[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2017164881A - Cutting blade - Google Patents

Cutting blade Download PDF

Info

Publication number
JP2017164881A
JP2017164881A JP2016055381A JP2016055381A JP2017164881A JP 2017164881 A JP2017164881 A JP 2017164881A JP 2016055381 A JP2016055381 A JP 2016055381A JP 2016055381 A JP2016055381 A JP 2016055381A JP 2017164881 A JP2017164881 A JP 2017164881A
Authority
JP
Japan
Prior art keywords
cutting
cutting blade
blade
holes
thickness direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016055381A
Other languages
Japanese (ja)
Inventor
隆博 石井
Takahiro Ishii
隆博 石井
壮一 片山
soichi Katayama
壮一 片山
竜也 関
Tatsuya Seki
竜也 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Abrasive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Abrasive Systems Ltd filed Critical Disco Abrasive Systems Ltd
Priority to JP2016055381A priority Critical patent/JP2017164881A/en
Priority to TW106105322A priority patent/TWI713698B/en
Priority to KR1020170033018A priority patent/KR102274972B1/en
Priority to CN201710155863.XA priority patent/CN107199497A/en
Publication of JP2017164881A publication Critical patent/JP2017164881A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D1/00Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
    • B26D1/0006Cutting members therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/06Grinders for cutting-off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D1/00Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
    • B26D1/0006Cutting members therefor
    • B26D2001/002Materials or surface treatments therefor, e.g. composite materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Dicing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cutting blade that can perform cutting to promote self-regenerating blade and excellently cut a surface film of a work-piece in particular.SOLUTION: A cutting blade (10) of the invention comprises an electrocast grindstone part in a circular ring-shape having abrasive-grains (12) fastened with a plating layer (11). In the plating layer are formed penetration holes (14) opened to both sides (11a and 11b) of the layer in a circular ring-shape and extended in a thickness direction and a plurality of non-penetration holes (15) opened to one of both sides and extended in the thickness direction. The cutting blade, even if amounts of cutting blade's wear increase during cutting due to the penetration hole and the non-penetration holes so that the surface film of the work-piece adheres to the blade, can promote a self-regenerating blade and also keep processing quality excellent.SELECTED DRAWING: Figure 2

Description

本発明は、表面膜を有する半導体ウエーハ等を切削するための切削ブレードに関する。   The present invention relates to a cutting blade for cutting a semiconductor wafer or the like having a surface film.

半導体ウエーハとしては、絶縁膜やデバイスを保護する保護膜等の表面膜が形成されたものが利用されている。このような半導体ウエーハを個々のデバイスに分割する場合、砥粒を含んで形成された環状となる2つの切削ブレードを用い、いわゆるステップカットと称される分割方法が採用される場合がある。具体的には、ステップカットでは、先ず、表面膜除去用の一方の切削ブレードにより、半導体ウエーハから表面膜を除去するハーフカットを行う。その後、フルカット用となる他方の切削ブレードにより、表面膜が除去された部分に切削溝を形成するフルカットを行う(例えば、特許文献1参照)。   As a semiconductor wafer, a semiconductor wafer having a surface film such as an insulating film or a protective film for protecting a device is used. When such a semiconductor wafer is divided into individual devices, there is a case where a dividing method called a so-called step cut is employed using two annular cutting blades formed including abrasive grains. Specifically, in the step cut, first, a half cut for removing the surface film from the semiconductor wafer is performed by one cutting blade for removing the surface film. Thereafter, the other cutting blade for full cut performs full cut to form a cutting groove in a portion where the surface film has been removed (see, for example, Patent Document 1).

特開2003−334751号公報Japanese Patent Laid-Open No. 2003-334751 特開2015−018965号公報Japanese Patent Laying-Open No. 2015-018965

しかしながら、薄厚の半導体ウエーハをステップカットする場合、表面膜を除去する切削では半導体ウエーハ自体への切り込み深さが浅くなり、切削によって除去される部分について半導体ウエーハに対し表面膜が占める割合が多くなる。このため、刃先に膜が付着すること等によって、古い砥粒が脱落して新たな砥粒が表出するいわゆる自生発刃が生じ難くなり、加工品質が悪化する、という問題がある。   However, when step-cutting a thin semiconductor wafer, the depth of cut into the semiconductor wafer itself becomes shallow in the cutting to remove the surface film, and the ratio of the surface film to the semiconductor wafer in the portion removed by the cutting increases. . For this reason, when a film | membrane adheres to a blade edge | tip, etc., there exists a problem that it becomes difficult to produce what is called a self-growth blade from which an old abrasive grain falls and a new abrasive grain appears, and processing quality deteriorates.

本発明はかかる点に鑑みてなされたものであり、自生発刃を促すよう切削することができ、特に被加工物の表面膜を良好に切削することができる切削ブレードを提供することを目的とする。   The present invention has been made in view of such points, and an object of the present invention is to provide a cutting blade which can be cut so as to promote self-generated blades, and in particular, can satisfactorily cut a surface film of a workpiece. To do.

本発明の切削ブレードは、めっき層で砥粒を固定した円環形状の電鋳砥石部を備える切削ブレードであって、めっき層には、円環形状の両側面に開口して厚さ方向に伸長する貫通孔及び両側面の一方に開口して厚さ方向に伸長する非貫通孔が複数形成されたことを特徴とする。   The cutting blade of the present invention is a cutting blade having an annular electroformed grindstone portion in which abrasive grains are fixed by a plating layer. The plating layer has openings on both side surfaces of the annular shape in the thickness direction. A plurality of through-holes that extend and a plurality of non-through-holes that open in one of both side surfaces and extend in the thickness direction are formed.

この構成によれば、めっき層に厚み方向に伸長する孔を複数備えるので、孔がないブレードに比べて切削中における消耗量を多くして自生発刃を促進することができる。これにより、被加工物が薄厚で表面膜が形成された半導体ウエーハであっても、その表面膜を良好に除去でき、加工品質も良好に維持することができる。   According to this configuration, since the plating layer includes a plurality of holes extending in the thickness direction, it is possible to promote the self-generated blade by increasing the amount of wear during cutting as compared with a blade without holes. As a result, even if the workpiece is a semiconductor wafer having a thin thickness and a surface film, the surface film can be removed satisfactorily and the processing quality can be maintained well.

本発明によれば、厚み方向に伸長する孔を複数備えるので、自生発刃を促すよう切削することができ、特に被加工物の表面膜を良好に切削することができる。   According to the present invention, since a plurality of holes extending in the thickness direction are provided, cutting can be performed so as to promote self-generated blades, and in particular, the surface film of the workpiece can be cut well.

実施の形態に係る切削ブレードの一例を模式的に表した説明用断面図である。It is sectional drawing for description which represented typically an example of the cutting blade which concerns on embodiment. 図1のA部及び図3のB部拡大断面図である。It is the A section of FIG. 1 and the B section expanded sectional view of FIG. 実施の形態に係る切削ブレードの他の一例を模式的に表した説明用断面図である。It is sectional drawing for description which represented typically another example of the cutting blade which concerns on embodiment. 切削加工後における被加工物の切削溝の対比説明用拡大上面写真である。It is an enlarged upper surface photograph for contrast description of the cutting groove of the workpiece after cutting.

以下、添付図面を参照して、本実施の形態に係る切削ブレードついて説明する。図1は、実施の形態に係る切削ブレードの一例を模式的に表した説明用断面図である。   Hereinafter, the cutting blade according to the present embodiment will be described with reference to the accompanying drawings. FIG. 1 is an explanatory sectional view schematically showing an example of a cutting blade according to an embodiment.

図1に示す切削ブレード10は、円環形状の電鋳砥石部(切り刃)のみでなるワッシャータイプとされる。切削ブレード10は、厚さ方向両面側から2つのフランジによって挟まれてスピンドルに取り付けられ、スピンドルの駆動によって高速回転される。そして、高速回転された切削ブレード10を被加工物に切り込ませながら、被加工物のストリートに沿って相対的に切削送りすることで被加工物を切削して切削溝を形成する。   The cutting blade 10 shown in FIG. 1 is a washer type including only an annular electroformed grinding wheel portion (cutting blade). The cutting blade 10 is sandwiched between two flanges from both sides in the thickness direction and attached to the spindle, and is rotated at a high speed by driving the spindle. Then, the cutting blade 10 rotated at a high speed is cut into the workpiece, and the workpiece is cut along a street of the workpiece to cut the workpiece to form a cutting groove.

ここで、被加工物としては、シリコン、ガリウム砒素等の半導体基板に半導体デバイスが形成された半導体ウエーハでもよいし、セラミック、ガラス、サファイア系の無機材料基板に光デバイスが形成された光デバイスウエーハでもよい。   The workpiece may be a semiconductor wafer in which a semiconductor device is formed on a semiconductor substrate such as silicon or gallium arsenide, or an optical device wafer in which an optical device is formed on a ceramic, glass, or sapphire inorganic material substrate. But you can.

次いで、切削ブレード10の製造方法について説明する。切削ブレード10の製造では、先ず、ニッケルめっき液で満たしためっき浴槽を準備し、ニッケルめっき液には添加剤を添加する。ニッケルめっき液は、硫酸ニッケルや硝酸ニッケル、塩化ニッケル等のニッケル(イオン)を含む電解液で、ダイヤモンド等の砥粒が混入されるものが例示でき、その構成や使用量は、後述のように切削できる限りにおいて任意に設定できる。添加剤は、後述する貫通孔や非貫通孔の形成を促進するために添加され、アルキル基、アリール基、アラルキル基等の疎水性基を有する水溶性のアンモニウム化合物を含むものを用いることが好ましい。ニッケルめっき液に対する添加剤の濃度は、貫通孔や非貫通孔の開口径等に応じて任意に設定される。   Next, a method for manufacturing the cutting blade 10 will be described. In manufacturing the cutting blade 10, first, a plating bath filled with a nickel plating solution is prepared, and an additive is added to the nickel plating solution. The nickel plating solution is an electrolytic solution containing nickel (ions) such as nickel sulfate, nickel nitrate, nickel chloride, etc., which can be mixed with abrasive grains such as diamond, and its configuration and usage are as described below. It can be set arbitrarily as long as cutting is possible. It is preferable to use an additive that contains a water-soluble ammonium compound that is added to promote the formation of through-holes and non-through-holes, which will be described later, and that has a hydrophobic group such as an alkyl group, an aryl group, or an aralkyl group. . The concentration of the additive with respect to the nickel plating solution is arbitrarily set according to the opening diameters of the through holes and the non-through holes.

上記のように添加剤を添加したニッケルめっき液に対し、円環形状の電鋳砥石部に対応した形状のマスクで覆われた基台と、ニッケル電極とを浸漬する。そして、基台を陰極、ニッケル電極を陽極としてニッケルめっき液に直流電流を流し、マスクで覆われていない基台の表面にめっき層を堆積させて電鋳砥石部を形成する。このとき、ニッケルめっき液の攪拌が同時に行われるので、電鋳砥石部ではニッケルを含むめっき層中に砥粒が概ね均等に分散されてめっき層で砥粒が固定される。所定厚みに電鋳砥石部を堆積して形成後、基台から電鋳砥石部を剥離して除去し、円環形状の電鋳砥石部のみでなるワッシャータイプの切削ブレード10が完成する。   The base covered with the mask having a shape corresponding to the ring-shaped electroformed grinding wheel portion and the nickel electrode are immersed in the nickel plating solution to which the additive is added as described above. Then, a direct current is passed through the nickel plating solution using the base as a cathode and the nickel electrode as an anode, and a plating layer is deposited on the surface of the base not covered with a mask to form an electroformed grindstone. At this time, since the nickel plating solution is agitated at the same time, the abrasive grains are substantially uniformly dispersed in the plating layer containing nickel in the electroforming grindstone, and the abrasive grains are fixed by the plating layer. After depositing and forming the electroformed grindstone portion to a predetermined thickness, the electroformed grindstone portion is peeled off from the base and removed to complete the washer-type cutting blade 10 including only the ring-shaped electroformed grindstone portion.

図2は、図1のA部拡大断面図である。図2に示すように、切削ブレード(電鋳砥石部)10は、図中網点を施した部分がめっき層11であり、このめっき層11に概ね均等に分散されて砥粒12が固定されている。また、めっき層11には、めっき層11の厚さ方向(図2中上下方向)に伸長する貫通孔14及び非貫通孔15が複数形成されている。貫通孔14及び非貫通孔15は、めっき層11の積層時に、上記の添加剤の作用によって、気泡が発生してめっき層11が非形成となる領域が散点的に生じ、めっき層11の積層の過程で、その領域が連続するようめっき層11の厚さ方向に成長(伸長)して形成される。   FIG. 2 is an enlarged cross-sectional view of a portion A in FIG. As shown in FIG. 2, the cutting blade (electroformed grindstone portion) 10 is a plated layer 11 in a portion given a halftone dot in the figure, and the abrasive grains 12 are fixed to the plated layer 11 by being evenly dispersed. ing. The plated layer 11 has a plurality of through holes 14 and non-through holes 15 extending in the thickness direction of the plated layer 11 (vertical direction in FIG. 2). The through-holes 14 and the non-through-holes 15 are scattered in a region where bubbles are generated and the plating layer 11 is not formed due to the action of the additive when the plating layer 11 is laminated. In the stacking process, the plating layer 11 is grown (elongated) in the thickness direction so that the region is continuous.

貫通孔14は、図2にてめっき層11の上面及び下面となる両側面11a、11bに開口している。貫通孔14としては、符号14aを付した貫通孔のように、一方の側面11aから厚さ方向に伸長した孔と、他方の側面11bから厚さ方向に伸長した孔とが厚さ方向中間部で連通するように形成されたものでもよい。図示では貫通孔14aを1箇所としが、同様に形成される貫通孔14aが多くの割合で形成される。また、符号14bを付した貫通孔のように、両側面11a、11bのうち、何れか一方から他方まで厚さ方向に伸長して貫通するように形成されたものでもよい。   The through holes 14 are opened on both side surfaces 11a and 11b which are the upper and lower surfaces of the plating layer 11 in FIG. As the through hole 14, a hole extending in the thickness direction from one side surface 11 a and a hole extending in the thickness direction from the other side surface 11 b, such as a through hole denoted by reference numeral 14 a, are intermediate portions in the thickness direction. It may be formed so as to communicate with each other. In the drawing, the number of through holes 14a is one, but the same number of through holes 14a are formed. Moreover, it may be formed so as to extend in the thickness direction from either one of the side surfaces 11a and 11b to the other, such as a through hole denoted by reference numeral 14b.

非貫通孔15は、両側面11a、11bの一方に開口しており、開口と反対側は厚さ方向中間部に位置して閉塞されて形成される。   The non-through hole 15 is opened on one of the side surfaces 11a and 11b, and the opposite side to the opening is located and closed at the middle portion in the thickness direction.

このような実施の形態によれば、めっき層11の厚み方向に伸長する貫通孔14及び非貫通孔15を有するので、切削中における切削ブレード10の消耗量を多くすることができる。これにより、表面膜を有する薄厚の被加工物に対し、表面膜を除去するための切削溝を形成する場合、除去する部分が被加工物に比べて表面膜が多くなっても、刃先に膜が付着した状態が維持されることを抑制して自生発刃を促進することができる。また、貫通孔14及び非貫通孔15によってめっき層11と砥粒12との接触面積を減らして砥粒12を脱落し易くさせ、これによっても、自生発刃を促進することができる。このように自生発刃を促進することで、チッピングの発生を防ぐことができ、切削の加工品質向上を図ることができる。   According to such an embodiment, since the through hole 14 and the non-through hole 15 extending in the thickness direction of the plating layer 11 are provided, the amount of wear of the cutting blade 10 during cutting can be increased. Thus, when forming a cutting groove for removing a surface film on a thin workpiece having a surface film, even if the portion to be removed has more surface film than the workpiece, the film is formed on the cutting edge. It can suppress that the state which adhered has been maintained, and can promote a self-generated blade. Further, the contact area between the plating layer 11 and the abrasive grains 12 is reduced by the through-holes 14 and the non-through-holes 15 so that the abrasive grains 12 can be easily dropped, thereby promoting the self-generated blade. By promoting the self-generated blade in this way, the occurrence of chipping can be prevented, and the machining quality of cutting can be improved.

更に、切削中に切削ブレード10に欠けが生じても、貫通孔14及び非貫通孔15が存在するため、欠けの大きさを最小限に抑制することができる。これにより、大きな欠けや割れが生じることによる加工不良の発生を回避することができる。   Furthermore, even if the cutting blade 10 is chipped during cutting, the size of the chip can be minimized because the through hole 14 and the non-through hole 15 exist. Thereby, generation | occurrence | production of the processing defect by a big chip | tip and a crack producing can be avoided.

