JP2017155333A - Low yield ratio high strength thick steel sheet excellent in large heat input weld heat-affected zone toughness and manufacturing method therefor - Google Patents
Low yield ratio high strength thick steel sheet excellent in large heat input weld heat-affected zone toughness and manufacturing method therefor Download PDFInfo
- Publication number
- JP2017155333A JP2017155333A JP2017010088A JP2017010088A JP2017155333A JP 2017155333 A JP2017155333 A JP 2017155333A JP 2017010088 A JP2017010088 A JP 2017010088A JP 2017010088 A JP2017010088 A JP 2017010088A JP 2017155333 A JP2017155333 A JP 2017155333A
- Authority
- JP
- Japan
- Prior art keywords
- less
- strength
- heat input
- yield
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 64
- 239000010959 steel Substances 0.000 title claims abstract description 64
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 20
- 239000000463 material Substances 0.000 claims abstract description 43
- 239000000203 mixture Substances 0.000 claims abstract description 11
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 11
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 11
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 10
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 10
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 10
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 9
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 9
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 6
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 4
- 239000012535 impurity Substances 0.000 claims abstract description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 4
- 238000003466 welding Methods 0.000 claims description 48
- 238000001816 cooling Methods 0.000 claims description 46
- 230000009466 transformation Effects 0.000 claims description 31
- 238000005096 rolling process Methods 0.000 claims description 26
- 238000003303 reheating Methods 0.000 claims description 18
- 230000009467 reduction Effects 0.000 claims description 9
- 238000005098 hot rolling Methods 0.000 claims description 8
- 238000005496 tempering Methods 0.000 claims description 8
- 229910052758 niobium Inorganic materials 0.000 claims description 6
- 230000001186 cumulative effect Effects 0.000 claims description 5
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 230000002708 enhancing effect Effects 0.000 abstract 1
- 229910000734 martensite Inorganic materials 0.000 description 34
- 230000000694 effects Effects 0.000 description 20
- 229910001566 austenite Inorganic materials 0.000 description 18
- 239000010953 base metal Substances 0.000 description 17
- 229910000859 α-Fe Inorganic materials 0.000 description 16
- 229910001563 bainite Inorganic materials 0.000 description 14
- 238000000034 method Methods 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 9
- 238000010791 quenching Methods 0.000 description 9
- 230000000171 quenching effect Effects 0.000 description 9
- 230000007423 decrease Effects 0.000 description 7
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 6
- 230000006872 improvement Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 229910001562 pearlite Inorganic materials 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- 238000009863 impact test Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910001567 cementite Inorganic materials 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000004453 electron probe microanalysis Methods 0.000 description 3
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000746 Structural steel Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
本発明は、溶接入熱量が400kJ/cmを超える大入熱溶接であっても、溶接熱影響部の靭性に優れる、降伏強さ(YP)が650MPa以上、降伏比(YR)が85%以下で、建築用として好適な、板厚12mm以上の低降伏比高強度厚鋼板およびその製造方法に関する。 The present invention is excellent in toughness of the weld heat affected zone, yield strength (YP) is 650 MPa or more, and yield ratio (YR) is 85% or less, even in high heat input welding where the heat input of welding exceeds 400 kJ / cm. Thus, the present invention relates to a low-yield-ratio high-strength steel plate having a thickness of 12 mm or more, which is suitable for construction, and a method for producing the same.
近年、建築構造物の大型化、長スパン化に伴い、使用される鋼材の厚肉化、高強度化が要望され、鋼構造物の安全性の観点からは、高い許容応力を有するとともに、降伏比を低減することが要求されている。 In recent years, with the increase in size and span of building structures, it has been required to increase the thickness and strength of steel used. From the viewpoint of safety of steel structures, it has high allowable stress and yield. There is a need to reduce the ratio.
降伏比を低減すると、降伏点以上の応力が付加されても破壊までに許容される応力が大きくなり、また、一様伸びが大きくなるため、塑性変形能に優れた鋼材となる。 When the yield ratio is reduced, even if a stress higher than the yield point is applied, the stress allowed until failure increases, and the uniform elongation increases, so that the steel material is excellent in plastic deformability.
特に、引張強さ(TS)が780MPaを超える高張力鋼板では、強度確保のために合金を多量に添加することが一般的であるため、降伏比が上昇する傾向で、靭性も低下する。 In particular, in a high-tensile steel sheet having a tensile strength (TS) exceeding 780 MPa, it is common to add a large amount of an alloy for securing the strength, so that the yield ratio tends to increase and the toughness also decreases.
従来、低降伏比高強度厚鋼板の製造プロセスとしては、フェライト+オーステナイト2相域への再加熱焼入れを含む多段熱処理が一般的である。しかしながら、得られるミクロ組織は、フェライト相を主体とし、硬質第2相としてベイナイトあるいはマルテンサイトを分散させるため、フェライト相の体積分率によっては、780MPa以上の引張強度、650MPa以上の降伏強さを安定して達成することが困難である。 Conventionally, a multistage heat treatment including reheating and quenching in a ferrite + austenite two-phase region is generally used as a manufacturing process of a low yield ratio high strength thick steel plate. However, the microstructure obtained is mainly composed of a ferrite phase and disperses bainite or martensite as a hard second phase. Therefore, depending on the volume fraction of the ferrite phase, the tensile strength is 780 MPa or more and the yield strength is 650 MPa or more. It is difficult to achieve stably.
一方、構造物に鋼板を使用する場合は、一般に溶接接合が用いられ、安全性の観点から、使用される鋼材の母材靭性は勿論のこと、溶接熱影響部(HAZと称することもある)の靭性に優れることが要求される。 On the other hand, when a steel plate is used for the structure, generally, welded joint is used, and from the viewpoint of safety, the base metal toughness of the steel material used, as well as the weld heat affected zone (sometimes referred to as HAZ). It is required to have excellent toughness.
近年では、上述したように建築構造物の大型化に伴い、使用鋼材の厚肉化が要望され、構造物の施工能率向上と施工コストの低減の観点から、大入熱溶接の適用範囲が拡大している。高層建築物に用いられるボックス柱では、サブマージアーク溶接やエレクトロスラグ溶接などの溶接入熱量が400kJ/cmを超えるような超大入熱溶接が適用されている。 In recent years, as described above, with the increase in the size of building structures, the use of thicker steel materials has been demanded, and the application range of large heat input welding has been expanded from the viewpoint of improving the construction efficiency of the structures and reducing the construction costs. doing. For box columns used for high-rise buildings, super-high heat input welding such as submerged arc welding, electroslag welding, or the like in which the heat input exceeds 400 kJ / cm is applied.
また、近年、建築構造物の耐震性向上が求められ、溶接継手部についても、高い靭性を有することが要求されるようになっている。例えば、柱−梁接合部については、0℃におけるシャルピー吸収エネルギーが47Jを超えるような、高い靭性を有することが要求されている。 In recent years, improvement in earthquake resistance of building structures has been demanded, and welded joints are also required to have high toughness. For example, the column-beam joint is required to have high toughness such that the Charpy absorbed energy at 0 ° C. exceeds 47 J.
一般に、鋼材に大入熱溶接を適用した際に、最も問題となるのは、溶接熱影響部のボンド部における靭性劣化である。ボンド部は、大入熱溶接時に溶融点直下の高温に曝されて、オーステナイトの結晶粒が最も粗大化し、また引き続く冷却によって、脆弱な上部ベイナイト組織に変態し、脆化組織である島状マルテンサイトが生成して靭性が低下する。そのため、高強度、低降伏比、高靭性といった母材機械的特性と溶接熱影響部靭性とを併せ持った厚鋼板が要望されており、種々の提案がなされている。 Generally, when high heat input welding is applied to a steel material, the most serious problem is toughness deterioration in the bond portion of the weld heat affected zone. The bond portion is exposed to a high temperature just below the melting point during high heat input welding, the austenite crystal grains become the most coarse, and the subsequent cooling transforms into a fragile upper bainite structure, which is an island-like martensite that is an embrittled structure. Sites form and toughness decreases. Therefore, a thick steel plate having both base metal mechanical properties such as high strength, low yield ratio, and high toughness and weld heat affected zone toughness has been demanded, and various proposals have been made.
特許文献1、特許文献2には、熱間圧延後の鋼板を焼入れした後、再度フェライト+オーステナイトの2相域まで加熱して焼入れを行い、高強度化と低降伏比化を達成することが記載されている。 In Patent Document 1 and Patent Document 2, after quenching the hot-rolled steel sheet, it is again heated to the two-phase region of ferrite + austenite for quenching to achieve high strength and low yield ratio. Have been described.
特許文献3には、圧延後、直ちに焼入れする直接焼入れ法により、焼入れ後のミクロ組織をベイナイト相あるいはマルテンサイト相とした後、再度フェライト+オーステナイトの2相域まで加熱し焼ならしを行い、高強度化と低降伏比化を達成することが記載されている。 In Patent Document 3, after rolling, by direct quenching immediately after quenching, the microstructure after quenching is changed to a bainite phase or a martensite phase, and then again heated to a ferrite + austenite two-phase region and subjected to normalization. It is described that high strength and low yield ratio are achieved.
特許文献4には、圧延後、一定時間経過し、フェライトを析出させた後、焼入れを行う直接焼入れ法により、フェライト相+マルテンサイト相の2相組織とし、高強度化と低降伏比化を達成することが記載されている。 In Patent Document 4, after a certain period of time has passed after rolling, ferrite is precipitated, and then a direct quenching method in which quenching is performed to obtain a two-phase structure of ferrite phase + martensite phase, thereby increasing strength and reducing yield ratio. It is described to achieve.
特許文献5には、成分調整の後、圧延後直接焼入れ法により、残留オーステナイト(残留γと称することもある。)を生成させることにより、母材の高強度化と低降伏比化と溶接部の高靭性を達成することが記載されている。 In Patent Document 5, after the components are adjusted, residual austenite (also referred to as residual γ) is generated by direct quenching after rolling, thereby increasing the strength of the base metal, reducing the yield ratio, and welding. Achieving high toughness is described.
特許文献6には、ベイナイト主体の組織にマルテンサイトあるいは島状マルテンサイトを含有させ、その体積分率、粒径、およびアスペクト比を適正に制御することにより、590MPa以上の引張強さと80%以下の低降伏比を有する母材が記載され、その製造方法として、成分調整の後、圧延後直接焼入れし、さらには、冷却停止後の再加熱処理を適正化することが記載されている。 In Patent Document 6, martensite or island-shaped martensite is contained in a bainite-based structure, and the volume fraction, particle size, and aspect ratio are appropriately controlled, whereby a tensile strength of 590 MPa or more and 80% or less. A base material having a low yield ratio is described, and as its manufacturing method, after component adjustment, it is directly hardened after rolling, and further, the reheating treatment after cooling stop is optimized.
しかしながら、特許文献1、特許文献2および特許文献3に記載された技術は、煩雑な熱処理プロセスにより、製造コストが上昇することが懸念される。また、特許文献4および特許文献5に記載された技術では、製造条件や鋼板内位置により、フェライトとマルテンサイト相の体積分率が変化しやすく、高強度化と低降伏比を安定的に得るために製造条件を調整する操業負荷が大きい。 However, the techniques described in Patent Document 1, Patent Document 2, and Patent Document 3 are concerned with an increase in manufacturing cost due to a complicated heat treatment process. In the techniques described in Patent Document 4 and Patent Document 5, the volume fraction of the ferrite and martensite phases is likely to change depending on the manufacturing conditions and the position in the steel sheet, and a high strength and a low yield ratio can be stably obtained. Therefore, the operation load for adjusting the manufacturing conditions is large.
特許文献6に記載された技術では、780MPa以上の引張強度や650MPa以上の降伏強さといった強度レベルの厚鋼板およびその製造方法に関する具体的な示唆が認められない。 In the technique described in Patent Document 6, there is no specific suggestion regarding a thick steel plate having a strength level such as a tensile strength of 780 MPa or more and a yield strength of 650 MPa or more and a manufacturing method thereof.
更に、特許文献1〜6に記載された技術では、溶接入熱量が400kJ/cmを超えるような大入熱溶接の溶接熱影響部靭性を安定して達成することを想定していない。 Furthermore, in the techniques described in Patent Documents 1 to 6, it is not assumed that the welding heat affected zone toughness of high heat input welding in which the welding heat input exceeds 400 kJ / cm is stably achieved.
本発明は、かかる事情に鑑み、安定した母材性能を備えるとともに、溶接入熱量が400kJ/cmを超える大入熱溶接の溶接熱影響部靭性を向上することができる低降伏比高張力厚鋼板およびその製造方法を提供することを目的とする。 In view of such circumstances, the present invention provides a stable base material performance and can improve the weld heat affected zone toughness of high heat input welding with a heat input of welding exceeding 400 kJ / cm. And it aims at providing the manufacturing method.
本発明者らは、上記課題を達成するために、母材の強度と低降伏比という観点から島状マルテンサイトを積極的に活用し、一方で、溶接熱影響部靭性という観点から大入熱溶接部ではなるべく島状マルテンサイトの生成を抑制する方法について、鋭意研究を行い、以下の知見を得た。
(1)本発明者らは、島状マルテンサイトになりやすいCの濃化領域に着目した。溶接入熱量が400kJ/cmを超える大入熱溶接を施したとき、母材のミクロ組織中のCの濃化領域が粗大であると、溶接で高温に加熱されても粗大なCの濃化領域が残存しやすくなる。その結果、溶接の冷却過程でCの濃化領域の残存部が粗大な島状マルテンサイトへと発達しやすくなり、靭性の低下を招く。そこで、母材のミクロ組織に島状マルテンサイトになりやすいCの濃化領域を微細分散させることにより、溶接で高温に加熱されたときに粗大なCの濃化領域がほぼ消失し、溶接の冷却過程で粗大な島状マルテンサイトが生成しにくくなり、大入熱溶接熱影響部靭性が向上すると考えた。
(2)本発明者らが鋭意検討した結果、母材のミクロ組織中に、Cが0.2〜1.0質量%の濃化領域を有し、前記濃化領域は、平均円相当径で1.0〜5.0μmであり面積分率で5〜15%含むことにより、大入熱溶接熱影響部で生成する島状マルテンサイトの面積分率を減少させ、微細化することができる。その結果、溶接入熱量が400kJ/cmを超えるような大入熱溶接熱影響部の靭性確保を実現することができる。
(3)SiおよびPの含有量を低減した成分組成を有する鋼を、熱間圧延を施した後、冷却速度と冷却停止温度を適正化した冷却処理を施し、さらには、冷却停止後の昇温速度と再加熱温度を適正化した再加熱処理を実施することにより、ミクロ組織中にCの濃化領域を微細分散させた組織とすることができ、母材の特性として650MPa以上の降伏強度と85%以下の低降伏比を安定して達成できる。
In order to achieve the above-mentioned problems, the present inventors have actively used island martensite from the viewpoint of the strength of the base metal and a low yield ratio, and on the other hand, a large heat input from the viewpoint of weld heat affected zone toughness. In the weld zone, we conducted intensive research on how to suppress the formation of island martensite as much as possible, and obtained the following knowledge.
(1) The inventors of the present invention focused on a C-enriched region that tends to be island martensite. When high heat input welding with a welding heat input exceeding 400 kJ / cm is performed, if the concentration region of C in the microstructure of the base metal is coarse, the concentration of coarse C is increased even when heated to a high temperature by welding. The region tends to remain. As a result, the remaining portion of the C-enriched region easily develops into coarse island martensite during the cooling process of welding, resulting in a decrease in toughness. Therefore, by finely dispersing the C-enriched region, which is likely to be island-like martensite, in the base metal microstructure, the coarse C-enriched region almost disappears when heated to a high temperature by welding. It is thought that coarse island martensite is less likely to be generated during the cooling process, and the high heat input welding heat-affected zone toughness is improved.
(2) As a result of intensive studies by the present inventors, the microstructure of the base material has a concentration region where C is 0.2 to 1.0% by mass, and the concentration region has an average equivalent circle diameter. 1.0 to 5.0 μm and by including 5 to 15% in area fraction, the area fraction of island martensite generated in the high heat input welding heat-affected zone can be reduced and refined. . As a result, it is possible to achieve toughness securing of the high heat input heat affected zone such that the welding heat input exceeds 400 kJ / cm.
(3) A steel having a component composition with a reduced Si and P content is subjected to hot rolling, and then subjected to a cooling treatment in which the cooling rate and the cooling stop temperature are optimized. By carrying out the reheating process with the temperature rate and reheating temperature optimized, it is possible to obtain a microstructure in which the concentrated region of C is finely dispersed in the microstructure, and the yield strength of 650 MPa or more as the characteristics of the base material. And a low yield ratio of 85% or less can be achieved stably.
本発明は、上記した知見に、さらに検討を加えて完成されたものである。本発明の要旨は次のとおりである。
[1]成分組成が、質量%で、C:0.03〜0.10%、Si:0.01〜0.08%、Mn:1.4〜3.0%、P:0.015%以下、S:0.0050%以下、Al:0.005〜0.1%、Ti:0.004〜0.03%、N:0.0015〜0.0065%を含有し、下記(1)式で定義されるCeqが0.50〜0.70%であり、Ti/Nが2.0超え〜4.2未満を満足し、残部がFeおよび不可避的不純物からなり、ミクロ組織が、Cが0.2〜1.0質量%の濃化領域を有し、前記濃化領域は、平均円相当径で1.0〜5.0μmであり面積分率で5〜15%含むことを特徴とする降伏強さが650MPa以上、降伏比が85%以下である大入熱溶接熱影響部靭性に優れた低降伏比高強度厚鋼板。
Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14・・・(1)
ただし、C、Mn、Si、Ni、Cr、Mo、Vは各元素の含有量(質量%)で、含有しない場合は0とする。
[2]さらに質量%で、Cu:0.1〜1.0%、Ni:0.1〜2.0%、Cr:1.5%以下、Mo:1.0%以下、Nb:0.1%以下、V:0.2%以下、Ca:0.005%以下、REM:0.02%以下、Mg:0.005%以下およびB:0.005%以下の1種または2種以上を含有することを特徴とする[1]に記載の降伏強さが650MPa以上、降伏比が85%以下である大入熱溶接熱影響部靭性に優れた低降伏比高強度厚鋼板。
[3][1]または[2]に記載の成分組成を有する鋼素材を、1000〜1250℃に加熱し、表面温度で950℃以下の温度域での累積圧下率が30%以上、圧延終了温度が表面温度で900℃以下Ar3変態点以上とする熱間圧延を行い、次いで、Ar3変態点以上の温度域から5〜100℃/sの平均冷却速度で、Ar3−300〜Ar3−150℃の冷却停止温度まで冷却を行った後、冷却停止温度+100℃〜Ac1変態点未満の温度域まで0.5℃/s以上の昇温速度で再加熱した後、0.5〜3min保持し、空冷することを特徴とする降伏強さが650MPa以上、降伏比が85%以下である大入熱溶接熱影響部靭性に優れた低降伏比高強度厚鋼板の製造方法。
[4]さらに、400℃以上Ac1変態点未満で焼き戻すことを特徴とする[3]に記載の降伏強さが650MPa以上、降伏比が85%以下である大入熱溶接熱影響部靭性に優れた低降伏比高強度厚鋼板の製造方法。
The present invention has been completed by further studying the above knowledge. The gist of the present invention is as follows.
[1] Component composition is mass%, C: 0.03-0.10%, Si: 0.01-0.08%, Mn: 1.4-3.0%, P: 0.015% Hereinafter, S: 0.0050% or less, Al: 0.005-0.1%, Ti: 0.004-0.03%, N: 0.0015-0.0065%, and the following (1) Ceq defined by the formula is 0.50 to 0.70%, Ti / N is more than 2.0 and less than 4.2, the balance is made of Fe and inevitable impurities, and the microstructure is C Has a concentrated region of 0.2 to 1.0% by mass, and the concentrated region has an average equivalent circle diameter of 1.0 to 5.0 μm and an area fraction of 5 to 15%. A low-yield-ratio high-strength thick steel plate excellent in high heat input heat affected zone toughness with a yield strength of 650 MPa or more and a yield ratio of 85% or less.
Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 (1)
However, C, Mn, Si, Ni, Cr, Mo, and V are the contents (% by mass) of each element, and 0 when not contained.
[2] Further, by mass%, Cu: 0.1 to 1.0%, Ni: 0.1 to 2.0%, Cr: 1.5% or less, Mo: 1.0% or less, Nb: 0.0. 1 type or less, V: 0.2% or less, Ca: 0.005% or less, REM: 0.02% or less, Mg: 0.005% or less, and B: 0.005% or less A low-yield-ratio high-strength thick steel plate excellent in high heat input welding heat-affected zone toughness having a yield strength of 650 MPa or more and a yield ratio of 85% or less as described in [1].
[3] A steel material having the component composition described in [1] or [2] is heated to 1000 to 1250 ° C., and the rolling reduction is 30% or more in a temperature range of 950 ° C. or less at the surface temperature. The hot rolling is performed at a surface temperature of 900 ° C. or lower and the Ar 3 transformation point or higher, and then Ar 3 −300 to Ar at an average cooling rate of 5 to 100 ° C./s from the temperature range of the Ar 3 transformation point or higher. 3 After cooling to a cooling stop temperature of −150 ° C., after reheating at a temperature increase rate of 0.5 ° C./s or more to a temperature range of cooling stop temperature + 100 ° C. to less than Ac 1 transformation point, 0.5 A method for producing a low yield ratio high strength thick steel plate excellent in high heat input heat affected zone toughness having a yield strength of 650 MPa or more and a yield ratio of 85% or less, characterized by holding for 3 min and air cooling.
[4] The high heat input heat affected zone toughness having a yield strength of 650 MPa or more and a yield ratio of 85% or less according to [3], further tempering at 400 ° C. or more and less than the Ac 1 transformation point. A method for producing a high-strength steel sheet with a low yield ratio and excellent strength.
本発明によれば、母材の降伏強さが650MPa以上、降伏比が85%以下であり、溶接入熱量が400kJ/cmを超える大入熱溶接の溶接熱影響部靭性に優れた厚鋼板を、煩雑な熱処理なく、安定して製造することができる。このため、鋼構造物の大型化、鋼構造物の耐震性の向上や施工能率向上に大きく寄与し、産業上格段の効果を奏する。 According to the present invention, a thick steel plate excellent in weld heat affected zone toughness of high heat input welding in which the yield strength of the base material is 650 MPa or more, the yield ratio is 85% or less, and the heat input of welding exceeds 400 kJ / cm. It can be manufactured stably without complicated heat treatment. For this reason, it greatly contributes to the enlargement of the steel structure, the improvement of the earthquake resistance of the steel structure and the improvement of the construction efficiency, and has a remarkable industrial effect.
以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。 Hereinafter, embodiments of the present invention will be described. In addition, this invention is not limited to the following embodiment.
<成分組成>
以下、各成分について説明する。なお、成分の含有量を表す「%」は、「質量%」を意味する。
<Ingredient composition>
Hereinafter, each component will be described. In addition, “%” representing the content of a component means “% by mass”.
C:0.03〜0.10%
Cは、鋼の強度を増加させ、構造用鋼材として必要な強度を確保するのに有用な元素であり、0.03%以上の含有を必要とする。一方、0.10%を超える含有は、特に大入熱溶接熱影響部の靭性を顕著に劣化させる。また、耐溶接割れ性を劣化させるとともに、母材の低温靭性を劣化させるため、0.03〜0.10%の範囲に限定する。好ましくは、0.05〜0.08%である。
C: 0.03-0.10%
C is an element useful for increasing the strength of steel and ensuring the strength required as a structural steel material, and needs to contain 0.03% or more. On the other hand, the content exceeding 0.10% significantly deteriorates the toughness of the heat-affected zone particularly affected by high heat input welding. Further, in order to deteriorate the weld crack resistance and the low temperature toughness of the base material, the content is limited to 0.03 to 0.10%. Preferably, it is 0.05 to 0.08%.
Si:0.01〜0.08%
Siには脱酸材としての作用や、母材強度を高める効果もあるので、0.01%以上とする。また、Siは島状マルテンサイトの生成を促進する元素である。そのためSiを0.08%以下とすることで生成する島状マルテンサイトの生成を抑え、島状マルテンサイトのサイズを減ずることができる。好ましくは0.03〜0.07%である。さらに好ましくは0.03〜0.05%である。
Si: 0.01 to 0.08%
Since Si also has an effect as a deoxidizing material and an effect of increasing the strength of the base material, it is set to 0.01% or more. Si is an element that promotes the formation of island martensite. Therefore, generation of island martensite generated by controlling Si to 0.08% or less can be suppressed, and the size of island martensite can be reduced. Preferably it is 0.03 to 0.07%. More preferably, it is 0.03 to 0.05%.
Mn:1.4〜3.0%
Mnは、鋼の強度を増加させる効果を有している。本発明では、大入熱溶接熱影響部のミクロ組織中の島状マルテンサイトを低減し、微細化することで靭性を確保するとともに、母材の降伏強さが650MPa以上を確保するためには、1.4%以上の含有を必要とする。一方、3.0%を超えて含有すると、母材の靭性および溶接熱影響部靭性が著しく劣化するため、1.4〜3.0%の範囲に限定する。好ましくは、1.5〜2.8%である。
Mn: 1.4 to 3.0%
Mn has the effect of increasing the strength of the steel. In the present invention, in order to reduce the island-like martensite in the microstructure of the high heat input welding heat-affected zone and make it finer to ensure toughness and to ensure the yield strength of the base material to be 650 MPa or more, 1 It needs to contain 4% or more. On the other hand, if the content exceeds 3.0%, the toughness of the base metal and the weld heat-affected zone toughness deteriorate significantly, so the content is limited to the range of 1.4 to 3.0%. Preferably, it is 1.5 to 2.8%.
P:0.015%以下
Pは、HAZ組織において島状マルテンサイトに濃化し、また、Pはパーライト変態を抑制することで島状マルテンサイトの生成、粗大化を助長するため、HAZ靭性を低下させる。したがって、HAZ靭性向上にはPの低減が望ましい。よって0.015%以下とする。
P: 0.015% or less P is concentrated in island-like martensite in the HAZ structure, and P promotes the formation and coarsening of island-like martensite by suppressing pearlite transformation, thus reducing HAZ toughness. Let Therefore, reduction of P is desirable for improving HAZ toughness. Therefore, it is made 0.015% or less.
S:0.0050%以下
Sは母材の低温靭性を劣化させる元素であり、できるだけ低減することが望ましい。0.0050%を超えて含有すると、この傾向が顕著となるため、上限とした。
S: 0.0050% or less S is an element that degrades the low temperature toughness of the base material, and it is desirable to reduce it as much as possible. If the content exceeds 0.0050%, this tendency becomes remarkable, so the upper limit is set.
Al:0.005〜0.1%
Alは、脱酸剤として作用し、高張力鋼の溶鋼脱酸プロセスに於いて、もっとも汎用的に使われる。また、鋼中のNをAlNとして固定し、母材の靭性向上に寄与するが、0.1%を超える含有は、母材の靭性が低下するとともに、溶接時に溶接金属部に混入して、靭性を劣化させるため、0.1%以下に限定した。なお、このような効果は0.005%以上の含有で認められる。好ましくは、0.01〜0.07%である。
Al: 0.005 to 0.1%
Al acts as a deoxidizer and is most commonly used in the molten steel deoxidation process for high strength steels. In addition, N in the steel is fixed as AlN and contributes to the improvement of the toughness of the base metal. However, if the content exceeds 0.1%, the toughness of the base material decreases, and the weld metal part is mixed during welding, In order to deteriorate the toughness, the content is limited to 0.1% or less. In addition, such an effect is recognized by containing 0.005% or more. Preferably, it is 0.01 to 0.07%.
Ti:0.004〜0.03%
Tiは、Nとの親和力が強く凝固時にTiNとして析出し、大入熱溶接熱影響部でのオーステナイト粒の粗大化を抑制して溶接熱影響部の高靭化に寄与する重要な元素である。このような効果を確保するためには、0.004%以上の含有が必要である。一方、0.03%を超えるとTiN粒子が粗大化して、期待するオーステナイト粒の粗大化抑制効果が飽和するため、0.004〜0.03%の範囲に限定する。好ましくは、0.006〜0.025%である。
Ti: 0.004 to 0.03%
Ti is an important element that has a strong affinity with N and precipitates as TiN during solidification, and contributes to increasing the toughness of the weld heat affected zone by suppressing the coarsening of austenite grains in the high heat input weld heat affected zone. . In order to ensure such an effect, the content of 0.004% or more is necessary. On the other hand, if it exceeds 0.03%, the TiN particles are coarsened, and the expected austenite grain coarsening suppression effect is saturated, so the content is limited to the range of 0.004 to 0.03%. Preferably, it is 0.006 to 0.025%.
