[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2017143664A - Contactless power transmission device, power transmission device, and power receiving device - Google Patents

Contactless power transmission device, power transmission device, and power receiving device Download PDF

Info

Publication number
JP2017143664A
JP2017143664A JP2016023889A JP2016023889A JP2017143664A JP 2017143664 A JP2017143664 A JP 2017143664A JP 2016023889 A JP2016023889 A JP 2016023889A JP 2016023889 A JP2016023889 A JP 2016023889A JP 2017143664 A JP2017143664 A JP 2017143664A
Authority
JP
Japan
Prior art keywords
power transmission
power
communication
reception
communication unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016023889A
Other languages
Japanese (ja)
Inventor
淳史 田中
Junji Tanaka
淳史 田中
大貫 悟
Satoru Onuki
悟 大貫
義弘 戸高
Yoshihiro Todaka
義弘 戸高
井戸 寛
Hiroshi Ido
寛 井戸
吉弘 昌史
Masashi Yoshihiro
昌史 吉弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2016023889A priority Critical patent/JP2017143664A/en
Publication of JP2017143664A publication Critical patent/JP2017143664A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Near-Field Transmission Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that, in a contactless power transmission device that uses wireless communication on a power transmission side and a power receiving side for control of power transmission, safe and efficient power transmission cannot be realized when wireless communication is not established.SOLUTION: The power transmission device performs power transmission for establishing communication. When communication with a power receiving device cannot be established due to a resonance state at that time even if the power receiving device is present within a power transmission possible range, it is determined that communication is interfered and a frequency used for communication is changed. If the power receiving device cannot establish communication with the power transmission device despite having received power, it is determined that the communication is interfered and the frequency used for communication is changed.SELECTED DRAWING: Figure 1

Description

本発明は、送電装置に具備された送電コイルと受電装置に具備された受電コイルを介して、非接触(ワイヤレス)で電力の伝送を行う非接触電力伝送装置に関する。   The present invention relates to a non-contact power transmission device that performs non-contact (wireless) power transmission via a power transmission coil provided in a power transmission device and a power reception coil provided in the power reception device.

非接触で電力を伝送する方法として、電磁誘導(数100kHz)による電磁誘導型、電界または磁界共鳴を介したLC共振間伝送による電界・磁界共鳴型、電波(数GHz)によるマイクロ波送電型、あるいは可視光領域の電磁波(光)によるレーザ送電型が知られている。この中で既に実用化されているのは、電磁誘導型である。これは簡易な回路(トランス方式)で実現可能であるなどの優位性はあるが、送電距離が短いという課題もある。   As a method of transmitting power in a non-contact manner, an electromagnetic induction type by electromagnetic induction (several hundreds of kHz), an electric field / magnetic field resonance type by transmission between LC resonances via electric field or magnetic field resonance, a microwave power transmission type by radio waves (several GHz), Alternatively, a laser power transmission type using electromagnetic waves (light) in the visible light region is known. Among them, the electromagnetic induction type has already been put into practical use. This has the advantage that it can be realized with a simple circuit (transformer system), but there is also a problem that the transmission distance is short.

そこで、最近になって近距離伝送(〜2m)が可能な電界・磁界共鳴型の電力伝送が注目を浴びてきた。このうち、電界共鳴型の場合、伝送経路中に手などを入れると、人体が誘電体であるため、エネルギーを熱として吸収して誘電体損失を生じる。これに対して磁界共鳴型の場合、人体がエネルギーをほとんど吸収せず、誘電体損失を避けられる。この点から磁界共鳴型に対する注目度が上昇してきている。   Therefore, recently, electric field / magnetic field resonance type power transmission capable of short-distance transmission (up to 2 m) has attracted attention. Among these, in the case of the electric field resonance type, when a hand or the like is put in the transmission path, the human body is a dielectric, so that energy is absorbed as heat and dielectric loss occurs. On the other hand, in the case of the magnetic resonance type, the human body hardly absorbs energy, and dielectric loss can be avoided. From this point of view, attention to the magnetic resonance type has been increasing.

これら非接触の電力の伝送を安全に効率よく行うためには、送電装置は電波を使った無線通信などを使って受電装置の温度や電圧や電流などの状況を監視し、送電の可否や送電する電力を適正に制御する必要がある。   In order to perform these contactless power transmissions safely and efficiently, the power transmission device monitors the temperature, voltage, current, and other conditions of the power reception device using radio communication using radio waves, etc. It is necessary to properly control the power to be generated.

しかし、非接触電力伝送装置が行っている無線通信と同じ周波数で他の機器が通信を行っていたり、何らかのノイズが発生していたりする時には通信が確立せず、電力の伝送を制御ができなくなる。特に近距離通信では免許が不要で使える通信方式であるIEEE802.15.4(ZigBee(登録商標))、IEEE802.15.1(Bluetooth(登録商標))、IEEE802.11(無線LAN)等の利用が好適に使えるが、これらはISMバンドである2.4GHz帯を共有しているため、混信が発生し、通信が途切れるあるいは通信が確立しない可能性がある。   However, when other devices are communicating at the same frequency as the wireless communication performed by the non-contact power transmission device, or when some noise is generated, communication is not established, and power transmission cannot be controlled. . Use of IEEE802.15.4 (ZigBee (registered trademark)), IEEE802.15.1 (Bluetooth (registered trademark)), IEEE802.11 (wireless LAN), etc., which are communication systems that do not require a license for short-range communication. However, since they share the 2.4 GHz band, which is an ISM band, there is a possibility that interference occurs and communication is interrupted or communication is not established.

特許文献1では、通信が途切れやすい環境であっても、充電を効率的に行うことができる非接触充電装置および非接触充電方法が開示されている。   Patent Document 1 discloses a non-contact charging device and a non-contact charging method capable of efficiently performing charging even in an environment where communication is easily interrupted.

特開2015−226400号公報JP 2015-226400 A

特許文献1に開示された構成の場合、送電開始時に通信が確立しないときには、非接触充電装置は動作しない。   In the case of the configuration disclosed in Patent Document 1, the non-contact charging device does not operate when communication is not established at the start of power transmission.

本発明は、送電開始時に混信などにより通信が確立しない場合には、通信の周波数を変化させて通信が確立する周波数を見つけ出し、その結果として安全で効率的な非接触電力伝送装置を提供することを目的とする。   The present invention finds a frequency at which communication is established by changing the frequency of communication when communication is not established at the start of power transmission, and provides a safe and efficient non-contact power transmission device as a result. With the goal.