ここで、貫通孔14及び非貫通孔15の開口平均径d1は、砥粒12の平均粒径d2の1/10以上2倍以下の大きさに形成されると、切削における自生発刃が良好に促進され、被加工物を良好に切削することができる。より好ましくは、開口平均径d1が平均粒径d2の1/5以上等倍以下の大きさとするとよく、自生発刃がより一層促進され、より良好に切削することができる。開口平均径d1が平均粒径d2の等倍より大きく2倍以下の場合には、加工負荷を低減するよう加工条件を変更することで良好に切削を行うことができる。また、開口平均径d1を1μm以上6μm以下とし、これに応じて上記した範囲に平均粒径d2を形成することが好ましいが、これらの範囲外としても加工条件等を調整することで切削の加工品質を同等にすることが期待できる。   Here, when the average opening diameter d1 of the through-holes 14 and the non-through-holes 15 is formed to be 1/10 to 2 times the average particle diameter d2 of the abrasive grains 12, the self-generated blades in cutting are good. Therefore, the workpiece can be cut well. More preferably, the opening average diameter d1 is set to a size equal to or more than 1/5 and equal to or less than the average particle diameter d2, and the self-generated blade is further promoted and cutting can be performed more satisfactorily. When the opening average diameter d1 is larger than the same size as the average particle diameter d2 and not more than twice, the cutting can be favorably performed by changing the processing conditions so as to reduce the processing load. In addition, it is preferable that the average opening diameter d1 is 1 μm or more and 6 μm or less, and the average particle diameter d2 is preferably formed in the above-described range according to this. The quality can be expected to be equal.

図3は、実施の形態に係る切削ブレードの他の一例を模式的に表した説明用断面図である。本発明の切削ブレードは、上記したワッシャータイプの他に、図3に示す切削ブレード20のように、円環形状の電鋳砥石部(切り刃)21と、電鋳砥石部21を保持する円錐台状の基台22とを備えたハブタイプの電着砥石(ブレード)としてもよい。このような切削ブレード20における電鋳砥石部21は、上記のワッシャータイプの切削ブレード10と同様にして形成される。従って、電鋳砥石部21におけるB部を拡大断面視した場合には、図2で示す構成と同様になる。   FIG. 3 is an explanatory sectional view schematically showing another example of the cutting blade according to the embodiment. In addition to the above-described washer type, the cutting blade of the present invention has an annular electroformed grinding wheel portion (cutting blade) 21 and a cone that holds the electroforming grinding wheel portion 21 as in the cutting blade 20 shown in FIG. It is good also as a hub type electrodeposition grindstone (blade) provided with the base-like base 22. The electroformed grinding wheel portion 21 in such a cutting blade 20 is formed in the same manner as the washer-type cutting blade 10 described above. Therefore, when the B portion in the electroformed grinding wheel portion 21 is viewed in an enlarged cross section, the configuration is the same as that shown in FIG.

なお、ワッシャータイプの切削ブレード10(図1参照)では電鋳砥石部を形成後、基台から電鋳砥石部を剥離したが、ハブタイプの切削ブレード20では、かかる剥離を行わずに、電鋳砥石部21に基台22を固定したままとする。そして、基台22において電鋳砥石部21が形成されていない側の外周領域を部分的にエッチングして、基台22に覆われていた電鋳砥石部21の一部を露出させる。   The washer-type cutting blade 10 (see FIG. 1) formed the electroformed grinding wheel portion and then peeled the electroformed grinding wheel portion from the base. However, the hub-type cutting blade 20 did not perform such peeling, The base 22 remains fixed to the cast grindstone portion 21. And the outer peripheral area | region of the side in which the electroforming grindstone part 21 is not formed in the base 22 is partially etched, and a part of the electroforming grindstone part 21 covered with the base 22 is exposed.

実施例1〜13及び比較例として、複数の切削ブレードを作成して実験を行った。それぞれの切削ブレードの製造方法は上記した通りとして図1に示した構成をなし、貫通孔及び非貫通孔の開口平均径が表1に示すように0.1〜3.3μmとなるよう、添加剤の濃度、電流密度、攪拌条件を変更した。実施例1〜13及び比較例における砥粒は、ダイヤモンド砥粒とし、平均粒径は3μmとした。   As Examples 1 to 13 and a comparative example, a plurality of cutting blades were created and tested. The manufacturing method of each cutting blade has the structure shown in FIG. 1 as described above, and is added so that the average opening diameter of the through holes and the non-through holes is 0.1 to 3.3 μm as shown in Table 1. The agent concentration, current density, and stirring conditions were changed. The abrasive grains in Examples 1 to 13 and Comparative Example were diamond abrasive grains, and the average grain size was 3 μm.

実施例1〜13及び比較例の切削ブレードをスピンドルに装着して回転させて被加工物を切り込みながら、切削ブレードを加工送りして切削溝を形成する切削加工を行った。その際の加工条件は以下のようにした。また、切削加工を行う前に、それぞれの切削ブレードに対し、最適なドレス又はプリカットを実施した。
[加工条件]
被加工物:膜厚(数μm)のLow−K膜付きウエーハ(φ12インチ厚み780μm)
スピンドル回転数:40000rpm
送り速度:50mm/s
切削溝深さ:Low−K膜の表面から100μm(ハーフカット)
インデックス:2mm
While the cutting blades of Examples 1 to 13 and the comparative example were mounted on a spindle and rotated to cut the workpiece, the cutting blade was processed and fed to form a cutting groove. The processing conditions at that time were as follows. Moreover, before performing cutting, the optimal dress or pre-cut was implemented with respect to each cutting blade.
[Processing conditions]
Workpiece: Wafer with Low-K film with a film thickness (several μm) (φ12 inch thickness 780 μm)
Spindle speed: 40000 rpm
Feeding speed: 50mm / s
Cutting groove depth: 100 μm (half cut) from the surface of the Low-K film
Index: 2mm

実施例1〜13及び比較例の切削ブレードで切削された被加工物に対し、光学顕微鏡で切削溝を観察し評価した。また、切削加工後の切削ブレードの状態を観察した。その結果を表1に示す。   With respect to the workpieces cut with the cutting blades of Examples 1 to 13 and the comparative example, the cutting grooves were observed with an optical microscope and evaluated. Moreover, the state of the cutting blade after cutting was observed. The results are shown in Table 1.

Figure 2017164881
Figure 2017164881

表1の加工品質の評価は、以下のようになる。
○:チッピング低減
◎:チッピングほぼ無し
×:貫通孔及び非貫通孔が非形成となる切削ブレードと比較して加工品質に変化なし
また、ブレード状態の「カケ」は、切削ブレードの刃先にこぼれが有るものの、加工条件の変更によって改善可能であり、一部が欠けても貫通孔や非貫通孔の影響で欠けが伸長せずに加工品質に影響がない状態である。
The evaluation of the processing quality in Table 1 is as follows.
○: Reduced chipping ◎: Almost no chipping ×: No change in machining quality compared to cutting blades with no through-holes and non-through-holes. However, it can be improved by changing the processing conditions, and even if a part is chipped, the chipping does not extend due to the influence of the through hole or the non-through hole, and the processing quality is not affected.

表1から理解できるように、貫通孔及び非貫通孔の開口平均径が0.7〜3.0μm(実施例3〜12)でチッピングが生じない特に良好な加工品質が得られた。かかる開口平均径の範囲は、砥粒の平均粒径が3μmとなるので、砥粒の平均粒径の1/5以上等倍以下の大きさとなる。加工品質が良好となる理由は、貫通孔及び非貫通孔によって自生発刃が良好に促進されたからである。実施例1及び2では、実施例3〜12に比べると自生発刃性が低下して加工品質が若干低下するものの、加工条件の変更等により実施例3〜12と同等の加工品質を実現できるものである。実施例13では、開口平均径が大径化に応じた切削ブレードの剛性の低下によって、実施例3〜12に比べると加工品質が若干低下するものの、加工条件の変更等により実施例3〜12と同等の加工品質を実現できるものである。   As can be understood from Table 1, a particularly good processing quality with no chipping was obtained when the average diameter of the through holes and non-through holes was 0.7 to 3.0 μm (Examples 3 to 12). Since the average particle diameter of the abrasive grains is 3 μm, the range of the average opening diameter is 1/5 or more and equal to or less than the average grain diameter of the abrasive grains. The reason why the processing quality is good is that the self-generated blade is favorably promoted by the through hole and the non-through hole. In Examples 1 and 2, although the self-sharpening property is lowered and the machining quality is slightly lowered as compared with Examples 3 to 12, machining quality equivalent to that of Examples 3 to 12 can be realized by changing machining conditions and the like. Is. In Example 13, although the processing quality is slightly lowered as compared to Examples 3-12 due to a decrease in the rigidity of the cutting blade in accordance with the increase in the average opening diameter, Examples 3-12 are caused by changes in the processing conditions and the like. Can achieve the same processing quality.

図4は、切削加工後の被加工物の対比説明用拡大写真である。図4Aは、実施例5の切削ブレードで前記加工条件(スピンドル回転数は30000rpmに変更)で切削加工を実施した場合の被加工物に形成された切削溝の拡大上面写真である。図4Bは、貫通孔及び非貫通孔を有さない切削ブレード(ダイヤモンド砥粒平均粒径3μmの通常の電鋳ブレード)にて前記加工条件で切削加工を実施した場合の被加工物に形成された切削溝の拡大上面写真である。図4Bにおいては、切削によってチッピングが発生して切削溝の両側のLow−k膜が剥離し、半導体ウエーハのデバイスが破損するおそれがある。従って、切削ブレードによるLow−k膜の除去に問題を有している。この点、図4Aでは、切削溝の両側縁が綺麗に直線状をなしており、切削によりチッピングの発生を抑制して上記問題を解消することができる。また、実施例5の切削ブレードと、上述の貫通孔及び非貫通孔を有さない切削ブレードとで同量の切削加工を行った後、それぞれの消耗量を測定したところ、実施例5の切削ブレードの消耗量の方が約5倍多くなり、自生発刃が良好に行われている点が確認できた。   FIG. 4 is an enlarged photograph for comparison and explanation of the workpiece after cutting. FIG. 4A is an enlarged top view photograph of a cutting groove formed in a workpiece when cutting is performed with the cutting blade of Example 5 under the above-described processing conditions (the spindle rotation speed is changed to 30000 rpm). FIG. 4B is formed on the workpiece when cutting is performed under the above-described processing conditions with a cutting blade having no through-holes and non-through-holes (a normal electroformed blade with a diamond abrasive grain average particle size of 3 μm). It is an enlarged upper surface photograph of the cut groove. In FIG. 4B, chipping is generated by cutting, and the Low-k films on both sides of the cutting groove are peeled off, and the semiconductor wafer device may be damaged. Therefore, there is a problem in the removal of the Low-k film by the cutting blade. In this regard, in FIG. 4A, both side edges of the cutting groove are cleanly linear, and the above problem can be solved by suppressing chipping by cutting. Further, after the same amount of cutting was performed with the cutting blade of Example 5 and the above-described cutting blade having no through hole and no through hole, the amount of wear was measured. The amount of consumption of the blade was about 5 times larger, and it was confirmed that the self-generated blade was performed well.

なお、本発明は上記実施の形態に限定されず、種々変更して実施することが可能である。上記実施の形態において、添付図面に図示されている大きさや形状、方向などについては、これに限定されず、本発明の効果を発揮する範囲内で適宜変更することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。   In addition, this invention is not limited to the said embodiment, It can change and implement variously. In the above-described embodiment, the size, shape, direction, and the like illustrated in the accompanying drawings are not limited to this, and can be appropriately changed within a range in which the effect of the present invention is exhibited. In addition, various modifications can be made without departing from the scope of the object of the present invention.

以上説明したように、本発明は、表面膜を有する半導体ウエーハを切削する切削ブレードに有用である。   As described above, the present invention is useful for a cutting blade for cutting a semiconductor wafer having a surface film.

10 切削ブレード(電鋳砥石部)
11 めっき層
11a、11b 側面
12 砥粒
14 貫通孔
15 非貫通孔
20 切削ブレード
21 電鋳砥石部
10 Cutting blade (electroforming wheel)
DESCRIPTION OF SYMBOLS 11 Plated layer 11a, 11b Side surface 12 Abrasive grain 14 Through-hole 15 Non-through-hole 20 Cutting blade 21 Electroforming whetstone part

Claims (1)

めっき層で砥粒を固定した円環形状の電鋳砥石部を備える切削ブレードであって、
該めっき層には、円環形状の両側面に開口して厚さ方向に伸長する貫通孔及び両側面の一方に開口して厚さ方向に伸長する非貫通孔が複数形成された切削ブレード。
A cutting blade having an annular electroformed grinding wheel portion in which abrasive grains are fixed by a plating layer,
A cutting blade in which a plurality of through-holes that open on both sides of the ring shape and extend in the thickness direction and non-through holes that open on one of both sides and extend in the thickness direction are formed in the plating layer.
JP2016055381A 2016-03-18 2016-03-18 Cutting blade Pending JP2017164881A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016055381A JP2017164881A (en) 2016-03-18 2016-03-18 Cutting blade
TW106105322A TWI713698B (en) 2016-03-18 2017-02-17 Cutting edge
KR1020170033018A KR102274972B1 (en) 2016-03-18 2017-03-16 Cutting blade
CN201710155863.XA CN107199497A (en) 2016-03-18 2017-03-16 Cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016055381A JP2017164881A (en) 2016-03-18 2016-03-18 Cutting blade

Publications (1)

Publication Number Publication Date
JP2017164881A true JP2017164881A (en) 2017-09-21

Family

ID=59905540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016055381A Pending JP2017164881A (en) 2016-03-18 2016-03-18 Cutting blade

Country Status (4)

Country Link
JP (1) JP2017164881A (en)
KR (1) KR102274972B1 (en)
CN (1) CN107199497A (en)
TW (1) TWI713698B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112059933A (en) * 2019-06-11 2020-12-11 株式会社迪思科 Ring-shaped grinding tool

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7034547B2 (en) * 2018-02-02 2022-03-14 株式会社ディスコ An annular grindstone and a method for manufacturing an annular grindstone

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6053467U (en) * 1983-09-19 1985-04-15 株式会社 呉英製作所 Diamond cutter with pores
JPS61214977A (en) * 1985-03-19 1986-09-24 Matsushita Electric Ind Co Ltd Cutting grindstone
JPS6311280A (en) * 1986-06-30 1988-01-18 Mitsubishi Metal Corp Electrodeposition sharp-edged grindstone and manufacture thereof
JP2001179639A (en) * 1999-12-24 2001-07-03 Mitsubishi Materials Corp Electrically cast thin edge grinding wheel
US20070151554A1 (en) * 2004-02-09 2007-07-05 Shinhan Diamond Industrial Co., Ltd. Diamond tools with multilayers of abrasive grain and method for manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003334751A (en) 2003-06-27 2003-11-25 Disco Abrasive Syst Ltd Cutting method
JP2005153135A (en) * 2003-10-28 2005-06-16 Allied Material Corp Grinding and cutting method for steel material
JP2013244546A (en) * 2012-05-24 2013-12-09 Tokyo Seimitsu Co Ltd Cutting blade and method of manufacturing the same
JP6170769B2 (en) 2013-07-11 2017-07-26 株式会社ディスコ Wafer processing method
WO2015029987A1 (en) * 2013-08-26 2015-03-05 株式会社東京精密 Dicing blade

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6053467U (en) * 1983-09-19 1985-04-15 株式会社 呉英製作所 Diamond cutter with pores
JPS61214977A (en) * 1985-03-19 1986-09-24 Matsushita Electric Ind Co Ltd Cutting grindstone
JPS6311280A (en) * 1986-06-30 1988-01-18 Mitsubishi Metal Corp Electrodeposition sharp-edged grindstone and manufacture thereof
JP2001179639A (en) * 1999-12-24 2001-07-03 Mitsubishi Materials Corp Electrically cast thin edge grinding wheel
US20070151554A1 (en) * 2004-02-09 2007-07-05 Shinhan Diamond Industrial Co., Ltd. Diamond tools with multilayers of abrasive grain and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112059933A (en) * 2019-06-11 2020-12-11 株式会社迪思科 Ring-shaped grinding tool

Also Published As

Publication number Publication date
KR20170108868A (en) 2017-09-27
TW201742191A (en) 2017-12-01
CN107199497A (en) 2017-09-26
TWI713698B (en) 2020-12-21
KR102274972B1 (en) 2021-07-07

Similar Documents

Publication Publication Date Title
JP2006181701A (en) Electro-deposited wire tool and manufacturing method thereof
KR100338386B1 (en) Wire saw with adhesive diamond electrodeposited on it and its manufacturing method
JP2017164881A (en) Cutting blade
US5588419A (en) Semiconductor wafer hubbed saw blade
JP2005329488A (en) Electro-plated grinding wheel and manufacturing method of electro-plated grinding wheel
CN110125825B (en) Annular grinding tool and method for manufacturing annular grinding tool
TWI781293B (en) Electroplating grindstone
JP5468392B2 (en) Electrodeposition wire tool and manufacturing method thereof
CN113172779A (en) High-strength scribing knife for semiconductor wafer step cutting and manufacturing method
JP7408232B2 (en) Manufacturing method of circular grindstone
JP2008080734A (en) Internal peripheral blade cutting machine for single crystal ingots, and cutting method using this
KR102607966B1 (en) Annular grindstone
WO2009107274A1 (en) Sharp-edge grinding wheel and process for producing the sharp-edge grinding wheel
JPS6311279A (en) Electrocast sharp-edged grindstone and manufacture thereof
JP2010173015A (en) Nickel-plated film, cutting tool using the nickel-plated film, and method of forming the nickel-plated film
JP7184464B2 (en) Annular grindstone manufacturing method
JP2022165654A (en) electroformed blade
JP2006212763A (en) Electrodeposition grinding wheel and method of manufacturing electrodeposition grinding wheel
JP4494590B2 (en) Thin blade blade manufacturing method
JP2893828B2 (en) Thin blade whetstone with hub and method of manufacturing the same
KR20130037086A (en) Wire saw
JPH10264038A (en) Inner periphery edge blade

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200602