N:0.0015〜0.0065%
NはTiNを確保する上で必要な元素であり、0.0015%未満では十分なTiN量が確保できない。一方、0.0065%を超えて含有すると、固溶N量の増加により、母材および溶接部靭性が著しく低下するため、0.0065%以下に限定する。好ましくは、0.0030〜0.0060%である。
N: 0.0015 to 0.0065%
N is an element necessary for securing TiN, and if it is less than 0.0015%, a sufficient amount of TiN cannot be secured. On the other hand, if the content exceeds 0.0065%, the toughness of the base metal and the welded portion is significantly reduced due to an increase in the amount of solute N, so the content is limited to 0.0065% or less. Preferably, it is 0.0030 to 0.0060%.
Ceq:0.50〜0.70%
本発明では、(1)式で定義される炭素当量Ceqが0.50〜0.70%となるように、上述した成分組成の範囲内で含有量を調整する。
Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14・・・(1)
ただし、C、Mn、Si、Ni、Cr、Mo、V:各元素の含有量(質量%)で、含有しない場合は0とする。
Ceq: 0.50 to 0.70%
In this invention, content is adjusted within the range of the component composition mentioned above so that the carbon equivalent Ceq defined by Formula (1) may be 0.50 to 0.70%.
Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 (1)
However, C, Mn, Si, Ni, Cr, Mo, V: Content (mass%) of each element, and 0 when not contained.
Ceqが0.50%未満では、大入熱溶接熱影響部の焼入れ性が不足し、溶接熱影響部のミクロ組織が、脆化組織である島状マルテンサイトを含む脆弱な上部ベイナイト組織に変態し、所望の大入熱溶接部の高靭性が確保できない。一方、Ceqが0.70%を超えると、母材の靭性が著しく劣化するとともに、耐溶接割れ性が劣化するため、0.50〜0.70%の範囲に限定した。好ましくは、0.58超〜0.70%の範囲である。 When Ceq is less than 0.50%, the hardenability of the high heat input weld heat affected zone is insufficient, and the microstructure of the weld heat affected zone is transformed into a fragile upper bainite structure including island martensite which is an embrittled structure. However, the high toughness of the desired high heat input weld cannot be ensured. On the other hand, when Ceq exceeds 0.70%, the toughness of the base material is remarkably deteriorated and the weld crack resistance is also deteriorated, so the content is limited to the range of 0.50 to 0.70%. Preferably, it is in the range of more than 0.58 to 0.70%.
また、本発明ではTi/N(ただし、Ti、Nは含有量(質量%))が2.0超え〜4.2未満となるように、上述の成分範囲内でTiおよびN含有量を調整する。 Further, in the present invention, the Ti and N contents are adjusted within the above-described component range so that Ti / N (where Ti and N are contents (mass%)) is more than 2.0 and less than 4.2. To do.
Ti/Nが2.0以下では、ピンニング効果により大入熱溶接熱影響部の組織粗大化抑制効果を介した靭性の向上に必要なTiN量を確保できない。一方、Ti/Nが4.2以上では、TiC粒子の生成およびTiNの粗大化のため母材靭性および溶接熱影響部が劣化するため、Ti/Nは2.0超え〜4.2未満の範囲に限定した。 When Ti / N is 2.0 or less, the amount of TiN necessary for improving the toughness via the effect of suppressing the coarsening of the structure of the high heat input welding heat affected zone cannot be secured due to the pinning effect. On the other hand, when Ti / N is 4.2 or more, since the base metal toughness and the weld heat affected zone deteriorate due to the generation of TiC particles and the coarsening of TiN, Ti / N is more than 2.0 and less than 4.2. Limited to range.
本発明では、上記した基本成分に加えて、必要に応じて、Cu、Ni、Cr、Mo、Nb、V、Ca、REM、MgおよびBの1種または2種以上を含有することができる。 In the present invention, in addition to the basic components described above, one or more of Cu, Ni, Cr, Mo, Nb, V, Ca, REM, Mg, and B can be contained as necessary.
Cu:0.1〜1.0%、Ni:0.1〜2.0%
CuおよびNiは、高靭性を保ちつつ強度を増加させることが可能な元素であり、大入熱溶接熱影響部靭性への影響も小さいため、高強度化のために有用な元素であり、必要に応じ選択して含有できる。含有する場合は、Cuは0.1%以上含有することが好ましい。しかしながら、Cu量が1.0%を超えると熱間脆性を生じて鋼板の表面性状を劣化させるため、0.1〜1.0%とする。なお、好ましくは、0.2〜0.7%である。
Cu: 0.1-1.0%, Ni: 0.1-2.0%
Cu and Ni are elements that can increase the strength while maintaining high toughness, and are also useful elements for increasing the strength because they have a small effect on the high heat input welding heat-affected zone toughness. Can be selected according to the content. When it contains, it is preferable to contain Cu 0.1% or more. However, if the amount of Cu exceeds 1.0%, hot brittleness is caused and the surface properties of the steel sheet are deteriorated. In addition, Preferably, it is 0.2 to 0.7%.
Niは、含有する場合は、0.1%以上含有することが好ましい。しかしながら、2.0%を超えて含有しても、効果が飽和し、含有量に見合う効果が期待できなくなり、経済的に不利になるため、含有する場合は0.1〜2.0%とする。なお、好ましくは0.2〜1.7%である。 When Ni is contained, it is preferable to contain 0.1% or more. However, even if it contains more than 2.0%, the effect is saturated, the effect commensurate with the content can not be expected, and it becomes economically disadvantageous. To do. In addition, Preferably it is 0.2 to 1.7%.
Cr:1.5%以下、Mo:1.0%以下、Nb:0.1%以下、V:0.2%以下
Cr、Mo、Nb、Vは、いずれも鋼の強度向上に寄与する元素であり、所望する強度に応じて適宜含有できる。
Cr: 1.5% or less, Mo: 1.0% or less, Nb: 0.1% or less, V: 0.2% or less Cr, Mo, Nb, and V are all elements that contribute to improving the strength of steel. And can be appropriately contained depending on the desired strength.
Crは、含有する場合、0.05%以上含有することが好ましい。しかしながら、1.5%を超える含有は、大入熱溶接熱影響部靭性を劣化させるため、1.5%以下に限定することが望ましい。 When Cr is contained, it is preferable to contain 0.05% or more. However, the content exceeding 1.5% degrades the high heat input welding heat-affected zone toughness, so it is desirable to limit the content to 1.5% or less.
Moは、含有する場合、0.05%以上含有することが好ましい。しかしながら、1.0%を超える含有は、母材靭性および大入熱溶接熱影響部靭性に悪影響を及ぼすため、1.0%以下に限定することが望ましい。 When Mo is contained, it is preferable to contain 0.05% or more. However, the content exceeding 1.0% adversely affects the base material toughness and the high heat input welding heat affected zone toughness, so it is desirable to limit the content to 1.0% or less.
Nbは、含有する場合、0.005%以上含有することが好ましい。しかしながら、0.1%を超える含有は、母材靭性および大入熱溶接熱影響部靭性を劣化させるため、0.1%以下に限定することが望ましい。 When Nb is contained, it is preferable to contain 0.005% or more. However, if the content exceeds 0.1%, the base metal toughness and the high heat input welding heat-affected zone toughness deteriorate, so it is desirable to limit the content to 0.1% or less.
Vは、含有する場合、0.01%以上含有することが好ましい。しかしながら、0.2%を超える含有は、大入熱溶接熱影響部靭性を劣化させるため、0.2%以下に限定することが望ましい。 When V is contained, it is preferable to contain 0.01% or more. However, if the content exceeds 0.2%, the high heat input welding heat-affected zone toughness is deteriorated, so it is desirable to limit the content to 0.2% or less.
Ca:0.005%以下、REM:0.02%以下およびMg:0.005%以下
Ca、REMおよびMgは、いずれも靭性向上に寄与する元素であり、所望する特性に応じて選択して含有できる。
Ca: 0.005% or less, REM: 0.02% or less, and Mg: 0.005% or less Ca, REM, and Mg are elements that contribute to toughness improvement, and are selected according to desired characteristics. Can be contained.
Caは、結晶粒の微細化を介して靭性を向上させる有用な元素であり、含有させる場合、0.001%以上含有することが好ましい。しかしながら、0.005%を超えて含有しても効果が飽和するため、含有する場合は0.005%を上限とする。 Ca is a useful element that improves toughness through refinement of crystal grains. When Ca is contained, 0.001% or more is preferably contained. However, even if the content exceeds 0.005%, the effect is saturated.
REMは、含有させる場合、0.002%以上含有することが好ましい。しかしながら、0.02%を超えて含有しても効果が飽和するため、含有する場合は0.02%を上限とする。 When REM is contained, 0.002% or more is preferably contained. However, even if the content exceeds 0.02%, the effect is saturated, so when it is contained, the upper limit is made 0.02%.
Mgは、結晶粒の微細化を介して靭性を向上させる有用な元素であり、0.001%以上含有することが好ましい。しかしながら、0.005%を超えて含有しても効果が飽和するため、含有する場合は0.005%を上限とする。 Mg is a useful element that improves toughness through refinement of crystal grains, and is preferably contained in an amount of 0.001% or more. However, even if the content exceeds 0.005%, the effect is saturated.