上記課題を解決するために、本発明の非接触電力伝送装置は、送電コイル及び送電共振容量により構成された送電共振器と、送電回路と、送電通信部とを有する送電装置と、受電コイル及び受電共振容量により構成された受電共振器と、受電回路と、受電通信部とを有する受電装置とを備え、前記送電コイルと前記受電コイルの間の作用を介して前記送電装置から前記受電装置へ非接触で電力伝送し、前記送電通信部と前記受電通信部の間を所定の中心周波数で無線により通信して前記電力伝送を制御する非接触電力伝送装置において、前記送電装置は、更に、共振状態検出部と送電制御部を備え、前記受電装置は、更に、受電制御部を備え、前記共振状態検出部は、前記送電共振器の共振状態を検出し、前記送電制御部は、前記共振状態の検出結果に基づいて前記送電装置の送電可能範囲に前記受電装置が存在するか否かを判断し、前記存在を認め、かつ、前記送電通信部と前記受電通信部の間で通信が確立しない場合に、予め定めた変更手順に基づいて、前記送電通信部における前記中心周波数を変更し、前記受電制御部は、前記送電通信部と前記受電通信部の間で通信が確立しない場合に、予め定めた変更手順に基づいて、前記受電通信部における前記中心周波数を変更することを特徴とする。   In order to solve the above problems, a non-contact power transmission device according to the present invention includes a power transmission resonator including a power transmission coil and a power transmission resonance capacitor, a power transmission circuit, a power transmission device having a power transmission communication unit, a power reception coil, A power reception device including a power reception resonator including a power reception resonance capacitor, a power reception circuit, and a power reception communication unit; and from the power transmission device to the power reception device via an action between the power transmission coil and the power reception coil. In the non-contact power transmission device that performs power transmission in a non-contact manner and wirelessly communicates between the power transmission communication unit and the power reception communication unit at a predetermined center frequency to control the power transmission, the power transmission device further includes a resonance A power reception control unit, the resonance state detection unit detects a resonance state of the power transmission resonator, and the power transmission control unit includes the resonance state. of When it is determined whether or not the power receiving device exists in the power transmission possible range of the power transmitting device based on the output result, the existence is recognized, and communication is not established between the power transmission communication unit and the power receiving communication unit The center frequency in the power transmission communication unit is changed based on a predetermined change procedure, and the power reception control unit is predetermined when communication is not established between the power transmission communication unit and the power reception communication unit. The center frequency in the power receiving communication unit is changed based on the changing procedure.

本発明では、送電装置から受電装置へ非接触で電力を伝送するに際し、無線通信に使う周波数で混信などが発生して無線通信が確立しない場合に、他の周波数で通信が確立するかを確認する。通信が確立する周波数が存在する場合、その周波数で通信を行う。これにより、無線通信が確立せずに非接触電力伝送装置の制御ができなくなることを解消でき、安全で効率の良い非接触電力伝送装置を提供することができる。   In the present invention, when transmitting power from a power transmitting device to a power receiving device in a non-contact manner, if radio communication is not established due to interference at the frequency used for wireless communication, it is confirmed whether communication is established at another frequency. To do. If there is a frequency at which communication is established, communication is performed at that frequency. As a result, it is possible to solve the problem that the wireless power transmission apparatus cannot be controlled without establishing wireless communication, and a safe and efficient wireless power transmission apparatus can be provided.

実施の形態1における非接触電力伝送装置の構成を示すブロック図The block diagram which shows the structure of the non-contact electric power transmission apparatus in Embodiment 1. 実施の形態1における通信チャネルと中心周波数の関係を示す表Table showing the relationship between communication channels and center frequencies in the first embodiment 実施の形態1における通信チャネルと周波数の関係を示す図The figure which shows the relationship between the communication channel and frequency in Embodiment 1. 実施の形態1における第一の通信チャネルと周波数の関係を示す図The figure which shows the relationship between the 1st communication channel and frequency in Embodiment 1. 実施の形態1における第一の通信チャネルと妨害電波の関係を示す図The figure which shows the relationship between the 1st communication channel and jamming electric wave in Embodiment 1. 実施の形態1におけるチャネル変更順を示す表Table showing the channel change order in the first embodiment 実施の形態1において妨害電波によって第一の通信チャネルで通信が行えなかった時の動作を示す図The figure which shows the operation | movement when communication cannot be performed in a 1st communication channel by jamming electric wave in Embodiment 1. 実施の形態1における送電装置と受電装置の間の距離と送電共振器の共振電圧の関係を示す図The figure which shows the relationship between the distance between the power transmission apparatus and power receiving apparatus in Embodiment 1, and the resonant voltage of a power transmission resonator 実施の形態2における送電装置と受電装置の間の距離と共振周波数の関係を示す図The figure which shows the relationship between the distance between the power transmission apparatus and power receiving apparatus in Embodiment 2, and a resonant frequency 実施の形態1の送電装置の動作を説明するフローチャートFlowchart for explaining the operation of the power transmission device according to the first embodiment. 実施の形態1の受電装置の動作を説明するフローチャートFlowchart for explaining the operation of the power receiving device in the first embodiment.

図1は、本発明の非接触電力伝送装置の構成を示す。非接触電力伝送装置は、送電装置1と受電装置2により構成される。   FIG. 1 shows a configuration of a non-contact power transmission apparatus according to the present invention. The non-contact power transmission device includes a power transmission device 1 and a power reception device 2.

送電装置1は、高周波電力を非接触伝送するための送電コイル4を有する。受電装置2は、送電コイル4が供給する高周波電力を受電するための受電コイル9を有する。図1の構成の非接触電力伝送装置において、例えば、送電コイル4と受電コイル9の間における磁界共鳴を介して送電装置1から受電装置2へ電力を伝送するように構成することができる。なお、送電コイル4と受電コイル9の結合形態は、電磁誘導、電波、電場または磁場の共有によるもの等、適宜採用することができる。   The power transmission device 1 includes a power transmission coil 4 for non-contact transmission of high-frequency power. The power receiving device 2 includes a power receiving coil 9 for receiving high frequency power supplied from the power transmitting coil 4. In the non-contact power transmission apparatus having the configuration of FIG. 1, for example, power can be transmitted from the power transmission apparatus 1 to the power reception apparatus 2 through magnetic field resonance between the power transmission coil 4 and the power reception coil 9. In addition, the connection form of the power transmission coil 4 and the power reception coil 9 can be appropriately employed such as electromagnetic induction, radio wave, electric field or magnetic field sharing.

送電装置1は、更に、送電コイル4と送電共振容量5による送電共振器と、送電共振器の共振状態を検出する共振状態検出部6と、受電装置2との通信を行う送電通信部7と、共振状態検出部6と送電通信部7の情報に基づき、送電通信部7における通信の周波数を変更する送電制御部8と、通信状況を表示するメッセージ表示部15を有する。   The power transmission device 1 further includes a power transmission resonator including the power transmission coil 4 and the power transmission resonance capacitor 5, a resonance state detection unit 6 that detects a resonance state of the power transmission resonator, and a power transmission communication unit 7 that performs communication with the power reception device 2. Based on information of the resonance state detection unit 6 and the power transmission communication unit 7, the power transmission control unit 8 that changes the frequency of communication in the power transmission communication unit 7 and the message display unit 15 that displays the communication status are included.

受電装置2は、更に、受電コイル9と受電共振容量10による受電共振器と、受電した電力を変換する受電回路11と、受電回路11が変換した電力を外部へ出力する出力端子12と、送電装置との通信を行う受電通信部13と、受電回路11の状態情報と受電通信部13からの情報に基づき、受電通信部13における通信の周波数の周波数を変更する受電制御部14を有する。   The power receiving device 2 further includes a power receiving resonator including the power receiving coil 9 and the power receiving resonance capacitor 10, a power receiving circuit 11 that converts the received power, an output terminal 12 that outputs the power converted by the power receiving circuit 11, and power transmission. A power reception communication unit 13 that performs communication with the apparatus, and a power reception control unit 14 that changes the frequency of the communication frequency in the power reception communication unit 13 based on the status information of the power reception circuit 11 and information from the power reception communication unit 13 are included.

共振状態検出部6は、送電共振器の共振状態を検出する。共振状態の検出には、送電コイル4の両端の共振電圧や共振周波数の測定が適している。   The resonance state detection unit 6 detects the resonance state of the power transmission resonator. For detection of the resonance state, measurement of the resonance voltage and resonance frequency at both ends of the power transmission coil 4 is suitable.

送電通信部7は受電通信部13と無線で通信を行う。送電通信部7や受電通信部13は既存の通信モジュールを使って構成することもできるし、独自の回路で構成することもできる。無線通信に使う方式はIEEE802.15.4(ZigBee(登録商標))、IEEE802.15.1(Bluetooth(登録商標))、IEEE802.11(無線LAN)などの既存の規格を使うこともできるし、独自の方式で構成することもできる。   The power transmission communication unit 7 communicates with the power reception communication unit 13 wirelessly. The power transmission communication unit 7 and the power reception communication unit 13 can be configured using an existing communication module, or can be configured by a unique circuit. As a method for wireless communication, an existing standard such as IEEE802.15.4 (ZigBee (registered trademark)), IEEE802.15.1 (Bluetooth (registered trademark)), IEEE802.11 (wireless LAN), or the like can be used. It can also be configured in its own way.

なお、非接触電力伝送において電力が伝送される周波数は上記無線の通信の周波数より十分小さいので、非接触電力伝送に伴う放射ノイズが無線通信に与える影響は無視できる。本実施の形態では非接触電力伝送の周波数は100kHz以下とした。   In addition, since the frequency at which power is transmitted in contactless power transmission is sufficiently smaller than the frequency of the wireless communication, the influence of radiation noise associated with contactless power transmission on wireless communication can be ignored. In this embodiment, the frequency of non-contact power transmission is 100 kHz or less.

送電制御部8は、共振状態検出部6が検出した送電共振器の共振状態の情報と、送電通信部7が受電通信部13と通信が確立した旨の情報と、通信の結果得られた受信装置2の情報とを用いて送電回路3の送電電力を制御する。送電通信部7と受電通信部13の通信が確立しない場合、送電制御部8は、送電通信部7が通信に使う周波数を所定の手順に従って制御する。   The power transmission control unit 8 receives information about the resonance state of the power transmission resonator detected by the resonance state detection unit 6, information that the power transmission communication unit 7 has established communication with the power reception communication unit 13, and reception obtained as a result of the communication. The transmission power of the power transmission circuit 3 is controlled using the information of the device 2. When communication between the power transmission communication unit 7 and the power reception communication unit 13 is not established, the power transmission control unit 8 controls the frequency used by the power transmission communication unit 7 for communication according to a predetermined procedure.

受電制御部14は、受電回路11の状態情報と、受電通信部13が送電通信部7と通信が確立した旨の情報に基づいて、受電通信部13が通信に使う周波数を所定の手順に従って制御する。   The power reception control unit 14 controls the frequency used by the power reception communication unit 13 for communication according to a predetermined procedure based on the status information of the power reception circuit 11 and information that the power reception communication unit 13 has established communication with the power transmission communication unit 7. To do.

送電通信部7や受電通信部13が通信に使う周波数の制御が本願発明の特徴であり、後に詳述する。   Control of the frequency used by the power transmission communication unit 7 and the power reception communication unit 13 for communication is a feature of the present invention, which will be described in detail later.

なお、送電制御部8や受電制御部14はマイコンによって構成することが好ましいが、FPGAや電子回路によって構成することもできる。   The power transmission control unit 8 and the power reception control unit 14 are preferably configured by a microcomputer, but may be configured by an FPGA or an electronic circuit.

なお、送電回路3は半導体のスイッチング素子などを用いたパワー回路などを用いて比較的大きな交流電力を送電共振器に供給する。ここで、送電時の周波数は、受電共振器との相互作用の影響も含んだ送電共振器の共振周波数によって決まる。   The power transmission circuit 3 supplies a relatively large AC power to the power transmission resonator using a power circuit using a semiconductor switching element or the like. Here, the frequency at the time of power transmission is determined by the resonance frequency of the power transmission resonator including the influence of the interaction with the power reception resonator.

また、受電コイル9と受電共振容量10によって構成される受電共振器には受電回路11が接続される。受電回路11は、受電コイル9が受電した高周波電力の検波や平滑化を行い、必要とする電力形式に変換した後に電力出力端子12から出力する。   A power receiving circuit 11 is connected to a power receiving resonator including the power receiving coil 9 and the power receiving resonance capacitor 10. The power receiving circuit 11 detects and smoothes the high frequency power received by the power receiving coil 9, converts it to a required power format, and outputs it from the power output terminal 12.

以上が、本発明の非接触電力伝送装置における動作の概略である。   The above is the outline of the operation in the non-contact power transmission apparatus of the present invention.

本発明は、上述した共振状態の検出と通信部の通信周波数制御に特徴がある。以下では、実施の形態ごとに本発明の特徴について詳説する。
<実施の形態1>
図2は実施の形態1で使われる送電通信部7および受電通信部13で使うことができる通信チャネルとそれぞれの中心周波数の関係を示す表である。本実施の形態ではIEEE802.15.4と類似の通信を行うことを想定しているが、必ずしもこれに限定されるわけではなく、例えばIEEE802.11など、その他の通信も利用することができる。
The present invention is characterized by the above-described resonance state detection and communication frequency control of the communication unit. Hereinafter, the features of the present invention will be described in detail for each embodiment.
<Embodiment 1>
FIG. 2 is a table showing the relationship between the communication channels that can be used in the power transmission communication unit 7 and the power reception communication unit 13 used in the first embodiment and the respective center frequencies. In the present embodiment, it is assumed that communication similar to IEEE802.15.4 is performed, but the present invention is not necessarily limited to this, and other communication such as IEEE802.11 can also be used.

図3はCH1乃至CH16の各チャネルの周波数と電波強度の関係を示す図である。本実施の形態では、16個の通信可能なチャネルを予め準備したが、チャネル数は16個に限定されるものではない。   FIG. 3 is a diagram showing the relationship between the frequency of each channel CH1 to CH16 and the radio wave intensity. In this embodiment, 16 communicable channels are prepared in advance, but the number of channels is not limited to 16.

図4はCH1を使って通信を行っているときの周波数と電波強度の関係を示す図である。CH1は2405MHzを中心周波数として通信を行う。   FIG. 4 is a diagram showing the relationship between the frequency and the radio wave intensity when communication is performed using CH1. CH1 performs communication with a center frequency of 2405 MHz.

図5はCH1を使って通信を行っているときに、約2400MHz〜2425MHz付近に妨害電波が存在する場合の周波数と電波強度の関係を示す図である。CH1近辺に図5に示したような妨害電波が存在する場合、CH1を使った通信が確立しない場合がある。そのため、下記に示すような通信チャネルの変更を行い、送電通信部7と受電通信部13の通信の確立を試みる。   FIG. 5 is a diagram showing the relationship between the frequency and the radio wave intensity when the jamming radio wave exists in the vicinity of about 2400 MHz to 2425 MHz when communication is performed using CH1. If there is an interference radio wave as shown in FIG. 5 in the vicinity of CH1, communication using CH1 may not be established. Therefore, the communication channel is changed as shown below and an attempt is made to establish communication between the power transmission communication unit 7 and the power reception communication unit 13.

なお、上記通信は送電通信部7と受電通信部13との間で認証やペアリングが行えた場合に確立するものとする。予め定めたパターンの認証ができれば、正しい通信の相手同志である送電通信部7と受電通信部13が通信可能な範囲にあって、かつ、通信可能な状態にあると見なして実質的な通信を開始する。なお、前記パターンの認証は、必要に応じて複数回繰り返すことにより認証精度を高めることができる。   The communication is established when authentication or pairing is performed between the power transmission communication unit 7 and the power reception communication unit 13. If authentication of a predetermined pattern can be performed, it is considered that the power transmission communication unit 7 and the power reception communication unit 13 that are partners of correct communication are within a communicable range and are in a communicable state. Start. Note that the authentication accuracy can be improved by repeating the authentication of the pattern a plurality of times as necessary.

図6は、送電制御部8および受電制御部14が通信チャネルを変更する順番を示す。最初に変更順1の通信チャネルであるCH1を使って通信を行い、CH1で通信が確立しない場合には変更順2の通信チャネルであるCH9を使って通信を行う。以後、設定した通信チャネルで通信が確立しない場合には、順次、図6にしたがって通信チャネルを順次変更する。通信チャネルは変更順16まで変更する。なお、CH1で通信が確立しない場合や、CH1で通信が一度は確立したものの途切れてしまった場合は、変更順2のCH9に変更するのではなく、変更順に従う前に再度CH1での通信の確立を試みてもよい。   FIG. 6 shows the order in which the power transmission control unit 8 and the power reception control unit 14 change the communication channel. First, communication is performed using CH1, which is the communication channel in the change order 1, and communication is performed using CH9, which is the communication channel in the change order 2, if communication is not established on CH1. Thereafter, when communication is not established with the set communication channel, the communication channel is sequentially changed according to FIG. The communication channel is changed up to the change order 16. If communication is not established on CH1, or if communication is established once on CH1, but is interrupted, it is not changed to CH9 in the change order 2, but communication on CH1 is performed again before the change order is followed. You may try to establish.

図7は図5のCH1での通信が妨害電波を受けているときに、図6に示した通信チャネルの変更順に従って、CH9に通信チャネルを変更した時の周波数と電波強度の関係を示す図である。妨害電波があり通信は確立しない場合には、図6であらかじめ定めた変更順に従い、通信チャネルをCH1からCH9に変更する。   FIG. 7 is a diagram showing the relationship between the frequency and the radio wave intensity when the communication channel is changed to CH9 according to the change order of the communication channel shown in FIG. 6 when the communication at CH1 in FIG. It is. If there is a jamming radio wave and communication is not established, the communication channel is changed from CH1 to CH9 according to the change order predetermined in FIG.

図8は送電装置と受電装置の間の距離と送電共振器の共振電圧の関係を示す。実施の形態1では、共振状態検出部6は送電共振器を構成する送電コイル4の両端の電圧を測定する。また、実施の形態1では送電装置1と受電装置2の間の距離が15〜35mmで好適に送電が行えるものとする。共振器を用いた非接触電力伝送装置では、送電共振器と受電共振器の距離によって共振電圧が変化し、距離が離れているときや受電共振器が存在しないときには共振電圧が非常に高くなる。   FIG. 8 shows the relationship between the distance between the power transmission device and the power reception device and the resonance voltage of the power transmission resonator. In the first embodiment, the resonance state detection unit 6 measures the voltage across the power transmission coil 4 constituting the power transmission resonator. In the first embodiment, it is assumed that power transmission can be suitably performed with a distance between the power transmission device 1 and the power reception device 2 of 15 to 35 mm. In a non-contact power transmission apparatus using a resonator, the resonance voltage varies depending on the distance between the power transmission resonator and the power reception resonator, and the resonance voltage becomes very high when the distance is long or when there is no power reception resonator.

図10は、本発明の実施の形態1における送電制御部8の制御のフローチャートを示す。以降、図10を用いて送電装置1側の動作を説明する。   FIG. 10 shows a flowchart of control of the power transmission control unit 8 according to Embodiment 1 of the present invention. Hereinafter, the operation on the power transmission device 1 side will be described with reference to FIG.

送電装置1が動作を開始すると、送電制御部8は送電通信部7が通信に使う通信チャネルの変更順Nに1を代入する(ステップS101)。   When the power transmission device 1 starts operating, the power transmission control unit 8 substitutes 1 for the change order N of the communication channels used by the power transmission communication unit 7 for communication (step S101).

ここで、通信チャネルを変更する順番は図6のように定められ、変更順1番は通信チャネルCH1、変更順2番は通信チャネルCH9・・・の順となっている。なお、この変更順はCH1、CH2のように周波数の順に変更することもできるし、図6のように周波数に間隔を開けて変更することもできる。これは通信に使う周波数や想定する混信などを想定して決めても良いし、実際に動作させる場所の電波を観測して決めても良い。また、通信チャネルのすべてを使う必要はなく、通信チャネルが3個以上あるときに2個だけを使うなど、使う数を限定しても良い。   Here, the order in which the communication channels are changed is determined as shown in FIG. 6. The change order No. 1 is the communication channel CH1, the change order No. 2 is the order of the communication channels CH9,. This change order can be changed in the order of frequencies such as CH1 and CH2, or can be changed with an interval in frequency as shown in FIG. This may be determined on the assumption of the frequency used for communication or the assumed interference, or may be determined by observing the radio wave at the place where it is actually operated. Further, it is not necessary to use all of the communication channels, and the number of communication channels may be limited, such as using only two when there are three or more communication channels.

送電制御部8は変更順Nの値に基づいて送電通信部8が使う通信チャネルを指定する(ステップS102)。通信チャネルの変更順は図6に示したものを用い、変更順N=1の場合にはCH1を指定する。したがって、通信チャネルと中心周波数の関係が図2の表であるとき、通信チャネルはCH1であるので、2405MHzで通信を行うことになる。   The power transmission control unit 8 specifies a communication channel used by the power transmission communication unit 8 based on the value of the change order N (step S102). The communication channel change order is the same as that shown in FIG. 6, and CH1 is designated when the change order N = 1. Therefore, when the relationship between the communication channel and the center frequency is the table of FIG. 2, the communication channel is CH1, and therefore communication is performed at 2405 MHz.

次に、送電制御部8は送電回路3に対して低電力で送電する(ステップS103)。ここで低電力とは、送電装置と受電装置が適切な距離で配置されているときに、通信が確立するために必要な電力とする。これは、受電側が適切な距離で配置されていないときや通信が確立していない状態で大きな電力を送電すると、回路が損傷する場合や、外部への漏洩磁界が大きくなる場合があるためである。   Next, the power transmission control unit 8 transmits power to the power transmission circuit 3 with low power (step S103). Here, the low power is power necessary for establishing communication when the power transmitting device and the power receiving device are arranged at an appropriate distance. This is because when a large amount of power is transmitted when the power receiving side is not arranged at an appropriate distance or when communication is not established, the circuit may be damaged or the leakage magnetic field to the outside may increase. .

送電装置1からの低電力の送電により、受電装置2が動作を開始する。   The power receiving device 2 starts operation by low power transmission from the power transmitting device 1.

低電力の送電の状態で送電側と受電側の通信が確立しているかを確認し、通信が確立しているときには通常の大電力での送電を開始する。通信が確立していないときにはステップS105へ進む(ステップS104)。   In the state of low power transmission, it is confirmed whether communication between the power transmission side and the power reception side is established. When communication is established, transmission with normal high power is started. When communication is not established, the process proceeds to step S105 (step S104).

ステップS104で通信が確立していないときには、送電制御部8は送電装置1の送電可能範囲に受電装置2が存在するか否かを検出する(ステップS105)。受電対象の確認は共振状態検出部6が検出した共振電圧を用いることができる。前述のとおり、図8は送電装置1と受電装置2の距離と共送電共振器の共振電圧の関係を示し、例えば好適な距離が15〜35mmであるとすると、判断基準をV0に設定する。送電共振電圧がV0以上の時には「受電対象なし」と判定して、ステップS110へ進む。共振電圧がV0未満の時には「受電対象あり」と判定して、ステップS106へ進む。   When communication is not established in step S104, the power transmission control unit 8 detects whether or not the power receiving device 2 exists in the power transmission possible range of the power transmitting device 1 (step S105). The resonance voltage detected by the resonance state detection unit 6 can be used to confirm the power reception target. As described above, FIG. 8 shows the relationship between the distance between the power transmitting device 1 and the power receiving device 2 and the resonance voltage of the co-transmission resonator. For example, if the preferable distance is 15 to 35 mm, the determination criterion is set to V0. When the power transmission resonance voltage is equal to or higher than V0, it is determined that “no power reception target” and the process proceeds to step S110. When the resonance voltage is less than V0, it is determined that “the power reception target is present”, and the process proceeds to step S106.

ステップS105で「受電対象あり」と判定したときには、通信周波数を設定してから指定時間が経過したかを確認する(ステップS106)。この指定時間を設ける理由は、通信チャネルを指定してから通信が確立するまでに時間がかかることと、送電通信部7と受電通信部13のチャネルの変更時刻がずれている可能性があるため、そのずれを待つためである。指定時間が経過していないときは、ステップS104からステップS106を繰り返し実行する。指定時間が経過しても通信が確立せず受電対象が存在し続けるときにはステップS107へ進む。   When it is determined in step S105 that “there is a power reception target”, it is confirmed whether or not the specified time has elapsed since the communication frequency was set (step S106). The reason for providing the designated time is that it takes time until the communication is established after the communication channel is designated, and the channel change times of the power transmission communication unit 7 and the power reception communication unit 13 may be shifted. This is to wait for the difference. When the designated time has not elapsed, steps S104 to S106 are repeatedly executed. If the communication is not established and the power receiving target continues to exist even after the specified time has elapsed, the process proceeds to step S107.

ステップS106で通信周波数を設定後に指定時間が経過したと判定したときには、変更順Nがチャネル順の最大値以上であるか否かを判定する(ステップS107)。ここで、チャネルの変更順は図6に示したとおりであり、変更順Nが16以上であるときには「受電対象なし」、または「通信に使えるチャネルが無い」と判定して通信を終了するためにステップS110へ進む。一方、変更順Nが16未満の時はステップ108へ進む。   If it is determined in step S106 that the specified time has elapsed after setting the communication frequency, it is determined whether the change order N is equal to or greater than the maximum value in the channel order (step S107). Here, the channel change order is as shown in FIG. 6, and when the change order N is 16 or more, it is determined that “no power reception target” or “no channel available for communication” and communication is terminated. The process proceeds to step S110. On the other hand, when the change order N is less than 16, the process proceeds to step 108.

変更順Nが16未満の時は、変更順Nに1を加算する(ステップS108)。   When the change order N is less than 16, 1 is added to the change order N (step S108).

変更順Nの値に従って送電通信部の通信チャネルを設定する(ステップS109)。例えば、初めてこのステップを実行するときには変更順N=2であり、その時、図6から変更順2のCH9が通信チャネルとして設定される。その後、ステップ104へ進む。   The communication channel of the power transmission communication unit is set according to the value of the change order N (step S109). For example, when this step is executed for the first time, the change order N = 2, and at that time, CH9 in the change order 2 is set as the communication channel from FIG. Then, it progresses to step 104.

そして、ステップS105で受電対象なしと判断したとき、ステップS107で変更順Nが変更順の最大値となったと判断したときには、送電通信部7の通信を終了する(ステップS110)。本ステップで通信を終了するにあたり、通信を終了する旨のメッセージをメッセージ表示部15に表示する。   When it is determined in step S105 that there is no power reception target, when it is determined in step S107 that the change order N has reached the maximum value in the change order, the communication of the power transmission communication unit 7 is terminated (step S110). When the communication is terminated in this step, a message indicating that the communication is terminated is displayed on the message display unit 15.

ステップS110の後、送電を終了する(ステップS111)。送電を終了すると送電装置1が停止し、受電装置2に供給される電力がなくなり、受電側も停止する。本ステップで送電を終了するにあたり、送電を終了する旨のメッセージをメッセージ表示部15に表示する。   After step S110, power transmission is terminated (step S111). When the power transmission is finished, the power transmission device 1 stops, the power supplied to the power reception device 2 disappears, and the power reception side also stops. When power transmission is terminated in this step, a message indicating that power transmission is terminated is displayed on the message display unit 15.

以上、送電制御部8の制御を中心に送電装置1側の動作を説明した。次に、受電制御部14の制御を中心に受電装置2側の動作を説明する。   The operation on the power transmission device 1 side has been described above centering on the control of the power transmission control unit 8. Next, the operation on the power reception device 2 side will be described focusing on the control of the power reception control unit 14.

図11は、本発明の実施の形態1における受電制御部14の制御のフローチャートを示す。以降、図11を用いて受電装置2側の動作を説明する。   FIG. 11 shows a flowchart of control of the power reception control unit 14 in Embodiment 1 of the present invention. Hereinafter, the operation on the power receiving device 2 side will be described with reference to FIG.

まず、受電装置2の受電制御部14は、送電装置1から非接触で電力伝送を受けて動作を開始する。   First, the power reception control unit 14 of the power reception device 2 starts operation by receiving power transmission from the power transmission device 1 in a contactless manner.

次に、受電制御部14は、送電制御部8と同様に受電通信部13が通信に使う通信チャネルの変更順Nに1を代入する(ステップS201)。   Next, similarly to the power transmission control unit 8, the power reception control unit 14 substitutes 1 for the change order N of the communication channels used by the power reception communication unit 13 for communication (step S201).

そして、受電制御部14は、送電制御部8と同様に変更順Nの値に基づいて受電通信部13が使う通信チャネルを指定する(ステップS202)。   And the power reception control part 14 designates the communication channel which the power receiving communication part 13 uses based on the value of the change order N similarly to the power transmission control part 8 (step S202).

この状態で受電通信部13と送電通信部7の通信が確立しているかを確認し、通信が確立しているときには通常の大電力の送電を開始し、通信が確立していないときにはステップS204へ進む(ステップS203)。   In this state, it is confirmed whether communication between the power receiving communication unit 13 and the power transmission communication unit 7 is established. When communication is established, normal high power transmission is started, and when communication is not established, the process proceeds to step S204. Proceed (step S203).

ステップS203で通信が確立していないときには、通信周波数を設定してから指定時間が経過したかを確認する(ステップS204)。この指定時間は、送電側のS106の指定時間と同じとした。送電装置が動作を開始してから受電装置が動作を開始するまでに時間がかかる場合は、送電装置の周波数変更と受電装置の周波数変更が略同一時刻に起こるような指定時間とすることが望ましい。指定時間が経過していないときにはステップS203を繰り返し実行する。指定時間が経過したときには、ステップS205へ進む。   When communication is not established in step S203, it is confirmed whether the specified time has elapsed after setting the communication frequency (step S204). This designated time is the same as the designated time in S106 on the power transmission side. When it takes time from when the power transmission device starts to operate until the power reception device starts operation, it is desirable to set the designated time so that the frequency change of the power transmission device and the frequency change of the power reception device occur at substantially the same time. . When the designated time has not elapsed, step S203 is repeatedly executed. When the designated time has elapsed, the process proceeds to step S205.

ステップS204で通信周波数を設定後に指定時間が経過したと判定したときには、送電制御部と同様に、変更順Nがチャネル順の最大値以上であるか否かを判定する(ステップS205)。変更順Nが16以上であるときには通信に「使えるチャネルが無い」と判定して終了するためにステップS207へ進む。変更順Nが16未満の時はステップ206へ進む。   When it is determined in step S204 that the specified time has elapsed after setting the communication frequency, it is determined whether the change order N is equal to or greater than the maximum value in the channel order, as in the power transmission control unit (step S205). When the change order N is 16 or more, it is determined that there is no usable channel for communication, and the process proceeds to step S207 to end. When the change order N is less than 16, the process proceeds to step 206.

変更順Nが16未満の時は、変更順Nに1を加算し、ステップS202に進む(ステップS206)。   When the change order N is less than 16, 1 is added to the change order N, and the process proceeds to step S202 (step S206).

ステップS205で変更順Nが変更順の最大値となったと判断したときには、受電通信部13の通信を終了し、動作を終了する(ステップS207)。この後、送電装置1が停止し、受電装置2に供給される電力がなくなり、受電側も停止する。   When it is determined in step S205 that the change order N has reached the maximum value in the change order, the communication of the power receiving communication unit 13 is ended and the operation is ended (step S207). Thereafter, the power transmission device 1 stops, the power supplied to the power reception device 2 disappears, and the power reception side also stops.

以上、受電制御部14の制御を中心に受電装置2側の動作を説明した。   Heretofore, the operation on the power receiving device 2 side has been described focusing on the control of the power reception control unit 14.

上記に従えば、図7に示したような妨害電波があり、CH1で通信が確立しなかった時の動作は以下のとおりである。   According to the above, there is an interference radio wave as shown in FIG. 7, and the operation when communication is not established on CH1 is as follows.

送電装置1の最初の通信チャネルは変更順N=1であり、CH1で通信を試みるために低電力で送電を開始する。受電装置2は、送電装置1からの送電を受けて動作を開始する。受信装置2も最初の通信チャネルは変更順N=1でありCH1で通信を行う。   The first communication channel of the power transmission device 1 is the change order N = 1, and power transmission is started with low power in order to attempt communication on CH1. The power receiving device 2 receives the power transmission from the power transmission device 1 and starts operation. The receiving apparatus 2 also uses the CH1 as the first communication channel in the order of change N = 1.

送電装置1と受電装置2はCH1で通信を行おうと試みるが、図7に示したような妨害電波があるため通信は確立しない。   The power transmitting device 1 and the power receiving device 2 try to communicate with each other through CH1, but communication is not established because there is a disturbing radio wave as shown in FIG.

この後、指定時間が経過した後、送電装置1と受電装置2ともに変更順N=2とし、CH9で通信を行うことを試みる。   Thereafter, after the specified time has elapsed, both the power transmitting device 1 and the power receiving device 2 are set to the change order N = 2, and communication is attempted using CH9.

CH9では妨害電波が無いため通信が確立し、送電装置1は通常の大電力での送電を開始する。受電装置2は通常の大電力での受電を開始し、送電装置1と受電装置2の間で非接触での電力伝送が開始される。
<実施の形態2>
実施の形態2では、共振状態検出部6が送電共振器の共振電圧を測定するのではなく、送電共振器の共振周波数を検出する点で実施の形態1と相違する。
Since there is no jamming radio wave in CH9, communication is established, and the power transmission device 1 starts normal high-power transmission. The power receiving device 2 starts receiving power with normal high power, and non-contact power transmission between the power transmitting device 1 and the power receiving device 2 is started.
<Embodiment 2>
The second embodiment is different from the first embodiment in that the resonance state detection unit 6 does not measure the resonance voltage of the power transmission resonator but detects the resonance frequency of the power transmission resonator.

図9は送電装置1と受電装置2の間の距離と共振周波数の関係を示した図である。送電装置1と受電装置2の好適な距離が15〜35mmであるとすると、判断基準をf0に設定する。   FIG. 9 is a diagram illustrating the relationship between the distance between the power transmission device 1 and the power reception device 2 and the resonance frequency. If a suitable distance between the power transmitting device 1 and the power receiving device 2 is 15 to 35 mm, the determination criterion is set to f0.

ステップS105で、共振周波数がf0未満のときには、「受電対象なし」と判定して終了するためにステップS110へ進む。共振周波数がf0以上のときには「受電対象あり」と判定してステップS106へ進む。   In step S105, when the resonance frequency is less than f0, the process proceeds to step S110 in order to determine that “no power reception target” and end. When the resonance frequency is greater than or equal to f0, it is determined that “a power reception target exists” and the process proceeds to step S106.

その他の動作は、実施の形態1と同様であるので詳細な説明は省略する。   Since other operations are the same as those in the first embodiment, detailed description thereof is omitted.

以上のように、本発明の非接触電力伝送装置は、送電装置と受電装置の間の無線通信に混信などの妨害が発生して無線通信が確立しないときでも、異なった周波数を使って無線通信を行うことにより、安全で効率の良い非接触電力伝送を行うことができる。   As described above, the contactless power transmission device of the present invention uses different frequencies even when interference such as interference occurs in wireless communication between the power transmitting device and the power receiving device and wireless communication is not established. By performing this, safe and efficient non-contact power transmission can be performed.

なお、上記の実施の形態にしたがって、受電装置2を携帯電話機やスマートフォンに搭載し、送電装置1を充電器側に搭載することにより、安全で高効率で携帯電話機やスマートフォンに搭載された2次電池を充電できる。また、本発明を、ロボット、搬送機、ドローン等に用いれば、妨害電波等の通信のノイズが大きい環境でも安全で効率の良い非接触電力伝送が可能となり、その結果、ロボット、搬送機、ドローン等の安定な動作を保証できる。   In addition, according to the above embodiment, the power receiving device 2 is mounted on a mobile phone or a smartphone, and the power transmission device 1 is mounted on the charger side, so that the secondary mounted on the mobile phone or the smartphone safely and efficiently. The battery can be charged. In addition, if the present invention is used for a robot, a transporter, a drone, etc., safe and efficient non-contact power transmission is possible even in an environment where there is a large amount of communication noise such as jamming radio waves. As a result, the robot, the transporter, the drone It is possible to guarantee stable operation.

本発明の非接触電力伝送装置は、通信周波数の近辺に外部から妨害電波等の混信がある場合でも、効率的で安全な電力伝送が可能となる。   The non-contact power transmission device of the present invention enables efficient and safe power transmission even when there is interference such as interference radio waves from the outside near the communication frequency.

1 送電装置
2 受電装置
3 送電回路
4 送電コイル
5 送電共振容量
6 共振状態検出部
7 送電通信部
8 送電制御部
9 受電コイル
10 受電共振容量
11 受電回路
12 電力出力端子
13 受電通信部
14 受電制御部
15 メッセージ表示部
DESCRIPTION OF SYMBOLS 1 Power transmission apparatus 2 Power reception apparatus 3 Power transmission circuit 4 Power transmission coil 5 Power transmission resonance capacity 6 Resonance state detection part 7 Power transmission communication part 8 Power transmission control part 9 Power reception coil 10 Power reception resonance capacity 11 Power reception circuit 12 Power output terminal 13 Power reception communication part 14 Power reception control Part 15 Message display part

Claims (6)

送電コイル及び送電共振容量により構成された送電共振器と、送電回路と、送電通信部とを有する送電装置と、
受電コイル及び受電共振容量により構成された受電共振器と、受電回路と、受電通信部とを有する受電装置とを備え、
前記送電コイルと前記受電コイルの間の作用を介して前記送電装置から前記受電装置へ非接触で電力伝送し、
前記送電通信部と前記受電通信部の間を所定の中心周波数で無線により通信して前記電力伝送を制御する非接触電力伝送装置において、
前記送電装置は、更に、共振状態検出部と送電制御部を備え、
前記受電装置は、更に、受電制御部を備え、
前記共振状態検出部は、前記送電共振器の共振状態を検出し、
前記送電制御部は、前記共振状態の検出結果に基づいて前記送電装置の送電可能範囲に前記受電装置が存在するか否かを判断し、前記存在を認め、かつ、前記送電通信部と前記受電通信部の間で通信が確立しない場合に、予め定めた変更手順に基づいて、前記送電通信部における前記中心周波数を変更し、
前記受電制御部は、前記送電通信部と前記受電通信部の間で通信が確立しない場合に、予め定めた変更手順に基づいて、前記受電通信部における前記中心周波数を変更することを特徴とする非接触電力伝送装置。
A power transmission device including a power transmission resonator including a power transmission coil and a power transmission resonance capacity, a power transmission circuit, and a power transmission communication unit;
A power receiving resonator including a power receiving coil and a power receiving resonance capacitor; a power receiving circuit having a power receiving circuit; and a power receiving communication unit.
Non-contact power transmission from the power transmission device to the power reception device through the action between the power transmission coil and the power reception coil,
In the non-contact power transmission device for controlling the power transmission by wirelessly communicating between the power transmission communication unit and the power reception communication unit at a predetermined center frequency,
The power transmission device further includes a resonance state detection unit and a power transmission control unit,
The power reception device further includes a power reception control unit,
The resonance state detection unit detects a resonance state of the power transmission resonator,
The power transmission control unit determines whether the power receiving device exists in a power transmission possible range of the power transmission device based on the detection result of the resonance state, recognizes the existence, and transmits the power transmission communication unit and the power receiving unit. When communication is not established between communication units, based on a predetermined change procedure, change the center frequency in the power transmission communication unit,
The power reception control unit changes the center frequency in the power reception communication unit based on a predetermined change procedure when communication is not established between the power transmission communication unit and the power reception communication unit. Non-contact power transmission device.
前記共振状態検出部は、前記共振状態として前記送電共振器の共振電圧を検出する請求項1に記載の非接触電力伝送装置。   The contactless power transmission device according to claim 1, wherein the resonance state detection unit detects a resonance voltage of the power transmission resonator as the resonance state. 前記共振状態検出部は、前記共振状態として前記送電共振器の共振周波数を検出する請求項1に記載の非接触電力伝送装置。   The contactless power transmission device according to claim 1, wherein the resonance state detection unit detects a resonance frequency of the power transmission resonator as the resonance state. 前記中心周波数は、2400MHz以上2500MHz以下である請求項1乃至3に記載の非接触電力伝送装置。   The non-contact power transmission device according to claim 1, wherein the center frequency is 2400 MHz or more and 2500 MHz or less. 送電装置に搭載された送電コイルと受電装置に搭載された受電コイルの間の作用を介して非接触で電力伝送し、前記送電装置に搭載された送電通信部と前記受電装置に搭載された受電通信部の間を所定の中心周波数で無線により通信して前記電力伝送を制御する非接触電力伝送用の送電装置であって、
前記送電装置は、更に、送電コイル及び送電共振容量により構成された送電共振器と、送電回路と、共振状態検出部と、送電制御部を備え、
前記共振状態検出部は、前記送電共振器の共振状態を検出し、
前記送電制御部は、前記共振状態の検出結果に基づいて前記送電装置の送電可能範囲に前記受電装置が存在するか否かを判断し、前記存在を認め、かつ、前記送電通信部と前記受電通信部の間で通信が確立しない場合に、予め定めた変更手順に基づいて、前記送電通信部における前記中心周波数を変更することを特徴とする非接触電力伝送用の送電装置。
Power is transmitted in a non-contact manner through an action between a power transmission coil mounted on the power transmission device and a power reception coil mounted on the power reception device, and a power transmission communication unit mounted on the power transmission device and a power reception mounted on the power reception device. A power transmission device for non-contact power transmission that wirelessly communicates between communication units at a predetermined center frequency to control the power transmission,
The power transmission device further includes a power transmission resonator including a power transmission coil and a power transmission resonance capacity, a power transmission circuit, a resonance state detection unit, and a power transmission control unit.
The resonance state detection unit detects a resonance state of the power transmission resonator,
The power transmission control unit determines whether the power receiving device exists in a power transmission possible range of the power transmission device based on the detection result of the resonance state, recognizes the existence, and transmits the power transmission communication unit and the power receiving unit. A power transmission apparatus for non-contact power transmission, wherein, when communication is not established between communication units, the center frequency in the power transmission communication unit is changed based on a predetermined change procedure.
送電装置に搭載された送電コイルと受電装置に搭載された受電コイルの間の作用を介して非接触で電力伝送し、前記送電装置に搭載された送電通信部と前記受電装置に搭載された受電通信部の間を所定の中心周波数で無線により通信して前記電力伝送を制御する非接触電力伝送用の受電装置であって、
前記受電装置は、更に、受電制御部を備え、
前記受電制御部は、前記送電通信部と前記受電通信部の間で通信が確立しない場合に、予め定めた変更手順に基づいて、前記受電通信部における前記中心周波数を変更することを特徴とする非接触電力伝送装置用の受電装置。
Power is transmitted in a non-contact manner through an action between a power transmission coil mounted on the power transmission device and a power reception coil mounted on the power reception device, and a power transmission communication unit mounted on the power transmission device and a power reception mounted on the power reception device. A power receiving device for non-contact power transmission that wirelessly communicates between communication units at a predetermined center frequency to control the power transmission,
The power reception device further includes a power reception control unit,
The power reception control unit changes the center frequency in the power reception communication unit based on a predetermined change procedure when communication is not established between the power transmission communication unit and the power reception communication unit. A power receiving device for a non-contact power transmission device.
JP2016023889A 2016-02-10 2016-02-10 Contactless power transmission device, power transmission device, and power receiving device Pending JP2017143664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016023889A JP2017143664A (en) 2016-02-10 2016-02-10 Contactless power transmission device, power transmission device, and power receiving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016023889A JP2017143664A (en) 2016-02-10 2016-02-10 Contactless power transmission device, power transmission device, and power receiving device

Publications (1)

Publication Number Publication Date
JP2017143664A true JP2017143664A (en) 2017-08-17

Family

ID=59627581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016023889A Pending JP2017143664A (en) 2016-02-10 2016-02-10 Contactless power transmission device, power transmission device, and power receiving device

Country Status (1)

Country Link
JP (1) JP2017143664A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020049825A1 (en) * 2018-09-04 2020-03-12 株式会社Ihi Communication control device
JP2023000397A (en) * 2021-06-17 2023-01-04 トヨタ自動車株式会社 Signal origination apparatus and signal transmission/reception system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130058380A1 (en) * 2011-09-05 2013-03-07 Samsung Electronics Co., Ltd. Communication apparatus and communication method in wireless power transmission system
JP2015505234A (en) * 2011-12-15 2015-02-16 サムスン エレクトロニクス カンパニー リミテッド Apparatus and method for transmitting wireless power
JP2015233410A (en) * 2010-07-28 2015-12-24 クアルコム,インコーポレイテッド Low power detection of wireless power devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015233410A (en) * 2010-07-28 2015-12-24 クアルコム,インコーポレイテッド Low power detection of wireless power devices
US20130058380A1 (en) * 2011-09-05 2013-03-07 Samsung Electronics Co., Ltd. Communication apparatus and communication method in wireless power transmission system
JP2015505234A (en) * 2011-12-15 2015-02-16 サムスン エレクトロニクス カンパニー リミテッド Apparatus and method for transmitting wireless power

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020049825A1 (en) * 2018-09-04 2020-03-12 株式会社Ihi Communication control device
JPWO2020049825A1 (en) * 2018-09-04 2021-08-26 株式会社Ihi Communication control device
JP7070690B2 (en) 2018-09-04 2022-05-18 株式会社Ihi Communication control device
US11588358B2 (en) 2018-09-04 2023-02-21 Ihi Corporation Communication control device
JP2023000397A (en) * 2021-06-17 2023-01-04 トヨタ自動車株式会社 Signal origination apparatus and signal transmission/reception system
JP7355076B2 (en) 2021-06-17 2023-10-03 トヨタ自動車株式会社 Signal transmitting equipment and signal transmitting/receiving system

Similar Documents

Publication Publication Date Title
US10581491B2 (en) Wireless power transmission apparatus and method therefor
JP7193586B2 (en) Apparatus and method for communicating in a wireless power transmission system
US10355529B2 (en) Wireless power receiver and control method thereof
US20240322614A1 (en) Method and apparatus for performing power calibration in wireless power transfer system
US12126187B2 (en) Apparatus and method for performing wireless power transmission on basis of foreign material detection
US20210184514A1 (en) Method and apparatus for performing communication in wireless power transmission system
KR20150049858A (en) Method for processing signal in hybrid wireless power transmission device which enables to transmit magnetic resonance wirelss power signal and induce wireless power signal, and hybrid wireless power transmission device using the same
JP2017143664A (en) Contactless power transmission device, power transmission device, and power receiving device
US20240313826A1 (en) Method and device for providing compatibility with mpp in wireless power transmission system
US20240204573A1 (en) Method and apparatus for measuring quality factor in wireless power transmission system
US20240322611A1 (en) Method and apparatus for switching to low-coupling power profile in wireless power transmission system
US20240372415A1 (en) Method and apparatus for nfc communication and detection during charging in wireless power transmission system
EP4425747A1 (en) Method and device for slot generation in wireless power transmission system
EP4210201A1 (en) Wireless power transmitting device and method of detecting foreign substances by wireless power transmitting device
US20230344281A1 (en) Wireless power receiving device and method of obtaining quality factor of wireless power transmitting device
KR20240090300A (en) Authentication method and device in wireless power transmission system
KR20240027019A (en) Method and device for simultaneous multiple data communication in wireless power transmission system
JP2023104366A (en) Power transmission system, power transmitter, control method, and program
KR20220151623A (en) Wireless power transmitter, wireless power receiver and communication method using them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181121

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190611