有する電子デバイスを得る分離工程と、を備える電子デバイスの製造方法。 The member formation process which forms the member for electronic devices on the surface of the glass substrate in the glass laminated body of any one of Claims 1-7, and obtains the laminated body with the member for electronic devices,
A separation step of separating the support substrate with an inorganic layer from the laminate with the member for electronic devices and obtaining an electronic device having the glass substrate and the member for electronic devices.
前記無機層が、2種以上の金属元素を含む金属酸化物層であり、
前記金属元素が、前記金属元素のうち電気陰性度が最も大きい第1金属元素と、前記第1金属元素よりも電気陰性度が小さく、その値が1.65以下である第2金属元素とを含み、
前記無機層上にガラス基板を積層してガラス積層体を製造するために使用される、無機層付き支持基板。 A support substrate and an inorganic layer disposed on the support substrate;
The inorganic layer is a metal oxide layer containing two or more metal elements;
The metal element includes a first metal element having the largest electronegativity among the metal elements, and a second metal element having an electronegativity smaller than that of the first metal element and having a value of 1.65 or less. Including
The support substrate with an inorganic layer used in order to laminate | stack a glass substrate on the said inorganic layer, and to manufacture a glass laminated body.
前記ガラス積層体を400℃以上の温度で加熱する工程と、
前記加熱が施されたガラス積層体から前記無機層付き支持基板を剥離して回収する工程と、
前記回収された前記無機層付き支持基板の前記無機層表面に表面処理を施す工程と、を有し、
前記無機層が、2種以上の金属元素を含む金属酸化物層であり、前記金属元素が、前記金属元素のうち電気陰性度が最も大きい第1金属元素と、前記第1金属元素よりも電気陰性度が小さく、その値が1.65以下である第2金属元素とを含む、無機層付き支持基板の製造方法。 A glass substrate is manufactured by laminating a support substrate and a support substrate with an inorganic layer including an inorganic layer disposed on the support substrate and a glass substrate so that the inorganic layer and the glass substrate are in contact with each other. And a process of
Heating the glass laminate at a temperature of 400 ° C. or higher;
Peeling and collecting the support substrate with an inorganic layer from the heated glass laminate; and
Performing a surface treatment on the surface of the inorganic layer of the recovered support substrate with the inorganic layer,
The inorganic layer is a metal oxide layer containing two or more kinds of metal elements, and the metal element has a first metal element having the highest electronegativity among the metal elements, and is more electrically than the first metal element. A method for producing a support substrate with an inorganic layer, comprising a second metal element having a small negative degree and a value of 1.65 or less.
The method for producing a support substrate with an inorganic layer according to claim 23, wherein the surface treatment is an oxidation treatment or a polishing treatment.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/071399 WO2016017649A1 (en) | 2014-08-01 | 2015-07-28 | Glass laminate, supporting substrate with inorganic layer, method for manufacturing electronic device, and method for producing supporting substrate with inorganic layer |
TW104124981A TW201609420A (en) | 2014-08-01 | 2015-07-31 | Glass laminate, supporting substrate with inorganic layer, method for manufacturing electronic device, and method for producing supporting substrate with inorganic layer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014157570 | 2014-08-01 | ||
JP2014157570 | 2014-08-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017164903A true JP2017164903A (en) | 2017-09-21 |
Family
ID=59912327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015090550A Pending JP2017164903A (en) | 2014-08-01 | 2015-04-27 | Glass laminate, support substrate with inorganic layer, method for producing electronic device, and method for producing support substrate with inorganic layer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017164903A (en) |
-
2015
- 2015-04-27 JP JP2015090550A patent/JP2017164903A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6176067B2 (en) | GLASS LAMINATE AND ELECTRONIC DEVICE MANUFACTURING METHOD | |
JP6172362B2 (en) | GLASS LAMINATE AND ELECTRONIC DEVICE MANUFACTURING METHOD | |
JP6119567B2 (en) | Method for manufacturing glass laminate and method for manufacturing electronic device | |
JP2013184346A (en) | Glass laminate, and method for producing electronic device | |
WO2015163134A1 (en) | Glass laminate body, and method for manufacturing electronic device | |
JP6136909B2 (en) | Manufacturing method of support substrate with resin layer, manufacturing method of glass laminate, manufacturing method of electronic device | |
JP5887946B2 (en) | Method for manufacturing electronic device and method for manufacturing glass laminate | |
JP7136275B2 (en) | LAMINATED BODY, ELECTRONIC DEVICE MANUFACTURING METHOD, LAMINATED PRODUCTION METHOD | |
TWI695820B (en) | Method for manufacturing carrier substrate, laminate and electronic device | |
KR102526047B1 (en) | Glass laminate and method for producing same | |
JP7070425B2 (en) | Manufacturing method for laminated boards and electronic devices | |
JP2015108735A (en) | Manufacturing method of electronic device | |
WO2016017649A1 (en) | Glass laminate, supporting substrate with inorganic layer, method for manufacturing electronic device, and method for producing supporting substrate with inorganic layer | |
JP2017164903A (en) | Glass laminate, support substrate with inorganic layer, method for producing electronic device, and method for producing support substrate with inorganic layer | |
JP2016210157A (en) | Glass laminate and method for producing electronic device |