B:0.005%以下
Bは、焼入れ性の向上を介して、鋼の強度を増加させる作用を有する。また、大入熱溶接時には、溶接熱影響部において脆弱な上部ベイナイト相を抑制し、下部ベイナイト相の生成を促進するとともに、固溶窒素を窒化物として固着することにより、靭性向上に有用な元素である。一方、0.005%を超える含有は焼入れ性を著しく増加させ、母材の靭性、延性の劣化をもたらす。このため、含有する場合は0.005%以下とする。なお、好ましくは、0.0003〜0.0020%である。
B: 0.005% or less B has an effect of increasing the strength of steel through improvement of hardenability. In addition, during high heat input welding, an element useful for improving toughness by suppressing the fragile upper bainite phase in the heat affected zone, promoting the formation of the lower bainite phase, and fixing solute nitrogen as nitrides. It is. On the other hand, the content exceeding 0.005% remarkably increases the hardenability and brings about deterioration of the toughness and ductility of the base material. For this reason, when it contains, it is 0.005% or less. In addition, Preferably, it is 0.0003 to 0.0020%.
上記した成分以外の残部は、Feおよび不可避的不純物である。 The balance other than the above components is Fe and inevitable impurities.
<ミクロ組織>
本発明では、ミクロ組織が、Cが0.2〜1.0質量%の濃化領域を有し、前記濃化領域は、平均円相当径で1.0〜5.0μmであり面積分率で5〜15%含むことを特徴とする。
<Microstructure>
In the present invention, the microstructure has a concentrated region where C is 0.2 to 1.0% by mass, and the concentrated region has an average equivalent circle diameter of 1.0 to 5.0 μm and an area fraction. It is characterized by containing 5 to 15%.
Cの濃化領域は、母材組織、HAZ組織いずれにおいてもマルテンサイト組織もしくは残留γを含む島状マルテンサイトとなりやすく、転位密度が高い。また、Cの濃縮により、後述する母相と比べて硬い硬質相となる。そのため、TSが向上するとともに、多量に導入された可動転位がYPの上昇を抑制することにより、高強度と低降伏比の両立に有効である。 The C-enriched region tends to be a martensite structure or island-like martensite containing residual γ in both the base material structure and the HAZ structure, and has a high dislocation density. Further, the concentration of C results in a hard phase that is harder than the parent phase described later. Therefore, TS is improved and movable dislocations introduced in a large amount suppress the increase in YP, which is effective for achieving both high strength and a low yield ratio.
母材のミクロ組織中にCの濃化領域があると、Cの濃化領域は溶接中に高温にさらされるためCが拡散し、徐々にCの濃度が低下していく。そして最終的には母材のC成分値まで低下する。しかしながら、高温にさらされている時間が短い場合には、Cは十分に拡散せず、粗大なCの濃化領域がHAZ組織に残った状態になる。 If there is a C-concentrated region in the microstructure of the base metal, the C-concentrated region is exposed to a high temperature during welding, so C diffuses and the C concentration gradually decreases. And finally it falls to the C component value of the base material. However, when the time of exposure to a high temperature is short, C does not diffuse sufficiently and a coarse C-enriched region remains in the HAZ structure.
ここで、高温のオーステナイト域から温度が低くなるにつれて、C濃度の低い部分や旧γ粒界からフェライトが核生成する。そして、C濃度の高いところが最もオーステナイトが安定であることから最後にフェライト変態する。一方で、フェライト変態が進んでいく途中でCは未変態オーステナイト側に吐き出されるので(フェライトは0.02%程度までしかCを含有することができず、オーステナイトは数%のCを含有することができるため。)、フェライト変態が進むにつれて未変態オーステナイト中のC濃度はどんどん高くなっていく。そして最後に、C濃度が高くなった状態である未変態オーステナイト中のC、すなわち、Cの濃化領域が島状マルテンサイトに変態する。このとき、Cの濃化領域が粗大である場合、HAZ組織に形成される島状マルテンサイトも大きなものとなってしまう。したがって、母材のCの濃化領域が小さければ、最終的にHAZ組織にできる島状マルテンサイトも小さくなる。 Here, as the temperature is lowered from the high-temperature austenite region, ferrite nucleates from a portion having a low C concentration or an old γ grain boundary. And since the austenite is the most stable at the place where the C concentration is high, the ferrite transformation is finally performed. On the other hand, C is expelled to the untransformed austenite side in the course of ferrite transformation (ferrite can contain C only up to about 0.02%, and austenite contains several percent C. As the ferrite transformation progresses, the C concentration in the untransformed austenite becomes higher and higher. Finally, C in the untransformed austenite in which the C concentration is high, that is, the C enriched region is transformed into island martensite. At this time, if the C enriched region is coarse, the island-like martensite formed in the HAZ structure also becomes large. Therefore, if the C-enriched region of the base material is small, the island-like martensite that can be finally formed into the HAZ structure is also small.
すなわち、島状マルテンサイトになりやすいCの濃化領域を母材のミクロ組織中に微細分散させておけば、大入熱溶接熱影響部で生成する島状マルテンサイトの面積分率を減少させ、微細化することができ、その結果、溶接入熱量が400kJ/cmを超えるような大入熱溶接熱影響部の靭性確保を実現することができる。 In other words, if the C-enriched region, which tends to be island martensite, is finely dispersed in the microstructure of the base metal, the area fraction of island martensite generated in the high heat input weld heat affected zone is reduced. As a result, the toughness of the high heat input weld heat-affected zone having a welding heat input exceeding 400 kJ / cm can be ensured.
本発明では、母材のミクロ組織中に、Cが0.2〜1.0質量%の濃化領域を有し、前記濃化領域は、平均円相当径で1.0〜5.0μmであり面積分率で5〜15%含むことにより、大入熱溶接熱影響部で生成する島状マルテンサイトの面積分率を減少させ、微細化することができる。その結果、溶接入熱量が400kJ/cmを超えるような大入熱溶接熱影響部の靭性確保を実現することができる。 In the present invention, the microstructure of the base material has a concentration region where C is 0.2 to 1.0% by mass, and the concentration region has an average equivalent circle diameter of 1.0 to 5.0 μm. By including 5-15% in a certain area fraction, the area fraction of the island-like martensite produced | generated in a high heat input welding heat affected zone can be reduced, and it can refine | miniaturize. As a result, it is possible to achieve toughness securing of the high heat input heat affected zone such that the welding heat input exceeds 400 kJ / cm.
濃化領域において、Cが0.2質量%未満では、上記のような、高強度化と低降伏比化の効果が得られず、1.0質量%を超えると母材の延性、低温靭性が劣化する。 In the concentrated region, if C is less than 0.2% by mass, the above-described effects of increasing strength and reducing the yield ratio cannot be obtained, and if it exceeds 1.0% by mass, the base material ductility and low temperature toughness are obtained. Deteriorates.
また、Cの濃化領域の平均円相当径が1.0μm未満では、上記のような、高強度と低降伏比の効果が得られない。一方、5.0μmを超えると溶接部の靭性が劣化する。このため、平均円相当径は1.0〜5.0μmの範囲に限定する。 Further, when the average equivalent circle diameter of the C enriched region is less than 1.0 μm, the above-described effects of high strength and low yield ratio cannot be obtained. On the other hand, if it exceeds 5.0 μm, the toughness of the welded portion deteriorates. For this reason, the average equivalent circle diameter is limited to a range of 1.0 to 5.0 μm.
また、Cの濃化領域の面積分率が5%未満では、上記のような、高強度化と低降伏比化の効果が得られず、一方、15%を超えると母材の延性、低温靭性が劣化する.このため、面積分率は5〜15%の範囲に限定する。なお、好ましくは、6〜12%である。 Further, if the area fraction of the C-enriched region is less than 5%, the above-mentioned effects of increasing the strength and reducing the yield ratio cannot be obtained, while if it exceeds 15%, the ductility of the base material and the low temperature Toughness deteriorates. For this reason, the area fraction is limited to a range of 5 to 15%. In addition, Preferably, it is 6 to 12%.
Cの濃化領域は、後述する冷却停止温度と再加熱温度を制御するとともに、Si量を0.08%以下およびP量を0.015%以下にすることにより得られる。Si量が0.08%を超えたり、P量が0.015%を超えると、その他の元素や製造条件が適切であっても、C濃化領域のサイズが5.0μm超え、および/または、面積分率が15%超えとなり、目標とする溶接部靱性が得られない。これは、Siが0.08%以下であればセメンタイトが生成しやすく、また、Pが0.015%以下であればパーライトが生成しやすくなり、粗大なC濃化領域が形成されにくいためである。 The C enriched region is obtained by controlling the cooling stop temperature and the reheating temperature, which will be described later, and by setting the Si content to 0.08% or less and the P content to 0.015% or less. If the Si content exceeds 0.08% or the P content exceeds 0.015%, the size of the C enriched region exceeds 5.0 μm and / or even if other elements and manufacturing conditions are appropriate, and / or The area fraction exceeds 15%, and the target weld zone toughness cannot be obtained. This is because when Si is 0.08% or less, cementite is likely to be generated, and when P is 0.015% or less, pearlite is likely to be generated, and it is difficult to form a coarse C-enriched region. is there.
なお、Cの濃化領域の面積は、EPMAを用いて求めることができる。 The area of the C enriched region can be obtained using EPMA.
島状マルテンサイトになりやすいCの濃化領域を除く母相は、実質的にベイナイト相とフェライト相の混合組織が主体組織であり、パーライトおよびセメンタイト等の組織が混在すると強度が低下するため、これらの組織の面積分率は少ない方が良い。ただし、パーライトおよびセメンタイト等の組織が面積分率で15%以下の場合には影響が無視できるため含有してもよい。強度確保の観点から、ベイナイト相の面積分率は60%以上であることが好ましい。 The parent phase excluding the C-concentrated region, which is likely to be island martensite, is essentially a mixed structure of bainite phase and ferrite phase, and the strength decreases when a structure such as pearlite and cementite is mixed. The smaller the area fraction of these tissues, the better. However, when the structure of pearlite, cementite, or the like is 15% or less in area fraction, the influence can be ignored, so it may be contained. From the viewpoint of securing strength, the area fraction of the bainite phase is preferably 60% or more.
<製造方法>
次に、製造方法について説明する。なお、温度は特に限定されない限り、板厚1/2位置の温度とする。また、板厚中央の温度は、放射温度計で測定した鋼板表面温度から、伝熱計算により求める。また、圧延後の冷却条件における温度条件は、板厚中央の温度とし、冷却速度も板厚中央の温度に基づいて算出された平均冷却速度を意味する。
<Manufacturing method>
Next, a manufacturing method will be described. It should be noted that the temperature is a temperature at a half-thickness position unless particularly limited. The temperature at the center of the plate thickness is obtained by heat transfer calculation from the steel plate surface temperature measured with a radiation thermometer. Further, the temperature condition in the cooling condition after rolling is the temperature at the center of the plate thickness, and the cooling rate is also an average cooling rate calculated based on the temperature at the center of the plate thickness.
鋼素材を1000℃〜1250℃に加熱
上述した組成の溶鋼を、転炉、電気炉、真空溶解炉等、定法で溶製し、得られた鋼素材を1000℃〜1250℃に加熱する。加熱温度が1000℃未満では、熱間圧延での変形抵抗が高くなり、1パス当たりの圧下量が大きく取れなくなることから、圧延パス数が増加し、圧延能率の低下を招くとともに、鋼素材(スラブ)中の鋳造欠陥を圧着することができない場合がある。一方、再加熱温度が1250℃を超えると、加熱時のスケールによって表面疵が生じやすく、圧延後の手入れ負荷が増大する。このため、鋼素材の再加熱温度は1000〜1250℃の範囲とする。
Heating the steel material to 1000 ° C. to 1250 ° C. The molten steel having the above-described composition is melted by a conventional method such as a converter, electric furnace, vacuum melting furnace or the like, and the obtained steel material is heated to 1000 ° C. to 1250 ° C. If the heating temperature is less than 1000 ° C., the deformation resistance in hot rolling becomes high, and the amount of reduction per pass cannot be made large. Therefore, the number of rolling passes increases and the rolling efficiency decreases, and the steel material ( The casting defect in the slab may not be able to be crimped. On the other hand, when the reheating temperature exceeds 1250 ° C., surface flaws are likely to occur due to the scale during heating, and the maintenance load after rolling increases. For this reason, the reheating temperature of a steel raw material shall be the range of 1000-1250 degreeC.
鋼板表面温度で950℃以下の温度域での累積圧下率が30%以上
次に、ミクロ組織を微細化するため、鋼板表面温度で950℃以下の温度域での累積圧下率が30%以上の熱間圧延を行う。950℃以下の温度域での累積圧下率が30%未満では、ミクロ組織が粗大化し、所望の組織微細化が図れず所望の高靭性を確保できない。このため、熱間圧延における鋼板表面温度で950℃以下の温度域での累積圧下率は30%以上に限定した。なお、板厚が80mmを超える極厚鋼板の場合には、ザク圧着のために1パスあたりの圧下率が15%以上となる圧延パスを少なくとも1パス以上確保することが望ましい。
Cumulative rolling reduction in the temperature range of 950 ° C. or less at the steel sheet surface temperature is 30% or more. Next, in order to refine the microstructure, the cumulative rolling reduction in the temperature range of 950 ° C. or less at the steel sheet surface temperature is 30% or more. Hot rolling is performed. If the cumulative rolling reduction in the temperature range of 950 ° C. or lower is less than 30%, the microstructure becomes coarse, the desired structure cannot be refined, and the desired high toughness cannot be ensured. For this reason, the cumulative rolling reduction in the temperature range of 950 ° C. or less at the steel sheet surface temperature in hot rolling is limited to 30% or more. In addition, in the case of a very thick steel plate having a plate thickness exceeding 80 mm, it is desirable to secure at least one rolling pass with a reduction rate of 15% or more per pass for the Zaku pressure bonding.
圧延終了温度:鋼板表面温度で900℃以下Ar3変態点以上
圧延終了温度が鋼板表面温度で900℃を超えると、ミクロ組織が粗大化し所望の母材靭性を確保できないうえ、焼入性が増加しすぎて、所望のミクロ組織を確保できなくなる。一方、圧延終了温度が鋼板表面温度でAr3変態点未満では、圧延中あるいは圧延直後にフェライト相が生成し粗大化して、母材の靱性が低下する。このため、圧延終了温度は鋼板表面温度で900℃以下Ar3変態点以上に限定した。
Rolling end temperature: 900 ° C or less at the steel sheet surface temperature Ar 3 transformation point or more If the rolling end temperature exceeds 900 ° C at the steel sheet surface temperature, the microstructure becomes coarse and the desired base metal toughness cannot be secured, and the hardenability increases. Therefore, a desired microstructure cannot be secured. On the other hand, when the rolling end temperature is less than the Ar 3 transformation point at the steel sheet surface temperature, a ferrite phase is generated and coarsened during rolling or immediately after rolling, and the toughness of the base material is lowered. For this reason, the rolling end temperature was limited to 900 ° C. or lower and Ar 3 transformation point or higher at the steel sheet surface temperature.
Ar3変態点以上の温度域から5〜100℃/sの平均冷却速度でAr3−300〜Ar3−150℃の温度域まで冷却
圧延終了後、得られた厚鋼板は、Ar3変態点以上の温度域から5〜100℃/sの平均冷却速度で、Ar3−350〜Ar3−150℃の冷却停止温度まで冷却する。圧延終了後の冷却速度が5℃/s未満では、加速冷却後のミクロ組織がフェライト主体組織となり、また、島状マルテンサイトの生成も阻害されるので、650MPa以上の降伏強さを確保できなくなる。一方、冷却速度が100℃/sを超えると、鋼板内の各位置における温度制御が困難となり、板幅方向や圧延方向に材質ばらつきが出やすくなり、その結果、引張特性などの材質上のばらつきが生じる。
Cooling from the temperature range above the Ar 3 transformation point to the temperature range of Ar 3 -300 to Ar 3 -150 ° C. at an average cooling rate of 5 to 100 ° C./s After rolling, the resulting thick steel plate has an Ar 3 transformation point. at an average cooling rate of 5 to 100 ° C. / s from the above temperature range, cooled to cooling stop temperature of Ar 3 -350~Ar 3 -150 ℃. If the cooling rate after the end of rolling is less than 5 ° C./s, the microstructure after accelerated cooling becomes a ferrite main structure, and the formation of island martensite is also inhibited, so that it is impossible to secure a yield strength of 650 MPa or more. . On the other hand, when the cooling rate exceeds 100 ° C./s, it becomes difficult to control the temperature at each position in the steel sheet, and material variations are likely to occur in the sheet width direction and the rolling direction. Occurs.
また、冷却停止温度は、本発明の製造方法において、特に重要な制御因子である。冷却停止温度がAr3−300℃よりも低くなると、冷却停止時にはベイナイト変態が完了し残留オーステナイトが存在せず、その後の再加熱、空冷時に、残留オーステナイトからの硬質相の生成がなく、微細なCの濃化領域を作ることができなくなるため、降伏比85%以下を満足することができない。一方、冷却後の冷却停止温度がAr3−150℃よりも高くなると、冷却停止時にはベイナイト変態が進行せず、残留オーステナイトへのCの拡散が進行しないために、硬質相が生成せず、650MPa以上の降伏強さおよび降伏比85%以下を満足することができない。 The cooling stop temperature is a particularly important control factor in the production method of the present invention. When the cooling stop temperature is lower than Ar 3 -300 ° C., the bainite transformation is completed at the time of cooling stop and there is no residual austenite, and there is no generation of a hard phase from the residual austenite at the time of subsequent reheating and air cooling. Since it becomes impossible to make a C enriched region, the yield ratio of 85% or less cannot be satisfied. On the other hand, when the cooling stop temperature after cooling becomes higher than Ar 3 -150 ° C., the bainite transformation does not proceed at the time of cooling stop, and the diffusion of C to the retained austenite does not proceed. The above yield strength and yield ratio of 85% or less cannot be satisfied.
上記した、圧延後の冷却速度が5〜100℃/sの平均冷却速度範囲で、かつ加速冷却停止温度がAr3−300℃〜Ar3−150℃の範囲を満足することにより、加速冷却直後に、ベイナイト主体組織中に、残留オーステナイトが微細に分散したミクロ組織が得られる。 The above-described cooling rate after rolling is in the average cooling rate range of 5 to 100 ° C./s and the accelerated cooling stop temperature satisfies the range of Ar 3 to 300 ° C. to Ar 3 to 150 ° C. In addition, a microstructure in which retained austenite is finely dispersed in the bainite main structure is obtained.
冷却停止温度+100℃〜Ac1変態点の温度域まで0.5℃/s以上の昇温速度で再加熱した後、0.5〜3min保持し、空冷
加速冷却終了後の厚鋼板は、冷却停止温度+100℃〜Ac1変態点未満の温度域まで0.5℃/s以上の昇温速度で再加熱した後、0.5〜3min保持し、空冷する。ベイナイト主体組織中に未変態γが微細に分散したミクロ組織の状態から再加熱を行うため、得られる母材のCの濃化領域を微細分散させることができる。
Cooling stop temperature + 100 ° C to Ac 1 Transformation point temperature range is reheated at a rate of temperature rise of 0.5 ° C / s or more, then held for 0.5 to 3 minutes, air cooling After the completion of accelerated cooling, After reheating at a temperature increase rate of 0.5 ° C./s or higher to a temperature range of stop temperature + 100 ° C. to less than Ac 1 transformation point, hold for 0.5 to 3 minutes and air cool. Since reheating is performed from the state of the microstructure in which the untransformed γ is finely dispersed in the bainite main structure, the concentrated region of C of the obtained base material can be finely dispersed.
昇温速度が0.5℃/s未満では、目的の再加熱温度まで長時間を要するために製造効率が低下し、またパーライト変態が生じるために島状マルテンサイトが生成せず、降伏比85%以下を満足することができない。 If the rate of temperature rise is less than 0.5 ° C./s, it takes a long time to reach the desired reheating temperature, so that the production efficiency is lowered, and pearlite transformation occurs, so that island-like martensite is not generated and the yield ratio is 85. % Or less cannot be satisfied.
また、冷却停止温度+100℃未満だと未変態γへCを十分濃化させることができない。一方、再加熱温度がAc1変態点以上になるとベイナイトの軟化により、所望の650MPa以上の降伏強さを満足することができなくなる。 Further, if the cooling stop temperature is less than + 100 ° C., C cannot be sufficiently concentrated to the untransformed γ. On the other hand, when the reheating temperature is equal to or higher than the Ac 1 transformation point, the desired yield strength of 650 MPa or more cannot be satisfied due to softening of bainite.
再加熱後の保持時間は、生産性を阻害しないように、保持時間0.5〜3minとする。再加熱の手段として、雰囲気炉加熱、ガス炎、誘導加熱等が利用でき、経済性、制御性等を考慮すると、誘導加熱が好ましい。 The holding time after reheating is set to 0.5 to 3 min so as not to inhibit the productivity. As means for reheating, atmospheric furnace heating, gas flame, induction heating and the like can be used, and in consideration of economy and controllability, induction heating is preferable.
上記した、0.5℃/s以上の昇温速度でAc1変態点以下までの再加熱および空冷により、微細に分散した残留オーステナイトにCが拡散して島状マルテンサイトが生成され、目的とするミクロ組織が達成されるとともに、高強度で650MPa以上の降伏強さと85%以下の低降伏比を両立することができる。 The above-described reheating and air cooling to the Ac 1 transformation point or less at a temperature rising rate of 0.5 ° C./s or more causes C to diffuse into the finely dispersed residual austenite to form island martensite. As a result, a high strength and a yield strength of 650 MPa or more and a low yield ratio of 85% or less can be achieved.
なお、Ar3変態点は下記(2)式により求めることができる。
Ar3=868−396C+25Si−68Mn−21Cu−36Ni−25Cr−30Mo・・・(2)
ただし、C、Si、Mn、Cu、Ni、Cr、Moは各合金元素の含有量(質量%)であり、含有しない場合は0とする。
The Ar 3 transformation point can be obtained by the following equation (2).
Ar 3 = 868-396C + 25Si-68Mn-21Cu-36Ni-25Cr-30Mo (2)
However, C, Si, Mn, Cu, Ni, Cr, and Mo are contents (mass%) of each alloy element, and set to 0 when not contained.
また、Ac1変態点は下記(3)式により求めることができる。
Ac1=751−27C+18Si−12Mn−23Cu−23Ni+24Cr+23Mo−40V−6Ti+233Nb−169Al−895B・・・(3)
ただし、C、Si、Mn、Cu、Ni、Cr、Mo、V、Ti、Nb、Al、Bは、各合金元素の含有量(質量%)であり、含有しない場合は0とする。
Further, the Ac 1 transformation point can be obtained by the following equation (3).
Ac 1 = 751-27C + 18Si-12Mn-23Cu-23Ni + 24Cr + 23Mo-40V-6Ti + 233Nb-169Al-895B (3)
However, C, Si, Mn, Cu, Ni, Cr, Mo, V, Ti, Nb, Al, and B are the contents (mass%) of each alloy element, and are 0 when not contained.
本発明では、鋼板を室温まで冷却した後、再加熱、焼戻し処理を施してもよい。焼戻し工程では、400℃以上Ac1変態点未満に焼き戻すことにより、靭性を向上させることが可能である。 In the present invention, the steel sheet may be cooled to room temperature and then reheated and tempered. In the tempering step, toughness can be improved by tempering to 400 ° C. or higher and lower than the Ac 1 transformation point.
焼戻し処理後のミクロ組織として、硬質相が、母相よりも十分に硬度が高ければ、高強度と低降伏比を両立させる効果を得ることができる。このような効果を得るためには、焼戻し温度を400℃以上とする必要がある。しかしながら、Ac1変態点を超えると強度低下を招くため、焼戻し処理は、400℃以上Ac1変態点以下で行うことが望ましい。なお、保持時間は、0〜20minであることが好ましい。 As the microstructure after the tempering treatment, if the hard phase is sufficiently harder than the parent phase, the effect of achieving both high strength and a low yield ratio can be obtained. In order to obtain such an effect, the tempering temperature must be 400 ° C. or higher. However, when the temperature exceeds the Ac 1 transformation point, the strength is lowered. Therefore, the tempering treatment is desirably performed at 400 ° C. or higher and below the Ac 1 transformation point. The holding time is preferably 0 to 20 minutes.
上記した組成の鋼素材を用いて、上記した条件の熱間圧延、冷却および再加熱、空冷を施すことにより、母材のミクロ組織中に所望のCの濃化領域を分散させることができる。その結果、溶接後のHAZ組織において島状マルテンサイトを分散して生成させることが可能となり、650MPa以上の降伏強さおよび降伏比85%以下の母材特性と、溶接入熱量が400kJ/cmを超えるような大入熱溶接熱影響部の高靭性を兼備する低降伏比高強度鋼板を製造することができる。 By using the steel material having the above-described composition and performing hot rolling, cooling and reheating, and air cooling under the above-described conditions, a desired C enriched region can be dispersed in the microstructure of the base material. As a result, it becomes possible to disperse and generate island martensite in the HAZ structure after welding, and the base metal characteristics with a yield strength of 650 MPa or more and a yield ratio of 85% or less, and a welding heat input of 400 kJ / cm. It is possible to produce a low-yield-ratio high-strength steel sheet that combines the high toughness of the heat-affected zone with a large heat input welding that exceeds.
転炉−取鍋精錬−連続鋳造法で、調製された鋼素材を、熱間圧延−加速冷却−再加熱−空冷、さらには焼もどしにより種々の板厚の厚鋼板とした。 The steel materials prepared by the converter-ladder refining-continuous casting method were made into thick steel plates having various thicknesses by hot rolling-accelerated cooling-reheating-air cooling and tempering.
表1に鋼素材の成分組成を、表2に製造条件とCの濃化領域の面積分率および平均円相当径を示す。Cの濃度はEPMAで測定した。C濃度は標準試料から作成した検量線をもとに算出した。濃化領域は、EPMA測定した領域におけるSEM組織写真を撮影し測定した。なお、表1中のAr3変態点(℃)は(2)式で、Ac1変態点(℃)は(3)式でそれぞれ求めた。 Table 1 shows the component composition of the steel material, and Table 2 shows the manufacturing conditions, the area fraction of the concentrated region of C, and the average equivalent circle diameter. The concentration of C was measured with EPMA. The C concentration was calculated based on a calibration curve prepared from a standard sample. The concentrated region was measured by taking an SEM structure photograph in the region measured by EPMA. In Table 1, the Ar 3 transformation point (° C.) was determined by equation (2), and the Ac 1 transformation point (° C.) was determined by equation (3).
得られた各厚鋼板の板厚1/2位置から、JIS4号引張試験片を採取し、JISZ2241の規定に準拠して引張試験を実施し、引張特性を調査した。 A JIS No. 4 tensile test piece was sampled from the plate thickness ½ position of each thick steel plate obtained, and a tensile test was performed in accordance with the provisions of JIS Z2241, and the tensile properties were investigated.
また、得られた各厚鋼板の板厚1/2位置から、JISZ2202の規定に準拠してVノッチ試験片を採取し、JISZ2242の規定に準拠してシャルピー衝撃試験を実施し、0℃における吸収エネルギー(vE0)を求め、母材靭性を評価した。 In addition, V-notch test specimens were collected from the plate thickness 1/2 position of each thick steel plate obtained according to JISZ2202, and subjected to Charpy impact test according to JISZ2242, and absorbed at 0 ° C. The energy (vE 0 ) was obtained and the base metal toughness was evaluated.
また、各厚鋼板から採取した継手用試験板に、図1に示す開先を準備し、エレクトロスラグ溶接(溶接入熱量≧400kJ/cm)により、溶接継手を作製した。その後、図2に示すように、溶接継手部から切欠き位置をボンド部とするJIS4号衝撃試験片を採取し、試験温度:0℃でのシャルピー衝撃試験を行って、継手ボンド部の0℃における吸収エネルギー(vE0)を求めた。継手用試験板の板厚tは母材と同じとした。 Moreover, the groove | channel shown in FIG. 1 was prepared for the test plate for coupling extract | collected from each thick steel plate, and the welded joint was produced by electroslag welding (welding heat input> = 400kJ / cm). Thereafter, as shown in FIG. 2, a JIS No. 4 impact test piece having a notch position as a bond portion was taken from the welded joint portion, and a Charpy impact test was conducted at a test temperature of 0 ° C. The absorption energy (vE 0 ) was determined. The thickness t of the joint test plate was the same as that of the base material.
母材の引張強さ(TS)が780MPa以上、降伏強さ(YP)が650MPa以上、降伏比(YR)が85%以下、母材靭性(vE0)100J以上、継手ボンド部の0℃における吸収エネルギー(vE0)47J以上のものを合格とした。 The tensile strength (TS) of the base metal is 780 MPa or more, the yield strength (YP) is 650 MPa or more, the yield ratio (YR) is 85% or less, the base material toughness (vE 0 ) is 100 J or more, and the joint bond portion at 0 ° C. Absorption energy (vE 0 ) 47J or more was regarded as acceptable.
得られた結果を表3に示す。 The obtained results are shown in Table 3.
発明例は、いずれも、引張強さ780MPa以上で650MPa以上の降伏強さおよび降伏比85%以下、0℃での吸収エネルギーvE0が100J以上の高強度、低降伏比で、高靭性の母材特性を有する。また、大入熱溶接施工を施した場合であっても、ボンド部でのvE0が47J以上と優れた大入熱溶接熱影響部靭性が得られることが認められる。 In all of the examples, the tensile strength is 780 MPa or more, the yield strength is 650 MPa or more, the yield ratio is 85% or less, the absorbed energy vE 0 at 0 ° C. is 100 J or more, the strength is high, the yield ratio is low, and the toughness is high. Has material properties. Moreover, even if it is a case where a high heat input welding construction is performed, it is recognized that vE 0 in a bond part is 47J or more and excellent high heat input heat affected zone toughness is obtained.
一方、本発明の範囲を外れる比較例は、母材強度、降伏比、母材靭性、大入熱溶接熱影響部靭性のうち、いずれか、あるいは複数の特性が目標値を満足していない。 On the other hand, in a comparative example that is out of the scope of the present invention, one or more of the base material strength, the yield ratio, the base material toughness, and the high heat input welding heat affected zone toughness do not satisfy the target value.
Claims (4)
Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14・・・(1)
ただし、C、Mn、Si、Ni、Cr、Mo、Vは各元素の含有量(質量%)で、含有しない場合は0とする。 Component composition is mass%, C: 0.03-0.10%, Si: 0.01-0.08%, Mn: 1.4-3.0%, P: 0.015% or less, S : 0.0050% or less, Al: 0.005 to 0.1%, Ti: 0.004 to 0.03%, N: 0.0015 to 0.0065%, defined by the following formula (1) Ceq is 0.50 to 0.70%, Ti / N is more than 2.0 and less than 4.2, the remainder is made of Fe and inevitable impurities, and the microstructure is C is 0.00. Yield characterized in that it has a concentration region of 2 to 1.0% by mass, and the concentration region is 1.0 to 5.0 μm in average circle equivalent diameter and 5 to 15% in area fraction. A low yield ratio high strength thick steel plate excellent in high heat input heat affected zone toughness having a strength of 650 MPa or more and a yield ratio of 85% or less.
Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 (1)
However, C, Mn, Si, Ni, Cr, Mo, and V are the contents (% by mass) of each element, and 0 when not contained.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016035279 | 2016-02-26 | ||
JP2016035279 | 2016-02-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017155333A true JP2017155333A (en) | 2017-09-07 |
JP6455533B2 JP6455533B2 (en) | 2019-01-23 |
Family
ID=59809342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017010088A Active JP6455533B2 (en) | 2016-02-26 | 2017-01-24 | Low yield ratio high strength thick steel plate with excellent high heat input weld heat affected zone toughness and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6455533B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023233853A1 (en) * | 2022-06-01 | 2023-12-07 | Jfeスチール株式会社 | Steel sheet for high-heat-input welding and manufacturing method for same |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08209291A (en) * | 1995-02-06 | 1996-08-13 | Nippon Steel Corp | Steel for high strength line pipe having low yield ratio |
JP2006307334A (en) * | 2005-03-31 | 2006-11-09 | Jfe Steel Kk | High-strength thick steel plate and process for production thereof, and high-strength steel pipe |
JP2008248315A (en) * | 2007-03-30 | 2008-10-16 | Jfe Steel Kk | Method for manufacturing ultrahigh-strength, high-deformability welded steel pipe having excellent toughness in base material and weld zone |
JP2008303423A (en) * | 2007-06-07 | 2008-12-18 | Nippon Steel Corp | METHOD FOR PRODUCING HIGH-TENSION STEEL HAVING TENSILE STRENGTH OF >=570 N/mm2 CLASS AND EXCELLENT IN WELDING-CRACK SENSITIVITY |
JP2011246793A (en) * | 2010-05-31 | 2011-12-08 | Jfe Steel Corp | Method for manufacturing welded steel pipe for oil well superior in pipe expanding property and low temperature toughness, and welded steel pipe |
JP2012072472A (en) * | 2010-09-29 | 2012-04-12 | Jfe Steel Corp | Steel sheet for high strength steel pipe having high toughness and high deformability, and method for producing the same |
CN103422025A (en) * | 2013-09-13 | 2013-12-04 | 武汉钢铁(集团)公司 | Steel for low-yield-ratio structure with yield strength larger than or equal to 690MPa and production method of steel |
-
2017
- 2017-01-24 JP JP2017010088A patent/JP6455533B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08209291A (en) * | 1995-02-06 | 1996-08-13 | Nippon Steel Corp | Steel for high strength line pipe having low yield ratio |
JP2006307334A (en) * | 2005-03-31 | 2006-11-09 | Jfe Steel Kk | High-strength thick steel plate and process for production thereof, and high-strength steel pipe |
JP2008248315A (en) * | 2007-03-30 | 2008-10-16 | Jfe Steel Kk | Method for manufacturing ultrahigh-strength, high-deformability welded steel pipe having excellent toughness in base material and weld zone |
JP2008303423A (en) * | 2007-06-07 | 2008-12-18 | Nippon Steel Corp | METHOD FOR PRODUCING HIGH-TENSION STEEL HAVING TENSILE STRENGTH OF >=570 N/mm2 CLASS AND EXCELLENT IN WELDING-CRACK SENSITIVITY |
JP2011246793A (en) * | 2010-05-31 | 2011-12-08 | Jfe Steel Corp | Method for manufacturing welded steel pipe for oil well superior in pipe expanding property and low temperature toughness, and welded steel pipe |
JP2012072472A (en) * | 2010-09-29 | 2012-04-12 | Jfe Steel Corp | Steel sheet for high strength steel pipe having high toughness and high deformability, and method for producing the same |
CN103422025A (en) * | 2013-09-13 | 2013-12-04 | 武汉钢铁(集团)公司 | Steel for low-yield-ratio structure with yield strength larger than or equal to 690MPa and production method of steel |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023233853A1 (en) * | 2022-06-01 | 2023-12-07 | Jfeスチール株式会社 | Steel sheet for high-heat-input welding and manufacturing method for same |
JP7444339B1 (en) | 2022-06-01 | 2024-03-06 | Jfeスチール株式会社 | Steel plate for high heat input welding and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP6455533B2 (en) | 2019-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5130796B2 (en) | Low yield ratio high strength thick steel plate with excellent high heat input weld heat affected zone toughness and method for producing the same | |
JP4844687B2 (en) | Low yield ratio high strength high toughness steel sheet and method for producing the same | |
JP6460292B1 (en) | High Mn steel and manufacturing method thereof | |
JP5354164B2 (en) | Low yield ratio high strength thick steel plate and method for producing the same | |
WO2013145771A1 (en) | Low yield ratio high-strength steel plate having superior strain aging resistance, production method therefor, and high-strength welded steel pipe using same | |
JP5476763B2 (en) | High tensile steel plate with excellent ductility and method for producing the same | |
WO2011040622A1 (en) | Steel plate having low yield ratio, high strength and high uniform elongation and method for producing same | |
JP2009270194A (en) | PROCESS FOR PRODUCTION OF 780 MPa-GRADE HIGH-TENSILE-STRENGTH STEEL PLATE EXCELLENT IN LOW-TEMPERATURE TOUGHNESS | |
JP5407478B2 (en) | High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same | |
JP2012207237A (en) | 500 MPa YIELD STRENGTH THICK STEEL PLATE EXCELLENT IN TOUGHNESS IN MULTILAYER WELD ZONE AND PRODUCTION METHOD THEREOF | |
JP5034290B2 (en) | Low yield ratio high strength thick steel plate and method for producing the same | |
JP2010280976A (en) | Low yield ratio high tensile strength thick steel plate having excellent toughness in super-large heat input weld heat-affected zone and method for producing the same | |
JP4120531B2 (en) | Manufacturing method of high strength thick steel plate for building structure with excellent super tough heat input welding heat affected zone toughness | |
JP5089224B2 (en) | Manufacturing method of on-line cooling type high strength steel sheet | |
JP4730088B2 (en) | Low yield ratio high strength thick steel plate and method for producing the same | |
JP2019199649A (en) | Non-tempered low yield ratio high tensile thick steel sheet and its production method | |
JP4096839B2 (en) | Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone | |
JP2005187853A (en) | Method for producing high strength thick steel plate excellent in toughness in extra-high heat input welded-heat affected part | |
JP5200600B2 (en) | Manufacturing method of high strength and low yield ratio steel | |
JP5999005B2 (en) | Low yield ratio high strength steel sheet with excellent weld heat affected zone toughness and method for producing the same | |
WO2010119989A1 (en) | MASS PRODUCED 780 MPa GRADE HIGH TENSION STEEL SHEET HAVING EXCELLENT LOW-TEMPERATURE TOUGHNESS AND METHOD FOR PRODUCING THE SAME | |
JP5477457B2 (en) | High-strength, low-yield ratio steel for steel structures with a thickness of 40 mm or less | |
JP6455533B2 (en) | Low yield ratio high strength thick steel plate with excellent high heat input weld heat affected zone toughness and method for producing the same | |
JP4539100B2 (en) | Super high heat input welded heat affected zone | |
JP5862592B2 (en) | High-tensile steel plate with excellent weld heat-affected zone toughness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170922 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20180502 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20180509 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180918 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181016 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181108 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181120 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181203 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6455533 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D04 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |