JP2017145990A - Glow plug - Google Patents
Glow plug Download PDFInfo
- Publication number
- JP2017145990A JP2017145990A JP2016027107A JP2016027107A JP2017145990A JP 2017145990 A JP2017145990 A JP 2017145990A JP 2016027107 A JP2016027107 A JP 2016027107A JP 2016027107 A JP2016027107 A JP 2016027107A JP 2017145990 A JP2017145990 A JP 2017145990A
- Authority
- JP
- Japan
- Prior art keywords
- tube
- particle size
- heating element
- frequency
- particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002245 particle Substances 0.000 claims abstract description 228
- 238000010438 heat treatment Methods 0.000 claims abstract description 95
- 238000009826 distribution Methods 0.000 claims abstract description 36
- 239000000843 powder Substances 0.000 claims abstract description 36
- 229910052751 metal Inorganic materials 0.000 claims abstract description 25
- 239000002184 metal Substances 0.000 claims abstract description 23
- 238000007561 laser diffraction method Methods 0.000 claims abstract description 5
- 239000003566 sealing material Substances 0.000 claims description 7
- 238000009825 accumulation Methods 0.000 claims description 4
- 239000000523 sample Substances 0.000 description 10
- 230000010354 integration Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 238000012856 packing Methods 0.000 description 9
- 238000012546 transfer Methods 0.000 description 9
- 239000002243 precursor Substances 0.000 description 7
- 238000002485 combustion reaction Methods 0.000 description 6
- 239000012212 insulator Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000011164 primary particle Substances 0.000 description 6
- 238000003466 welding Methods 0.000 description 6
- 230000004888 barrier function Effects 0.000 description 5
- 239000011163 secondary particle Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 230000001186 cumulative effect Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 239000000956 alloy Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 238000004993 emission spectroscopy Methods 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000004570 mortar (masonry) Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 238000004451 qualitative analysis Methods 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000013021 overheating Methods 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 2
- 235000019982 sodium hexametaphosphate Nutrition 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910002060 Fe-Cr-Al alloy Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- -1 and Co Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23Q—IGNITION; EXTINGUISHING-DEVICES
- F23Q7/00—Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
- F23Q7/001—Glowing plugs for internal-combustion engines
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Resistance Heating (AREA)
Abstract
Description
本発明はグロープラグに関し、特に発熱体からチューブへ熱を伝わり易くできるグロープラグに関する。 The present invention relates to a glow plug, and more particularly to a glow plug that can easily transfer heat from a heating element to a tube.
グロープラグは、圧縮着火方式によるディーゼルエンジン等の内燃機関の補助熱源として用いられる。グロープラグは、金属製の中軸と、中軸の先端に電気的に接続される発熱体と、発熱体および中軸の先端側を収容する先端が閉じた金属製のチューブと、チューブ内に充填される絶縁粉末とを備えている。発熱体はチューブに電気的に接続されるので、中軸とチューブとの間に通電すると発熱体が発熱し、絶縁粉末を伝って熱がチューブへ移動する。絶縁粉末の流動性や発塵性を改善するため、特許文献1や特許文献2に開示される技術がある。 The glow plug is used as an auxiliary heat source for an internal combustion engine such as a diesel engine using a compression ignition system. The glow plug is filled in a metal center shaft, a heating element electrically connected to the tip of the center shaft, a metal tube having a closed tip for housing the heating element and the tip side of the center shaft, and the tube. Insulating powder. Since the heating element is electrically connected to the tube, when the current is passed between the central shaft and the tube, the heating element generates heat, and the heat moves to the tube through the insulating powder. In order to improve the fluidity and dust generation of the insulating powder, there are techniques disclosed in Patent Document 1 and Patent Document 2.
しかし、内燃機関の始動性を向上させるために、グロープラグを短時間で所定温度に昇温させること(以下「急速昇温性」と称す)、及び、所定温度を高い温度にすること(以下「発熱温度の高温化」と称す)が必要となった。そして、急速昇温性を確保しつつ発熱温度の高温化を図るために、発熱体からチューブへ熱をより伝わり易くする必要がある。 However, in order to improve the startability of the internal combustion engine, the glow plug is heated to a predetermined temperature in a short time (hereinafter referred to as “rapid temperature increase”), and the predetermined temperature is set to a high temperature (hereinafter referred to as “rapid temperature increase”). This is called “higher heat generation temperature”. In order to increase the heat generation temperature while ensuring rapid temperature rise, it is necessary to more easily transfer heat from the heating element to the tube.
本発明は上述した要求に応えるためになされたものであり、発熱体からチューブへ熱を伝わり易くできるグロープラグを提供することを目的としている。 The present invention has been made to meet the above-described demand, and an object thereof is to provide a glow plug that can easily transfer heat from a heating element to a tube.
この目的を達成するために請求項1記載のグロープラグは、金属製の中軸の先端に発熱体が電気的に接続され、先端が閉じた金属製のチューブは発熱体および中軸の先端側を収容する。発熱体はチューブに電気的に接続される。チューブと中軸との間にシール材が介在し、シール材は中軸とチューブとの間を密閉する。絶縁粉末はチューブ内に充填される。絶縁粉末のうち発熱体と対向する位置に配置された粒子群は、レーザ回折法により測定される体積基準の粒度分布において、粒径12μm以上の範囲に頻度6%以上の少なくとも1つの極大値を有し、粒径4〜8μmの頻度が2.5〜6%である。 In order to achieve this object, the glow plug according to claim 1 is configured such that a heating element is electrically connected to a tip of a metal middle shaft, and a metal tube having a closed tip accommodates the heating element and the tip side of the middle shaft. To do. The heating element is electrically connected to the tube. A sealing material is interposed between the tube and the central shaft, and the sealing material seals between the central shaft and the tube. Insulating powder is filled into the tube. In the insulating powder, the particle group arranged at the position facing the heating element has at least one local maximum value with a frequency of 6% or more in a particle size range of 12 μm or more in a volume-based particle size distribution measured by a laser diffraction method. Having a particle size of 4 to 8 μm is 2.5 to 6%.
請求項2記載のグロープラグは、請求項1において、粒子群は、前記粒度分布において、粒径34μm以上の頻度の積算が4〜26%である。 A glow plug according to a second aspect of the present invention is the glow plug according to the first aspect, wherein the particle group has an accumulation of a frequency of a particle size of 34 μm or more in the particle size distribution of 4 to 26%.
請求項3記載のグロープラグは、請求項1又は2において、粒子群は、前記粒度分布において、粒径1.0μm以下の頻度の積算が0.1〜5%である。 A glow plug according to a third aspect of the present invention is the glow plug according to the first or second aspect, wherein in the particle size distribution, the cumulative frequency of the particle size of 1.0 μm or less is 0.1 to 5%.
請求項1から3に記載のグロープラグによれば、粒子群の充填性を向上できるので、発熱体からチューブへ熱を伝わり易くできる効果がある。 According to the glow plug of the first to third aspects, since the packing property of the particle group can be improved, there is an effect that heat can be easily transmitted from the heating element to the tube.
以下、本発明の好ましい実施の形態について添付図面を参照して説明する。図1及び図2を参照して本発明の一実施の形態におけるグロープラグ10について説明する。図1はグロープラグ10の片側断面図であり、図2は一部を拡大したグロープラグ10の断面図である。図1及び図2では、紙面下側をグロープラグ10の先端側、紙面上側をグロープラグ10の後端側という。 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. A glow plug 10 according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a half sectional view of the glow plug 10, and FIG. 2 is a sectional view of the glow plug 10 with a part thereof enlarged. In FIGS. 1 and 2, the lower side of the drawing is referred to as the front end side of the glow plug 10, and the upper side of the drawing is referred to as the rear end side of the glow plug 10.
図1に示すようにグロープラグ10は中軸20、主体金具30、チューブ40及び発熱体50を備えている。これらの部材はグロープラグ10の中心軸Oに沿って組み付けられている。グロープラグ10は、ディーゼルエンジンを始めとする内燃機関(図示せず)の始動時などに用いられる補助熱源である。 As shown in FIG. 1, the glow plug 10 includes a center shaft 20, a metal shell 30, a tube 40, and a heating element 50. These members are assembled along the central axis O of the glow plug 10. The glow plug 10 is an auxiliary heat source used when starting an internal combustion engine (not shown) such as a diesel engine.
中軸20は円柱形状の金属製の導体であり、発熱体50に電力を供給するための部材である。中軸20は先端に発熱体50が電気的に接続されている。中軸20は、後端が主体金具30から突出した状態で主体金具30に挿入されている。 The middle shaft 20 is a cylindrical metal conductor and is a member for supplying power to the heating element 50. A heating element 50 is electrically connected to the tip of the middle shaft 20. The middle shaft 20 is inserted into the metal shell 30 with the rear end protruding from the metal shell 30.
中軸20は、本実施の形態では、後端に雄ねじからなる接続部21が形成されている。中軸20は、後端に、先端側から順に絶縁ゴム製のOリング22、合成樹脂製の筒状部材である絶縁体23、金属製の筒状部材であるリング24、金属製のナット25が組み付けられている。接続部21は、バッテリ等の電源から電力を供給するケーブルのコネクタ(図示せず)が接続される部位である。ナット25は、接続されたコネクタ(図示せず)を固定するための部材である。 In the present embodiment, the middle shaft 20 has a connecting portion 21 formed of an external thread at the rear end. The middle shaft 20 has an O-ring 22 made of insulating rubber, an insulator 23 that is a cylindrical member made of synthetic resin, a ring 24 that is a metallic cylindrical member, and a metal nut 25 in order from the front end side. It is assembled. The connection unit 21 is a part to which a connector (not shown) of a cable that supplies power from a power source such as a battery is connected. The nut 25 is a member for fixing a connected connector (not shown).
主体金具30は炭素鋼等により形成される略円筒形状の部材である。主体金具30は、中心軸Oに沿って貫通する軸孔31と、ねじ部32と、ねじ部32より後端側に形成された工具係合部33とを備えている。軸孔31は中軸20が挿入される貫通孔である。軸孔31の内径は中軸20の外径より大きいので、中軸20と軸孔31との間に空隙が形成される。ねじ部32は、内燃機関(図示せず)に嵌まり合う雄ねじである。工具係合部33は、ねじ部32を内燃機関のねじ穴(図示せず)に嵌めたり外したりするときに用いる工具(図示せず)が関わり合う形状(例えば六角形)をなす部位である。 The metal shell 30 is a substantially cylindrical member formed of carbon steel or the like. The metal shell 30 includes a shaft hole 31 penetrating along the central axis O, a screw portion 32, and a tool engagement portion 33 formed on the rear end side of the screw portion 32. The shaft hole 31 is a through hole into which the middle shaft 20 is inserted. Since the inner diameter of the shaft hole 31 is larger than the outer diameter of the middle shaft 20, a gap is formed between the middle shaft 20 and the shaft hole 31. The screw portion 32 is a male screw that fits into an internal combustion engine (not shown). The tool engaging portion 33 is a portion forming a shape (for example, hexagonal shape) with which a tool (not shown) used when the screw portion 32 is fitted or removed from a screw hole (not shown) of the internal combustion engine. .
主体金具30は、軸孔31の後端側において、Oリング22及び絶縁体23を介して中軸20を保持する。絶縁体23にリング24が接した状態で中軸20にリング24が加締められることで、絶縁体23は軸方向の位置が固定される。絶縁体23によって主体金具30の後端側とリング24とが絶縁される。主体金具30は、軸孔31の先端側にチューブ40が固定されている。 The metal shell 30 holds the middle shaft 20 via the O-ring 22 and the insulator 23 on the rear end side of the shaft hole 31. When the ring 24 is crimped to the middle shaft 20 with the ring 24 in contact with the insulator 23, the position of the insulator 23 in the axial direction is fixed. The insulator 23 insulates the rear end side of the metallic shell 30 from the ring 24. The metal shell 30 has a tube 40 fixed to the distal end side of the shaft hole 31.
チューブ40は先端41が閉じた金属製の筒状体である。チューブ40は軸孔31に圧入されることで、主体金具30に固定される。チューブ40の材料は、例えばニッケル基合金、ステンレス鋼などの耐熱合金が挙げられる。 The tube 40 is a metal cylindrical body with the tip 41 closed. The tube 40 is fixed to the metal shell 30 by being press-fitted into the shaft hole 31. Examples of the material of the tube 40 include heat-resistant alloys such as nickel-based alloys and stainless steel.
チューブ40は中軸20の先端側が挿入されている。チューブ40の内径は中軸20の外径より大きいので、中軸20とチューブ40との間に空隙が形成される。シール材42は、中軸20の先端側とチューブ40の後端との間に挟まれた円筒形状の絶縁部材である。シール材42は中軸20とチューブ40との間隔を維持し、中軸20とチューブ40との間を密閉する。 The tube 40 has a distal end side of the middle shaft 20 inserted therein. Since the inner diameter of the tube 40 is larger than the outer diameter of the middle shaft 20, a gap is formed between the middle shaft 20 and the tube 40. The sealing material 42 is a cylindrical insulating member sandwiched between the distal end side of the middle shaft 20 and the rear end of the tube 40. The sealing material 42 maintains the space between the middle shaft 20 and the tube 40 and seals between the middle shaft 20 and the tube 40.
図2に示すように、発熱体50(発熱コイル)は中心軸Oに沿ってチューブ40に収容されており、先端が溶接によりチューブ40の先端41に接合されている。発熱体50は、通電により発熱する螺旋状のコイルである。発熱体50の材料としては、Fe,Ni,Mo,W及びCo等の金属、並びにこれらの元素のいずれかを主成分とする合金が挙げられる。発熱体50は、後端が溶接によって制御コイル51に接合されている。発熱体50と制御コイル51との間に、溶接で溶融した後に凝固した溶融部52が形成されている。 As shown in FIG. 2, the heating element 50 (heating coil) is accommodated in the tube 40 along the central axis O, and the tip is joined to the tip 41 of the tube 40 by welding. The heating element 50 is a spiral coil that generates heat when energized. Examples of the material of the heating element 50 include metals such as Fe, Ni, Mo, W, and Co, and alloys containing any one of these elements as a main component. The heating element 50 has a rear end joined to the control coil 51 by welding. Between the heat generating body 50 and the control coil 51, a melted portion 52 is formed which is solidified after being melted by welding.
制御コイル51は溶融部52を介して発熱体50と直列に接続される部材である。制御コイル51は、発熱体50に供給する電力を制御して発熱体50の過昇温を防止する。制御コイル51は、比抵抗の温度係数が、発熱体50を形成する材料の比抵抗の温度係数より大きい導電材料で形成されている。制御コイル51の材料としては、例えば純Ni、Ni合金、Co合金などが挙げられる。制御コイル51は中心軸Oに沿ってチューブ40に収容されており、後端が溶接により中軸20の先端に接合されている。中軸20は制御コイル51及び発熱体50を介してチューブ40と電気的に接続される。 The control coil 51 is a member connected in series with the heating element 50 via the melting part 52. The control coil 51 controls the power supplied to the heating element 50 to prevent overheating of the heating element 50. The control coil 51 is made of a conductive material having a temperature coefficient of specific resistance higher than that of the material forming the heating element 50. Examples of the material of the control coil 51 include pure Ni, Ni alloy, and Co alloy. The control coil 51 is accommodated in the tube 40 along the central axis O, and the rear end is joined to the front end of the middle shaft 20 by welding. The middle shaft 20 is electrically connected to the tube 40 via the control coil 51 and the heating element 50.
絶縁粉末60は電気絶縁性を有し、且つ、高温下で熱伝導性を有する粉末であり、発熱体50とチューブ40との間、制御コイル51とチューブ40との間、中軸20とチューブ40との間、制御コイル51及び発熱体50の内側に充填される。絶縁粉末60は、発熱体50からチューブ40へ熱を移動させる機能、発熱体50及び制御コイル51とチューブ40との短絡を防ぐ機能、発熱体50及び制御コイル51を振動し難くして断線を防ぐ機能がある。 The insulating powder 60 is a powder having electrical insulation properties and thermal conductivity at high temperatures, between the heating element 50 and the tube 40, between the control coil 51 and the tube 40, and between the middle shaft 20 and the tube 40. Between the control coil 51 and the heating element 50. The insulating powder 60 has a function of transferring heat from the heating element 50 to the tube 40, a function of preventing a short circuit between the heating element 50 and the control coil 51, and the tube 40, and making the heating element 50 and the control coil 51 difficult to vibrate and breaking the wire. There is a function to prevent.
絶縁粉末60としては、例えばMgO、Al2O3等の酸化物粉末が挙げられる。絶縁粉末60は、これらの酸化物粉末のうちの少なくとも一種を含有するのが好ましく、これらの酸化物粉末のうち所望の熱伝導率を維持することができる点でMgO粉末を含有するのがより好ましい。絶縁粉末60は、MgO粉末を絶縁粉末60の全質量に対して85質量%以上100質量%以下含有するのが好ましく、99質量%以上100質量%未満含有するのがより好ましく、残部としてAl2O3粉末または他の物質が含有されてもよい。他の物質としては、CaO、ZrO2及びSiO2等の各粉末が挙げられる。 Examples of the insulating powder 60 include oxide powders such as MgO and Al 2 O 3 . The insulating powder 60 preferably contains at least one of these oxide powders, and more preferably contains MgO powder in that the desired thermal conductivity can be maintained among these oxide powders. preferable. The insulating powder 60 preferably contains 85% by mass or more and 100% by mass or less of MgO powder with respect to the total mass of the insulating powder 60, more preferably 99% by mass or more and less than 100% by mass, and the balance is Al 2. O 3 powder or other materials may be included. Examples of other substances include powders such as CaO, ZrO 2 and SiO 2 .
絶縁粉末60(第1粒子群61)に含まれる成分およびその含有率は、次のようにして求めることができる。まず、第1粒子群61を粉末X線回折法等によって定性分析を行うことにより、第1粒子群61に含まれる成分を把握する。次いで、ICP発光分光法により、第1粒子群61に含まれる元素を定量分析する。第1粒子群61に含まれる成分が、定性分析により酸化物であることが分かっている場合には、定量分析によって得られた元素の含有率を酸化物換算して、酸化物の含有率として求めることができる。なお、定性分析により第1粒子群61の主成分がMgOであることが分かっている場合には、MgO以外の成分についてICP発光分光法により分析を行い、MgOの含有率はその残分として求めることができる。 The components contained in the insulating powder 60 (first particle group 61) and the content thereof can be obtained as follows. First, the component contained in the 1st particle group 61 is grasped | ascertained by conducting the qualitative analysis of the 1st particle group 61 by the powder X-ray diffraction method etc. Next, the elements contained in the first particle group 61 are quantitatively analyzed by ICP emission spectroscopy. When the component contained in the first particle group 61 is known to be an oxide by qualitative analysis, the content of the element obtained by quantitative analysis is converted into an oxide, and the content of the oxide Can be sought. In addition, when it is known from the qualitative analysis that the main component of the first particle group 61 is MgO, the components other than MgO are analyzed by ICP emission spectroscopy, and the MgO content is obtained as the remainder. be able to.
絶縁粉末60は第1粒子群61と第2粒子群62とからなる。第1粒子群61は、発熱体50と対向する位置に配置された複数の粒子であって、具体的には、発熱体50とチューブ40との間、及び、発熱体50の内側に充填された複数の粒子である(図2の破線Dより下)。第2粒子群62は、制御コイル51とチューブ40との間、中軸20とチューブ40との間、及び、制御コイル51の内側に充填された複数の粒子である(図2の破線Dより上)。 The insulating powder 60 includes a first particle group 61 and a second particle group 62. The first particle group 61 is a plurality of particles arranged at positions facing the heating element 50, and specifically, is filled between the heating element 50 and the tube 40 and inside the heating element 50. A plurality of particles (below the broken line D in FIG. 2). The second particle group 62 is a plurality of particles filled between the control coil 51 and the tube 40, between the middle shaft 20 and the tube 40, and inside the control coil 51 (above the broken line D in FIG. 2). ).
第1粒子群61(粒子群)は、発熱体50からチューブ40へ熱を伝えるための複数の粒子である。第1粒子群61は、レーザ回折法により測定される体積基準の粒度分布が規定されている。図3を参照して第1粒子群61の粒度分布について説明する。図3は、レーザ回折式粒度分布測定装置(HORIBA LA−750、株式会社堀場製作所製)を用いて測定した絶縁粉末60(第1粒子群61)の体積基準の粒度分布の一例である。図3は粒径(μm)を横軸とし、頻度(%)を縦軸としてプロットされている。 The first particle group 61 (particle group) is a plurality of particles for transferring heat from the heating element 50 to the tube 40. The first particle group 61 has a volume-based particle size distribution measured by a laser diffraction method. The particle size distribution of the first particle group 61 will be described with reference to FIG. FIG. 3 is an example of a volume-based particle size distribution of the insulating powder 60 (first particle group 61) measured using a laser diffraction particle size distribution measuring apparatus (HORIBA LA-750, manufactured by Horiba, Ltd.). FIG. 3 is plotted with the particle size (μm) on the horizontal axis and the frequency (%) on the vertical axis.
図3に示すように第1粒子群61は、レーザ回折法により測定される体積基準の粒度分布において、粒径12μm以上の範囲71に頻度6%以上の少なくとも1つの極大値72を有し、粒径4〜8μmの頻度が全て2.5〜6%の範囲73内にある。これにより第1粒子群61の充填密度を高め、空隙率を低下させることができる。チューブ40の先端側(発熱体50と対向する部分)の熱伝導率を高めることができるので、熱伝導および熱伝達により発熱体50からチューブ40へ熱を伝わり易くできる。チューブ40の先端側の発熱量を増加できるので、急速昇温性を確保しつつ発熱温度の高温化を図ることができる。発熱体50に大電流を流すことなくチューブ40の表面温度をより高い温度まで急速昇温できるので、特に、始動性の向上が求められる内燃機関に好適である。 As shown in FIG. 3, the first particle group 61 has at least one local maximum value 72 having a frequency of 6% or more in a range 71 having a particle size of 12 μm or more in a volume-based particle size distribution measured by a laser diffraction method. The frequency of particle sizes of 4-8 μm is all in the range 73 of 2.5-6%. Thereby, the packing density of the 1st particle group 61 can be raised and the porosity can be reduced. Since the thermal conductivity of the distal end side of the tube 40 (portion facing the heating element 50) can be increased, heat can be easily transferred from the heating element 50 to the tube 40 by heat conduction and heat transfer. Since the amount of heat generated at the distal end side of the tube 40 can be increased, the heat generation temperature can be increased while ensuring rapid temperature rise. Since the surface temperature of the tube 40 can be rapidly increased to a higher temperature without flowing a large current through the heating element 50, it is particularly suitable for an internal combustion engine that requires improved startability.
ここで、粒径12μm以上の範囲71に頻度6%以上の極大値が存在しない場合には、粒径12μm未満の粒子の割合(全体を100%とする相対粒子量)が多いので、発熱体50とチューブ40との間に存在する粒子の数が多くなる。粒子同士が接触する粒子間の境界面は熱伝導の障壁になるので、発熱体50とチューブ40との間に存在する粒子の数が多くなることにより、粒子の数が少ない(障壁が少ない)場合に比べ、熱伝導によって熱が伝わり難くなる傾向がみられる。第1粒子群61の粒度分布を規定することにより、これを防止して熱を伝わり易くできる。 Here, when there is no local maximum value with a frequency of 6% or more in the range 71 having a particle diameter of 12 μm or more, the ratio of particles having a particle diameter of less than 12 μm is large (relative particle amount with the whole being 100%). The number of particles present between 50 and the tube 40 increases. Since the boundary surface between the particles in contact with each other becomes a barrier for heat conduction, the number of particles existing between the heating element 50 and the tube 40 increases, so that the number of particles is small (the barrier is small). Compared to the case, there is a tendency that heat is not easily transmitted by heat conduction. By defining the particle size distribution of the first particle group 61, this can be prevented and heat can be easily transmitted.
極大値72は、図3に示すようなシャープなピークである必要はなく、ブロードなピークであっても良い。極大値72は範囲71内に少なくとも1つあれば良いので、範囲71内に複数のブロードなピークが存在しても構わない。いずれの場合も粒径12μm以上の粒子の割合を確保できるからである。 The maximum value 72 does not have to be a sharp peak as shown in FIG. 3, and may be a broad peak. Since at least one local maximum value 72 needs to be within the range 71, a plurality of broad peaks may exist within the range 71. This is because in any case, the proportion of particles having a particle size of 12 μm or more can be secured.
範囲71は、粒径の上限を40μm(即ち粒径12〜40μm)とすることが好ましい。粒径40μmを超える範囲に頻度6%以上の極大値が存在する場合には、粒径の大きな粒子の割合が多いので、充填された粒子間の隙間が増えて第1粒子群61の充填密度が低下する可能性がある。第1粒子群61の充填密度が低下すると発熱体50が振動し易くなるので、発熱体50が断線し易くなるおそれがある。粒径12〜40μmの範囲に頻度6%以上の極大値を存在させることにより、熱を伝わり易くしつつ発熱体50の断線を防止できる。 In the range 71, the upper limit of the particle size is preferably 40 μm (that is, the particle size is 12 to 40 μm). When the maximum value of frequency 6% or more exists in a range exceeding the particle size of 40 μm, the ratio of particles having a large particle size is large, so that the gap between the filled particles is increased and the packing density of the first particle group 61 is increased. May be reduced. When the packing density of the first particle group 61 is reduced, the heating element 50 is likely to vibrate, and thus the heating element 50 may be easily disconnected. By making the maximum value having a frequency of 6% or more in the range of the particle diameter of 12 to 40 μm, it is possible to prevent the heating element 50 from being disconnected while facilitating heat transfer.
範囲71は、頻度の上限を9%(即ち頻度6〜9%)とすることが好ましい。粒径12μm以上の範囲に頻度9%を超える極大値が存在する場合も、粒径の大きな粒子の割合が多いので、充填された粒子間の隙間が増えて第1粒子群61の充填密度が低下する可能性がある。この場合も発熱体50が振動し易くなって、発熱体50が断線し易くなるおそれがある。粒径12μm以上の範囲に頻度6〜9%の極大値を存在させることにより、熱を伝わり易くしつつ発熱体50の断線を防止できる。 In the range 71, the upper limit of the frequency is preferably 9% (that is, the frequency is 6 to 9%). Even when there is a maximum value exceeding 9% in the range of the particle size of 12 μm or more, since the ratio of particles having a large particle size is large, the gap between the filled particles is increased and the packing density of the first particle group 61 is increased. May be reduced. Also in this case, the heating element 50 is likely to vibrate, and the heating element 50 may be easily disconnected. By making the maximum value having a frequency of 6 to 9% in the range of the particle diameter of 12 μm or more, disconnection of the heating element 50 can be prevented while facilitating heat transfer.
粒径12μm以上の範囲71に頻度6%以上の少なくとも1つの極大値72を有するとしても、粒径4〜8μmの頻度の少なくとも一部が2.5%未満である場合には、粒径4〜8μm未満の粒径の小さい粒子の割合が増加する、若しくは、粒径12μm以上の粒径の大きい粒子の割合が増加することになる。前者の場合には、粒径12μm以上の粒子が充填されて生じた粒子間の隙間を埋める粒子の粒径が小さくなるので、発熱体50とチューブ40との間に存在する粒子の数が多くなり、熱伝導によって熱が伝わり難くなる。後者の場合には、粒径が大きな粒子の割合が多くなるので、充填された粒子間の隙間が増えて第1粒子群61の充填密度が低下する可能性がある。第1粒子群61の充填密度が低下すると発熱体50が振動し易くなるので、発熱体50が断線し易くなるおそれがある。 Even if at least one local maximum value 72 having a frequency of 6% or more is present in the range 71 having a particle diameter of 12 μm or more, if at least a part of the frequency of the particle diameter of 4 to 8 μm is less than 2.5%, the particle size 4 The ratio of small particles having a particle diameter of less than ˜8 μm increases, or the ratio of particles having a large particle diameter of 12 μm or more increases. In the former case, since the particle size of the particles filling the gaps between the particles generated by filling the particles having a particle size of 12 μm or more is small, the number of particles existing between the heating element 50 and the tube 40 is large. It becomes difficult to transfer heat by heat conduction. In the latter case, since the ratio of particles having a large particle size increases, there is a possibility that the gap between the filled particles increases and the packing density of the first particle group 61 decreases. When the packing density of the first particle group 61 is reduced, the heating element 50 is likely to vibrate, and thus the heating element 50 may be easily disconnected.
粒径12μm以上の範囲71に頻度6%以上の少なくとも1つの極大値72を有するとしても、粒径4〜8μmの頻度の少なくとも一部が6%を超える場合には、粒径4〜8μm未満の粒径の小さな粒子の割合が減少する、若しくは、粒径12μm以上の粒径の大きい粒子の割合が減少することになる。前者の場合には、粒径12μm以上の粒子が充填されて生じた粒子間の隙間が埋められ難くなるので、第1粒子群61の充填密度が低下する可能性がある。第1粒子群61の充填密度が低下すると発熱体50が振動し易くなるので、発熱体50が断線し易くなるおそれがある。後者の場合には、発熱体50とチューブ40との間に存在する粒子の数が多くなり、熱伝導によって熱が伝わり難くなる。 Even if it has at least one maximum value 72 with a frequency of 6% or more in the range 71 with a particle size of 12 μm or more, if at least part of the frequency of the particle size of 4-8 μm exceeds 6%, the particle size is less than 4-8 μm The ratio of particles having a small particle diameter is reduced, or the ratio of particles having a large particle diameter of 12 μm or more is decreased. In the former case, it is difficult to fill the gaps between the particles, which are generated by filling the particles having a particle diameter of 12 μm or more, so that the packing density of the first particle group 61 may be lowered. When the packing density of the first particle group 61 is reduced, the heating element 50 is likely to vibrate, and thus the heating element 50 may be easily disconnected. In the latter case, the number of particles existing between the heating element 50 and the tube 40 increases, and heat is hardly transmitted by heat conduction.
よって、粒径4〜8μmの頻度を2.5〜6%とすることにより、熱を伝わり易くしつつ発熱体50の断線を防止できる。 Therefore, by setting the frequency of the particle size of 4 to 8 μm to 2.5 to 6%, it is possible to prevent disconnection of the heating element 50 while making it easy to transmit heat.
第1粒子群61は、さらに、粒径34μm以上の頻度の積算74が4〜26%である。粒径の大きな粒子の割合をこのような所定の量とすることで、発熱体50とチューブ40との間に存在する粒子の数が過剰に増加したり減少したりすることを防止できる。よって、発熱体50とチューブ40との間に存在する粒子の数を減らすことによって熱の障壁の数を減らし、発熱体50からチューブ40へ熱が伝わり難くなることを防止できる。また、第1粒子群61の空隙率(隙間割合)を低下させることができるので、発熱体50の断線を防止できる。 Further, in the first particle group 61, the integration 74 of the frequency of the particle size of 34 μm or more is 4 to 26%. By setting the ratio of the large particles to such a predetermined amount, it is possible to prevent the number of particles existing between the heating element 50 and the tube 40 from excessively increasing or decreasing. Therefore, the number of heat barriers can be reduced by reducing the number of particles existing between the heating element 50 and the tube 40, and it is possible to prevent heat from being easily transferred from the heating element 50 to the tube 40. Moreover, since the porosity (gap ratio) of the first particle group 61 can be reduced, disconnection of the heating element 50 can be prevented.
第1粒子群61は、粒径1.0μm以下の頻度の積算75が0.1〜5%である。粒径1.0μm以下の粒子の割合をこのような所定の量とすることで、第1粒子群61の空隙率を低下させることができ、発熱体50の断線を防止できる。また、発熱体50とチューブ40との間に存在する粒子の数を減らすことによって熱の障壁を減らし、発熱体50からチューブ40へ熱が伝わり難くなることを防止できる。 As for the 1st particle group 61, the integration | accumulation 75 of the frequency of a particle size of 1.0 micrometer or less is 0.1 to 5%. By setting the ratio of particles having a particle diameter of 1.0 μm or less to such a predetermined amount, the porosity of the first particle group 61 can be reduced, and disconnection of the heating element 50 can be prevented. Further, by reducing the number of particles existing between the heating element 50 and the tube 40, the heat barrier can be reduced, and it is possible to prevent the heat from being easily transmitted from the heating element 50 to the tube 40.
第1粒子群61のD50(50%粒子径またはメジアン径)は、10〜20μmであることが好ましい。第1粒子群61のD50が10〜20μmであれば、第1粒子群61の極大値72、範囲73及び積算74,75が特定した所定値となる場合に、発熱体50からチューブ40へ熱をより伝わり易くできるからである。なお、第1粒子群61の粒径8μmから極大値までの頻度は2.5%以上であることが好ましい。発熱体50からチューブ40へ熱がより伝わり易くなるからである。 The D50 (50% particle diameter or median diameter) of the first particle group 61 is preferably 10 to 20 μm. If D50 of the first particle group 61 is 10 to 20 μm, heat is generated from the heating element 50 to the tube 40 when the maximum value 72, the range 73, and the integrals 74 and 75 of the first particle group 61 become the specified values. This is because it can be transmitted more easily. The frequency from the particle size 8 μm to the maximum value of the first particle group 61 is preferably 2.5% or more. This is because heat is more easily transferred from the heating element 50 to the tube 40.
第2粒子群62は、第1粒子群61の粒度分布と同じ粒度分布である粒子群を用いることができる。第2粒子群62は、第1粒子群61の粒度分布とは異なる粒度分布である粒子群を用いて良い。第2粒子群62は制御コイル51の周囲に充填される粒子群なので、チューブ50へ熱を移動させる機能の要求が低いからである。 As the second particle group 62, a particle group having the same particle size distribution as that of the first particle group 61 can be used. As the second particle group 62, a particle group having a particle size distribution different from the particle size distribution of the first particle group 61 may be used. This is because the second particle group 62 is a particle group that is filled around the control coil 51, so that the requirement for the function of transferring heat to the tube 50 is low.
第1粒子群61の粒度分布はレーザ回折式粒度分布測定装置(HORIBA LA−750)を用いて、以下のように測定できる。まず、グロープラグ10から絶縁粉末60(第1粒子群61)を取り出し、測定用試料を準備する。具体的には、まず、中心軸Oに直交し、且つ、溶融部52付近を含む面でチューブ40を切断する。チューブ40を切断後、先端41側のチューブ40の内側にある発熱体50をチューブ40から引き抜き、発熱体50に衝撃を加え、発熱体50(発熱コイル)の内側に詰まった粒子(第1粒子群61)を取り出す。同様に、チューブ40に衝撃を加え、チューブ40内の粒子(第1粒子群61)を取り出す。 The particle size distribution of the first particle group 61 can be measured as follows using a laser diffraction particle size distribution measuring device (HORIBA LA-750). First, the insulating powder 60 (first particle group 61) is taken out from the glow plug 10 to prepare a measurement sample. Specifically, first, the tube 40 is cut along a plane orthogonal to the central axis O and including the vicinity of the melting portion 52. After cutting the tube 40, the heating element 50 inside the tube 40 on the tip 41 side is pulled out from the tube 40, the shock is applied to the heating element 50, and particles (first particles) clogged inside the heating element 50 (heating coil). Remove group 61). Similarly, an impact is applied to the tube 40 and the particles (first particle group 61) in the tube 40 are taken out.
取り出した粒子(第1粒子群61)は凝集して塊状になっているので、すり鉢ですって塊を砕く。粒子は硬いので、すり鉢と手に持ったすり棒とを用いて第1粒子群61をすっても粒子(一次粒子)は粉砕されず、測定結果に影響を与えないことが確認されている。すり鉢ですった後の粒子(第1粒子群61)を拡大鏡で観察しながら不純物を取り除く。このようにして、1回の測定につき、第1粒子群61の試料を0.35g以上準備する。 Since the taken out particles (first particle group 61) are aggregated into a lump, the lump is crushed with a mortar. Since the particles are hard, it has been confirmed that the particles (primary particles) are not pulverized even if the first particle group 61 is rubbed using a mortar and a mortar held in the hand, and the measurement results are not affected. Impurities are removed while observing the particles (first particle group 61) after mortaring with a magnifier. Thus, 0.35 g or more of the sample of the first particle group 61 is prepared for one measurement.
次いで、準備した第1粒子群61の試料(例えばスパチュラ2〜4杯分)を分散媒(例えばヘキサメタりん酸ナトリウム0.2質量%溶液150cc)に分散する。試料の分散方法としては、例えば、外部ホモジナイザーで3分撹拌した後に、レーザ回折式粒度分布測定装置に内蔵されている超音波プローブで2分撹拌する方法を挙げることができる。レーザ回折式粒度分布測定装置を用いて、分散媒に分散させた試料の粒度分布を測定し、粒径0.1〜100μmの頻度分布、粒径34μm以上の積算分布(フルイ上)、粒径1μm以下の積算分布(フルイ下)を求める。粒度分布の測定は3回行い、求める値は、3回の測定の平均値である。 Next, the prepared sample of the first particle group 61 (for example, 2 to 4 cups of spatula) is dispersed in a dispersion medium (for example, 150 cc of a sodium hexametaphosphate 0.2% by mass solution). Examples of the method for dispersing the sample include a method of stirring for 3 minutes with an external homogenizer and then stirring for 2 minutes with an ultrasonic probe built in the laser diffraction particle size distribution measuring apparatus. Using a laser diffraction type particle size distribution measuring device, the particle size distribution of the sample dispersed in the dispersion medium is measured, the frequency distribution is 0.1 to 100 μm in particle size, the cumulative distribution (on the sieve) is 34 μm or more, the particle size An integrated distribution (under a sieve) of 1 μm or less is obtained. The particle size distribution is measured three times, and the obtained value is an average value of the three measurements.
第1粒子群61は、粒子が一次粒子として存在する場合や、二次粒子として存在する場合がある。第1粒子群61は、一次粒子および二次粒子のいずれの形態で存在してもよいが、一次粒子で存在するのが好ましい。第1粒子群61に含まれる粒子が二次粒子として存在する場合、二次粒子中に多数の空隙が存在するので、この空隙が断熱層(障壁)となって第1粒子群61の熱移動性が低下するおそれがある。MgOは、通常、二次粒子を形成せず一次粒子として存在する。従って、この点においても第1粒子群61を構成する粒子はMgO粉末であるのが好ましい。 The first particle group 61 may exist as primary particles or as secondary particles. The first particle group 61 may be present in any form of primary particles and secondary particles, but is preferably present as primary particles. When the particles included in the first particle group 61 are present as secondary particles, there are a large number of voids in the secondary particles, so that these voids serve as a heat insulating layer (barrier) and the heat transfer of the first particle group 61 May decrease. MgO usually exists as primary particles without forming secondary particles. Therefore, also in this respect, the particles constituting the first particle group 61 are preferably MgO powder.
グロープラグ10は、例えば、次のようにして製造される。まず、所定の組成を有する抵抗発熱線をコイル状に加工し、発熱体(発熱コイル)50及び制御コイル51をそれぞれ製造する。次いで、発熱体50と制御コイル51との端部同士をアーク溶接等により接合し、コイル部材とする。次いで、コイル部材のうち制御コイル51を中軸20の先端に接合する。 The glow plug 10 is manufactured as follows, for example. First, a resistance heating wire having a predetermined composition is processed into a coil shape, and a heating element (heating coil) 50 and a control coil 51 are manufactured. Next, the ends of the heating element 50 and the control coil 51 are joined together by arc welding or the like to obtain a coil member. Next, the control coil 51 of the coil members is joined to the tip of the middle shaft 20.
一方、所定の組成を有する金属鋼管をチューブ40の最終寸法よりも大径に形成し、かつ、その先端を他の部分よりも減径させて、先端が開口した先窄まり状のチューブ前駆体を製造する。チューブ前駆体の内部に中軸20と一体となったコイル部材を挿入し、チューブ前駆体の先窄まり状の開口部に発熱体50の先端を配置する。チューブ前駆体の開口部と発熱体50の先端部分とをアーク溶接等によって溶融し、チューブ前駆体の先端部分を閉塞し、内部にコイル部材が収容されたヒータ前駆体を形成する。 On the other hand, a tapered tube precursor in which a metal steel pipe having a predetermined composition is formed to have a diameter larger than the final dimension of the tube 40 and the tip of the metal steel pipe is made smaller than the other part, and the tip is opened. Manufacturing. A coil member integrated with the central shaft 20 is inserted into the tube precursor, and the tip of the heating element 50 is disposed in the tapered opening of the tube precursor. The opening portion of the tube precursor and the tip portion of the heating element 50 are melted by arc welding or the like, the tip portion of the tube precursor is closed, and a heater precursor in which a coil member is accommodated is formed.
次いで、ヒータ前駆体のチューブ40内に絶縁粉末60を充填した後、チューブ40の後端の開口部と中軸20との間にシール材42を挿入して、チューブ40を封止する。次に、チューブ40が所定の外径になるまでチューブ40にスウェージング加工を施す。チューブ40内に充填された絶縁粉末60は、スウェージング加工を経ることにより破砕されて粒度が変化する。従って、スウェージング加工を施す際のチューブ40の外径の減少率等を考慮して、発熱体50の周囲に配置される第1粒子群61がスウェージング加工後(スウェージングによる粒子の破砕後)に所定の粒度分布になるように、チューブ40に絶縁粉末60を充填する。 Next, after filling the heater precursor tube 40 with the insulating powder 60, the sealing member 42 is inserted between the opening at the rear end of the tube 40 and the middle shaft 20 to seal the tube 40. Next, swaging is performed on the tube 40 until the tube 40 has a predetermined outer diameter. The insulating powder 60 filled in the tube 40 is crushed and undergoes a change in particle size through a swaging process. Therefore, in consideration of the reduction rate of the outer diameter of the tube 40 when performing the swaging process, the first particle group 61 arranged around the heating element 50 is subjected to the swaging process (after the particles are crushed by the swaging). The tube 40 is filled with the insulating powder 60 so as to have a predetermined particle size distribution.
次に、スウェージング加工後のチューブ40を主体金具30の軸孔31に圧入固定し、中軸20の後端から主体金具30と中軸20との間にOリング22及び絶縁体23を嵌め込む。リング24で中軸20を加締めてグロープラグ10を得る。 Next, the swaging tube 40 is press-fitted and fixed in the shaft hole 31 of the metal shell 30, and the O-ring 22 and the insulator 23 are fitted between the metal shell 30 and the medium shaft 20 from the rear end of the middle shaft 20. The glow plug 10 is obtained by caulking the middle shaft 20 with the ring 24.
<グロープラグの製造および第1粒子群の分析>
図1に示すグロープラグ10と同様の構造を有するグロープラグを前述のとおりに製造し、実験例1〜16におけるグロープラグを得た。実験例1〜16におけるグロープラグはMgO粉末を絶縁粉末60とした。各実験例の(充填後の)第1粒子61の粒度は、チューブ40内に充填する(充填前の)絶縁粉末60の粒度分布の調製、及び、グロープラグ10の製造工程におけるスウェージング加工前後のチューブ40の外径の減少率の調整によって調製した。
<Manufacture of glow plug and analysis of first particle group>
A glow plug having the same structure as the glow plug 10 shown in FIG. 1 was manufactured as described above, and glow plugs in Experimental Examples 1 to 16 were obtained. In the glow plugs in Experimental Examples 1 to 16, MgO powder was used as insulating powder 60. The particle size of the first particles 61 (after filling) in each experimental example is adjusted before and after the swaging process in the manufacturing process of the glow plug 10 and the preparation of the particle size distribution of the insulating powder 60 filled in the tube 40 (before filling). The tube 40 was prepared by adjusting the reduction rate of the outer diameter.
レーザ回折式粒度分布測定装置(HORIBA LA−750)を用いて、各実験例のチューブ40内に充填されている第1粒子群61の体積基準の粒度分布を前述のとおりに測定し、極大値、粒径4〜8μmの頻度、粒径1.0μm以下の頻度の積算、粒径34μm以上の頻度の積算を求めた。なお、第1粒子群61の試料を分析するときの分散媒としては、ヘキサメタりん酸ナトリウム0.2質量%溶液150ccを用いた。試料の分散は、外部ホモジナイザーで3分撹拌した後に、レーザ回折式粒度分布測定装置に内蔵されている超音波プローブで2分撹拌することによって行った。試料の粒度分布の測定は3回行い、得られた3回の測定値の平均値を求めた。 Using a laser diffraction particle size distribution measuring device (HORIBA LA-750), the volume-based particle size distribution of the first particle group 61 filled in the tube 40 of each experimental example is measured as described above, and the maximum value is obtained. The frequency of the particle size of 4 to 8 μm, the integration of the frequency of the particle size of 1.0 μm or less, and the integration of the frequency of the particle size of 34 μm or more were obtained. In addition, as a dispersion medium when analyzing the sample of the 1st particle group 61, 150 cc of sodium hexametaphosphate 0.2 mass% solutions were used. The sample was dispersed by stirring for 3 minutes with an external homogenizer, and then stirring for 2 minutes with an ultrasonic probe built in the laser diffraction particle size distribution analyzer. The particle size distribution of the sample was measured three times, and the average value of the three measured values obtained was determined.
なお、実験例1〜16におけるグロープラグについて、第1粒子群61に含まれる成分およびその含有率を、粉末X線回折法およびICP発光分光法により、前述のとおりに測定した。いずれも主成分としてMgOを99.4質量%含有し、CaO,ZrO2,SiO2を合計で0.6質量%含有していた。また、第1粒子群61を走査型顕微鏡で観察したところ(1000倍)、一次粒子として粒子が存在していることが観察された。 In addition, about the glow plug in Experimental Examples 1-16, the component contained in the 1st particle group 61 and its content rate were measured as mentioned above by the powder X-ray diffraction method and ICP emission spectroscopy. All contained 99.4% by mass of MgO as a main component and 0.6% by mass of CaO, ZrO 2 and SiO 2 in total. Moreover, when the 1st particle group 61 was observed with the scanning microscope (1000 times), it was observed that particle | grains existed as a primary particle.
<通電試験>
第1粒子群61の熱移動性(熱の伝わり易さ)は、発熱体50の温度(以下「T1」と称す)とチューブ40の表面温度(以下「T2」と称す)との差(T1−T2)に基づいて評価した。具体的には、通電してから2秒後にT2が1000℃になるように中軸20と主体金具30との間に電圧を印加し、通電してから2秒後のT1とT2との温度差が100℃以下を「◎:優れている」、T1とT2との温度差が100℃より大きく120℃以下を「○:良い」、T1とT2との温度差が120℃より大きいときを「×:劣っている」とした。
<Energization test>
The heat mobility (easy heat transfer) of the first particle group 61 is the difference (T1) between the temperature of the heating element 50 (hereinafter referred to as “T1”) and the surface temperature of the tube 40 (hereinafter referred to as “T2”). -Based on -T2). Specifically, a voltage difference is applied between the central shaft 20 and the metal shell 30 so that T2 becomes 1000 ° C. 2 seconds after energization, and a temperature difference between T1 and T2 2 seconds after energization. When the temperature difference between T1 and T2 is greater than 100 ° C and greater than 120 ° C, and when the temperature difference between T1 and T2 is greater than 120 ° C. ×: Inferior ”.
発熱体50の温度(T1)は、発熱体50に対応する位置に配置した熱電対によって測定した。熱電対は、各実験例におけるグロープラグを製造するとき(チューブ40に発熱体50を挿入する前)に発熱体50の内部に配置した。熱電対の配置位置は、発熱体50の中心軸O上であって先端41から中心軸O方向に2.0mm離れた位置である。
チューブ40の表面温度(T2)は、チューブ40に取り付けた熱電対によって測定した。熱電対は、各実験例におけるグロープラグを製造した後にチューブ40に取り付けた。熱電対の取付け位置は、チューブ40の先端41から中心軸O方向に2.0mm離れた位置である。
The temperature (T1) of the heating element 50 was measured by a thermocouple arranged at a position corresponding to the heating element 50. The thermocouple was disposed inside the heating element 50 when the glow plug in each experimental example was manufactured (before the heating element 50 was inserted into the tube 40). The thermocouple is disposed on the central axis O of the heating element 50 and at a position 2.0 mm away from the tip 41 in the direction of the central axis O.
The surface temperature (T2) of the tube 40 was measured by a thermocouple attached to the tube 40. The thermocouple was attached to the tube 40 after the glow plug in each experimental example was manufactured. The thermocouple is attached at a position 2.0 mm away from the tip 41 of the tube 40 in the direction of the central axis O.
実験例1〜16におけるグロープラグの第1粒子群61の分析および通電試験の結果を表1に示す。表1には、第1粒子群61の分析結果として、「極大値の粒径、頻度および判定結果」、「粒径4μmの頻度、粒径8μmの頻度および粒径4〜8μmの頻度の判定結果」、「粒径1.0μm以下の頻度の積算の判定結果」、「粒径34μm以上の頻度の積算の判定結果」が記されている。 Table 1 shows the results of the analysis of the first particle group 61 of the glow plug and the current test in Experimental Examples 1 to 16. Table 1 shows the analysis results of the first particle group 61: “maximum particle size, frequency and determination result”, “frequency of particle size 4 μm, frequency of particle size 8 μm, and determination of frequency of particle size 4 to 8 μm. “Results”, “Results of determination of integration of frequency of particle size of 1.0 μm or less”, and “Results of determination of integration of frequency of particle size of 34 μm or more”.
表1において、極大値の判定結果は、粒径12μm以上、且つ、頻度6%以上の極大値が存在する場合はOK、粒径12μm未満、又は、頻度6%未満の極大値が存在する場合はNGが記されている。粒径4〜8μmの頻度の判定結果は、粒径4〜8μmの頻度が2.5〜6%の範囲にある場合はOK、頻度がその範囲から外れる場合はNGが記されている。粒径1.0μm以下の頻度の積算の判定結果は、積算値が0.1〜5%の範囲に存在する場合はOK、積算値がその範囲から外れる場合は積算値がどちら側にあるか(<0.1%、又は、>5%)が記されている。粒径34μm以上の頻度の積算の判定結果は、積算値が4〜26%の範囲に存在する場合にはOK、積算値がその範囲から外れる場合は積算値がどちら側にあるか(<4%、又は、>26%)が記されている。 In Table 1, the determination result of the maximum value is OK when the particle size is 12 μm or more and the maximum value is 6% or more, and when the maximum value is less than 12 μm or the frequency is less than 6%. Is marked with NG. The determination result of the frequency of the particle size 4 to 8 μm is OK when the frequency of the particle size 4 to 8 μm is in the range of 2.5 to 6%, and NG when the frequency is out of the range. If the integrated value is within the range of 0.1 to 5%, the determination result for the frequency with a particle size of 1.0 μm or less is OK. If the integrated value is out of the range, which side is the integrated value? (<0.1% or> 5%). The determination result of the frequency integration with a particle size of 34 μm or more is OK when the integrated value is in the range of 4 to 26%, and on which side the integrated value is on the side when the integrated value is out of the range (<4 % Or> 26%).
表1に示すように第1粒子群61の粒度分布において、粒径12μm以上の範囲に頻度6%以上の極大値が存在し、且つ、粒径4〜8μmの頻度が2.5〜6%である実験例1〜8は、通電試験の結果が「◎:優れている」又は「○:良い」であった(温度差(T1−T2)は120℃以下)。特に実験例1〜8のうち、粒径1.0μm以下の頻度の積算が0.1〜5%であり、且つ、粒径34μm以上の頻度の積算が4〜26%である実験例1〜4は、通電試験の結果が「◎:優れている」であった(温度差(T1−T2)は100℃以下)。 As shown in Table 1, in the particle size distribution of the first particle group 61, there is a maximum value of frequency 6% or more in the range of particle size 12 μm or more, and the frequency of particle size 4-8 μm is 2.5-6%. In Experimental Examples 1 to 8, the result of the energization test was “◎: excellent” or “◯: good” (temperature difference (T1-T2) is 120 ° C. or less). In particular, among Experimental Examples 1 to 8, Experimental Example 1 to which the cumulative frequency of the particle size of 1.0 μm or less is 0.1 to 5% and the cumulative frequency of the particle size of 34 μm or more is 4 to 26%. For No. 4, the result of the energization test was “◎: excellent” (temperature difference (T1-T2) is 100 ° C. or less).
一方、粒径12μm以上、且つ、頻度6%以上の極大値が存在しない(粒径12μm未満、又は、頻度6%未満の極大値が存在する)実験例9,10及び粒径4〜8μmの頻度が2.5〜6%の範囲から外れている実験例11〜16は、通電試験の結果が「×:劣っている」であった(温度差(T1−T2)は120℃より大きい)。 On the other hand, there is no maximum value with a particle size of 12 μm or more and a frequency of 6% or more (particle size is less than 12 μm, or there is a maximum value with a frequency of less than 6%). In Experimental Examples 11 to 16 where the frequency is out of the range of 2.5 to 6%, the result of the energization test was “x: inferior” (temperature difference (T1-T2) is greater than 120 ° C.) .
この実施例によれば、第1粒子群61の体積基準の粒度分布において、粒径12μm以上の範囲に頻度6%以上の極大値が存在し、且つ、粒径4〜8μmの頻度が2.5〜6%であると、第1粒子群61の熱移動性が良好になることから、発熱体50に大電流を流すことなく、チューブ40の表面温度をより高い温度まで急速に昇温できることが分かる。 According to this embodiment, in the volume-based particle size distribution of the first particle group 61, there is a maximum value of 6% or more in the range of the particle size of 12 μm or more, and the frequency of the particle size of 4 to 8 μm is 2. Since the heat mobility of the first particle group 61 becomes good when it is 5 to 6%, the surface temperature of the tube 40 can be rapidly raised to a higher temperature without flowing a large current through the heating element 50. I understand.
第1粒子群61の体積基準の粒度分布において、粒径12μm以上の範囲に頻度6%以上の極大値が存在し、且つ、粒径4〜8μmの頻度が2.5〜6%であり、さらに、粒径1.0μm以下の頻度の積算が0.1〜5%であり、且つ、粒径34μm以上の頻度の積算が4〜26%であると、第1粒子群61の熱移動性がより一層良好になることから、発熱体50に大電流を流すことなく、チューブ40の表面温度をより一層高い温度まで急速に昇温できることが分かる。 In the volume-based particle size distribution of the first particle group 61, there is a maximum value of frequency 6% or more in the range of particle size 12 μm or more, and the frequency of particle size 4-8 μm is 2.5-6%, Furthermore, the heat mobility of the first particle group 61 is such that the integration of the frequency of the particle size of 1.0 μm or less is 0.1 to 5% and the integration of the frequency of the particle size of 34 μm or more is 4 to 26%. Therefore, it can be seen that the surface temperature of the tube 40 can be rapidly increased to a higher temperature without flowing a large current through the heating element 50.
以上、実施の形態および実施例に基づき本発明を説明したが、本発明は上記実施の形態および実施例に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。例えば、チューブ40の形状は筒状である限り特に限定されず、中心軸Oに直交する断面が円形状、楕円形状、多角形状等であってもよい。 The present invention has been described above based on the embodiments and examples. However, the present invention is not limited to the above embodiments and examples, and various modifications can be made without departing from the spirit of the present invention. It is easy to guess that this is possible. For example, the shape of the tube 40 is not particularly limited as long as it is cylindrical, and the cross section orthogonal to the central axis O may be circular, elliptical, polygonal, or the like.
上記実施の形態では、螺旋状のコイルで発熱体50が作られる場合を説明したが、必ずしもこれに限られるものではない。発熱体50は、通電により発熱する抵抗体であれば形状は特に限定されない。 In the above embodiment, the case where the heating element 50 is made of a spiral coil has been described. However, the present invention is not necessarily limited thereto. The shape of the heating element 50 is not particularly limited as long as it is a resistor that generates heat when energized.
上記実施の形態では、発熱体50の過昇温を防止する制御コイル51が発熱体50と中軸20との間に介在するものを説明した。しかし、必ずしもこれに限られるものではなく、制御コイル51を省略して、中軸20に発熱体50を直接に接合することは当然可能である。また、制御コイル51に代えて、発熱体50と中軸20との間に後端コイルを直列に接続することは当然可能である。後端コイルの材料として、Fe−Cr−AlやNi−Cr等を用いることができる。この場合も発熱体50と対向する位置に第1粒子群61が配置される。 In the embodiment described above, the control coil 51 that prevents the heating element 50 from overheating has been interposed between the heating element 50 and the middle shaft 20. However, the present invention is not necessarily limited thereto, and it is naturally possible to omit the control coil 51 and directly join the heating element 50 to the middle shaft 20. In addition, instead of the control coil 51, it is naturally possible to connect a rear end coil in series between the heating element 50 and the middle shaft 20. Fe-Cr-Al, Ni-Cr, or the like can be used as the material for the rear end coil. Also in this case, the first particle group 61 is disposed at a position facing the heating element 50.
10 グロープラグ
20 中軸
40 チューブ
42 シール材
50 発熱体
60 絶縁粉末
61 第1粒子群(粒子群)
71 範囲
72 極大値
74,75 積算
DESCRIPTION OF SYMBOLS 10 Glow plug 20 Middle shaft 40 Tube 42 Sealing material 50 Heat generating body 60 Insulating powder 61 1st particle group (particle group)
71 Range 72 Maximum value 74,75 Total
Claims (3)
前記中軸の先端に電気的に接続される発熱体と、
前記発熱体および前記中軸の先端側を収容する、前記発熱体が電気的に接続される先端が閉じた金属製のチューブと、
前記チューブと前記中軸との間に介在するシール材と、
前記シール材で前記中軸との間が密閉される前記チューブ内に充填される絶縁粉末とを備え、
前記絶縁粉末のうち前記発熱体と対向する位置に配置された粒子群は、レーザ回折法により測定される体積基準の粒度分布において、粒径12μm以上の範囲に頻度6%以上の少なくとも1つの極大値を有し、粒径4〜8μmの頻度が2.5〜6%であることを特徴とするグロープラグ。 A metal shaft,
A heating element electrically connected to the tip of the middle shaft;
A metal tube containing the heating element and the distal end side of the middle shaft, the tip of which is electrically connected to the heating element and closed;
A sealing material interposed between the tube and the central shaft;
Insulating powder filled in the tube sealed with the sealing material between the middle shaft,
In the insulating powder, the particle group arranged at a position facing the heating element has at least one local maximum of frequency 6% or more in a particle size range of 12 μm or more in a volume-based particle size distribution measured by a laser diffraction method. A glow plug having a value and a frequency of 4 to 8 μm and a frequency of 2.5 to 6%.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016027107A JP6592372B2 (en) | 2016-02-16 | 2016-02-16 | Glow plug |
EP17153358.1A EP3208539B1 (en) | 2016-02-16 | 2017-01-26 | Glow plug |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016027107A JP6592372B2 (en) | 2016-02-16 | 2016-02-16 | Glow plug |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017145990A true JP2017145990A (en) | 2017-08-24 |
JP6592372B2 JP6592372B2 (en) | 2019-10-16 |
Family
ID=57914810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016027107A Active JP6592372B2 (en) | 2016-02-16 | 2016-02-16 | Glow plug |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3208539B1 (en) |
JP (1) | JP6592372B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019045109A (en) * | 2017-09-06 | 2019-03-22 | 日本特殊陶業株式会社 | Glow plug |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50144152A (en) * | 1974-05-10 | 1975-11-19 | ||
JPS57189488A (en) * | 1981-05-19 | 1982-11-20 | Matsushita Electric Ind Co Ltd | Method of producing sheathed heater |
JPS5932876B2 (en) * | 1978-08-24 | 1984-08-11 | 株式会社日立ホームテック | Sea heater |
US4963717A (en) * | 1988-04-06 | 1990-10-16 | Champion Spark Plug Europe S.A. | Glow plug for internal combustion engine |
JPH03210705A (en) * | 1989-10-04 | 1991-09-13 | Shin Nippon Kagaku Kogyo Co Ltd | Manufacture of electric insulation filler material for high temperature and sheath heater where same is filled |
JPH04123784A (en) * | 1990-09-14 | 1992-04-23 | Kawasaki Steel Corp | Sheathed heater |
JPH07206432A (en) * | 1993-11-25 | 1995-08-08 | Sumitomo Chem Co Ltd | Alpha-alumina powder and its production |
WO2012046814A1 (en) * | 2010-10-06 | 2012-04-12 | 日立化成工業株式会社 | Multilayer resin sheet and process for production thereof, resin sheet laminate and process for production thereof, cured multilayer resin sheet, metal-foil-cladded multilayer resin sheet, and semiconductor device |
JP2016003260A (en) * | 2014-06-16 | 2016-01-12 | パナソニックIpマネジメント株式会社 | Resin composition for printed wiring board, prepreg for printed wiring board, laminate, metal-clad laminate, printed wiring board and magnesium oxide |
JP2016142458A (en) * | 2015-02-03 | 2016-08-08 | 日本特殊陶業株式会社 | Glow plug |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59215690A (en) * | 1983-05-20 | 1984-12-05 | タテホ化学工業株式会社 | Electric insulating filler material of high temperature sheathed heater |
JPS6321706A (en) | 1986-07-15 | 1988-01-29 | 新日本化学工業株式会社 | High-density electrically insulating material and manufacture thereof |
BR9700464A (en) * | 1996-03-29 | 1998-11-03 | Ngk Spark Plug Co | Ceramic heater |
JP2004340562A (en) * | 2003-04-23 | 2004-12-02 | Ngk Spark Plug Co Ltd | Glow plug |
KR101352750B1 (en) * | 2009-09-25 | 2014-01-16 | 니혼도꾸슈도교 가부시키가이샤 | Spark plug and method for manufacturing spark plug |
-
2016
- 2016-02-16 JP JP2016027107A patent/JP6592372B2/en active Active
-
2017
- 2017-01-26 EP EP17153358.1A patent/EP3208539B1/en not_active Not-in-force
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50144152A (en) * | 1974-05-10 | 1975-11-19 | ||
JPS5932876B2 (en) * | 1978-08-24 | 1984-08-11 | 株式会社日立ホームテック | Sea heater |
JPS57189488A (en) * | 1981-05-19 | 1982-11-20 | Matsushita Electric Ind Co Ltd | Method of producing sheathed heater |
US4963717A (en) * | 1988-04-06 | 1990-10-16 | Champion Spark Plug Europe S.A. | Glow plug for internal combustion engine |
JPH03210705A (en) * | 1989-10-04 | 1991-09-13 | Shin Nippon Kagaku Kogyo Co Ltd | Manufacture of electric insulation filler material for high temperature and sheath heater where same is filled |
JPH04123784A (en) * | 1990-09-14 | 1992-04-23 | Kawasaki Steel Corp | Sheathed heater |
JPH07206432A (en) * | 1993-11-25 | 1995-08-08 | Sumitomo Chem Co Ltd | Alpha-alumina powder and its production |
WO2012046814A1 (en) * | 2010-10-06 | 2012-04-12 | 日立化成工業株式会社 | Multilayer resin sheet and process for production thereof, resin sheet laminate and process for production thereof, cured multilayer resin sheet, metal-foil-cladded multilayer resin sheet, and semiconductor device |
JP2016003260A (en) * | 2014-06-16 | 2016-01-12 | パナソニックIpマネジメント株式会社 | Resin composition for printed wiring board, prepreg for printed wiring board, laminate, metal-clad laminate, printed wiring board and magnesium oxide |
JP2016142458A (en) * | 2015-02-03 | 2016-08-08 | 日本特殊陶業株式会社 | Glow plug |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019045109A (en) * | 2017-09-06 | 2019-03-22 | 日本特殊陶業株式会社 | Glow plug |
Also Published As
Publication number | Publication date |
---|---|
JP6592372B2 (en) | 2019-10-16 |
EP3208539A1 (en) | 2017-08-23 |
EP3208539B1 (en) | 2018-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4402046B2 (en) | Spark plug | |
JP6525616B2 (en) | Glow plug | |
JP6592372B2 (en) | Glow plug | |
JP6280853B2 (en) | Glow plug | |
JP6795886B2 (en) | Glow plugs and their manufacturing methods | |
JP6393124B2 (en) | Glow plug | |
EP3453963B1 (en) | Glow plug | |
JP2013004412A (en) | Spark plug | |
JP6931566B2 (en) | Glow plug | |
JP6996848B2 (en) | Glow plug | |
JP2021021551A (en) | Glow plug and manufacturing method therefor | |
JP6279925B2 (en) | Glow plug | |
JP7018265B2 (en) | Glow plug | |
JP6997731B2 (en) | Glow plug | |
JP2018054160A (en) | Glow plug | |
EP3333483B1 (en) | Glow plug | |
JP7045161B2 (en) | Glow plug | |
JP2015096786A (en) | Glow plug | |
JP6796957B2 (en) | Glow plug | |
JP6960394B2 (en) | Glow plugs and glow plug manufacturing methods | |
JP2018194230A (en) | Glow plug | |
JP6794176B2 (en) | Glow plug | |
EP3018414A1 (en) | Glow plug | |
JP2019032151A (en) | Glow plug | |
JP2018073778A (en) | Resistor and spark plug including the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20171130 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20171204 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181026 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190826 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190828 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190920 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6592372 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |