[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2017153074A - 撮像装置および電子機器 - Google Patents

撮像装置および電子機器 Download PDF

Info

Publication number
JP2017153074A
JP2017153074A JP2017026866A JP2017026866A JP2017153074A JP 2017153074 A JP2017153074 A JP 2017153074A JP 2017026866 A JP2017026866 A JP 2017026866A JP 2017026866 A JP2017026866 A JP 2017026866A JP 2017153074 A JP2017153074 A JP 2017153074A
Authority
JP
Japan
Prior art keywords
transistor
oxide semiconductor
circuit
pixel
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017026866A
Other languages
English (en)
Other versions
JP6903445B2 (ja
Inventor
黒川 義元
Yoshimoto Kurokawa
義元 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2017153074A publication Critical patent/JP2017153074A/ja
Priority to JP2021103887A priority Critical patent/JP7114783B2/ja
Application granted granted Critical
Publication of JP6903445B2 publication Critical patent/JP6903445B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/1461Pixel-elements with integrated switching, control, storage or amplification elements characterised by the photosensitive area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • H01L27/14614Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor having a special gate structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • H01L27/14616Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor characterised by the channel of the transistor, e.g. channel having a doping gradient
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thin Film Transistor (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】画素領域に信号の読み出し回路を設けた撮像装置を提供する。
【解決手段】第1の画素および第2の画素を有する撮像装置であって、第1の画素は、第1の画素が有する画素回路から出力される第1の信号、または前段に接続された第1の画素から入力される第2の信号を後段に接続された第1の画素または第2の画素に出力することができる。第2の画素は、前段に接続された第1の画素から入力される第1の信号、第2の信号、または第2の画素が有する画素回路から出力される第3の信号を外部に出力することができる。
【選択図】図1

Description

本発明の一態様は、撮像装置に関する。
なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の一態様の技術分野は、物、方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。そのため、より具体的に本明細書で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、液晶表示装置、発光装置、照明装置、蓄電装置、記憶装置、撮像装置、それらの動作方法、または、それらの製造方法、を一例として挙げることができる。
なお、本明細書等において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指す。トランジスタ、半導体回路は半導体装置の一態様である。また、記憶装置、表示装置、撮像装置、電子機器は、半導体装置を有する場合がある。
トランジスタに適用可能な半導体材料として酸化物半導体が注目されている。例えば、酸化物半導体として酸化亜鉛、またはIn−Ga−Zn系酸化物半導体を用いてトランジスタを作製する技術が開示されている(特許文献1および特許文献2参照)。
また、酸化物半導体を有するトランジスタを画素回路の一部に用いる構成の撮像装置が特許文献3に開示されている。
また、シリコンを有するトランジスタ、酸化物半導体を有するトランジスタ、および結晶性シリコン層を有するフォトダイオードを積層する構成の撮像装置が特許文献4に開示されている。
特開2007−123861号公報 特開2007−96055号公報 特開2011−119711号公報 特開2013−243355号公報
半導体集積回路では、高密度化、高容量化が進む一方で小型化の要求があり、2次元的な集積化から3次元的な集積化への移行が進んでいる。3次元的な集積化では作製工程が複雑になることがあるが、各層の材料および設計ルールなどの自由度が高まることから、2次元的な集積化では作製が困難な高機能の半導体集積回路を作製することができる。
撮像装置の画素回路は、光電変換素子およびトランジスタを有する。当該光電変換素子には高い光感度が求められ、当該トランジスタには、オフ電流およびノイズ特性が小さいことが求められる。光電変換素子およびトランジスタを3次元的に集積化する構成とし、それぞれに適した材料を用いた製造工程を行うことで、より高機能の撮像素子を作製することができる。
また、駆動回路などの周辺回路は画素回路と同一の製造工程で形成し、接続工程などを簡略化することが好ましい。
したがって、本発明の一態様では、画素領域に信号の読み出し回路を設けた撮像装置を提供することを目的の一つとする。または、3次元的に集積化した撮像装置を提供することを目的の一つとする。または、酸化物半導体を用いたトランジスタを有する撮像装置を提供することを目的の一つとする。または、ノイズの少ない画像を撮像することができる撮像装置を提供することを目的の一つとする。または、広い温度範囲において使用可能な撮像装置を提供することを目的の一つとする。または、信頼性の高い撮像装置を提供することを目的の一つとする。または、新規な撮像装置などを提供することを目的の一つとする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
本発明の一態様は、積層構造を有する撮像装置に関する。
本発明の一態様は、第1の画素と、第2の画素と、第3の画素と、を有する撮像装置であって、第1の画素は、第1の画素回路と、第1の回路と、を有し、第2の画素は、第2の画素回路と、第2の回路と、を有し、第3の画素は、第3の画素回路と、第3の回路と、を有し、第1の画素回路は、第1の信号を出力する機能を有し、第2の画素回路は、第2の信号を出力する機能を有し、第3の画素回路は、第3の信号を出力する機能を有し、第1の画素は、前記第2の画素と電気的に接続され、第2の画素は、前記第3の画素と電気的に接続され、第1の回路は、前記第1の信号を記憶する機能を有し、第1の回路は、前記第1の信号を前記第2の回路に転送する機能を有し、第2の回路は、前記第1の回路から転送された信号および前記第2の信号を記憶する機能を有し、第2の回路は、第1の回路から転送された信号および第2の信号を第3の回路に転送する機能を有し、第3の回路は、第2の回路から転送された信号および第3の信号を外部に出力する機能を有することを特徴とする撮像装置である。
第1の画素回路、第2の画素回路および前記第3の画素回路は、光電変換素子と、第1乃至第4のトランジスタと、をそれぞれに有し、光電変換素子の一方の電極は、第1のトランジスタのソースまたはドレインと電気的に接続され、光電変換素子の一方の電極は、第2のトランジスタのソースまたはドレインと電気的に接続され、第1のトランジスタのソースまたはドレインの他方は、第3のトランジスタのゲートと電気的に接続され、第3のトランジスタのソースまたはドレインの一方は、第4のトランジスタのソースまたはドレインの一方と電気的に接続され、第1の回路および第2の回路は、第5乃至第10のトランジスタと、第1および第2の容量素子と、を有し、第5のトランジスタのソースまたはドレインの一方は、第1の容量素子の一方の電極と電気的に接続され、第5のトランジスタのソースまたはドレインの一方は、第6のトランジスタのゲートと電気的に接続され、第6のトランジスタのソースまたはドレインの一方は、第7のトランジスタのソースまたはドレインの一方と電気的に接続され、第7のトランジスタのソースまたはドレインの他方は、第8のトランジスタのソースまたはドレインの一方と電気的に接続され、第8のトランジスタのソースまたはドレインの一方は、第2の容量素子の一方の電極と電気的に接続され、第8のトランジスタのソースまたはドレインの一方は、第9のトランジスタのゲートと電気的に接続され、第9のトランジスタのソースまたはドレインの一方は、第10のトランジスタのソースまたはドレインの一方と電気的に接続され、第3の回路は、第11のトランジスタと、出力端子と、を有し、第11のトランジスタのソースまたはドレインの一方は前記出力端子と電気的に接続されている構成とすることができる。
第1の画素回路および前記第2の画素回路が有する第3のトランジスタのソースまたはドレインの他方は、第1の回路および前記第2の回路が有する第6のトランジスタのゲートとそれぞれ電気的に接続することができる。
第3の画素回路が有する第3のトランジスタのソースまたはドレインの他方は、第11のトランジスタのソースまたはドレインの一方と電気的に接続することができる。
第2の回路が有する第6のトランジスタのゲートは、前段に接続された他の第1の画素が有する第10のトランジスタのソースまたはドレインの他方と電気的に接続することができる。
第2の回路が有する第10のトランジスタのソースまたはドレインの他方は、第3の画素が有する第11のトランジスタのソースまたはドレインの一方と電気的に接続することができる。
第1乃至第11のトランジスタはチャネル形成領域に酸化物半導体を有し、前記酸化物半導体は、Inと、Znと、M(MはAl、Ga、YまたはSn)と、を有することが好ましい。
第3のトランジスタ、第6のトランジスタ、および第9のトランジスタはバックゲートを有することが好ましい。
第1乃至第11のトランジスタのそれぞれは、光電変換素子と重なる領域を有することができる。
本発明の一態様を用いることで、画素領域に信号の読み出し回路を設けた撮像装置を提供することができる。または、3次元的に集積化した撮像装置を提供することができる。または、酸化物半導体を用いたトランジスタを有する撮像装置を提供することができる。または、ノイズの少ない画像を撮像することができる撮像装置を提供することができる。または、広い温度範囲において使用可能な撮像装置を提供することができる。または、信頼性の高い撮像装置を提供することができる。または、新規な撮像装置などを提供することができる。
なお、本発明の一態様はこれらの効果に限定されるものではない。例えば、本発明の一態様は、場合によっては、または、状況に応じて、これらの効果以外の効果を有する場合もある。または、例えば、本発明の一態様は、場合によっては、または、状況に応じて、これらの効果を有さない場合もある。
撮像素子を説明するブロック図。 撮像素子を説明するブロック図。 画素を説明する回路図。 画素を説明する回路図。 画素を説明する回路図。 画素の動作を説明するタイミングチャート。 撮像装置の構成を説明する断面図。 撮像装置の構成を説明する断面図。 光電変換素子の接続形態を説明する断面図。 光電変換素子の接続形態を説明する断面図。 撮像装置の構成を説明する断面図。 光電変換素子の接続形態を説明する断面図。 撮像装置の構成を説明する断面図。 撮像装置の構成を説明する断面図。 撮像装置の構成を説明する断面図。 画素を説明する回路図。 画素を説明する回路図。 画素を説明する回路図。 画素を説明する回路図。 撮像素子を説明するブロック図。 撮像素子を説明するブロック図。 A/Dコンバータのブロック図および撮像素子とA/Dコンバータの接続形態を示す図。 トランジスタを説明する上面図および断面図。 トランジスタを説明する上面図および断面図。 トランジスタを説明する上面図および断面図。 トランジスタを説明する上面図および断面図。 トランジスタを説明する上面図および断面図。 トランジスタを説明する上面図および断面図。 トランジスタを説明する上面図および断面図。 トランジスタを説明する上面図および断面図。 酸化物半導体の原子数比の範囲を説明する図。 InMZnOの結晶構造を説明する図。 酸化物半導体の積層構造におけるバンド図。 CAAC−OSおよび単結晶InGaZnOのXRDによる構造解析を説明する図、ならびにCAAC−OSの制限視野電子回折パターンを示す図。 CAAC−OSの断面TEM像、ならびに平面TEM像およびその画像解析像。 nc−OSの電子回折パターンを示す図、およびnc−OSの断面TEM像。 a−like OSの断面TEM像。 In−Ga−Zn酸化物の電子照射による結晶部の変化を示す図。 撮像装置を収めたパッケージの斜視図および断面図。 撮像装置を収めたパッケージの斜視図および断面図。 電子機器を説明する図。
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは当業者であれば容易に理解される。したがって、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する発明の構成において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略することがある。なお、図を構成する同じ要素のハッチングを異なる図面間で適宜省略または変更する場合もある。
なお、第1、第2として付される序数詞は便宜的に用いるものであり、工程順または積層順を示すものではない。そのため、例えば、「第1の」を「第2の」または「第3の」などと適宜置き換えて説明することができる。また、本明細書などに記載されている序数詞と、本発明の一態様を特定するために用いられる序数詞は一致しない場合がある。
例えば、本明細書等において、XとYとが接続されている、と明示的に記載されている場合は、XとYとが電気的に接続されている場合と、XとYとが機能的に接続されている場合と、XとYとが直接接続されている場合とが、本明細書等に開示されているものとする。したがって、所定の接続関係、例えば、図または文章に示された接続関係に限定されず、図または文章に示された接続関係以外のものも、図または文章に記載されているものとする。
ここで、X、Yは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。
XとYとが直接的に接続されている場合の一例としては、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)が、XとYとの間に接続されていない場合であり、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)を介さずに、XとYとが、接続されている場合である。
XとYとが電気的に接続されている場合の一例としては、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)が、XとYとの間に1個以上接続されることが可能である。なお、スイッチは、オンオフが制御される機能を有している。つまり、スイッチは、導通状態(オン状態)、または、非導通状態(オフ状態)になり、電流を流すか流さないかを制御する機能を有している。または、スイッチは、電流を流す経路を選択して切り替える機能を有している。なお、XとYとが電気的に接続されている場合は、XとYとが直接的に接続されている場合を含むものとする。
XとYとが機能的に接続されている場合の一例としては、XとYとの機能的な接続を可能とする回路(例えば、論理回路(インバータ、NAND回路、NOR回路など)、信号変換回路(D/A変換回路、A/D変換回路、ガンマ補正回路など)、電位レベル変換回路(電源回路(昇圧回路、降圧回路など)、信号の電位レベルを変えるレベルシフタ回路など)、電圧源、電流源、切り替え回路、増幅回路(信号振幅または電流量などを大きく出来る回路、オペアンプ、差動増幅回路、ソースフォロワ回路、バッファ回路など)、信号生成回路、記憶回路、制御回路など)が、XとYとの間に1個以上接続されることが可能である。なお、一例として、XとYとの間に別の回路を挟んでいても、Xから出力された信号がYへ伝達される場合は、XとYとは機能的に接続されているものとする。なお、XとYとが機能的に接続されている場合は、XとYとが直接的に接続されている場合と、XとYとが電気的に接続されている場合とを含むものとする。
なお、XとYとが電気的に接続されている、と明示的に記載されている場合は、XとYとが電気的に接続されている場合(つまり、XとYとの間に別の素子または別の回路を挟んで接続されている場合)と、XとYとが機能的に接続されている場合(つまり、XとYとの間に別の回路を挟んで機能的に接続されている場合)と、XとYとが直接接続されている場合(つまり、XとYとの間に別の素子または別の回路を挟まずに接続されている場合)とが、本明細書等に開示されているものとする。つまり、電気的に接続されている、と明示的に記載されている場合は、単に、接続されている、とのみ明示的に記載されている場合と同様な内容が、本明細書等に開示されているものとする。
なお、例えば、トランジスタのソース(または第1の端子など)が、Z1を介して(または介さず)、Xと電気的に接続され、トランジスタのドレイン(または第2の端子など)が、Z2を介して(または介さず)、Yと電気的に接続されている場合や、トランジスタのソース(または第1の端子など)が、Z1の一部と直接的に接続され、Z1の別の一部がXと直接的に接続され、トランジスタのドレイン(または第2の端子など)が、Z2の一部と直接的に接続され、Z2の別の一部がYと直接的に接続されている場合では、以下のように表現することが出来る。
例えば、「XとYとトランジスタのソース(または第1の端子など)とドレイン(または第2の端子など)とは、互いに電気的に接続されており、X、トランジスタのソース(または第1の端子など)、トランジスタのドレイン(または第2の端子など)、Yの順序で電気的に接続されている。」と表現することができる。または、「トランジスタのソース(または第1の端子など)は、Xと電気的に接続され、トランジスタのドレイン(または第2の端子など)はYと電気的に接続され、X、トランジスタのソース(または第1の端子など)、トランジスタのドレイン(または第2の端子など)、Yは、この順序で電気的に接続されている」と表現することができる。または、「Xは、トランジスタのソース(または第1の端子など)とドレイン(または第2の端子など)とを介して、Yと電気的に接続され、X、トランジスタのソース(または第1の端子など)、トランジスタのドレイン(または第2の端子など)、Yは、この接続順序で設けられている」と表現することができる。これらの例と同様な表現方法を用いて、回路構成における接続の順序について規定することにより、トランジスタのソース(または第1の端子など)と、ドレイン(または第2の端子など)とを、区別して、技術的範囲を決定することができる。
または、別の表現方法として、例えば、「トランジスタのソース(または第1の端子など)は、少なくとも第1の接続経路を介して、Xと電気的に接続され、前記第1の接続経路は、第2の接続経路を有しておらず、前記第2の接続経路は、トランジスタを介した、トランジスタのソース(または第1の端子など)とトランジスタのドレイン(または第2の端子など)との間の経路であり、前記第1の接続経路は、Z1を介した経路であり、トランジスタのドレイン(または第2の端子など)は、少なくとも第3の接続経路を介して、Yと電気的に接続され、前記第3の接続経路は、前記第2の接続経路を有しておらず、前記第3の接続経路は、Z2を介した経路である。」と表現することができる。または、「トランジスタのソース(または第1の端子など)は、少なくとも第1の接続経路によって、Z1を介して、Xと電気的に接続され、前記第1の接続経路は、第2の接続経路を有しておらず、前記第2の接続経路は、トランジスタを介した接続経路を有し、トランジスタのドレイン(または第2の端子など)は、少なくとも第3の接続経路によって、Z2を介して、Yと電気的に接続され、前記第3の接続経路は、前記第2の接続経路を有していない。」と表現することができる。または、「トランジスタのソース(または第1の端子など)は、少なくとも第1の電気的パスによって、Z1を介して、Xと電気的に接続され、前記第1の電気的パスは、第2の電気的パスを有しておらず、前記第2の電気的パスは、トランジスタのソース(または第1の端子など)からトランジスタのドレイン(または第2の端子など)への電気的パスであり、トランジスタのドレイン(または第2の端子など)は、少なくとも第3の電気的パスによって、Z2を介して、Yと電気的に接続され、前記第3の電気的パスは、第4の電気的パスを有しておらず、前記第4の電気的パスは、トランジスタのドレイン(または第2の端子など)からトランジスタのソース(または第1の端子など)への電気的パスである。」と表現することができる。これらの例と同様な表現方法を用いて、回路構成における接続経路について規定することにより、トランジスタのソース(または第1の端子など)と、ドレイン(または第2の端子など)とを、区別して、技術的範囲を決定することができる。
なお、これらの表現方法は、一例であり、これらの表現方法に限定されない。ここで、X、Y、Z1、Z2は、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。
なお、回路図上は独立している構成要素同士が電気的に接続しているように図示されている場合であっても、1つの構成要素が、複数の構成要素の機能を併せ持っている場合もある。例えば配線の一部が電極としても機能する場合は、一の導電膜が、配線の機能、および電極の機能の両方の構成要素の機能を併せ持っている。したがって、本明細書における電気的に接続とは、このような、一の導電膜が、複数の構成要素の機能を併せ持っている場合も、その範疇に含める。
なお、「膜」という言葉と、「層」という言葉とは、場合によっては、または、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能な場合がある。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能な場合がある。
なお、一般的に、電位(電圧)は、相対的なものであり、基準の電位からの相対的な大きさによって大きさが決定される。したがって、「接地」「GND」「グラウンド」などと記載されている場合であっても、必ずしも、電位が0ボルトであるとは限らないものとする。例えば、回路で最も低い電位を基準として、「接地」や「GND」を定義する場合もある。または、回路で中間くらいの電位を基準として、「接地」や「GND」を定義する場合もある。その場合には、その電位を基準として、正の電位と負の電位が規定されることとなる。
(実施の形態1)
本実施の形態では、本発明の一態様である撮像装置について、図面を参照して説明する。
本発明の一態様は、画素回路が出力する信号の読み出し回路を画素内に分散させて設ける撮像装置の構成および動作方法である。
撮像装置は、第1の画素および第2の画素を有する。第1の画素および第2の画素は電気的に接続され、両者は複数であってもよい。
第1の画素は、第1の画素が有する画素回路から出力される第1の信号、または前段に接続された第1の画素から入力される第2の信号を後段に接続された第1の画素または第2の画素に出力することができる。
第2の画素は、前段に接続された第1の画素から入力される第1の信号、第2の信号、または第2の画素が有する画素回路から出力される第3の信号を外部に出力することができる。
当該読み出し回路は、単極性トランジスタでの構成が可能であり、工程を増やすことなく画素回路と並行して形成することができる。
また、当該撮像装置は、光電変換素子を自由に選択することができる。例えば、フォトダイオードが形成された単結晶シリコン基板上に酸化物半導体を用いたトランジスタで画素回路および読み出し回路を形成することができる。
上記酸化物半導体を活性層とするトランジスタはオフ電流が小さく、画素回路内および読み出し回路内にデータを保持するメモリを簡易に構成することができる。
図1(A)は、本発明の一態様の撮像素子10のブロック図である。撮像素子10は、画素部22にm行n列(mは1以上の自然数、nは2以上の自然数)に配置された画素20および画素21を有する。
画素20は、図1(B)に示すように画素回路23aおよび回路24を有する。画素回路23aは撮像機能を有する。回路24は、画素回路23aから出力される第1の信号、または前段に接続された画素20から入力される第2の信号を記憶することができる。
画素21は、図1(C)に示すように画素回路23bおよび回路25を有する。画素回路23bは撮像機能を有する。回路25は、前段に接続された画素20から入力される第1の信号、第2の信号、または画素回路23bから出力される第3の信号を外部に出力することができる。
配線70は、画素回路23aおよび画素回路23bを動作させるための信号線群である。また、配線64は、回路24および回路25を動作させるための信号線群である。全ての画素は、配線70および配線64に並列に接続することができる。
図1(A)に示すように、第1乃至第n−1列目に画素20を配置し、第n列目に画素21を配置する構成とすることができる。
行方向に配置された画素20において、隣り合う画素20の回路24同士が配線91(OUT1)を介して電気的に接続される。また、最後段の画素21の回路25は、その前段の画素20の回路24と配線91(OUT1)を介して電気的に接続される。
回路24は、信号を記憶する第1のノードおよび第2ノードを有する。第1のノードで記憶した信号は、第2のノードに転送させることができる。また、第2のノードに記憶した信号は、後段の画素20の回路24に転送することができる。または、後段の画素21の回路25に転送することができる。つまり、隣り合う画素を通じて信号を転送させ、外部に出力することができる。
図1(A)は、行毎に設けた画素21から信号を取り出す構成であり、各行の画素21に配線92(OUT2)を介してA/Dコンバータ26を電気的に接続する。A/Dコンバータ26には、n列目の信号、n−1列目の信号、n−2列目の信号の順で信号が順次入力され、最後に1列目の信号が入力される。このような構成とすることで、行毎に並行して信号を順次取り出すことができるため、読み出しを高速に行うことができる。
なお、本発明の一態様の撮像素子10は、図2(A)に示す構成であってもよい。当該撮像素子10は、第k行(kは1乃至m−1)の端にある画素と、第k+1行の端にある画素を折り返すように電気的に接続し、全ての画素を電気的に接続する構成である。第m行目の最後段に配置される画素を画素21とし、その他の画素を画素20とする構成とすることができる。
図2(A)は、第m行(最終行)の最後段に設けた画素21から信号を取り出す構成であり、第m行の画素21に配線92(OUT2)を介してA/Dコンバータ26を接続する。A/Dコンバータ26には、m行目におけるn列目の信号、n−1列目の信号、n−2列目の信号の順で信号が順次入力され、最後に1行目における1列目の信号が入力される。このような構成とすることで、A/Dコンバータを一つにすることができ、複数のA/Dコンバータを用いた場合に起因する出力ばらつきを抑えることができる。
また、本発明の一態様の撮像素子10は、図2(B)に示す構成であってもよい。当該撮像素子10は、第k行の一方の端にある画素と、第k+1行の他方の端にある前記画素を電気的に接続し、第m行目の最後段に配置される画素を画素21とし、その他の画素を画素20とする構成である。
図2(B)は、行間における画素20の接続の形態を除き、図2(A)と同様の構成を有する。図2(A)では、行毎に行方向の読み出しの方向が反転するが、図2(B)では行方向の読み出しの方向を一定とすることができる。
次に、画素20の具体的な回路構成を説明する。図3は、画素20の回路図である。なお、図3などにおいてはトランジスタがn−ch型である場合の例を示すが、本発明の一態様はこれに限定されず、一部のトランジスタをp−ch型トランジスタに置き換えてもよい。また、画素回路の構成は任意であり、本実施の形態で説明する画素回路以外の回路構成であってもよい。なお、図3では、j列目の画素20として、画素20[j]を例示している。
画素回路23aは、光電変換素子PDと、トランジスタ41と、トランジスタ42と、トランジスタ43と、トランジスタ44を有する構成とすることができる。光電変換素子PDの一方の電極は、トランジスタ41のソースまたはドレインの一方と電気的に接続される。光電変換素子PDの一方の電極は、トランジスタ42のソースまたはドレインの一方と電気的に接続される。トランジスタ41のソースまたはドレインの他方は、トランジスタ43のゲートに電気的に接続される。トランジスタ43のソースまたはドレインの一方は、トランジスタ44のソースまたはドレインの一方と電気的に接続される。
ここで、トランジスタ41のソースまたはドレインの他方とトランジスタ43のゲートが接続されるノードFDを電荷検出部とする。なお、図16(A)に示すように、ノードFDに容量素子C3が接続される構成であってもよい。
図3において、光電変換素子PDの他方の電極は、配線71(VPD)に電気的に接続される。トランジスタ42のソースまたはドレインの他方は、配線72(VRS)に電気的に接続される。トランジスタ43のソースまたはドレインの他方は、配線73(VPI)に電気的に接続される。トランジスタ44のソースまたはドレインの他方は、回路24に電気的に接続される。なお、図16(B)に示すように、光電変換素子PDの一方の電極が配線71(VPD)に電気的に接続され、他方の電極がトランジスタ41のソースまたはドレインの一方と電気的に接続されていてもよい。
配線71(VPD)、配線72(VRS)および配線73(VPI)は、電源線としての機能を有することができる。例えば、配線71(VPD)は、低電位電源線として機能させることができる。配線72(VRS)および配線73(VPI)は、高電位電源線として機能させることができる。
トランジスタ41のゲートは、配線61(TX)と電気的に接続される。トランジスタ42のゲートは、配線62(RS)と電気的に接続される。トランジスタ44のゲートは、配線63(SE)と電気的に接続される。
配線61(TX)、配線62(RS)および配線63(SE)は、それぞれが接続されるトランジスタの導通を制御する信号線として機能させることができる。
トランジスタ41は、光電変換素子PDの一方の電極の電位をノードFDに転送するためのトランジスタとして機能させることができる。トランジスタ42は、ノードFDの電位をリセットするためのトランジスタとして機能させることができる。トランジスタ43は、ノードFDの電位に対応した出力を行うためのトランジスタとして機能させることができる。トランジスタ44は、画素20を選択するためのトランジスタとして機能させることができる。
回路24は、トランジスタ45と、トランジスタ46と、トランジスタ47と、トランジスタ48と、トランジスタ49と、トランジスタ50と、容量素子C1と、容量素子C2と、配線91(OUT1)を有する構成とすることができる。なお、回路24はレジスタとして機能させることができ、回路24を複数段接続することでシフトレジスタとして機能させることができる。
トランジスタ45のソースまたはドレインの一方は、容量素子C1の一方の電極と電気的に接続される。トランジスタ45のソースまたはドレインの一方は、トランジスタ46のゲートと電気的に接続される。トランジスタ46のソースまたはドレインの一方は、トランジスタ47のソースまたはドレインの一方と電気的に接続される。トランジスタ47のソースまたはドレインの他方は、トランジスタ48のソースまたはドレインの一方と電気的に接続される。トランジスタ48のソースまたはドレインの一方は、容量素子C2の一方の電極と電気的に接続される。トランジスタ48のソースまたはドレインの一方は、トランジスタ49のゲートと電気的に接続される。トランジスタ49のソースまたはドレインの一方は、トランジスタ50のソースまたはドレインの一方と電気的に接続される。また、トランジスタ50のソースまたはドレインの他方は、配線91(OUT1)と電気的に接続される。
ここで、トランジスタ45のソースまたはドレインの一方、容量素子C1の一方の電極、およびトランジスタ46のゲートが接続される配線をノードN1とする。また、トランジスタ48のソースまたはドレインの一方、容量素子C2の一方の電極、およびトランジスタ49のゲートが接続される配線をノードN2とする。
図3において、トランジスタ45、48のソースまたはドレインの他方は、配線74(VSS)に電気的に接続される。トランジスタ46、49のソースまたはドレインの他方は、配線79(VDD)に電気的に接続される。配線74(VSS)および配線79(VDD)は、電源線としての機能を有することができる。例えば、配線74(VSS)は、低電位電源線として機能させることができる。配線79(VDD)は、高電位電源線として機能させることができる。
トランジスタ45のゲートは、配線65と電気的に接続される。トランジスタ47のゲートは、配線68と電気的に接続される。トランジスタ48のゲートは、配線67と電気的に接続される。トランジスタ50のゲートは、配線66と電気的に接続される。
配線65、66、67,68は、それぞれが接続されるトランジスタの導通を制御する信号線として機能させることができる。
トランジスタ45は、ノードN1をリセットする機能を有することができる。容量素子C1はノードN1に記憶する信号の保持容量としての機能を有することができる。トランジスタ46は、ノードN1の電位に対応した出力を行う機能を有することができる。トランジスタ47は、トランジスタ46が出力する信号をノードN2に転送する機能を有することができる。
トランジスタ48は、ノードN2をリセットする機能を有することができる。容量素子C2はノードN2に記憶する信号の保持容量としての機能を有することができる。トランジスタ49は、ノードN2の電位に対応した出力を行う機能を有することができる。トランジスタ50は、トランジスタ49が出力する信号を配線91(OUT1)に出力する機能を有することができる。
なお、図3に示す画素がj列目の画素20[j]であるとき、ノードN1には、画素回路23a[j]のトランジスタ44のソースまたはドレインの他方が電気的に接続される。また、ノードN1には、前段の画素20[j−1]が有する回路24[j−1]が配線91(OUT1)[j−1]を介して電気的に接続される。また、配線91(OUT1)[j]には、後段の画素20[j+1]が有する回路24[j+1]が電気的に接続される。なお、配線91(OUT1)[j]には、後述する画素21が有する回路25が電気的に接続されてもよい。
次に、画素21の具体的な回路構成を説明する。図4は、画素21の回路図である。画素回路23bは、画素回路23aと同一の構成とすることができる。回路25は、トランジスタ51、配線92(OUT2)および端子30を有する構成とすることができる。
トランジスタ51のソースまたはドレインの一方には、画素回路23bが有するトランジスタ44のソースまたはドレインの他方が電気的に接続される。トランジスタ51のソースまたはドレインの一方には、端子30が配線92(OUT2)を介して電気的に接続される。トランジスタ51のソースまたはドレインの他方には、配線74が電気的に接続される。トランジスタ51のゲートには配線65が電気的に接続される。
トランジスタ51は、配線92(OUT2)の電位をリセットするためのトランジスタとして機能することができる。
配線92(OUT2)には、画素回路23bのトランジスタ44のソースまたはドレインの他方が電気的に接続される。また、配線92(OUT2)には、前段の画素20が有する回路24が配線91(OUT1)を介して電気的に接続される。
トランジスタ41乃至51は、チャネル形成領域に酸化物半導体を有するトランジスタ(以下、OSトランジスタ)とする構成が好ましい。OSトランジスタは極めてオフ電流が低いため、OSトランジスタで構成した画素回路23a、23bはデータの保持特性に優れる。そのため、回路構成や動作方法を複雑にすることなく、全画素で同時に電荷の蓄積動作を行うグローバルシャッタ方式を適用することができる。また、OSトランジスタで構成した回路24および回路25はデータ保持特性に優れる。したがって、回路24および回路25で構成するシフトレジスタは、画素回路23a、23bで取得した撮像データを精度良く転送することができる。
OSトランジスタは、シリコンを活性領域または活性層に用いたトランジスタ(以下、Siトランジスタ)よりも電気特性変動の温度依存性が小さいため、極めて広い温度範囲で使用することができる。したがって、OSトランジスタを有する撮像装置および半導体装置は、自動車、航空機、宇宙機などへの搭載にも適している。
また、OSトランジスタは、Siトランジスタよりもドレイン耐圧の高い特性を有する。セレン系材料などを光電変換層とした光電変換素子では、アバランシェ増倍を利用するために比較的高い電圧(例えば、10V以上)を印加して動作させることが好ましい。したがって、OSトランジスタと、セレン系材料を光電変換層とした光電変換素子とを組み合わせることで、信頼性の高い撮像装置とすることができる。
なお、上述した画素20の構成は一例であり、一部の回路、一部のトランジスタ、一部の容量素子、または一部の配線等が含まれない場合もある。または、上述した構成に含まれない回路、トランジスタ、容量素子、配線等が含まれる場合もある。また、一部の配線の接続形態が上述した構成とは異なる場合もある。
また、図3および図4に示す要素(トランジスタ、容量素子、光電変換素子など)と、配線との接続形態は一例であり、それぞれの要素が異なる配線と電気的に接続される場合や、複数の要素が同一の配線に電気的に接続される場合もある。
次に、画素20および画素21の動作について説明する。
画素回路23a、23bは、光電変換素子PDに入射した光の強度に応じた電荷をノードFDに蓄積する。ノードFDのリセットはトランジスタ42により行い、ノードFDへの電荷転送はトランジスタ41により制御する。ノードFDの電位は、光電変換素子PDに入射した光の強度に応じた電位となる。
画素回路23a、23bは、トランジスタ43のゲート電圧、すなわち、ノードFDの電位に応じた信号をトランジスタ44を制御することで回路24に出力することができる。なお、トランジスタ43をソースフォロアとすることで、画素回路23a、23bの出力はノードFDの電位とすることができる。
回路24では、トランジスタ45で容量素子C1の電荷をリセット、すなわち、ノードN1の電位を初期化した後、画素回路23aの出力または前段の回路24の出力を取得する。当該動作により、ノードN1の電位を画素回路23aの出力または前段の回路24の出力の電位(アナログ電位)に設定することができる。
回路24は、トランジスタ47を制御することで、トランジスタ46のゲート電圧、すなわち、ノードN1の電位に応じた信号をノードN2に出力することができる。なお、トランジスタ46をソースフォロアとすることで、当該信号の電位をノードN1の電位とすることができる。
回路24は、トランジスタ48で容量素子C2の電荷をリセット、すなわち、ノードN2の電位を初期化した後、ノードN1の電位に応じた信号を取得することで、ノードN2の電位を当該信号に応じた電位(アナログ電位)に設定することができる。つまり、ノードN1の電位をノードN2の電位に設定することができる。
回路24は、トランジスタ50を制御することで、トランジスタ49のゲート電圧、すなわち、ノードN2の電位に応じた信号を配線91(OUT1)に出力することができる。なお、トランジスタ49をソースフォロアとすることで、当該信号の電位をノードN2の電位とすることができる。
回路25は、トランジスタ51で配線92(OUT2)の電位をリセットした後、前段の回路24の出力を取得することで、配線92(OUT2)の電位を前段の回路24のノードN2の電位とすることができる。
なお、上記において、画素回路23a、23bの出力は、ノードFDの電位からトランジスタ43のしきい値電圧を引いた電位となる。同様に、回路24におけるノードN2に出力される信号は、ノードN1の電位からトランジスタ46のしきい値電圧を引いた電位となる。さらに、配線91(OUT1)に出力される信号は、ノードN2の電位からトランジスタ49のしきい値電圧を引いた電位となる。
つまり、回路24で構成されるシフトレジスタの段が進むにつれ、各段のレジスタの出力の電位が変化していくことになる。そのため、図18に示すように、少なくともトランジスタ43、46、49にバックゲートを設けることが好ましい。当該バックゲートの電位を配線77および配線79で制御し、トランジスタ43、46、49のしきい値電圧を0Vまたは0V付近とすることで、各段のレジスタの出力の電位の変化を抑えることができる。
なお、上述のバックゲートによるしきい値電圧の制御は、シフトレジスタの出力データが十分な精度を得られる範囲、または外部回路で補正が可能な精度が得られる範囲で行えればよい。なお、当該外部回路としては、例えばレジスタの各段におけるしきい値電圧低下分を積算した値を配線92(OUT2)の電位に加算する構成とすればよい。
次に、図5に示す画素20[n−1]、画素20[n]、画素21が順に配線91(OUT1)を介して接続された形態について、動作方法の詳細を図6のタイミングチャートを用いて説明する。なお、より多くの画素20を有する場合であっても、同様の方法で動作させることができる。
図6において、時刻T1乃至T3は画素回路23a、23bにおける撮像期間、時刻T4乃至T16はデータ出力期間である。なお、画素20[n−1]のノードFDをFD[1]、画素20[n]のノードFDをFD[2]、画素21のノードFDをFD[3]とする。また、画素20[n−1]のノードN1をN1[1]、画素20[n−1]のノードN2をN2[1]、画素20[n]のノードN1をN1[2]、画素20[n]のノードN2をN2[2]とする。また、以下の説明において、“H”は高電位、“L”は低電位を意味する。
時刻T1乃至T2において、配線62(RS)の電位を“H”、配線61(TX)の電位を“H”とすることで、画素回路23a[n−1]、23a[n]、23bのノードFDの電位を“H”にリセットする。
時刻T2乃至T3において、配線62(RS)の電位を“L”、配線61(TX)の電位を“H”とすることで、光電変換素子PDに入射した光の強度に応じた電荷を各ノードFDに蓄積する。これは、各画素回路における撮像データの取得に相当する。図5に示す画素回路では、光の強度が高いほどノードFDの電位は低くなる。
時刻T4乃至T5において、配線65の電位を“H”とすることで、ノードN1[1]、ノードN1[2]および配線92(OUT2)の電位を“L”にリセットする。
時刻T5乃至T6において配線63(SE)の電位を“H”とすることで、ノードN1[1]の電位をノードFD[1]の電位に設定し、ノードN1[2]の電位をノードFD[2]の電位に設定する。また、配線92(OUT2)の電位をノードFD[3]の電位に設定する。つまり、端子30には、画素回路23bで取得した撮像データが出力される。
時刻T6乃至T7において、配線67の電位を“H”とすることで、ノードN2[1]およびノードN2[2]の電位を“L”にリセットする。
時刻T7乃至T8において、配線68の電位を“H”とすることで、ノードN2[1]の電位をノードN1[1]の電位に設定し、ノードN2[2]の電位をノードN1[2]の電位に設定する。すなわち、ノードN2[1]の電位をノードFD[1]の電位に設定し、ノードN2[2]の電位をノードFD[2]の電位に設定する。
時刻T8乃至T9において、配線65の電位を“H”とすることで、ノードN1[1]、ノードN1[2]および配線92(OUT2)の電位を“L”にリセットする。
時刻T9乃至T10において、配線66の電位を“H”とすることで、ノードN1[2]の電位をノードN2[1]の電位に設定し、配線92(OUT2)の電位をノードN2[2]の電位に設定する。すなわち、ノードN1[2]の電位をノードFD[1]の電位に設定し、配線92(OUT2)の電位をノードFD[2]の電位に設定する。つまり、端子30には、画素回路23a[n]で取得した撮像データが出力される。
時刻T10乃至T11において、配線67の電位を“H”とすることで、ノードN2[1]およびノードN2[2]の電位を“L”にリセットする。
時刻T11乃至T12において、配線68の電位を“H”とすることで、ノードN2[1]の電位をノードN1[1]の電位に設定し、ノードN2[2]の電位をノードN1[2]の電位に設定する。すなわち、ノードN2[1]の電位を“L”(変化なし)に設定し、ノードN2[2]の電位をノードFD[1]の電位に設定する。
時刻T12乃至T13において、配線65の電位を“H”とすることで、ノードN1[1]、ノードN1[2]および配線92(OUT2)の電位を“L”にリセットする。
時刻T13乃至T14において、配線66の電位を“H”とすることで、ノードN1[2]の電位をノードN2[1]に設定し、配線92(OUT2)の電位をノードN2[2]の電位に設定する。すなわち、ノードN1[2]の電位を“L”(変化なし)に設定し、配線92(OUT2)の電位をノードFD[1]の電位に設定する。つまり、端子30には、画素回路23a[n−1]で取得した撮像データが出力される。
以上のように、回路24および回路25で構成されるシフトレジスタからは、画素回路23a[n−1]、23a[n]、23bで取得した撮像データが順次出力される。なお、端子30にはアナログデータが出力されるため、A/Dコンバータによりデジタルデータに変換するなど、撮像素子10の外部に接続される半導体装置の構成に応じて処理することができる。
なお、本発明の一態様の撮像素子10では、各画素回路において、撮像データの取得時および当該撮像データの出力時には、各画素回路に独立に入力する制御信号は不要である。つまり、特定の行または列を選択する回路は不要とすることができる。
図7は、画素20の具体的な構成の一例を説明する図であり、画素回路23aが有するトランジスタ41、42、および回路24が有するトランジスタ46、47のチャネル長方向を表す断面図である。
なお、本実施の形態で説明する断面図において、配線、電極、金属層およびコンタクトプラグ(導電体82)を個別の要素として図示しているが、それらが電気的に接続している場合においては、同一の要素として設けられる場合もある。また、配線、電極および金属層などの要素が導電体82を介して接続される形態は一例であり、各要素が導電体82を介さずに直接接続される場合もある。
基板上、およびトランジスタなどの各要素上には保護膜、層間絶縁膜または平坦化膜としての機能を有する絶縁層81a乃至81g等が設けられる。例えば、絶縁層81a乃至81gは、酸化シリコン膜、酸化窒化シリコン膜などの無機絶縁膜を用いることができる。または、アクリル樹脂、ポリイミド樹脂などの有機絶縁膜などを用いてもよい。絶縁層81a乃至81g等の上面は、必要に応じてCMP(Chemical Mechanical Polishing)法等で平坦化処理を行ってもよい。
なお、図面に示される配線やトランジスタ等の一部が設けられない場合や、図面に示されない配線やトランジスタ等が各層に含まれる場合もある。
画素20は、図7に示すように、層1100および層1200を有することができる。なお、画素21も同様に層1100および層1200を有することができる。
層1100は、光電変換素子PDを有することができる。光電変換素子PDには、例えば、2端子のフォトダイオードを用いることができる。当該フォトダイオードとしては、単結晶シリコン基板を用いたpn型フォトダイオード、非晶質シリコン薄膜、微結晶シリコン薄膜または多結晶シリコン薄膜を用いたpin型フォトダイオード、セレンまたはセレンの化合物、または有機化合物を用いたフォトダイオードなどを用いることができる。
図7において、層1100が有する光電変換素子PDは、単結晶シリコン基板を用いたpn型フォトダイオードを示している。当該光電変換素子PDは、p領域620、p領域630、n型領域640、p領域650を有する構成とすることができる。
層1200は、画素回路23aおよび回路24を構成するOSトランジスタを有することができ、図7では、画素回路23aが有するトランジスタ41、42、および回路24が有するトランジスタ46、47を例示している。このように、光電変換素子PDと、画素回路23aおよび回路24が重なる構成とすることができ、光電変換素子PDの受光面積を広くすることができる。
OSトランジスタが形成される領域と、Siデバイス(SiトランジスタまたはSiフォトダイオードなど)が形成される領域との間には絶縁層80が設けられる。
Siデバイス近傍に設けられる絶縁層中には、シリコンのダングリングボンドを終端するため、水素を含むことが好ましい。一方で、トランジスタ41、42等の活性層である酸化物半導体層の近傍に設けられる絶縁層中の水素は、酸化物半導体層中にキャリアを生成する要因の一つとなる。そのため、当該水素はトランジスタ41、42等の信頼性を低下させる要因となる場合がある。したがって、Siデバイスを有する一方の層と、OSトランジスタを有する他方の層を積層する場合、これらの間に水素の拡散を防止する機能を有する絶縁層80を設けることが好ましい。絶縁層80により、水素の拡散を防ぐことができるため、SiデバイスおよびOSトランジスタの両者の信頼性を向上することができる。
絶縁層80としては、例えば、酸化アルミニウム、酸化窒化アルミニウム、酸化ガリウム、酸化窒化ガリウム、酸化イットリウム、酸化窒化イットリウム、酸化ハフニウム、酸化窒化ハフニウム、イットリア安定化ジルコニア(YSZ)等を用いることができる。
光電変換素子PDの一方の電極(n型領域640)は、例えば、二つの導電体82および配線69を介してトランジスタ41およびトランジスタ42と電気的に接続することができる。
ここで、導電体82は絶縁層80を貫通して設けられるため、導電体82も水素の拡散を防止する機能を有することが好ましい。例えば、図7に示すように導電体82の少なくとも貫通口の側壁と接する外側は水素に対してバリア性を有する導電体82bとし、内側は抵抗の低い導電体82aとすればよい。例えば、導電体82aにはタングステン、導電体82bには窒化タンタルなどを用いることができる。なお、導電体82を導電体82aのみで構成することもできる。また、水素などの不純物を有する層と導電体82が接しない場合は、導電体82を導電体82bのみで構成してもよい。
図7は、層1200にトップゲート型のOSトランジスタを設けた構成である。例えば、OSトランジスタは、層1100上に形成された絶縁層の積層(絶縁層81a、80、81b)上に設けられ、酸化物半導体層130と、ソース電極またはドレイン電極として機能する導電層140、150と、ゲート絶縁層として機能する絶縁層160と、ゲート電極として機能する導電層170を有する。なお、絶縁層81bはゲート絶縁層としての機能を有することもできる。
図7では、OSトランジスタにバックゲート電極として機能する導電層173を設けた構成を例示している。図7に示す構成では、層1100を通過した光がトランジスタの電気特性を変動させることがあるため、遮光層を兼ねてバックゲート電極を設ける構成とすることが好ましい。また、バックゲートを設けることで、OSトランジスタのしきい値電圧などを制御することができる。
また、画素20は、図8に示す積層構成とすることもできる。図8に示す画素20は、基板115上に層1200および層1100を設けた構成である。OSトランジスタ上に光電変換素子PDを設ける構成となるため、OSトランジスタと光電変換素子PDの一方の電極との電気的な接続が容易になる。
図8では、セレン系材料を光電変換層561に用いた形態を図示している。セレン系材料を用いた光電変換素子PDは、可視光に対する外部量子効率が高い特性を有する。また、セレン系材料は光吸収係数が高いため、光電変換層561を薄くしやすい利点を有する。セレン系材料を用いた光電変換素子PDでは、アバランシェ増倍により信号の増幅が大きい高感度のセンサとすることができる。つまり、セレン系材料を光電変換層561に用いることで、画素面積が縮小しても十分な光電流を得ることができる。したがって、セレン系材料を用いた光電変換素子PDは、低照度環境における撮像にも適しているといえる。
セレン系材料としては、非晶質セレンまたは結晶セレンを用いることができる。結晶セレンは、例えば、非晶質セレンを成膜後に熱処理することで得ることができる。結晶セレンの結晶粒径を画素ピッチより小さくすることで、画素ごとの特性ばらつきを低減させることができる。また、結晶セレンは、非晶質セレンよりも可視光に対する分光感度や光吸収係数が高い特性を有する。
図8では、光電変換層561は単層として図示しているが、図9(A)に示すように受光面側に正孔注入阻止層568として酸化ガリウム、酸化セリウムまたはIn−Ga−Zn酸化物などを設けてもよい。または、図9(B)に示すように、電極566側に電子注入阻止層569として酸化ニッケルまたは硫化アンチモンなどを設けてもよい。または、図9(C)に示すように、正孔注入阻止層568および電子注入阻止層569を設ける構成としてもよい。
光電変換層561は、銅、インジウム、セレンの化合物(CIS)を含む層であってもよい。または、銅、インジウム、ガリウム、セレンの化合物(CIGS)を含む層であってもよい。CISおよびCIGSでは、セレンの単層と同様にアバランシェ増倍を利用する光電変換素子を形成することができる。
セレン系材料を用いた光電変換素子PDは、例えば、金属材料などで形成された電極566と透光性導電層562との間に光電変換層561を有する構成とすることができる。また、CISおよびCIGSはp型半導体であり、接合を形成するためにn型半導体の硫化カドミウムや硫化亜鉛等を接して設けてもよい。
図8では透光性導電層562と配線571は直接接する構成としているが、図9(D)に示すように配線588を介して両者が接する構成としてもよい。また、図8では光電変換層561および透光性導電層562を画素回路間で分離しない構成としているが、図9(E)に示すように回路間で分離する構成としてもよい。また、画素間においては、電極566を有さない領域には絶縁体で隔壁567を設け、光電変換層561および透光性導電層562に亀裂が入らないようにすることが好ましいが、図10(A)、(B)に示すように隔壁567を設けない構成としてもよい。
また、電極566および配線571等は多層としてもよい。例えば、図10(C)に示すように、電極566を導電層566aおよび導電層566bの二層とし、配線571を導電層571aおよび導電層571bの二層とすることができる。図10(C)の構成においては、例えば、導電層566aおよび導電層571aを低抵抗の金属等を選択して形成し、導電層566bおよび導電層571bを光電変換層561とコンタクト特性の良い金属等を選択して形成するとよい。このような構成とすることで、光電変換素子PDの電気特性を向上させることができる。また、一部の金属は透光性導電層562と接触することにより電蝕を起こすことがある。そのような金属を導電層571aに用いた場合でも導電層571bを介することによって電蝕を防止することができる。
導電層566bおよび導電層571bには、例えば、モリブデンやタングステンなどを用いることができる。また、導電層566aおよび導電層571aには、例えば、アルミニウム、チタン、またはアルミニウムをチタンで挟むような積層を用いることができる。
また、図10(D)に示すように透光性導電層562と配線571は導電体82および配線588を介して接続してもよい。
隔壁567は、無機絶縁体や絶縁有機樹脂などを用いて形成することができる。また、隔壁567は、トランジスタ等に対する遮光、および/または1画素あたりの受光部の面積を確定するために黒色等に着色されていてもよい。
また、画素20は、図11に示す積層構成とすることもできる。図11に示す画素20は、図8に示す画素20と層1100のみが異なり、その他の構成は同じである。
図11において、層1100が有する光電変換素子PDは、光電変換層に非晶質シリコン膜や微結晶シリコン膜などを用いたpin型フォトダイオードを示している。当該光電変換素子PDは、n型の半導体層565、i型の半導体層564、p型の半導体層563、電極566、配線571、配線588を有する構成とすることができる。
i型の半導体層564には非晶質シリコンを用いることが好ましい。また、p型の半導体層563およびn型の半導体層565には、それぞれの導電型を付与するドーパントを含む非晶質シリコンまたは微結晶シリコンなどを用いることができる。非晶質シリコンを光電変換層とするフォトダイオードは可視光の波長領域における感度が高く、微弱な可視光を検知しやすい。
また、pin型の薄膜フォトダイオードの形態を有する光電変換素子PDの構成、ならびに光電変換素子PDおよび配線の接続形態は、図12(A)、(B)、(C)に示す例であってもよい。なお、光電変換素子PDの構成、光電変換素子PDと配線の接続形態はこれらに限定されず、他の形態であってもよい。
図12(A)は、光電変換素子PDのp型の半導体層563と接する透光性導電層562を設けた構成である。透光性導電層562は電極として作用し、光電変換素子PDの出力電流を高めることができる。
透光性導電層562には、例えば、インジウム錫酸化物、シリコンを含むインジウム錫酸化物、亜鉛を含む酸化インジウム、酸化亜鉛、ガリウムを含む酸化亜鉛、アルミニウムを含む酸化亜鉛、酸化錫、フッ素を含む酸化錫、アンチモンを含む酸化錫、グラフェンまたは酸化グラフェン等を用いることができる。また、透光性導電層562は単層に限らず、異なる膜の積層であっても良い。
図12(B)は、透光性導電層562と配線571が導電体82および配線588を介して接続された構成である。なお、光電変換素子PDのp型の半導体層563と配線571が導電体82および配線588を介して接続された構成とすることもできる。なお、図12(B)においては、透光性導電層562を設けない構成とすることもできる。
図12(C)は、光電変換素子PDを覆う絶縁層81eにp型の半導体層563が露出する開口部が設けられ、当該開口部を覆う透光性導電層562と配線571が電気的な接続を有する構成である。
上述したセレン系材料や非晶質シリコンなどを用いて形成した光電変換素子PDは、成膜工程、リソグラフィ工程、エッチング工程などの一般的な半導体作製工程を用いて作製することができる。また、セレン系材料は高抵抗であり、図8に示すように、光電変換層561を回路間で分離しない構成とすることもできる。したがって、歩留りが高く、低コストで作製することができる。
また、画素20は、図13に示す積層構成とすることもできる。図13に示す画素20は、層1300上に層1200および層1100を設けた構成である。層1300には、例えば、A/Dコンバータなどのデータ変換回路、バッファ回路、および撮像装置全体の制御回路などを設けることができる。
層1300は、Siトランジスタ(トランジスタ52乃至55など)を有することができる。図13において、トランジスタ52乃至55はシリコン基板600に設けられたフィン型の構成を例示しているが、図14(A)に示すようにプレーナー型であってもよい。または、図14(B)に示すように、シリコン薄膜の活性層660を有するトランジスタであってもよい。活性層660は、多結晶シリコンやSOI(Silicon on Insulator)の単結晶シリコンとすることができる。
なお、図13では、図8で示した構成に層1300を付加した構成を示しているが、図11で示した構成に層1300を付加してもよい。
図15は、図7に示す構成に層1400を付加した構成の断面図であり、3画素分(画素20a、20b、20c)を表している。
層1400には、遮光層1530、光学変換層1550a、1550b、1550c、マイクロレンズアレイ1540などを設けることができる。
層1100と接する領域には、絶縁層81hが形成される。絶縁層81hは可視光に対して透光性の高い酸化シリコン膜などを用いることができる。また、パッシベーション膜として窒化シリコン膜を積層する構成としてもよい。また、反射防止膜として、酸化ハフニウムなどの誘電体膜を積層する構成としてもよい。
絶縁層81h上には遮光層1530を設けることができる。遮光層1530は隣り合う画素の境に配置され、斜め方向から侵入する迷光を遮蔽する機能を有する。遮光層1530には、アルミニウム、タングステンなどの金属層や当該金属層と反射防止膜としての機能を有する誘電体膜を積層する構成とすることができる。
絶縁層81hおよび遮光層1530上には、光学変換層1550a、1550b、1550cを設けることができる。例えば、光学変換層1550a、1550b、1550cに、R(赤)、G(緑)、B(青)、Y(黄)、C(シアン)、M(マゼンタ)などのカラーフィルタを割り当てることにより、カラー画像を得ることができる。
なお、光学変換層に可視光線の波長以下の光を遮るフィルタを用いれば赤外線撮像装置とすることができる。また、光学変換層に近赤外線の波長以下の光を遮るフィルタを用いれば遠赤外線撮像装置とすることができる。また、光学変換層に可視光線の波長以上の光を遮るフィルタを用いれば紫外線撮像装置とすることができる。
また、光学変換層にシンチレータを用いれば、X線撮像装置などに用いる、放射線の強弱を可視化した画像を得る撮像装置とすることができる。被写体を透過したX線等の放射線がシンチレータに入射されると、フォトルミネッセンス現象により可視光線や紫外光線などの光(蛍光)に変換される。そして、当該光を光電変換素子PDで検知することにより画像データを取得する。また、放射線検出器などに当該構成の撮像装置を用いてもよい。
シンチレータは、X線やガンマ線などの放射線が照射されると、そのエネルギーを吸収して可視光や紫外光を発する物質を含む。例えば、GdS:Tb、GdS:Pr、GdS:Eu、BaFCl:Eu、NaI、CsI、CaF、BaF、CeF、LiF、LiI、ZnOを樹脂やセラミクスに分散させたものを用いることができる。
光学変換層1550a、1550b、1550c上には、マイクロレンズアレイ1540を設けることができる。マイクロレンズアレイ1540が有する個々のレンズを通る光が直下の光学変換層1550a、1550b、1550cを通り、光電変換素子PDに照射されるようになる。
また、画素回路23a、23bに用いるトランジスタは、図17(A)に示すように、トランジスタ41乃至トランジスタ44にバックゲートを設けた構成であってもよい。図17(A)はバックゲートに定電位を印加する構成であり、しきい値電圧を制御することができる。
それぞれのバックゲートに接続される配線75乃至78には、個別に異なる電位を供給することができる。または、図17(B)に示すように、トランジスタ41およびトランジスタ42が有するバックゲートに接続される配線は電気的に接続されていてもよい。また、トランジスタ43およびトランジスタ44が有するバックゲートに接続される配線は電気的に接続されていてもよい。
n−ch型のトランジスタでは、バックゲートにソース電位よりも低い電位を印加すると、しきい値電圧はプラス方向にシフトする。逆に、バックゲートにソース電位よりも高い電位を印加すると、しきい値電圧はマイナス方向にシフトする。したがって、予め定められたゲート電圧で各トランジスタのオン、オフを制御する場合、バックゲートにソース電位よりも低い電位を印加すると、オフ電流を小さくすることができる。また、バックゲートにソース電位よりも高い電位を印加すると、オン電流を小さくすることができる。
画素回路23a、23bでは、ノードFDの電位保持能力が高いことが望まれるため、前述したようにトランジスタ41、42にはオフ電流の低いOSトランジスタを用いることが好ましい。トランジスタ41、42のバックゲートにソース電位よりも低い電位を印加することで、オフ電流をより小さくすることができる。したがって、ノードFDの電位保持能力を高めることができる。
また、前述したように、トランジスタ43、44にはオン電流の高いトランジスタを用いることが好ましい。トランジスタ43、44のバックゲートにソース電位よりも高い電位を印加することで、オン電流をより大きくすることができる。したがって、配線91(OUT1)に出力される読み出し電位を速やかに確定することができる、すなわち、撮像装置を高い周波数で動作させることができる。
なお、トランジスタ44は、図17(C)に示すようにフロントゲートと同じ電位がバックゲートに印加される構成であってもよい。
また、データの保持性能を向上させるため、回路24および回路25が有するトランジスタにもバックゲートを設けてもよい。
また、撮像装置の内部では、各電源電位の他、信号電位および上記バックゲートに印加する電位など、複数の電位を用いる。撮像装置の外部から複数の電位を供給すると、端子数などが増加するため、撮像装置の内部で複数の電位を生成する電源回路を有していることが好ましい。
また、画素回路23a、23bに用いるトランジスタは、図19(A)に示すように、トランジスタ43のゲートにトランジスタ42のソースまたはドレインの一方が電気的に接続される構成であってもよい。
また、画素回路23a、23bに用いるトランジスタは、図19(B)に示すように、トランジスタ43のソースまたはドレインの他方と配線73(VPI)との間にトランジスタ44を電気的に接続する構成であってもよい。
また、本発明の一態様の撮像素子10は、図20(A)に示すブロック図のように画素回路23aをマトリクス状に設置し、画素回路23aと接続される回路24および回路25を撮像素子10の第1の端部に設けた構成であってもよい。この構成では、画素の行を選択する機能を有する回路27が設けられ、回路27で選択された画素回路23aの信号が回路24または回路25に出力される。回路24または回路25に出力された信号は、前述した動作によりA/Dコンバータ26などの外部回路に出力される。
また、回路24および回路25は、図20(B)に示すように撮像素子10の第1の端部と、第1の端部に対向する第2の端部に設けてもよい。この場合、例えば第1の端部に設けた回路24および回路25は奇数段の画素回路23aの信号を読み出し、第2の端部に設けた回路24および回路25は偶数段の画素回路23aの信号を読み出す構成とすることができる。このような構成とすることで、二つの経路で外部に信号を出力することができるため、図19(A)の構成よりも高速に信号を読み出すことができる。
また、本発明の一態様の撮像素子10は、図21(A)、(B)、(C)、(D)に示す構成であってもよい。
図1(A)では、各行において信号を転送させる方向の向きを一方向として例示したが、図21(A)に示すように、行毎に信号を転送させる方向の向きを変えてもよい。このような構成とすることで、A/Dコンバータ26またはA/Dコンバータ26と接続するための端子を偏りなく配置することができる。
また、図21(B)に示すように行を二つに分割し、中央から端部に向けて信号を転送させる構成としてもよい。このような構成とすることで、A/Dコンバータ26の数を増加させることができ、高速に信号の読み出しを行うことができる。
また、図2(A)では、最終行の最後段に配置される画素を画素21として、当該画素21にA/Dコンバータ26を接続する形態を示したが、図21(C)に示すように数行毎に画素21を配置してもよい。例えば、2行毎、4行毎、8行毎など、全行数を等分割できる行数毎に画素21を配置すればよい。このような構成とすることで、A/Dコンバータ26の数を増加させることができ、高速に信号の読み出しを行うことができる。
また、前述したいずれの構成も行方向に信号を読み出す方式として説明したが、例えば、図21(D)に示すように列方向に信号を読み出してもよい。図21(D)に示す構成に限らず、前述したいずれの構成も列方向に信号を読み出す構成とすることができる。
図22(A)は、A/Dコンバータ26の一例を示すブロック図である。A/Dコンバータ26は、コンパレータ28、カウンター回路29等を有することができ、配線93(OUT3)に複数ビットのデジタルデータを出力することができる。
コンパレータ28では、端子30から端子31に入力される信号電位と、上昇または下降するように掃引される基準電位(VREF)とが比較される。そして、コンパレータ28の出力に応じてカウンター回路29が動作し、配線93(OUT3)にデジタル信号が出力される。
ここで、A/Dコンバータ26は、高速動作および省電力化のため、CMOS回路を構成できるSiトランジスタで形成することが好ましい。
撮像素子10とA/Dコンバータ26との接続は、例えば、図22(B)に示すように、端子30と端子31とをワイヤボンディング法などを用いてワイヤ32で接続すればよい。
なお、本実施の形態において、本発明の一態様について述べた。または、他の実施の形態において、本発明の一態様について述べる。ただし、本発明の一態様は、これらに限定されない。つまり、本実施の形態および他の実施の形態では、様々な発明の態様が記載されているため、本発明の一態様は、特定の態様に限定されない。例えば、本発明の一態様として、撮像装置に適用した場合の例を示したが、本発明の一態様は、これに限定されない。場合によっては、または、状況に応じて、本発明の一態様は、撮像装置に適用しなくてもよい。例えば、本発明の一態様は、別の機能を有する半導体装置に適用してもよい。例えば、本発明の一態様として、トランジスタのチャネル形成領域、ソースドレイン領域などが、酸化物半導体を有する場合の例を示したが、本発明の一態様は、これに限定されない。場合によっては、または、状況に応じて、本発明の一態様における様々なトランジスタ、トランジスタのチャネル形成領域、または、トランジスタのソースドレイン領域などは、様々な半導体を有していてもよい。場合によっては、または、状況に応じて、本発明の一態様における様々なトランジスタ、トランジスタのチャネル形成領域、または、トランジスタのソースドレイン領域などは、例えば、シリコン、ゲルマニウム、シリコンゲルマニウム、炭化シリコン、ガリウムヒ素、アルミニウムガリウムヒ素、インジウムリン、窒化ガリウム、または、有機半導体などの少なくとも一つを有していてもよい。または例えば、場合によっては、または、状況に応じて、本発明の一態様における様々なトランジスタ、トランジスタのチャネル形成領域、または、トランジスタのソースドレイン領域などは、酸化物半導体を有していなくてもよい。例えば、本発明の一態様として、グローバルシャッタ方式の場合の例を示したが、本発明の一態様は、これに限定されない。場合によっては、または、状況に応じて、本発明の一態様は、別の方式、例えば、ローリングシャッタ方式を用いてもよい。または、場合によっては、または、状況に応じて、グローバルシャッタ方式を用いなくてもよい。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態2)
本実施の形態では、本発明の一態様に用いることのできるOSトランジスタについて図面を用いて説明する。なお、本実施の形態における図面では、明瞭化のために一部の要素を拡大、縮小、または省略して図示している。
図23(A)、(B)、(C)は、本発明の一態様のトランジスタ101の上面図および断面図である。図23(A)は上面図であり、図23(A)に示す一点鎖線X1−X2方向の断面が図23(B)に相当する。また、図23(A)に示す一点鎖線Y1−Y2方向の断面が図23(C)に相当する。
なお、本実施の形態で説明する図面において、一点鎖線X1−X2方向をチャネル長方向、一点鎖線Y1−Y2方向をチャネル幅方向と呼ぶ。
トランジスタ101は、基板115と接する絶縁層120と、絶縁層120と接する導電層173と、絶縁層120と接する酸化物半導体層130と、酸化物半導体層130と電気的に接続する導電層140および導電層150と、酸化物半導体層130、導電層140および導電層150と接する絶縁層160と、絶縁層160と接する導電層170を有する。
また、トランジスタ101上には、酸化物半導体層130、導電層140、導電層150、絶縁層160および導電層170と接する絶縁層180を必要に応じて設けてもよい。
酸化物半導体層130は、一例として、酸化物半導体層130a、130b、130cの三層構造とすることができる。
導電層140および導電層150はソース電極層またはドレイン電極層、絶縁層160はゲート絶縁膜、導電層170はゲート電極層としてそれぞれ機能することができる。
また、導電層173を第2のゲート電極層(バックゲート)として用いることで、オン電流の増加や、しきい値電圧の制御を行うことができる。なお、導電層173は、遮光層としても機能させることができる。
オン電流を増加させるには、例えば、導電層170と導電層173を同電位とし、ダブルゲートトランジスタとして駆動させればよい。また、しきい値電圧の制御を行うには、導電層170とは異なる定電位を導電層173に供給すればよい。
酸化物半導体層130において、導電層140および導電層150と接する領域は、ソース領域またはドレイン領域として機能することができる。
酸化物半導体層130と導電層140および導電層150とが接することで酸化物半導体層130内に酸素欠損が生じ、当該酸素欠損と酸化物半導体層130内に残留または外部から拡散する水素との相互作用により、当該領域は導電型がn型の低抵抗領域となる。
なお、トランジスタの「ソース」や「ドレイン」の機能は、異なる極性のトランジスタを採用する場合や、回路動作において電流の方向が変化する場合などには入れ替わることがある。このため、本明細書においては、「ソース」や「ドレイン」という用語は、入れ替えて用いることができるものとする。また、「電極層」は、「配線」と言い換えることもできる。
導電層140および導電層150は、酸化物半導体層130の上面と接し、側面には接しない構成となっている。このような構成にすることにより、絶縁層120が有する酸素による酸化物半導体層130内の酸素欠損を補填しやすくなる。
本発明の一態様のトランジスタは、図24(A)、(B)、(C)に示す構成であってもよい。図24(A)はトランジスタ102の上面図であり、図24(A)に示す一点鎖線X1−X2方向の断面が図24(B)に相当する。また、図24(A)に示す一点鎖線Y1−Y2方向の断面が図24(C)に相当する。
トランジスタ102は、導電層140および導電層150が絶縁層120と接している点、および導電層140および導電層150が酸化物半導体層130の側面と接している点を除き、トランジスタ101と同様の構成を有する。
また、本発明の一態様のトランジスタは、図25(A)、(B)、(C)に示す構成であってもよい。図25(A)はトランジスタ103の上面図であり、図25(A)に示す一点鎖線X1−X2方向の断面が図25(B)に相当する。また、図25(A)に示す一点鎖線Y1−Y2方向の断面が図25(C)に相当する。
トランジスタ103は、酸化物半導体層130a、130b、導電層140および導電層150が酸化物半導体層130cおよび絶縁層160で覆われている点を除き、トランジスタ101と同様の構成を有する。
酸化物半導体層130cで酸化物半導体層130a、130bを覆うことで、酸化物半導体層130a、130bおよび絶縁層120に対する酸素の補填効果を高めることができる。また、酸化物半導体層130cが介在することにより、絶縁層180による導電層140および導電層150の酸化を抑制することができる。
また、本発明の一態様のトランジスタは、図26(A)、(B)、(C)に示す構成であってもよい。図26(A)はトランジスタ104の上面図であり、図26(A)に示す一点鎖線X1−X2方向の断面が図26(B)に相当する。また、図26(A)に示す一点鎖線Y1−Y2方向の断面が図26(C)に相当する。
トランジスタ104は、酸化物半導体層130a、130b、導電層140および導電層150が酸化物半導体層130cで覆われている点、導電層170が絶縁層210で覆われている点を除き、トランジスタ101と同様の構成を有する。
絶縁層210には、酸素に対するブロッキング性を有する材料を用いることができる。絶縁層210としては、例えば酸化アルミニウム等の金属酸化物を用いることができる。絶縁層210が介在することにより、絶縁層180による導電層170の酸化を抑制することができる。
トランジスタ101乃至104は、導電層170と導電層140および導電層150が重なる領域を有するトップゲート構造である。当該領域のチャネル長方向の幅は、寄生容量を小さくするために3nm以上300nm未満とすることが好ましい。当該構成では、酸化物半導体層130にオフセット領域が形成されないため、オン電流の高いトランジスタを形成しやすい。
本発明の一態様のトランジスタは、図27(A)、(B)、(C)に示す構成であってもよい。図27(A)はトランジスタ105の上面図であり、図27(A)に示す一点鎖線X1−X2方向の断面が図27(B)に相当する。また、図27(A)に示す一点鎖線Y1−Y2方向の断面が図27(C)に相当する。
トランジスタ105は、基板115と接する絶縁層120と、絶縁層120と接する導電層173と、絶縁層120と接する酸化物半導体層130と、酸化物半導体層130と接する絶縁層160と、絶縁層160と接する導電層170を有する。
また、層間絶縁膜として機能する絶縁層180には、酸化物半導体層130の領域231と接する導電体200と、酸化物半導体層130の領域232と接する導電体201が設けられる。導電体200および導電体201は、ソース電極層の一部またはドレイン電極層の一部として機能することができる。
トランジスタ105における領域231および領域232には、酸素欠損を形成し導電率を高めるための不純物を添加することが好ましい。酸化物半導体層に酸素欠損を形成する不純物としては、例えば、リン、砒素、アンチモン、ホウ素、アルミニウム、シリコン、窒素、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、インジウム、フッ素、塩素、チタン、亜鉛、および炭素のいずれかから選択される一つ以上を用いることができる。当該不純物の添加方法としては、プラズマ処理法、イオン注入法、イオンドーピング法、プラズマイマージョンイオンインプランテーション法などを用いることができる。
不純物元素として、上記元素が酸化物半導体層に添加されると、酸化物半導体層中の金属元素および酸素の結合が切断され、酸素欠損が形成される。酸化物半導体層に含まれる酸素欠損と酸化物半導体層中に残存または後から添加される水素の相互作用により、酸化物半導体層の導電率を高くすることができる。
不純物元素の添加により酸素欠損が形成された酸化物半導体に水素を添加すると、酸素欠損サイトに水素が入り伝導帯近傍にドナー準位が形成される。その結果、酸化物導電体を形成することができる。ここでは、導電体化された酸化物半導体を酸化物導電体という。
トランジスタ105は、導電層170と導電層140および導電層150が重なる領域を有さないセルフアライン構造である。セルフアライン構造のトランジスタはゲート電極層とソース電極層およびドレイン電極層間の寄生容量が極めて小さいため、高速動作用途に適している。
本発明の一態様のトランジスタは、図28(A)、(B)、(C)に示す構成であってもよい。図28(A)はトランジスタ106の上面図であり、図28(A)に示す一点鎖線X1−X2方向の断面が図28(B)に相当する。また、図28(A)に示す一点鎖線Y1−Y2方向の断面が図28(C)に相当する。
トランジスタ106は、基板115と、基板115上の絶縁層120と、絶縁層120と接する導電層173と、絶縁層120上の酸化物半導体層130(酸化物半導体層130a、酸化物半導体層130b、酸化物半導体層130c)と、酸化物半導体層130に接し、間隔を開けて配置された導電層140および導電層150と、酸化物半導体層130cと接する絶縁層160と、絶縁層160と接する導電層170を有する。
なお、酸化物半導体層130c、絶縁層160および導電層170は、トランジスタ106上の絶縁層180に設けられた酸化物半導体層130a、酸化物半導体層130bおよび絶縁層120に達する開口部に設けられている。
本発明の一態様のトランジスタは、図29(A)、(B)、(C)に示す構成であってもよい。図29(A)はトランジスタ107の上面図であり、図29(A)に示す一点鎖線X1−X2方向の断面が図29(B)に相当する。また、図29(A)に示す一点鎖線Y1−Y2方向の断面が図29(C)に相当する。
トランジスタ107は、酸化物半導体層130a、130b、導電層140および導電層150が酸化物半導体層130cおよび酸化物半導体層130dで覆われている点を除き、トランジスタ106と同様の構成を有する。酸化物半導体層130dは酸化物半導体層130cと同じ材料で形成することができる。
酸化物半導体層130c、130dで酸化物半導体層130a、130bを覆うことで、酸化物半導体層130a、130bおよび絶縁層120に対する酸素の補填効果を高めることができる。また、酸化物半導体層130dが介在することにより、絶縁層180による導電層140および導電層150の酸化を抑制することができる。
トランジスタ106、107の構成は、ソースまたはドレインとなる導電体とゲート電極となる導電体の重なる領域が少ないため、寄生容量を小さくすることができる。したがって、トランジスタ106、107は、高速動作を必要とする回路の要素として適している。
また、本発明の一態様のトランジスタは、図30(A)に示すように、酸化物半導体層130を単層で形成してもよい。また、図30(B)に示すように、酸化物半導体層130を2層で形成してもよい。
また、本発明の一態様のトランジスタは、図30(C)に示すように、導電層173を有さない構成であってもよい。
また、本発明の一態様のトランジスタにおいて、導電層170と導電層173を電気的に接続するには、例えば、図30(D)に示すように、絶縁層120、酸化物半導体層130cおよび絶縁層160に導電層173に達する開口部を設け、当該開口部を覆うように導電層170を形成すればよい。
また、本発明の一態様のトランジスタは、図30(E)に示すように導電層140および導電層150のそれぞれと接する絶縁層145および絶縁層155を設けてもよい。絶縁層145および絶縁層155により導電層140および導電層150の酸化を抑制することができる。
絶縁層145および絶縁層155としては、酸素に対するブロッキング性を有する材料を用いることができる。例えば、絶縁層145および絶縁層155として、酸化アルミニウム等の金属酸化物を用いることができる。
また、本発明の一態様のトランジスタは、図30(F)に示すように、導電層170を導電層171および導電層172の積層で形成してもよい。
また、酸化物半導体層130上に導電層140、150が設けられる本発明の一態様のトランジスタにおいては、図30(G)、(H)に示す上面図(酸化物半導体層130、導電層140および導電層150のみを図示)のように酸化物半導体層130の幅(WOS)よりも導電層140および導電層150の幅(WSD)が短く形成されていてもよい。WOS≧WSD(WSDはWOS以下)とすることで、ゲート電界がチャネル形成領域全体にかかりやすくなり、トランジスタの電気特性を向上させることができる。
なお、図30(A)乃至(F)では、トランジスタ101の変形例として例示したが、当該変形例は本実施の形態で説明したその他のトランジスタにも適用可能である。
本発明の一態様のトランジスタでは、いずれの構成においても、ゲート電極層である導電層170(および導電層173)が絶縁層を介して酸化物半導体層130のチャネル幅方向を電気的に取り囲む構成である。このような構成ではオン電流を高めることができ、surrounded channel(s−channel)構造とよぶ。
酸化物半導体層130aおよび酸化物半導体層130bを有するトランジスタ、ならびに酸化物半導体層130a、酸化物半導体層130bおよび酸化物半導体層130cを有するトランジスタにおいては、酸化物半導体層130を構成する二層または三層の材料を適切に選択することで酸化物半導体層130bに電流を流すことができる。酸化物半導体層130bに電流が流れることで、界面散乱の影響を受けにくく、高いオン電流を得ることができる。
以上の構成のトランジスタを用いることにより、半導体装置に良好な電気特性を付与することができる。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態3)
本実施の形態では、実施の形態2に示したトランジスタの構成要素について詳細を説明する。
基板115には、ガラス基板、石英基板、半導体基板、セラミックス基板、表面が絶縁処理された金属基板などを用いることができる。または、トランジスタやフォトダイオードが形成されたシリコン基板、および当該シリコン基板上に絶縁層、配線、コンタクトプラグとして機能を有する導電体等が形成されたものを用いることができる。なお、シリコン基板にp−ch型のトランジスタを形成する場合は、n型の導電型を有するシリコン基板を用いることが好ましい。または、n型またはi型のシリコン層を有するSOI基板であってもよい。また、シリコン基板に設けるトランジスタがp−ch型である場合は、トランジスタを形成する面の面方位は、(110)面であるシリコン基板を用いることが好ましい。(110)面にp−ch型トランジスタを形成することで、移動度を高くすることができる。
絶縁層120は、基板115に含まれる要素からの不純物の拡散を防止する役割を有するほか、酸化物半導体層130に酸素を供給する役割を担うことができる。したがって、絶縁層120は酸素を含む絶縁膜であることが好ましく、化学量論組成よりも多い酸素を含む絶縁膜であることがより好ましい。例えば、膜の表面温度が100℃以上700℃以下、好ましくは100℃以上500℃以下の加熱処理で行われるTDS法にて、酸素原子に換算した酸素の放出量が1.0×1019atoms/cm以上である膜とする。また、基板115が他のデバイスが形成された基板である場合、絶縁層120は、層間絶縁膜としての機能も有する。その場合は、表面が平坦になるようにCMP法等で平坦化処理を行うことが好ましい。
バックゲート電極層として作用する導電層173には、例えば、Al、Ti、Cr、Co、Ni、Cu、Y、Zr、Mo、Ru、Ag、Mn、Nd、Sc、TaおよびWなどの導電膜を用いることができる。また、上記材料の合金や上記材料の導電性窒化物を用いてもよい。また、上記材料、上記材料の合金、および上記材料の導電性窒化物から選ばれた複数の材料の積層であってもよい。
例えば、絶縁層120には、酸化アルミニウム、酸化マグネシウム、酸化シリコン、酸化窒化シリコン、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウムおよび酸化タンタルなどの酸化物絶縁膜、窒化シリコン、窒化酸化シリコン、窒化アルミニウム、窒化酸化アルミニウムなどの窒化物絶縁膜、またはこれらの混合材料を用いることができる。また、上記材料の積層であってもよい。
酸化物半導体層130は、酸化物半導体層130a、酸化物半導体層130bおよび酸化物半導体層130cを絶縁層120側から順に積んだ三層構造とすることができる。
なお、酸化物半導体層130が単層の場合は、本実施の形態に示す、酸化物半導体層130bに相当する層を用いればよい。
酸化物半導体層130が二層の場合は、酸化物半導体層130aに相当する層および酸化物半導体層130bに相当する層を絶縁層120側から順に積んだ積層を用いればよい。この構成の場合、酸化物半導体層130aと酸化物半導体層130bとを入れ替えることもできる。
一例としては、酸化物半導体層130bには、酸化物半導体層130aおよび酸化物半導体層130cよりも電子親和力(真空準位から伝導帯下端までのエネルギー)が大きい酸化物半導体を用いる。
このような構造において、導電層170に電圧を印加すると、酸化物半導体層130のうち、伝導帯下端のエネルギーが最も小さい酸化物半導体層130bにチャネルが形成される。したがって、酸化物半導体層130bは半導体として機能する領域を有するといえるが、酸化物半導体層130aおよび酸化物半導体層130cは絶縁体または半絶縁体として機能する領域を有するともいえる。
酸化物半導体層130a、酸化物半導体層130b、および酸化物半導体層130cとして用いることのできる酸化物半導体は、少なくともInもしくはZnを含むことが好ましい。または、InとZnの双方を含むことが好ましい。また、該酸化物半導体を用いたトランジスタの電気特性のばらつきを減らすため、それらと共に、Al、Ga、Y、またはSn等のスタビライザーを含むことが好ましい。
例えば、酸化物半導体層130aおよび酸化物半導体層130cにはIn:Ga:Zn=1:3:2、1:3:3、1:3:4、1:3:6、1:4:5、1:6:4または1:9:6(原子数比)、およびその近傍の原子数比を有するIn−Ga−Zn酸化物などを用いることができる。また、酸化物半導体層130bにはIn:Ga:Zn=1:1:1、2:1:3、5:5:6、3:1:2、3:1:4、5:1:6、または4:2:3(原子数比)およびその近傍の原子数比を有するIn−Ga−Zn酸化物などを用いることができる。
酸化物半導体層130a、酸化物半導体層130bおよび酸化物半導体層130cには、結晶部が含まれていてもよい。例えばc軸に配向した結晶を用いることでトランジスタに安定した電気特性を付与することができる。また、c軸に配向した結晶は歪曲に強く、フレキシブル基板を用いた半導体装置の信頼性を向上させることができる。
ソース電極として作用する導電層140およびドレイン電極として作用する導電層150には、例えば、Al、Cr、Cu、Ta、Ti、Mo、W、Ni、Mn、Nd、Sc、および当該金属材料の合金または導電性窒化物から選ばれた材料の単層、あるいは積層を用いることができる。なお、導電性窒化物である窒化タンタルを用いることで酸化を防止することができる。また、低抵抗のCuやCu−Mnなどの合金と上記材料との積層を用いてもよい。
上記材料は酸化物半導体層から酸素を引き抜く性質を有する。そのため、上記材料と接した酸化物半導体層の一部の領域では酸化物半導体層中の酸素が脱離し、酸素欠損が形成される。層中に僅かに含まれる水素と当該酸素欠損が結合することにより当該領域はn型化しやすい。したがって、n型化した当該領域はトランジスタのソースまたはドレインとして作用させることができる。
ゲート絶縁膜として作用する絶縁層160には、酸化アルミニウム、酸化マグネシウム、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウムおよび酸化タンタルを一種以上含む絶縁膜を用いることができる。また、絶縁層160は上記材料の積層であってもよい。
また、酸化物半導体層130と接する絶縁層120および絶縁層160は、窒素酸化物の放出量の少ない膜を用いることが好ましい。窒素酸化物の放出量の多い絶縁層と酸化物半導体が接した場合、窒素酸化物に起因する準位密度が高くなることがある。
絶縁層120および絶縁層160として、上記絶縁膜を用いることで、トランジスタのしきい値電圧のシフトを低減することが可能であり、トランジスタの電気特性の変動を低減することができる。
ゲート電極層として作用する導電層170には、例えば、Al、Ti、Cr、Co、Ni、Cu、Y、Zr、Mo、Ru、Ag、Mn、Nd、Sc、TaおよびWなどの導電膜を用いることができる。また、上記材料の合金や上記材料の導電性窒化物を用いてもよい。また、上記材料、上記材料の合金、および上記材料の導電性窒化物から選ばれた複数の材料の積層であってもよい。代表的には、タングステン、タングステンと窒化チタンの積層、タングステンと窒化タンタルの積層などを用いることができる。また、低抵抗のCuまたはCu−Mnなどの合金や上記材料とCuまたはCu−Mnなどの合金との積層を用いてもよい。例えば、導電層171に窒化チタン、導電層172にタングステンを用いて導電層170を形成することができる。
また、導電層170にはIn−Ga−Zn酸化物、酸化亜鉛、酸化インジウム、酸化スズ、酸化インジウムスズなどの酸化物導電層を用いてもよい。絶縁層160と接するように酸化物導電層を設けることで、当該酸化物導電層から酸化物半導体層130に酸素を供給することができる。
絶縁層180には、酸化マグネシウム、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウムおよび酸化タンタルを一種以上含む絶縁膜を用いることができる。また、当該絶縁層は上記材料の積層であってもよい。
ここで、絶縁層180は絶縁層120と同様に化学量論組成よりも多くの酸素を有することが好ましい。絶縁層180から放出される酸素は絶縁層160を経由して酸化物半導体層130のチャネル形成領域に拡散させることができることから、チャネル形成領域に形成された酸素欠損に酸素を補填することができる。したがって、安定したトランジスタの電気特性を得ることができる。
また、トランジスタ上または絶縁層180上には、不純物をブロッキングする効果を有する膜を設けることが好ましい。当該ブロッキング膜には窒化シリコン膜、窒化アルミニウム膜または酸化アルミニウム膜などを用いることができる。
窒化絶縁膜は水分などをブロッキングする機能を有し、トランジスタの信頼性を向上させることができる。また、酸化アルミニウム膜は、水素、水分などの不純物、および酸素の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミニウム膜は、トランジスタの作製工程中および作製後において、水素、水分などの不純物の酸化物半導体層130への混入防止、酸素の酸化物半導体層からの放出防止、絶縁層120からの酸素の不必要な放出防止の効果を有する保護膜として用いることに適している。
半導体装置を高集積化するにはトランジスタの微細化が必須である。一方、トランジスタの微細化によりトランジスタの電気特性は悪化する傾向にあり、例えばチャネル幅を縮小させるとオン電流は低下してしまう。
本発明の一態様のトランジスタでは、チャネルが形成される酸化物半導体層130bを酸化物半導体層130cで覆う構成とすることができる。当該構成では、チャネル形成層とゲート絶縁膜が接しないため、チャネル形成層とゲート絶縁膜との界面で生じるキャリアの散乱を抑えることができ、トランジスタのオン電流を大きくすることができる。
本発明の一態様のトランジスタでは、前述したように酸化物半導体層130のチャネル幅方向を電気的に取り囲むようにゲート電極層(導電層170)が形成されているため、酸化物半導体層130に対しては上面に垂直な方向からのゲート電界に加えて、側面に垂直な方向からのゲート電界が印加される。すなわち、チャネル形成層に対して全体的にゲート電界が印加されることになり実効チャネル幅が拡大するため、さらにオン電流を高められる。
本実施の形態で説明した金属膜、半導体膜、無機絶縁膜など様々な膜は、代表的にはスパッタ法やプラズマCVD法により形成することができるが、他の方法、例えば、熱CVD法により形成してもよい。熱CVD法の例としては、MOCVD(Metal Organic Chemical Vapor Deposition)法やALD(Atomic Layer Deposition)法などがある。
熱CVD法は、プラズマを使わない成膜方法のため、プラズマダメージにより欠陥が生成されることが無いという利点を有する。
また、熱CVD法では、原料ガスと酸化剤を同時にチャンバー内に送り、チャンバー内を大気圧または減圧下とし、基板近傍または基板上で反応させて基板上に堆積させることで成膜を行ってもよい。
ALD法は、チャンバー内を大気圧または減圧下とし、反応のための原料ガスをチャンバーに導入・反応させ、これを繰り返すことで成膜を行う。原料ガスと一緒に不活性ガス(アルゴン、或いは窒素など)をキャリアガスとして導入しても良い。例えば2種類以上の原料ガスを順番にチャンバーに供給してもよい。その際、複数種の原料ガスが混ざらないように第1の原料ガスの反応後、不活性ガスを導入し、第2の原料ガスを導入する。あるいは、不活性ガスを導入する代わりに真空排気によって第1の原料ガスを排出した後、第2の原料ガスを導入してもよい。第1の原料ガスが基板の表面に吸着・反応して第1の層を成膜し、後から導入される第2の原料ガスが吸着・反応して、第2の層が第1の層上に積層されて薄膜が形成される。このガス導入順序を制御しつつ所望の厚さになるまで複数回繰り返すことで、段差被覆性に優れた薄膜を形成することができる。薄膜の厚さは、ガス導入の繰り返す回数によって調節することができるため、精密な膜厚調節が可能であり、微細なFETを作製する場合に適している。
また、酸化物半導体層の成膜には、対向ターゲット式スパッタ装置を用いることもできる。当該対向ターゲット式スパッタ装置を用いた成膜法を、VDSP(vapor deposition SP)と呼ぶこともできる。
対向ターゲット式スパッタ装置を用いて酸化物半導体層を成膜することによって、酸化物半導体層の成膜時におけるプラズマ損傷を低減することができる。そのため、膜中の酸素欠損を低減することができる。また、対向ターゲット式スパッタ装置を用いることで低圧での成膜が可能となるため、成膜された酸化物半導体層中の不純物濃度(例えば水素、希ガス(アルゴンなど)、水など)を低減させることができる。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態4)
本実施の形態では、本発明の一態様に用いることのできる酸化物半導体の材料について説明する。
酸化物半導体は、少なくともインジウムまたは亜鉛を含むことが好ましい。特にインジウムおよび亜鉛を含むことが好ましい。また、それらに加えて、元素Mとしてアルミニウム、ガリウム、イットリウムまたはスズなどが含まれていることが好ましい。また、元素Mとしては、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれていてもよい。
ここで、酸化物半導体が、インジウム、元素Mおよび亜鉛を有する場合を考える。
まず、図31(A)、図31(B)、および図31(C)を用いて、本発明に係る酸化物半導体が有するインジウム、元素Mおよび亜鉛の原子数比の好ましい範囲について説明する。なお、酸素の原子数比については記載しない。また、酸化物半導体が有するインジウム、元素M、および亜鉛の原子数比のそれぞれの項を[In]、[M]、および[Zn]とする。
図31(A)、図31(B)、および図31(C)において、破線は、[In]:[M]:[Zn]=(1+α):(1−α):1の原子数比(−1≦α≦1)となるライン、[In]:[M]:[Zn]=(1+α):(1−α):2の原子数比となるライン、[In]:[M]:[Zn]=(1+α):(1−α):3の原子数比となるライン、[In]:[M]:[Zn]=(1+α):(1−α):4の原子数比となるライン、および[In]:[M]:[Zn]=(1+α):(1−α):5の原子数比となるラインを表す。
また、一点鎖線は、[In]:[M]:[Zn]=1:1:βの原子数比(β≧0)となるライン、[In]:[M]:[Zn]=1:2:βの原子数比となるライン、[In]:[M]:[Zn]=1:3:βの原子数比となるライン、[In]:[M]:[Zn]=1:4:βの原子数比となるライン、[In]:[M]:[Zn]=2:1:βの原子数比となるライン、および[In]:[M]:[Zn]=5:1:βの原子数比となるラインを表す。
また、図31に示す、[In]:[M]:[Zn]=0:2:1の原子数比またはその近傍値の酸化物半導体は、スピネル型の結晶構造をとりやすい。
図31(A)および図31(B)では、本発明の一態様の酸化物半導体が有する、インジウム、元素M、および亜鉛の原子数比の好ましい範囲の一例について示している。
一例として、図32に、[In]:[M]:[Zn]=1:1:1である、InMZnOの結晶構造を示す。また、図32は、b軸に平行な方向から観察した場合のInMZnOの結晶構造である。なお、図32に示す元素M、Zn、酸素を有する層(以下、(M,Zn)層)における金属元素は、元素Mまたは亜鉛を表している。この場合、元素Mと亜鉛の割合が等しいものとする。元素Mと亜鉛とは、置換が可能であり、配列は不規則である。
InMZnOは、層状の結晶構造(層状構造ともいう)をとり、図32に示すように、インジウム、および酸素を有する層(以下、In層)が1に対し、元素M、亜鉛、および酸素を有する(M,Zn)層が2となる。
また、インジウムと元素Mは、互いに置換可能である。そのため、(M,Zn)層の元素Mがインジウムと置換し、(In,M,Zn)層と表すこともできる。その場合、In層が1に対し、(In,M,Zn)層が2である層状構造をとる。
[In]:[M]:[Zn]=1:1:2となる原子数比の酸化物半導体は、In層が1に対し、(M,Zn)層が3である層状構造をとる。つまり、[In]および[M]に対し[Zn]が大きくなると、酸化物半導体が結晶化した場合、In層に対する(M,Zn)層の割合が増加する。
ただし、酸化物半導体中において、In層が1層に対し、(M,Zn)層の層数が非整数である場合、In層が1層に対し、(M,Zn)層の層数が整数である層状構造を複数種有する場合がある。例えば、[In]:[M]:[Zn]=1:1:1.5である場合、In層が1層に対し、(M,Zn)層の層数が2である層状構造と、(M,Zn)層の層数が3である層状構造とが混在する層状構造となる場合がある。
例えば、酸化物半導体をスパッタ装置にて成膜する場合、ターゲットの原子数比からずれた原子数比の膜が形成される。特に、成膜時の基板温度によっては、ターゲットの[Zn]よりも、膜の[Zn]が小さくなる場合がある。
また、酸化物半導体中に複数の相が共存する場合がある(二相共存、三相共存など)。例えば、[In]:[M]:[Zn]=0:2:1の原子数比の近傍値である原子数比では、スピネル型の結晶構造と層状の結晶構造との二相が共存しやすい。また、[In]:[M]:[Zn]=1:0:0を示す原子数比の近傍値である原子数比では、ビックスバイト型の結晶構造と層状の結晶構造との二相が共存しやすい。酸化物半導体中に複数の相が共存する場合、異なる結晶構造の間において、粒界(グレインバウンダリーともいう)が形成される場合がある。
また、インジウムの含有率を高くすることで、酸化物半導体のキャリア移動度(電子移動度)を高くすることができる。これは、インジウム、元素Mおよび亜鉛を有する酸化物半導体では、主として重金属のs軌道がキャリア伝導に寄与しており、インジウムの含有率を高くすることにより、s軌道が重なる領域がより大きくなるため、インジウムの含有率が高い酸化物半導体はインジウムの含有率が低い酸化物半導体と比較してキャリア移動度が高くなるためである。
一方、酸化物半導体中のインジウムおよび亜鉛の含有率が低くなると、キャリア移動度が低くなる。したがって、[In]:[M]:[Zn]=0:1:0を示す原子数比、およびその近傍値である原子数比(例えば図31(C)に示す領域C)では、絶縁性が高くなる。
したがって、本発明の一態様の酸化物半導体は、キャリア移動度が高く、かつ、粒界が少ない層状構造となりやすい、図31(A)の領域Aで示される原子数比を有することが好ましい。
また、図31(B)に示す領域Bは、[In]:[M]:[Zn]=4:2:3から4.1、およびその近傍値を示している。近傍値には、例えば、原子数比が[In]:[M]:[Zn]=5:3:4が含まれる。領域Bで示される原子数比を有する酸化物半導体は、特に、結晶性が高く、キャリア移動度も高い優れた酸化物半導体である。
なお、酸化物半導体が、層状構造を形成する条件は、原子数比によって一義的に定まらない。原子数比により、層状構造を形成するための難易の差はある。一方、同じ原子数比であっても、形成条件により、層状構造になる場合も層状構造にならない場合もある。したがって、図示する領域は、酸化物半導体が層状構造を有する原子数比を示す領域であり、領域A乃至領域Cの境界は厳密ではない。
続いて、上記酸化物半導体をトランジスタに用いる場合について説明する。
なお、上記酸化物半導体をトランジスタに用いることで、粒界におけるキャリア散乱等を減少させることができるため、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。
また、トランジスタには、キャリア密度の低い酸化物半導体を用いることが好ましい。例えば、酸化物半導体は、キャリア密度が8×1011/cm未満、好ましくは1×1011/cm未満、さらに好ましくは1×1010/cm未満であり、1×10−9/cm以上とすればよい。
なお、高純度真性または実質的に高純度真性である酸化物半導体は、キャリア発生源が少ないため、キャリア密度を低くすることができる。また、高純度真性または実質的に高純度真性である酸化物半導体は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。
また、酸化物半導体のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物半導体にチャネル領域が形成されるトランジスタは、電気特性が不安定となる場合がある。
したがって、トランジスタの電気特性を安定にするためには、酸化物半導体中の不純物濃度を低減することが有効である。また、酸化物半導体中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
ここで、酸化物半導体中における各不純物の影響について説明する。
酸化物半導体において、第14族元素の一つであるシリコンや炭素が含まれると、酸化物半導体において欠陥準位が形成される。このため、酸化物半導体または酸化物半導体と接する層との界面近傍においては、シリコンや炭素の濃度(二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる濃度)が、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下となる領域を有するように制御する。
また、酸化物半導体にアルカリ金属またはアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。したがって、アルカリ金属またはアルカリ土類金属が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中のアルカリ金属またはアルカリ土類金属の濃度を低減することが好ましい。具体的には、酸化物半導体中のアルカリ金属またはアルカリ土類金属の濃度(SIMS分析により得られる濃度)が、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下となる領域を有するように制御する。
また、酸化物半導体において、窒素が含まれると、キャリアである電子が生じ、キャリア密度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を半導体に用いたトランジスタはノーマリーオン特性となりやすい。したがって、該酸化物半導体において、窒素はできる限り低減されていることが好ましい。具体的には、酸化物半導体中の窒素濃度(SIMS分析により得られる濃度)が、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下となる領域を有するように制御する。
また、酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。したがって、水素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中の水素はできる限り低減されていることが好ましい。具体的には、酸化物半導体中の水素濃度(SIMS分析により得られる濃度)が、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満となる領域を有するように制御する。
不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。また、上述のように高純度化された酸化物半導体をチャネル形成領域に用いたトランジスタのオフ電流は極めて小さい。例えば、ソースとドレインとの間の電圧を0.1V、5V、または、10V程度とした場合に、トランジスタのチャネル幅あたりのオフ電流を数yA/μm乃至数zA/μmにまで低減することが可能となる。
続いて、該酸化物半導体を2層構造、または3層構造とした場合について述べる。酸化物半導体S1、酸化物半導体S2、および酸化物半導体S3の積層構造並びに積層構造に接する絶縁体のバンド図と、酸化物半導体S2および酸化物半導体S3の積層構造並びに積層構造に接する絶縁体のバンド図と、について、図33を用いて説明する。なお、酸化物半導体S1は酸化物半導体層130a、酸化物半導体S2は酸化物半導体層130b、酸化物半導体S3は酸化物半導体層130cに相当する。
図33(A)は、絶縁体I1、酸化物半導体S1、酸化物半導体S2、酸化物半導体S3、および絶縁体I2を有する積層構造の膜厚方向のバンド図の一例である。また、図33(B)は、絶縁体I1、酸化物半導体S2、酸化物半導体S3、および絶縁体I2を有する積層構造の膜厚方向のバンド図の一例である。なお、バンド図は、理解を容易にするため絶縁体I1、酸化物半導体S1、酸化物半導体S2、酸化物半導体S3、および絶縁体I2の伝導帯下端のエネルギー準位(Ec)を示す。
酸化物半導体S1、酸化物半導体S3は、酸化物半導体S2よりも伝導帯下端のエネルギー準位が真空準位に近く、代表的には、酸化物半導体S2の伝導帯下端のエネルギー準位と、酸化物半導体S1、酸化物半導体S3の伝導帯下端のエネルギー準位との差が、0.15eV以上、または0.5eV以上、かつ2eV以下、または1eV以下であることが好ましい。すなわち、酸化物半導体S1、酸化物半導体S3の電子親和力よりも、酸化物半導体S2の電子親和力が大きく、酸化物半導体S1、酸化物半導体S3の電子親和力と、酸化物半導体S2の電子親和力との差が、0.15eV以上、または0.5eV以上、かつ2eV以下、または1eV以下であることが好ましい。
図33(A)、および図33(B)に示すように、酸化物半導体S1、酸化物半導体S2、酸化物半導体S3において、伝導帯下端のエネルギー準位はなだらかに変化する。換言すると、連続的に変化または連続接合するともいうことができる。このようなバンド図を有するためには、酸化物半導体S1と酸化物半導体S2との界面、または酸化物半導体S2と酸化物半導体S3との界面において形成される混合層の欠陥準位密度を低くするとよい。
具体的には、酸化物半導体S1と酸化物半導体S2、酸化物半導体S2と酸化物半導体S3が、酸素以外に共通の元素を有する(主成分とする)ことで、欠陥準位密度が低い混合層を形成することができる。例えば、酸化物半導体S2がIn−Ga−Zn酸化物半導体の場合、酸化物半導体S1、酸化物半導体S3として、In−Ga−Zn酸化物半導体、Ga−Zn酸化物半導体、酸化ガリウムなどを用いるとよい。
このとき、キャリアの主たる経路は酸化物半導体S2となる。酸化物半導体S1と酸化物半導体S2との界面、および酸化物半導体S2と酸化物半導体S3との界面における欠陥準位密度を低くすることができるため、界面散乱によるキャリア伝導への影響が小さく、高いオン電流が得られる。
トラップ準位に電子が捕獲されることで、捕獲された電子は固定電荷のように振る舞うため、トランジスタのしきい値電圧はプラス方向にシフトしてしまう。酸化物半導体S1、酸化物半導体S3を設けることにより、トラップ準位を酸化物半導体S2より遠ざけることができる。当該構成とすることで、トランジスタのしきい値電圧がプラス方向にシフトすることを防止することができる。
酸化物半導体S1、酸化物半導体S3は、酸化物半導体S2と比較して、導電率が十分に低い材料を用いる。このとき、酸化物半導体S2、酸化物半導体S2と酸化物半導体S1との界面、および酸化物半導体S2と酸化物半導体S3との界面が、主にチャネル領域として機能する。例えば、酸化物半導体S1、酸化物半導体S3には、図31(C)において、絶縁性が高くなる領域Cで示す原子数比の酸化物半導体を用いればよい。
特に、酸化物半導体S2に領域Aで示される原子数比の酸化物半導体を用いる場合、酸化物半導体S1および酸化物半導体S3には、[M]/[In]が1以上、好ましくは2以上となる原子数比の酸化物半導体を用いることが好ましい。また、酸化物半導体S3として、十分に高い絶縁性を得ることができる[M]/([Zn]+[In])が1以上となるような原子数比の酸化物半導体を用いることが好適である。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態5)
以下では、本発明の一態様に用いることのできる酸化物半導体の構造について説明する。
なお、本明細書において、「平行」とは、二つの直線が−10°以上10°以下の角度で配置されている状態をいう。したがって、−5°以上5°以下の場合も含まれる。また、「垂直」とは、二つの直線が80°以上100°以下の角度で配置されている状態をいう。したがって、85°以上95°以下の場合も含まれる。
また、本明細書において、結晶が三方晶または菱面体晶である場合、六方晶系として表す。
<酸化物半導体の構造>
以下では、酸化物半導体の構造について説明する。
酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、CAAC−OS(c−axis−aligned crystalline oxide semiconductor)、多結晶酸化物半導体、nc−OS(nanocrystalline oxide semiconductor)、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)および非晶質酸化物半導体などがある。
また別の観点では、酸化物半導体は、非晶質酸化物半導体と、それ以外の結晶性酸化物半導体と、に分けられる。結晶性酸化物半導体としては、単結晶酸化物半導体、CAAC−OS、多結晶酸化物半導体およびnc−OSなどがある。
非晶質構造は、一般に、等方的であって不均質構造を持たない、準安定状態で原子の配置が固定化していない、結合角度が柔軟である、短距離秩序は有するが長距離秩序を有さない、などといわれている。
逆の見方をすると、安定な酸化物半導体を完全な非晶質(completely amorphous)酸化物半導体とは呼べない。また、等方的でない(例えば、微小な領域において周期構造を有する)酸化物半導体を、完全な非晶質酸化物半導体とは呼べない。一方、a−like OSは、等方的でないが、鬆(ボイドともいう。)を有する不安定な構造である。不安定であるという点では、a−like OSは、物性的に非晶質酸化物半導体に近い。
<CAAC−OS>
まずは、CAAC−OSについて説明する。
CAAC−OSは、c軸配向した複数の結晶部(ペレットともいう。)を有する酸化物半導体の一種である。
CAAC−OSをX線回折(XRD:X−Ray Diffraction)によって解析した場合について説明する。例えば、空間群R−3mに分類されるInGaZnOの結晶を有するCAAC−OSに対し、out−of−plane法による構造解析を行うと、図34(A)に示すように回折角(2θ)が31°近傍にピークが現れる。このピークは、InGaZnOの結晶の(009)面に帰属されることから、CAAC−OSでは、結晶がc軸配向性を有し、c軸がCAAC−OSの膜を形成する面(被形成面ともいう。)、または上面に略垂直な方向を向いていることが確認できる。なお、2θが31°近傍のピークの他に、2θが36°近傍にもピークが現れる場合がある。2θが36°近傍のピークは、空間群Fd−3mに分類される結晶構造に起因する。そのため、CAAC−OSは、該ピークを示さないことが好ましい。
一方、CAAC−OSに対し、被形成面に平行な方向からX線を入射させるin−plane法による構造解析を行うと、2θが56°近傍にピークが現れる。このピークは、InGaZnOの結晶の(110)面に帰属される。そして、2θを56°近傍に固定し、試料面の法線ベクトルを軸(φ軸)として試料を回転させながら分析(φスキャン)を行っても、図34(B)に示すように明瞭なピークは現れない。一方、単結晶InGaZnOに対し、2θを56°近傍に固定してφスキャンした場合、図34(C)に示すように(110)面と等価な結晶面に帰属されるピークが6本観察される。したがって、XRDを用いた構造解析から、CAAC−OSは、a軸およびb軸の配向が不規則であることが確認できる。
次に、電子回折によって解析したCAAC−OSについて説明する。例えば、InGaZnOの結晶を有するCAAC−OSに対し、CAAC−OSの被形成面に平行にプローブ径が300nmの電子線を入射させると、図34(D)に示すような回折パターン(制限視野電子回折パターンともいう。)が現れる場合がある。この回折パターンには、InGaZnOの結晶の(009)面に起因するスポットが含まれる。したがって、電子回折によっても、CAAC−OSに含まれるペレットがc軸配向性を有し、c軸が被形成面または上面に略垂直な方向を向いていることがわかる。一方、同じ試料に対し、試料面に垂直にプローブ径が300nmの電子線を入射させたときの回折パターンを図34(E)に示す。図34(E)より、リング状の回折パターンが確認される。したがって、プローブ径が300nmの電子線を用いた電子回折によっても、CAAC−OSに含まれるペレットのa軸およびb軸は配向性を有さないことがわかる。なお、図34(E)における第1リングは、InGaZnOの結晶の(010)面および(100)面などに起因すると考えられる。また、図34(E)における第2リングは(110)面などに起因すると考えられる。
また、透過型電子顕微鏡(TEM:Transmission Electron Microscope)によって、CAAC−OSの明視野像と回折パターンとの複合解析像(高分解能TEM像ともいう。)を観察すると、複数のペレットを確認することができる。一方、高分解能TEM像であってもペレット同士の境界、即ち結晶粒界(グレインバウンダリーともいう。)を明確に確認することができない場合がある。そのため、CAAC−OSは、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。
図35(A)に、試料面と略平行な方向から観察したCAAC−OSの断面の高分解能TEM像を示す。高分解能TEM像の観察には、球面収差補正(Spherical Aberration Corrector)機能を用いた。球面収差補正機能を用いた高分解能TEM像を、特にCs補正高分解能TEM像と呼ぶ。Cs補正高分解能TEM像は、例えば、日本電子株式会社製原子分解能分析電子顕微鏡JEM−ARM200Fなどによって観察することができる。
図35(A)より、金属原子が層状に配列している領域であるペレットを確認することができる。ペレット一つの大きさは1nm以上のものや、3nm以上のものがあることがわかる。したがって、ペレットを、ナノ結晶(nc:nanocrystal)と呼ぶこともできる。また、CAAC−OSを、CANC(C−Axis Aligned nanocrystals)を有する酸化物半導体と呼ぶこともできる。ペレットは、CAAC−OSの被形成面または上面の凹凸を反映しており、CAAC−OSの被形成面または上面と平行となる。
また、図35(B)および図35(C)に、試料面と略垂直な方向から観察したCAAC−OSの平面のCs補正高分解能TEM像を示す。図35(D)および図35(E)は、それぞれ図35(B)および図35(C)を画像処理した像である。以下では、画像処理の方法について説明する。まず、図35(B)を高速フーリエ変換(FFT:Fast Fourier Transform)処理することでFFT像を取得する。次に、取得したFFT像において原点を基準に、2.8nm−1から5.0nm−1の間の範囲を残すマスク処理する。次に、マスク処理したFFT像を、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理することで画像処理した像を取得する。こうして取得した像をFFTフィルタリング像と呼ぶ。FFTフィルタリング像は、Cs補正高分解能TEM像から周期成分を抜き出した像であり、格子配列を示している。
図35(D)では、格子配列の乱れた箇所を破線で示している。破線で囲まれた領域が、一つのペレットである。そして、破線で示した箇所がペレットとペレットとの連結部である。破線は、六角形状であるため、ペレットが六角形状であることがわかる。なお、ペレットの形状は、正六角形状とは限らず、非正六角形状である場合が多い。
図35(E)では、格子配列の揃った領域と、別の格子配列の揃った領域と、の間を点線で示している。点線近傍においても、明確な結晶粒界を確認することはできない。点線近傍の格子点を中心に周囲の格子点を繋ぐと、歪んだ六角形や、五角形または/および七角形などが形成できる。即ち、格子配列を歪ませることによって結晶粒界の形成を抑制していることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないことや、金属元素が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためと考えられる。
以上に示すように、CAAC−OSは、c軸配向性を有し、かつa−b面方向において複数のペレット(ナノ結晶)が連結し、歪みを有した結晶構造となっている。よって、CAAC−OSを、CAA crystal(c−axis−aligned a−b−plane−anchored crystal)を有する酸化物半導体と称することもできる。
CAAC−OSは結晶性の高い酸化物半導体である。酸化物半導体の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、逆の見方をするとCAAC−OSは不純物や欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。
なお、不純物は、酸化物半導体の主成分以外の元素で、水素、炭素、シリコン、遷移金属元素などがある。例えば、シリコンなどの、酸化物半導体を構成する金属元素よりも酸素との結合力の強い元素は、酸化物半導体から酸素を奪うことで酸化物半導体の原子配列を乱し、結晶性を低下させる要因となる。また、鉄やニッケルなどの重金属、アルゴン、二酸化炭素などは、原子半径(または分子半径)が大きいため、酸化物半導体の原子配列を乱し、結晶性を低下させる要因となる。
<nc−OS>
次に、nc−OSについて説明する。
nc−OSをXRDによって解析した場合について説明する。例えば、nc−OSに対し、out−of−plane法による構造解析を行うと、配向性を示すピークが現れない。即ち、nc−OSの結晶は配向性を有さない。
また、例えば、InGaZnOの結晶を有するnc−OSを薄片化し、厚さが34nmの領域に対し、被形成面に平行にプローブ径が50nmの電子線を入射させると、図36(A)に示すようなリング状の回折パターン(ナノビーム電子回折パターン)が観測される。また、同じ試料にプローブ径が1nmの電子線を入射させたときの回折パターン(ナノビーム電子回折パターン)を図36(B)に示す。図36(B)より、リング状の領域内に複数のスポットが観測される。したがって、nc−OSは、プローブ径が50nmの電子線を入射させることでは秩序性が確認されないが、プローブ径が1nmの電子線を入射させることでは秩序性が確認される。
また、厚さが10nm未満の領域に対し、プローブ径が1nmの電子線を入射させると、図36(C)に示すように、スポットが略正六角状に配置された電子回折パターンを観測される場合がある。したがって、厚さが10nm未満の範囲において、nc−OSが秩序性の高い領域、即ち結晶を有することがわかる。なお、結晶が様々な方向を向いているため、規則的な電子回折パターンが観測されない領域もある。
図36(D)に、被形成面と略平行な方向から観察したnc−OSの断面のCs補正高分解能TEM像を示す。nc−OSは、高分解能TEM像において、補助線で示す箇所などのように結晶部を確認することのできる領域と、明確な結晶部を確認することのできない領域と、を有する。nc−OSに含まれる結晶部は、1nm以上10nm以下の大きさであり、特に1nm以上3nm以下の大きさであることが多い。なお、結晶部の大きさが10nmより大きく100nm以下である酸化物半導体を微結晶酸化物半導体(micro crystalline oxide semiconductor)と呼ぶことがある。nc−OSは、例えば、高分解能TEM像では、結晶粒界を明確に確認できない場合がある。なお、ナノ結晶は、CAAC−OSにおけるペレットと起源を同じくする可能性がある。そのため、以下ではnc−OSの結晶部をペレットと呼ぶ場合がある。
このように、nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。また、nc−OSは、異なるペレット間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OSは、分析方法によっては、a−like OSや非晶質酸化物半導体と区別が付かない場合がある。
なお、ペレット(ナノ結晶)間で結晶方位が規則性を有さないことから、nc−OSを、RANC(Random Aligned nanocrystals)を有する酸化物半導体、またはNANC(Non−Aligned nanocrystals)を有する酸化物半導体と呼ぶこともできる。
nc−OSは、非晶質酸化物半導体よりも規則性の高い酸化物半導体である。そのため、nc−OSは、a−like OSや非晶質酸化物半導体よりも欠陥準位密度が低くなる。ただし、nc−OSは、異なるペレット間で結晶方位に規則性が見られない。そのため、nc−OSは、CAAC−OSと比べて欠陥準位密度が高くなる。
<a−like OS>
a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。
図37に、a−like OSの高分解能断面TEM像を示す。ここで、図37(A)は電子照射開始時におけるa−like OSの高分解能断面TEM像である。図37(B)は4.3×10/nmの電子(e)照射後におけるa−like OSの高分解能断面TEM像である。図37(A)および図37(B)より、a−like OSは電子照射開始時から、縦方向に延伸する縞状の明領域が観察されることがわかる。また、明領域は、電子照射後に形状が変化することがわかる。なお、明領域は、鬆または低密度領域と推測される。
鬆を有するため、a−like OSは、不安定な構造である。以下では、a−like OSが、CAAC−OSおよびnc−OSと比べて不安定な構造であることを示すため、電子照射による構造の変化を示す。
試料として、a−like OS、nc−OSおよびCAAC−OSを準備する。いずれの試料もIn−Ga−Zn酸化物である。
まず、各試料の高分解能断面TEM像を取得する。高分解能断面TEM像により、各試料は、いずれも結晶部を有する。
なお、InGaZnOの結晶の単位格子は、In−O層を3層有し、またGa−Zn−O層を6層有する、計9層がc軸方向に層状に重なった構造を有することが知られている。これらの近接する層同士の間隔は、(009)面の格子面間隔(d値ともいう。)と同程度であり、結晶構造解析からその値は0.29nmと求められている。したがって、以下では、格子縞の間隔が0.28nm以上0.30nm以下である箇所を、InGaZnOの結晶部と見なした。なお、格子縞は、InGaZnOの結晶のa−b面に対応する。
図38は、各試料の結晶部(22箇所から30箇所)の平均の大きさを調査した例である。なお、上述した格子縞の長さを結晶部の大きさとしている。図38より、a−like OSは、TEM像の取得などに係る電子の累積照射量に応じて結晶部が大きくなっていくことがわかる。図38より、TEMによる観察初期においては1.2nm程度の大きさだった結晶部(初期核ともいう。)が、電子(e)の累積照射量が4.2×10/nmにおいては1.9nm程度の大きさまで成長していることがわかる。一方、nc−OSおよびCAAC−OSは、電子照射開始時から電子の累積照射量が4.2×10/nmまでの範囲で、結晶部の大きさに変化が見られないことがわかる。図38より、電子の累積照射量によらず、nc−OSおよびCAAC−OSの結晶部の大きさは、それぞれ1.3nm程度および1.8nm程度であることがわかる。なお、電子線照射およびTEMの観察は、日立透過電子顕微鏡H−9000NARを用いた。電子線照射条件は、加速電圧を300kV、電流密度を6.7×10/(nm・s)、照射領域の直径を230nmとした。
このように、a−like OSは、電子照射によって結晶部の成長が見られる場合がある。一方、nc−OSおよびCAAC−OSは、電子照射による結晶部の成長がほとんど見られない。即ち、a−like OSは、nc−OSおよびCAAC−OSと比べて、不安定な構造であることがわかる。
また、鬆を有するため、a−like OSは、nc−OSおよびCAAC−OSと比べて密度の低い構造である。具体的には、a−like OSの密度は、同じ組成の単結晶酸化物半導体の密度の78.6%以上92.3%未満である。また、nc−OSの密度およびCAAC−OSの密度は、同じ組成の単結晶酸化物半導体の密度の92.3%以上100%未満である。単結晶酸化物半導体の密度の78%未満である酸化物半導体は、成膜すること自体が困難である。
例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において、菱面体晶構造を有する単結晶InGaZnOの密度は6.357g/cmである。よって、例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において、a−like OSの密度は5.0g/cm以上5.9g/cm未満である。また、例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において、nc−OSの密度およびCAAC−OSの密度は5.9g/cm以上6.3g/cm未満である。
なお、同じ組成の単結晶が存在しない場合、任意の割合で組成の異なる単結晶を組み合わせることにより、所望の組成における単結晶に相当する密度を見積もることができる。所望の組成の単結晶に相当する密度は、組成の異なる単結晶を組み合わせる割合に対して、加重平均を用いて見積もればよい。ただし、密度は、可能な限り少ない種類の単結晶を組み合わせて見積もることが好ましい。
以上のように、酸化物半導体は、様々な構造をとり、それぞれが様々な特性を有する。なお、酸化物半導体は、例えば、非晶質酸化物半導体、a−like OS、nc−OS、CAAC−OSのうち、二種以上を有する積層膜であってもよい。
<酸化物半導体のキャリア密度>
次に、酸化物半導体のキャリア密度について、以下に説明を行う。
酸化物半導体のキャリア密度に影響を与える因子としては、酸化物半導体中の酸素欠損(Vo)、または酸化物半導体中の不純物などが挙げられる。
酸化物半導体中の酸素欠損が多くなると、該酸素欠損に水素が結合(この状態をVoHともいう)した際に、欠陥準位密度が高くなる。または、酸化物半導体中の不純物が多くなると、該不純物に起因し欠陥準位密度が高くなる。したがって、酸化物半導体中の欠陥準位密度を制御することで、酸化物半導体のキャリア密度を制御することができる。
ここで、酸化物半導体をチャネル領域に用いるトランジスタを考える。
トランジスタのしきい値電圧のマイナスシフトの抑制、またはトランジスタのオフ電流の低減を目的とする場合においては、酸化物半導体のキャリア密度を低くする方が好ましい。酸化物半導体のキャリア密度を低くする場合においては、酸化物半導体中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性または実質的に高純度真性と言う。高純度真性の酸化物半導体のキャリア密度としては、8×1015cm−3未満、好ましくは1×1011cm−3未満、さらに好ましくは1×1010cm−3未満であり、1×10−9cm−3以上とすればよい。
一方で、トランジスタのオン電流の向上、またはトランジスタの電界効果移動度の向上を目的とする場合においては、酸化物半導体のキャリア密度を高くする方が好ましい。酸化物半導体のキャリア密度を高くする場合においては、酸化物半導体の不純物濃度をわずかに高める、または酸化物半導体の欠陥準位密度をわずかに高めればよい。あるいは、酸化物半導体のバンドギャップをより小さくするとよい。例えば、トランジスタのId−Vg特性のオン/オフ比が取れる範囲において、不純物濃度がわずかに高い、または欠陥準位密度がわずかに高い酸化物半導体は、実質的に真性とみなせる。また、電子親和力が大きく、それにともなってバンドギャップが小さくなり、その結果、熱励起された電子(キャリア)の密度が増加した酸化物半導体は、実質的に真性とみなせる。なお、より電子親和力が大きな酸化物半導体を用いた場合には、トランジスタのしきい値電圧がより低くなる。
上述のキャリア密度が高められた酸化物半導体は、わずかにn型化している。したがって、キャリア密度が高められた酸化物半導体を、「Slightly−n」と呼称してもよい。
実質的に真性の酸化物半導体のキャリア密度は、1×10cm−3以上1×1018cm−3未満が好ましく、1×10cm−3以上1×1017cm−3以下がより好ましく、1×10cm−3以上5×1016cm−3以下がさらに好ましく、1×1010cm−3以上1×1016cm−3以下がさらに好ましく、1×1011cm−3以上1×1015cm−3以下がさらに好ましい。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態6)
本実施の形態では、イメージセンサチップを収めたパッケージおよびカメラモジュールの一例について説明する。当該イメージセンサチップには、本発明の一態様の撮像装置の構成を用いることができる。
図39(A)は、イメージセンサチップを収めたパッケージの上面側の外観斜視図である。当該パッケージは、イメージセンサチップ850を固定するパッケージ基板810、カバーガラス820および両者を接着する接着剤830等を有する。
図39(B)は、当該パッケージの下面側の外観斜視図である。パッケージの下面には、半田ボールをバンプ840としたBGA(Ball grid array)の構成を有する。なお、BGAに限らず、LGA(Land grid array)やPGA(Pin Grid Array)などであってもよい。
図39(C)は、カバーガラス820および接着剤830の一部を省いて図示したパッケージの斜視図であり、図39(D)は、当該パッケージの断面図である。パッケージ基板810上には電極パッド860が形成され、電極パッド860およびバンプ840はスルーホール880およびランド885を介して電気的に接続されている。電極パッド860は、イメージセンサチップ850が有する電極とワイヤ870によって電気的に接続されている。
また、図40(A)は、イメージセンサチップをレンズ一体型のパッケージに収めたカメラモジュールの上面側の外観斜視図である。当該カメラモジュールは、イメージセンサチップ851を固定するパッケージ基板811、レンズカバー821、およびレンズ835等を有する。また、パッケージ基板811およびイメージセンサチップ851の間には撮像装置の駆動回路および信号変換回路などの機能を有するICチップ890も設けられており、SiP(System in package)としての構成を有している。
図40(B)は、当該カメラモジュールの下面側の外観斜視図である。パッケージ基板811の下面および4側面には、実装用のランド841が設けられるQFN(Quad flat no−lead package)の構成を有する。なお、当該構成は一例であり、QFP(Quad flat package)や前述したBGA等であってもよい。
図40(C)は、レンズカバー821およびレンズ835の一部を省いて図示した当該カメラモジュールの斜視図であり、図40(D)は、当該カメラモジュールの断面図である。ランド841の一部は電極パッド861として利用され、電極パッド861はイメージセンサチップ851およびICチップ890が有する電極とワイヤ871によって電気的に接続されている。
イメージセンサチップを上述したような形態のパッケージに収めることで実装が容易になり、様々な半導体装置、電子機器に組み込むことができる。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態7)
本発明の一態様に係る撮像装置を用いることができる電子機器として、表示機器、パーソナルコンピュータ、記録媒体を備えた画像記憶装置または画像再生装置、携帯電話、携帯型を含むゲーム機、携帯データ端末、電子書籍端末、ビデオカメラ、デジタルスチルカメラ等のカメラ、ゴーグル型ディスプレイ(ヘッドマウントディスプレイ)、ナビゲーションシステム、音響再生装置(カーオーディオ、デジタルオーディオプレイヤー等)、複写機、ファクシミリ、プリンタ、プリンタ複合機、現金自動預け入れ払い機(ATM)、自動販売機などが挙げられる。これら電子機器の具体例を図41に示す。
図41(A)は監視カメラであり、筐体951、レンズ952、支持部953等を有する。当該監視カメラにおける画像を取得するための部品の一つとして本発明の一態様の撮像装置を備えることができる。なお、監視カメラとは慣用的な名称であり、用途を限定するものではない。例えば監視カメラとしての機能を有する機器はカメラ、またはビデオカメラとも呼ばれる。
図41(B)はビデオカメラであり、第1筐体971、第2筐体972、表示部973、操作キー974、レンズ975、接続部976等を有する。操作キー974およびレンズ975は第1筐体971に設けられており、表示部973は第2筐体972に設けられている。当該ビデオカメラにおける画像を取得するための部品の一つとして本発明の一態様の撮像装置を備えることができる。
図41(C)はデジタルカメラであり、筐体961、シャッターボタン962、マイク963、発光部967、レンズ965等を有する。当該デジタルカメラにおける画像を取得するための部品の一つとして本発明の一態様の撮像装置を備えることができる。
図41(D)は腕時計型の情報端末であり、筐体931、表示部932、リストバンド933、操作用のボタン935、竜頭936、カメラ939等を有する。表示部932はタッチパネルとなっていてもよい。当該情報端末における画像を取得するための部品の一つとして本発明の一態様の撮像装置を備えることができる。
図41(E)は携帯型ゲーム機であり、筐体901、筐体902、表示部903、表示部904、マイク905、スピーカー906、操作キー907、スタイラス908、カメラ909等を有する。なお、図41(E)に示した携帯型ゲーム機は、2つの表示部903と表示部904とを有しているが、携帯型ゲーム機が有する表示部の数は、これに限定されない。当該携帯型ゲーム機における画像を取得するための部品の一つとして本発明の一態様の撮像装置を備えることができる。
図41(F)は携帯データ端末であり、筐体911、表示部912、カメラ919等を有する。表示部912が有するタッチパネル機能により情報の入出力を行うことができる。当該携帯データ端末における画像を取得するための部品の一つとして本発明の一態様の撮像装置を備えることができる。
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
10 撮像素子
20 画素
20a 画素
20b 画素
20c 画素
21 画素
22 画素部
23a 画素回路
23b 画素回路
24 回路
25 回路
26 A/Dコンバータ
27 回路
28 コンパレータ
29 カウンター回路
30 端子
31 端子
32 ワイヤ
41 トランジスタ
42 トランジスタ
43 トランジスタ
44 トランジスタ
45 トランジスタ
46 トランジスタ
47 トランジスタ
48 トランジスタ
49 トランジスタ
50 トランジスタ
51 トランジスタ
52 トランジスタ
55 トランジスタ
61 配線
62 配線
63 配線
64 配線
65 配線
66 配線
67 配線
68 配線
69 配線
70 配線
71 配線
72 配線
73 配線
74 配線
75 配線
77 配線
78 配線
79 配線
80 絶縁層
81a 絶縁層
81b 絶縁層
81g 絶縁層
81h 絶縁層
82 導電体
82a 導電体
82b 導電体
91 配線
92 配線
93 配線
101 トランジスタ
102 トランジスタ
103 トランジスタ
104 トランジスタ
105 トランジスタ
106 トランジスタ
107 トランジスタ
115 基板
120 絶縁層
130 酸化物半導体層
130a 酸化物半導体層
130b 酸化物半導体層
130c 酸化物半導体層
130d 酸化物半導体層
140 導電層
145 絶縁層
150 導電層
155 絶縁層
160 絶縁層
170 導電層
171 導電層
172 導電層
173 導電層
180 絶縁層
200 導電体
201 導電体
210 絶縁層
231 領域
232 領域
561 光電変換層
562 透光性導電層
563 半導体層
564 半導体層
565 半導体層
566 電極
566a 導電層
566b 導電層
567 隔壁
568 正孔注入阻止層
569 電子注入阻止層
571 配線
571a 導電層
571b 導電層
588 配線
600 シリコン基板
620 p+領域
630 p−領域
640 n型領域
650 p+領域
660 活性層
810 パッケージ基板
811 パッケージ基板
820 カバーガラス
821 レンズカバー
830 接着剤
835 レンズ
840 バンプ
841 ランド
850 イメージセンサチップ
851 イメージセンサチップ
860 電極パッド
861 電極パッド
870 ワイヤ
871 ワイヤ
880 スルーホール
885 ランド
890 ICチップ
901 筐体
902 筐体
903 表示部
904 表示部
905 マイク
906 スピーカー
907 操作キー
908 スタイラス
909 カメラ
911 筐体
912 表示部
919 カメラ
931 筐体
932 表示部
933 リストバンド
935 ボタン
936 竜頭
939 カメラ
951 筐体
952 レンズ
953 支持部
961 筐体
962 シャッターボタン
963 マイク
965 レンズ
967 発光部
971 筐体
972 筐体
973 表示部
974 操作キー
975 レンズ
976 接続部
1100 層
1200 層
1300 層
1400 層
1530 遮光層
1540 マイクロレンズアレイ
1550a 光学変換層
1550b 光学変換層
1550c 光学変換層

Claims (11)

  1. 第1の画素と、第2の画素と、第3の画素と、を有する撮像装置であって、
    前記第1の画素は、第1の画素回路と、第1の回路と、を有し、
    前記第2の画素は、第2の画素回路と、第2の回路と、を有し、
    前記第3の画素は、第3の画素回路と、第3の回路と、を有し、
    前記第1の画素回路は、第1の信号を出力する機能を有し、
    前記第2の画素回路は、第2の信号を出力する機能を有し、
    前記第3の画素回路は、第3の信号を出力する機能を有し、
    前記第1の画素は、前記第2の画素と電気的に接続され、
    前記第2の画素は、前記第3の画素と電気的に接続され、
    前記第1の回路は、前記第1の信号を記憶する機能を有し、
    前記第1の回路は、前記第1の信号を前記第2の回路に転送する機能を有し、
    前記第2の回路は、前記第1の回路から転送された信号および前記第2の信号を記憶する機能を有し、
    前記第2の回路は、前記第1の回路から転送された信号および前記第2の信号を前記第3の回路に転送する機能を有し、
    前記第3の回路は、前記第2の回路から転送された信号および前記第3の信号を外部に出力する機能を有することを特徴とする撮像装置。
  2. 請求項1において、
    前記第1の画素回路、前記第2の画素回路および前記第3の画素回路は、光電変換素子と、第1乃至第4のトランジスタと、をそれぞれに有し、
    前記光電変換素子の一方の電極は、前記第1のトランジスタのソースまたはドレインと電気的に接続され、
    前記光電変換素子の一方の電極は、前記第2のトランジスタのソースまたはドレインと電気的に接続され、
    前記第1のトランジスタのソースまたはドレインの他方は、前記第3のトランジスタのゲートと電気的に接続され、
    前記第3のトランジスタのソースまたはドレインの一方は、前記第4のトランジスタのソースまたはドレインの一方と電気的に接続され、
    前記第1の回路および前記第2の回路は、第5乃至第10のトランジスタと、第1および第2の容量素子と、を有し、
    前記第5のトランジスタのソースまたはドレインの一方は、前記第1の容量素子の一方の電極と電気的に接続され、
    前記第5のトランジスタのソースまたはドレインの一方は、前記第6のトランジスタのゲートと電気的に接続され、
    前記第6のトランジスタのソースまたはドレインの一方は、前記第7のトランジスタのソースまたはドレインの一方と電気的に接続され、
    前記第7のトランジスタのソースまたはドレインの他方は、前記第8のトランジスタのソースまたはドレインの一方と電気的に接続され、
    前記第8のトランジスタのソースまたはドレインの一方は、前記第2の容量素子の一方の電極と電気的に接続され、
    前記第8のトランジスタのソースまたはドレインの一方は、前記第9のトランジスタのゲートと電気的に接続され、
    前記第9のトランジスタのソースまたはドレインの一方は、前記第10のトランジスタのソースまたはドレインの一方と電気的に接続され、
    前記第3の回路は、第11のトランジスタと、出力端子と、を有し、
    前記第11のトランジスタのソースまたはドレインの一方は前記出力端子と電気的に接続されていることを特徴とする撮像装置。
  3. 請求項2において、
    前記第1の画素回路および前記第2の画素回路が有する前記第3のトランジスタのソースまたはドレインの他方は、前記第1の回路および前記第2の回路が有する前記第6のトランジスタのゲートとそれぞれ電気的に接続されていることを特徴とする撮像装置。
  4. 請求項2または3において、
    前記第3の画素回路が有する前記第3のトランジスタのソースまたはドレインの他方は、前記第11のトランジスタのソースまたはドレインの一方と電気的に接続されていることを特徴とする撮像装置。
  5. 請求項2乃至4のいずれか一項において、
    前記第2の回路が有する第6のトランジスタのゲートは、前記第1の回路が有する前記第10のトランジスタのソースまたはドレインの他方と電気的に接続されていることを特徴とする撮像装置。
  6. 請求項2乃至5のいずれか一項において、
    前記第2の回路が有する前記第10のトランジスタのソースまたはドレインの他方は、前記第3の回路が有する前記第11のトランジスタのソースまたはドレインの一方と電気的に接続されていることを特徴とする撮像装置。
  7. 請求項2乃至6のいずれか一項において、
    前記第1乃至第11のトランジスタはチャネル形成領域に酸化物半導体を有し、前記酸化物半導体は、Inと、Znと、M(MはAl、Ga、YまたはSn)と、を有することを特徴とする撮像装置。
  8. 請求項2乃至7のいずれか一項において、
    前記第3のトランジスタ、前記第6のトランジスタ、および前記第9のトランジスタはバックゲートを有することを特徴とする撮像装置。
  9. 請求項2乃至8のいずれか一項において、
    前記第1乃至第11のトランジスタのそれぞれは、前記光電変換素子と重なる領域を有することを特徴とする撮像装置。
  10. 請求項1乃至9のいずれか一項に記載の撮像装置と、
    レンズと、
    を有することを特徴とするモジュール。
  11. 請求項1乃至9のいずれか一項に記載の撮像装置と、
    表示装置と、
    を有することを特徴とする電子機器。
JP2017026866A 2016-02-19 2017-02-16 撮像装置、モジュールおよび電子機器 Active JP6903445B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021103887A JP7114783B2 (ja) 2016-02-19 2021-06-23 撮像素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016029900 2016-02-19
JP2016029900 2016-02-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021103887A Division JP7114783B2 (ja) 2016-02-19 2021-06-23 撮像素子

Publications (2)

Publication Number Publication Date
JP2017153074A true JP2017153074A (ja) 2017-08-31
JP6903445B2 JP6903445B2 (ja) 2021-07-14

Family

ID=59630177

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017026866A Active JP6903445B2 (ja) 2016-02-19 2017-02-16 撮像装置、モジュールおよび電子機器
JP2021103887A Active JP7114783B2 (ja) 2016-02-19 2021-06-23 撮像素子

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021103887A Active JP7114783B2 (ja) 2016-02-19 2021-06-23 撮像素子

Country Status (2)

Country Link
US (2) US10347681B2 (ja)
JP (2) JP6903445B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023076442A (ja) * 2018-11-22 2023-06-01 株式会社ジャパンディスプレイ 検出装置及び表示装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102708011B1 (ko) * 2018-09-03 2024-09-24 삼성전자주식회사 이미지 센서
US12119359B2 (en) 2018-12-20 2024-10-15 Sony Semiconductor Solutions Corporation Imaging device
JP7330124B2 (ja) * 2020-03-19 2023-08-21 株式会社東芝 固体撮像装置
CN114975491A (zh) * 2021-02-26 2022-08-30 京东方科技集团股份有限公司 一种阵列基板、平板探测器和阵列基板的制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3683193A (en) * 1970-10-26 1972-08-08 Rca Corp Bucket brigade scanning of sensor array
JP2002530016A (ja) * 1998-11-05 2002-09-10 シマゲ オユ 撮像素子
JP2008092014A (ja) * 2006-09-29 2008-04-17 Olympus Corp 固体撮像装置
JP2015026946A (ja) * 2013-07-25 2015-02-05 株式会社東芝 カメラモジュール

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3789240A (en) 1970-10-26 1974-01-29 Rca Corp Bucket brigade scanning of sensor array
JPS5678364U (ja) * 1979-11-14 1981-06-25
JPS57100361U (ja) * 1980-12-12 1982-06-21
JPS5870687A (ja) * 1981-10-22 1983-04-27 Matsushita Electric Ind Co Ltd 固体撮像素子の駆動方法
JPS58151180A (ja) * 1982-03-03 1983-09-08 Hitachi Ltd 固体撮像装置
JPS58169965A (ja) * 1982-03-31 1983-10-06 Hitachi Ltd 固体撮像装置
JPS63226177A (ja) * 1986-12-15 1988-09-20 Mitsubishi Electric Corp Csd型固体撮像素子
US5471515A (en) * 1994-01-28 1995-11-28 California Institute Of Technology Active pixel sensor with intra-pixel charge transfer
JP3548244B2 (ja) * 1994-10-19 2004-07-28 キヤノン株式会社 光電変換装置
JP3630894B2 (ja) 1996-12-24 2005-03-23 株式会社半導体エネルギー研究所 電荷転送半導体装置およびその作製方法並びにイメージセンサ
US6885396B1 (en) * 1998-03-09 2005-04-26 Micron Technology, Inc. Readout circuit with gain and analog-to-digital a conversion for image sensor
US9029793B2 (en) 1998-11-05 2015-05-12 Siemens Aktiengesellschaft Imaging device
US6855937B2 (en) * 2001-05-18 2005-02-15 Canon Kabushiki Kaisha Image pickup apparatus
JP4082056B2 (ja) * 2002-03-28 2008-04-30 コニカミノルタホールディングス株式会社 固体撮像装置
CN1910910B (zh) * 2004-01-13 2010-09-08 松下电器产业株式会社 固体摄像器件及使用它的摄像机
JP2006332936A (ja) * 2005-05-25 2006-12-07 Konica Minolta Photo Imaging Inc 撮像装置
KR20070009382A (ko) * 2005-07-15 2007-01-18 엘지전자 주식회사 데이터 재생방법 및 재생장치, 기록매체와 데이터 기록방법및 기록장치
JP5078246B2 (ja) 2005-09-29 2012-11-21 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法
JP5064747B2 (ja) 2005-09-29 2012-10-31 株式会社半導体エネルギー研究所 半導体装置、電気泳動表示装置、表示モジュール、電子機器、及び半導体装置の作製方法
KR100660905B1 (ko) * 2005-12-28 2006-12-26 삼성전자주식회사 Cmos 이미지 센서
JP2008042826A (ja) * 2006-08-10 2008-02-21 Matsushita Electric Ind Co Ltd 固体撮像素子およびカメラ
JP4956750B2 (ja) * 2007-03-30 2012-06-20 国立大学法人静岡大学 イメージセンサのための画素及びイメージセンサデバイス
US9609243B2 (en) * 2007-05-25 2017-03-28 Uti Limited Partnership Systems and methods for providing low-noise readout of an optical sensor
CN102598269B (zh) 2009-11-06 2015-04-01 株式会社半导体能源研究所 半导体器件
EP2524395A4 (en) 2010-01-15 2014-06-18 Semiconductor Energy Lab SEMICONDUCTOR COMPONENT AND CONTROL METHOD THEREFOR
KR101817054B1 (ko) 2010-02-12 2018-01-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 이를 포함한 표시 장치
WO2011102183A1 (en) 2010-02-19 2011-08-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101784676B1 (ko) 2010-03-08 2017-10-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제조방법
WO2011111506A1 (en) 2010-03-12 2011-09-15 Semiconductor Energy Laboratory Co., Ltd. Method for driving circuit and method for driving display device
KR101769970B1 (ko) * 2010-03-12 2017-08-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
CN102782622B (zh) 2010-03-12 2016-11-02 株式会社半导体能源研究所 显示装置的驱动方法
US9236408B2 (en) 2012-04-25 2016-01-12 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor device including photodiode
JP6176990B2 (ja) * 2013-04-25 2017-08-09 オリンパス株式会社 固体撮像装置および撮像装置
TWI660490B (zh) 2014-03-13 2019-05-21 日商半導體能源研究所股份有限公司 攝像裝置
US9324747B2 (en) 2014-03-13 2016-04-26 Semiconductor Energy Laboratory Co., Ltd. Imaging device
US9654712B2 (en) * 2015-10-07 2017-05-16 Semiconductor Components Industries, Llc Pixels with a global shutter and high dynamic range

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3683193A (en) * 1970-10-26 1972-08-08 Rca Corp Bucket brigade scanning of sensor array
JPS5724707B1 (ja) * 1970-10-26 1982-05-25
JP2002530016A (ja) * 1998-11-05 2002-09-10 シマゲ オユ 撮像素子
JP2008092014A (ja) * 2006-09-29 2008-04-17 Olympus Corp 固体撮像装置
JP2015026946A (ja) * 2013-07-25 2015-02-05 株式会社東芝 カメラモジュール

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023076442A (ja) * 2018-11-22 2023-06-01 株式会社ジャパンディスプレイ 検出装置及び表示装置
JP7489510B2 (ja) 2018-11-22 2024-05-23 株式会社ジャパンディスプレイ 検出装置及び表示装置
US12057466B2 (en) 2018-11-22 2024-08-06 Japan Display Inc. Detection device and display device

Also Published As

Publication number Publication date
US20200035738A1 (en) 2020-01-30
US11189656B2 (en) 2021-11-30
JP6903445B2 (ja) 2021-07-14
US20170243909A1 (en) 2017-08-24
US10347681B2 (en) 2019-07-09
JP7114783B2 (ja) 2022-08-08
JP2021158686A (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
JP6959468B2 (ja) カメラモジュール、及び、電子機器
JP6811342B2 (ja) 光電変換装置
JP6737633B2 (ja) 撮像装置および電子機器
JP6755756B2 (ja) 撮像装置
JP6960025B2 (ja) 撮像装置
JP7269394B2 (ja) 撮像装置
JP7114783B2 (ja) 撮像素子
JP2017005713A (ja) 撮像装置、その動作方法および電子機器
JP6749781B2 (ja) 撮像装置
JP2021158375A (ja) 撮像装置
JP6904730B2 (ja) 撮像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210623

R150 Certificate of patent or registration of utility model

Ref document number: 6903445

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250