[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2017143196A - Electronic device and manufacturing method thereof - Google Patents

Electronic device and manufacturing method thereof Download PDF

Info

Publication number
JP2017143196A
JP2017143196A JP2016024047A JP2016024047A JP2017143196A JP 2017143196 A JP2017143196 A JP 2017143196A JP 2016024047 A JP2016024047 A JP 2016024047A JP 2016024047 A JP2016024047 A JP 2016024047A JP 2017143196 A JP2017143196 A JP 2017143196A
Authority
JP
Japan
Prior art keywords
solder
strength
component
low
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016024047A
Other languages
Japanese (ja)
Other versions
JP6489037B2 (en
Inventor
賢一 竹島
Kenichi Takeshima
賢一 竹島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016024047A priority Critical patent/JP6489037B2/en
Priority to DE102017202005.9A priority patent/DE102017202005B4/en
Publication of JP2017143196A publication Critical patent/JP2017143196A/en
Application granted granted Critical
Publication of JP6489037B2 publication Critical patent/JP6489037B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3006Ag as the principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0271Arrangements for reducing stress or warp in rigid printed circuit boards, e.g. caused by loads, vibrations or differences in thermal expansion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3415Surface mounted components on both sides of the substrate or combined with lead-in-hole components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Wire Bonding (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electronic device that is able to prolong a period of time that the entire device functions normally, even in a case where a plurality of electronic components are mounted thereon, and to provide a manufacturing method for the electronic device.SOLUTION: An electronic device comprises: two or more types of electronic components, a circuit board 20, and connection solders 30 connecting the electronic components and the circuit board 20. The electronic component comprises: a first component 10 connected by means of the connection solder 30 of ball form; and second components 10A, 10B connected by means of the connection solder 30 of skirt form. The connection solders 30 include: a low strength solder 31 with predetermined tensile strength, and a high strength solder 32 greater in tensile strength than the low strength solder 31. The first component 10 is connected by means of the connection solders 30 including the low strength solders 31 more than the high strength solders 32. The second components 10A, 10B are connected by means of the connection solders 30 including the high strength solders 32 than the low strength solders 31.SELECTED DRAWING: Figure 1

Description

この明細書における開示は、電子部品がはんだを介して回路基板に実装されている電子装置及びその製造方法に関する。   The disclosure in this specification relates to an electronic device in which an electronic component is mounted on a circuit board via solder, and a manufacturing method thereof.

従来から知られている電子装置は、電子部品、回路基板及びはんだを含んでいる。受動素子や能動素子などの電子部品は、はんだを介して回路基板に搭載されている。はんだは、電子部品の電極と回路基板上の配線とを接続し、電子部品と回路基板とを電気的に接続している。ここでは、電子部品と回路基板とを接続しているはんだを通常のはんだと称する。   Conventionally known electronic devices include electronic components, circuit boards, and solder. Electronic components such as passive elements and active elements are mounted on a circuit board via solder. The solder connects the electrode of the electronic component and the wiring on the circuit board, and electrically connects the electronic component and the circuit board. Here, the solder connecting the electronic component and the circuit board is referred to as normal solder.

外気温が大きく変化する環境に、電子装置が長期間置かれた場合を考える。このような環境下では、電子部品及び回路基板は膨張と収縮を繰り返す。そして、電子部品と回路基板は線膨張係数の差があり、膨張及び収縮による長さの変化量が異なる。よって、上記の膨張及び収縮による変化量の差によって、電子部品と回路基板とを接続している通常のはんだには、せん断応力が発生する。このせん断応力は、上述の環境下では、繰り返しはんだに印加される。その結果、通常のはんだは金属疲労して、ひびが入り、電子部品と回路基板を接続する力が弱まってしまう。   Consider a case where an electronic device is placed in an environment where the outside air temperature changes greatly. Under such an environment, the electronic component and the circuit board repeatedly expand and contract. The electronic component and the circuit board have a difference in coefficient of linear expansion, and the amount of change in length due to expansion and contraction differs. Therefore, shear stress is generated in the normal solder connecting the electronic component and the circuit board due to the difference in the amount of change due to the expansion and contraction. This shear stress is repeatedly applied to the solder under the above-described environment. As a result, normal solder fatigues the metal, cracks, and weakens the force to connect the electronic component and the circuit board.

そこで、上記のせん断応力に対して十分なせん断強度をもつはんだが特許文献1に記載されている。特許文献1のはんだは、その成分として、Ag、Cu、Sb、Ni、Bi及びSnを含んでいる。つまり、特許文献1のはんだは、上記のせん断応力に対して十分な強度を有している。よって、上記のせん断応力がはんだに繰り返し印加されても、金属疲労によってはんだにひびが入るまでの時間を長くすることができる。   Therefore, Patent Document 1 discloses a solder having a sufficient shear strength against the above-described shear stress. The solder of patent document 1 contains Ag, Cu, Sb, Ni, Bi, and Sn as the component. That is, the solder of patent document 1 has sufficient intensity | strength with respect to said shear stress. Therefore, even if the above-described shear stress is repeatedly applied to the solder, it is possible to lengthen the time until the solder cracks due to metal fatigue.

特許第5811304号Patent No. 5811304

ここで、電子装置は、複数の種類、例えば、QFP(Quad Flat Package)、BGA(Ball Grid Array)、チップ抵抗、チップコンデンサ等を有している。   Here, the electronic device has a plurality of types, for example, QFP (Quad Flat Package), BGA (Ball Grid Array), chip resistor, chip capacitor, and the like.

これら複数種類の電子部品を回路基板上にはんだを介して接続する際、はんだの形状は、電子部品の種類に応じて、ボール形状となる場合と裾野形状となる場合がある。   When these plural types of electronic components are connected to the circuit board via solder, the shape of the solder may be a ball shape or a skirt shape depending on the type of the electronic component.

特許文献1のはんだを用いると、上記のせん断応力がはんだに加わっても、はんだがひび割れてしまうことが起こりにくくなっているが、一方で上記のせん断応力がはんだ内を伝達し、回路基板の配線に伝わってしまうことがある。   When the solder of Patent Document 1 is used, even if the shear stress is applied to the solder, it is difficult for the solder to crack. On the other hand, the shear stress is transmitted through the solder, and the circuit board It may be transmitted to the wiring.

はんだの形状が裾野形状である場合、配線に沿ってなだらかな裾野が形成されているので、上記のせん断応力は回路基板の配線に伝わりにくい。しかし、ボール形状である場合には、裾野形状と異なり裾野が形成されておらず、上記のせん断応力が回路基板に伝わりやすい。よって、上記のせん断応力によって回路基板、例えば配線などがひび割れるなどの損傷が生じてしまう。   When the shape of the solder is a skirt shape, since a gentle skirt is formed along the wiring, the shear stress is not easily transmitted to the wiring on the circuit board. However, in the case of the ball shape, unlike the skirt shape, the skirt is not formed, and the above shear stress is easily transmitted to the circuit board. Therefore, damage such as cracking of the circuit board, for example, wiring, occurs due to the shear stress.

このため、複数種類の電子部品が特許文献1のはんだを介して接続された回路基板は、裾野形状のはんだが接続された箇所が損傷していなくても、ボール形状のはんだが接続された箇所が損傷してしまう可能性がある。したがって、電子装置は、正常に動作する期間が、ボール形状のはんだによる回路基板の損傷度合いに依存してしまう。   For this reason, the circuit board to which a plurality of types of electronic components are connected via the solder of Patent Document 1 is a place where the ball-shaped solder is connected even if the base-shaped solder is not damaged. May be damaged. Therefore, the period during which the electronic device operates normally depends on the degree of damage to the circuit board caused by the ball-shaped solder.

したがって、本開示の目的は、複数の電子部品を実装する場合でも、装置全体が正常に機能する期間を延ばすことができる電子装置及びその製造方法を提供することである。   Accordingly, an object of the present disclosure is to provide an electronic device and a method for manufacturing the same that can extend a period during which the entire device functions normally even when a plurality of electronic components are mounted.

本開示は、電極(11)を有する少なくとも2種類以上の電子部品と、電子部品が実装されている側の面である実装面(21)に配線(22)を有している回路基板(20)と、電子部品と回路基板(20)とを電気的かつ機械的に接続している接続はんだ(30)と、を備え、接続はんだ(30)が、少なくとも電極(11)における実装面(21)と対向している面である電極対向面12と配線(22)の一部が電極対向面12と対向している面である配線対向面23との間に配置されており、電子部品は、ボール形状の接続はんだ(30)で回路基板(20)に接続されている第1部品(10)と、裾野形状の接続はんだ(30)で回路基板(20)に接続されている第2部品(10A、10B)と、を含んでおり、接続はんだ(30)には、所定の引張強さを有する低強度はんだ(31)及び低強度はんだ(31)よりも引張強さが大きい高強度はんだ(32)が含まれており、第1部品(10)は、高強度はんだ(32)より低強度はんだ(31)が多い接続はんだ(30)で回路基板(20)に接続されており、第2部品(10A、10B)は、低強度はんだ(31)より高強度はんだ(32)が多い接続はんだ(30)で回路基板(20)に接続されている電子装置である。   The present disclosure relates to a circuit board (20) having wiring (22) on a mounting surface (21), which is a surface on which electronic components are mounted, and at least two or more types of electronic components having electrodes (11). ) And connection solder (30) for electrically and mechanically connecting the electronic component and the circuit board (20), and the connection solder (30) is at least a mounting surface (21 on the electrode (11)) ) Between the electrode facing surface 12, which is the surface facing the electrode facing surface 12, and the wiring facing surface 23, which is the surface facing the electrode facing surface 12. The first component (10) connected to the circuit board (20) with the ball-shaped connecting solder (30) and the second component connected to the circuit board (20) with the base-shaped connecting solder (30) (10A, 10B) and connection solder (30 Includes a low-strength solder (31) having a predetermined tensile strength and a high-strength solder (32) having a higher tensile strength than the low-strength solder (31), and the first component (10) includes: The second component (10A, 10B) is connected to the circuit board (20) with a connection solder (30) having more low-strength solder (31) than the high-strength solder (32), and the second component (10A, 10B) is higher than the low-strength solder (31). The electronic device is connected to the circuit board (20) with connection solder (30) with a lot of strength solder (32).

ここに開示された電子装置によれば、以下の作用効果を奏する。   According to the electronic device disclosed herein, the following operational effects can be obtained.

ボール形状の接続はんだで回路基板に接続されている第1部品では、配線に伝わりやすいと想定される。ここで、ボール形状の接続はんだには、低強度はんだが高強度はんだよりも多く含まれている。これによって、接続はんだのせん断強度を確保しつつ、上記のせん断応力を接続はんだ自体で分散しやすくなるので、回路基板や配線に上記のせん断応力が集中することを緩和できる。   It is assumed that the first component connected to the circuit board with the ball-shaped connection solder is easily transmitted to the wiring. Here, the ball-shaped connection solder contains more low-strength solder than high-strength solder. As a result, the shear stress can be easily dispersed by the connection solder itself while securing the shear strength of the connection solder, so that the concentration of the shear stress on the circuit board and wiring can be alleviated.

対して、裾野形状の接続はんだで回路基板に接続されている第2部品では、接続はんだ自体に上記のせん断応力が集中すると想定される。ここで、裾野形状の接続はんだには、高強度はんだが低強度はんだよりも多く含まれている。これによって、上記のせん断応力が接続はんだ自体に加わっても接続はんだが金属疲労してひび割れが入るまでの期間を長くすることができる。   On the other hand, in the second component connected to the circuit board with the skirt-shaped connection solder, it is assumed that the above-described shear stress is concentrated on the connection solder itself. Here, the skirt-shaped connection solder contains more high-strength solder than low-strength solder. Thereby, even if the above-described shear stress is applied to the connection solder itself, it is possible to lengthen the period until the connection solder is fatigued by metal and cracks occur.

よって、低強度はんだ及び高強度はんだが含まれる割合を電子部品の種類に応じて調節した接続はんだを用いることで、従来の電子装置に比べて、電子装置が正常に機能する期間を延ばすことができる。   Therefore, it is possible to extend the period during which the electronic device functions normally as compared with the conventional electronic device by using the connection solder in which the ratio of the low strength solder and the high strength solder is adjusted according to the type of the electronic component. it can.

また、本開示は、電極(11)を有する少なくとも2種類以上の電子部品と、電子部品が実装されている側の面である実装面(21)に配線(22)を有している回路基板(20)と、電子部品と回路基板(20)とを電気的かつ機械的に接続している接続はんだ(30)と、を備え、接続はんだ30の少なくとも一部が、電極(11)における実装面(21)と対向している面である電極対向面(12)と配線(22)の一部が電極対向面(12)と対向している面である配線対向面(23)との間に配置されており、電子部品は、ボール形状の接続はんだ(30)で回路基板(20)に接続されている第1部品(10)と、裾野形状の接続はんだ(30)で回路基板(20)に接続されている第2部品(10A、10B)と、を含んでおり、接続はんだ(30)には、所定の引張強さを有する低強度はんだ(31)及び低強度はんだ(31)よりも引張強さが大きい高強度はんだ(32)が含まれており、第1部品(10)は、高強度はんだ(32)より低強度はんだ(31)が多い接続はんだ(30)で回路基板(20)に接続されており、第2部品(10A、10B)は、低強度はんだ(31)より高強度はんだ(32)が多い接続はんだ(30)で回路基板(20)に接続されている電子装置の製造方法であって、低強度はんだ(31)と高強度はんだ(32)のうち、いずれか一方のはんだを配線(22)上に塗布し、一方のはんだ上に、第1部品(10)と高強度はんだ(32)より低強度はんだ(31)が多くなるように他方のはんだとを配置するとともに、一方のはんだ上に、第2部品(10A、10B)と低強度はんだ(31)より高強度はんだ(32)が多くなるように他方のはんだとを配置し、一方のはんだ及び他方のはんだをリフローし、接続はんだ(30)を形成することで第1部品(10)及び第2部品(10A、10B)と回路基板(20)とを電気的に接続する電子装置の製造方法である。   The present disclosure also provides a circuit board having at least two or more types of electronic components having electrodes (11) and wiring (22) on a mounting surface (21) which is a surface on which the electronic components are mounted. (20) and a connection solder (30) for electrically and mechanically connecting the electronic component and the circuit board (20), and at least a part of the connection solder 30 is mounted on the electrode (11). Between the electrode facing surface (12) which is the surface facing the surface (21) and the wiring facing surface (23) where a part of the wiring (22) is facing the electrode facing surface (12) The electronic component includes a first component (10) connected to the circuit board (20) with a ball-shaped connection solder (30) and a circuit board (20 A second part (10A, 10B) connected to The connection solder (30) includes a low-strength solder (31) having a predetermined tensile strength and a high-strength solder (32) having a higher tensile strength than the low-strength solder (31). The component (10) is connected to the circuit board (20) with connection solder (30), which has more low-strength solder (31) than high-strength solder (32), and the second component (10A, 10B) has low strength. A method of manufacturing an electronic device connected to a circuit board (20) with a connection solder (30) having more high-strength solder (32) than solder (31), wherein the low-strength solder (31) and the high-strength solder (32 ) Is applied to the wiring (22) so that the low-strength solder (31) is larger on the one solder than the first component (10) and the high-strength solder (32). Place one solder and the other On the solder, arrange the other solder so that the second component (10A, 10B) and the high-strength solder (32) are larger than the low-strength solder (31), reflow one solder and the other solder, This is a method of manufacturing an electronic device that electrically connects the first component (10) and the second component (10A, 10B) and the circuit board (20) by forming a connection solder (30).

ここに開示された電子装置の製造方法によれば、以下の作用効果を奏する。   According to the method for manufacturing an electronic device disclosed herein, the following effects can be obtained.

上述のように、ボール形状の接続はんだで回路基板に接続されている第1部品では、接続はんだと回路基板上の配線との境界面に上記のせん断応力が集中すると想定される。   As described above, in the first component connected to the circuit board with the ball-shaped connection solder, it is assumed that the shear stress is concentrated on the boundary surface between the connection solder and the wiring on the circuit board.

対して、裾野形状の接続はんだで回路基板に接続されている第2部品では、接続はんだ自体に上記のせん断応力が集中すると想定される。   On the other hand, in the second component connected to the circuit board with the skirt-shaped connection solder, it is assumed that the above-described shear stress is concentrated on the connection solder itself.

開示された電子装置の製造方法では、第1部品を回路基板に接続する場合には、回路基板上に第1部品、低強度はんだ及び当該低強度はんだよりも少ない量の高強度はんだを配置する。また、第2部品を回路基板に接続する場合には、回路基板上に第2部品、低強度はんだ及び当該低強度はんだよりも多い量の高強度はんだを配置する。その後、リフローによって、接続はんだを形成して電子部品と回路基板とを電気的に接続する。よって、回路基板に接続される電子部品の種類に応じて、低強度はんだ及び高強度はんだの量が調節された接続はんだを形成できるので、上記の電子装置を製造することができる。   In the disclosed method for manufacturing an electronic device, when the first component is connected to the circuit board, the first component, the low-strength solder, and the high-strength solder in an amount smaller than the low-strength solder are arranged on the circuit board. . When the second component is connected to the circuit board, the second component, the low-strength solder, and the high-strength solder in an amount larger than the low-strength solder are arranged on the circuit board. Then, by reflow, connection solder is formed to electrically connect the electronic component and the circuit board. Therefore, since the connection solder in which the amount of the low-strength solder and the high-strength solder is adjusted can be formed according to the type of the electronic component connected to the circuit board, the above-described electronic device can be manufactured.

この明細書における開示された複数の態様は、それぞれの目的を達成するために、互いに異なる技術的手段を採用する。請求の範囲およびこの項に記載した括弧内の符号は、後述する本実施形態の部分との対応関係を例示的に示すものであって、技術的範囲を限定することを意図するものではない。この明細書に開示される目的、特徴、および効果は、後続の詳細な説明、および添付の図面を参照することによってより明確になる。   The disclosed embodiments of the present specification employ different technical means to achieve each purpose. The reference numerals in parentheses described in the claims and in this section exemplarily show a correspondence relationship with the part of the present embodiment described later, and are not intended to limit the technical scope. The objects, features, and advantages disclosed in this specification will become more apparent with reference to the following detailed description and accompanying drawings.

本実施形態の電子装置の図である。It is a figure of the electronic device of this embodiment. 本実施形態の電子装置を図1のII‐II線で切断した断面図である。It is sectional drawing which cut | disconnected the electronic device of this embodiment by the II-II line | wire of FIG. 本実施形態の第1部品と回路基板との拡大図である。It is an enlarged view of the 1st component and circuit board of this embodiment. 本実施形態の第2部品と回路基板との拡大図である。It is an enlarged view of the 2nd component and circuit board of this embodiment. 本実施形態の第2部品と回路基板との拡大図である。It is an enlarged view of the 2nd component and circuit board of this embodiment. 本実施形態の第3部品と回路基板との拡大図である。It is an enlarged view of the 3rd component and circuit board of this embodiment. 本実施形態の製造方法における第1部品配置時の拡大図である。It is an enlarged view at the time of the 1st component arrangement in the manufacturing method of this embodiment. 本実施形態の製造方法における第1部品接続時の拡大図である。It is an enlarged view at the time of the 1st component connection in the manufacturing method of this embodiment. 本実施形態の製造方法における低強度はんだ塗布時の拡大図である。It is an enlarged view at the time of the low intensity | strength solder application | coating in the manufacturing method of this embodiment. 本実施形態の製造方法における第2部品配置時の拡大図である。It is an enlarged view at the time of 2nd components arrangement | positioning in the manufacturing method of this embodiment. 本実施形態の製造方法における高強度はんだ塗布時の拡大図である。It is an enlarged view at the time of the high intensity | strength solder application | coating in the manufacturing method of this embodiment. 本実施形態の製造方法における第2部品を配置時の拡大図である。It is an enlarged view at the time of arrangement | positioning 2nd components in the manufacturing method of this embodiment. 本実施形態の製造方法における高強度はんだ塗布時の拡大図である。It is an enlarged view at the time of the high intensity | strength solder application | coating in the manufacturing method of this embodiment. 本実施形態の製造方法における第3部品を配置時の拡大図である。It is an enlarged view at the time of arrangement | positioning 3rd components in the manufacturing method of this embodiment. 本実施形態の製造方法における高強度はんだ塗布時の拡大図である。It is an enlarged view at the time of the high intensity | strength solder application | coating in the manufacturing method of this embodiment.

図面を参照しながら、本開示を実施するための形態を説明する。   The form for carrying out this indication is explained, referring to drawings.

本実施形態では、一例として、図1、図2などに示す電子装置1を採用する。電子装置1は、例えば車両の搭載可能な電子制御装置である。この電子制御装置としては、エンジン制御装置、パワーステアリング制御装置、ブレーキ制御装置等をあげることができる。さらに、電子装置1は、車両のエンジンルームなど、周囲温度の変化が大きい環境に搭載される。つまり、電子装置1は、例えば約−30度から約100度の範囲で温度が変化する環境に搭載される。   In the present embodiment, as an example, the electronic device 1 shown in FIGS. 1 and 2 is employed. The electronic device 1 is an electronic control device that can be mounted on a vehicle, for example. Examples of the electronic control device include an engine control device, a power steering control device, and a brake control device. Furthermore, the electronic device 1 is mounted in an environment where the ambient temperature changes greatly, such as an engine room of a vehicle. That is, the electronic device 1 is mounted in an environment where the temperature changes in a range of about −30 degrees to about 100 degrees, for example.

まず、電子装置1の構成に関して説明する。電子装置1は、複数種類の電子部品、回路基板20、接続はんだ30などを有している。よって、電子装置1は、ECU(Electronic Control Unit)と称することもできる。   First, the configuration of the electronic device 1 will be described. The electronic device 1 has a plurality of types of electronic components, a circuit board 20, a connection solder 30, and the like. Therefore, the electronic device 1 can also be referred to as an ECU (Electronic Control Unit).

図1及び図2に示すように、電子部品は、例えば、BGA10、チップ部品10A、半導体パッケージ10B及び背高部品10Cの4種類存在する。BGA10は特許請求の範囲において第1部品に対応し、同様に、チップ部品10Aと半導体パッケージ10Bは第2部品、背高部品10Cは第3部品に対応する。なお、本実施形態では、図2に示すように、これらの電子部品が回路基板20の両面に実装された電子装置1を採用する。しかしながら、本発明は、回路基板20の片面のみに電子部品が実装された電子装置1であっても採用できる。また、図3以降に関しては、図面を簡略化するために一方の面に実装された電子部品のみを図示している。   As shown in FIGS. 1 and 2, there are four types of electronic components, for example, a BGA 10, a chip component 10A, a semiconductor package 10B, and a tall component 10C. The BGA 10 corresponds to the first component in the claims, and similarly, the chip component 10A and the semiconductor package 10B correspond to the second component, and the tall component 10C corresponds to the third component. In the present embodiment, as shown in FIG. 2, an electronic device 1 in which these electronic components are mounted on both surfaces of the circuit board 20 is employed. However, the present invention can be employed even in the electronic device 1 in which electronic components are mounted only on one side of the circuit board 20. Further, with respect to FIG. 3 and subsequent figures, only the electronic components mounted on one surface are shown for the sake of simplicity.

BGA10は、例えば、中央処理装置や不揮発性メモリとして機能する。BGA10は、半導体チップが樹脂で覆われたものである。よって、BGA10の線膨張係数は、チップを覆っている樹脂の一般的な線膨張係数とほぼ同じであると考えられるので、10×10−6/ K以上60×10−6/ K以下の値をとる。 The BGA 10 functions as, for example, a central processing unit or a nonvolatile memory. The BGA 10 is a semiconductor chip covered with a resin. Therefore, it is considered that the linear expansion coefficient of the BGA 10 is almost the same as the general linear expansion coefficient of the resin covering the chip, so that the value is 10 × 10 −6 / K or more and 60 × 10 −6 / K or less. Take.

図3に示すように、BGA10は、回路基板20に接続される側の面のみに電極11を有している。言い換えると、BGA10は、回路基板20と対向する面のみに電極11が形成されている。また、BGA10は、電極11における後述の第1ランド220と対向している面である電極対向面12を有する。   As shown in FIG. 3, the BGA 10 has the electrode 11 only on the surface connected to the circuit board 20. In other words, the BGA 10 has the electrode 11 formed only on the surface facing the circuit board 20. Further, the BGA 10 has an electrode facing surface 12 that is a surface facing an after-mentioned first land 220 in the electrode 11.

しかしながら、第1部品は、BGA10に限定されない。BGA10は、回路基板20との対向面に複数の電極11が露出した、一般にエリアタイプと呼ばれる電子部品である。よって、本実施形態は、BGA10に代わる他のエリアタイプの電子部品であってもよく、第1部品として、FCBGA(Flip Chip Ball Grid Array)、CSP(Chip Size Package)及びLGA(Land Grid Array)等も採用することができる。   However, the first component is not limited to the BGA 10. The BGA 10 is an electronic component generally called an area type in which a plurality of electrodes 11 are exposed on a surface facing the circuit board 20. Therefore, this embodiment may be another area type electronic component that replaces the BGA 10, and the first component is an FCBGA (Flip Chip Ball Grid Array), a CSP (Chip Size Package), and an LGA (Land Grid Array). Etc. can also be employed.

チップ部品10Aは、例えば、チップ抵抗やチップコンデンサ等の受動素子として機能する。チップ部品10Aは、主にセラミックから成る。よって、チップ部品10Aの線膨張係数は、6×10−6/ K以上7×10−6/ K以下程度である。 The chip component 10A functions as a passive element such as a chip resistor or a chip capacitor, for example. The chip component 10A is mainly made of ceramic. Therefore, the linear expansion coefficient of the chip component 10A is approximately 6 × 10 −6 / K or more and 7 × 10 −6 / K or less.

図4に示すように、チップ部品10Aは、直方体状であり、直方体の両端を覆うように二つの電極11が形成されている。また、BGA10と同様に、チップ部品10Aは、電極11における後述の第2ランド220Aと対向している面である電極対向面12を有する。   As illustrated in FIG. 4, the chip component 10 </ b> A has a rectangular parallelepiped shape, and two electrodes 11 are formed so as to cover both ends of the rectangular parallelepiped. Similarly to the BGA 10, the chip component 10 </ b> A has an electrode facing surface 12 that is a surface facing the later-described second land 220 </ b> A of the electrode 11.

半導体パッケージ10Bは、図5に示すように、半導体チップが樹脂で覆われた本体部と、本体部の側面から電極11が突出した形状を有している。このように、半導体パッケージ10Bは、電極の構成がBGA10と異なる。よって、半導体パッケージ10Bの線膨張係数は、BGA10と同様に、10×10−6/ K以上60×10−6/ K以下の値をとる。 As shown in FIG. 5, the semiconductor package 10 </ b> B has a main body portion in which a semiconductor chip is covered with a resin, and a shape in which the electrode 11 protrudes from a side surface of the main body portion. Thus, the semiconductor package 10B is different from the BGA 10 in the electrode configuration. Therefore, the linear expansion coefficient of the semiconductor package 10B takes a value of 10 × 10 −6 / K or more and 60 × 10 −6 / K or less similarly to the BGA 10.

また、BGA10と同様に、半導体パッケージ10Bは、電極11における後述の第3ランド220Bと対向している面である電極対向面12を有する。さらに、半導体パッケージ10Bの電極11は、途中で2回折り曲がっている。電極11は、2回折り曲がった後、側面から突出している方向と同じ向きに伸びている。このような電極11は、一般的にガルウイング構造やムカデ足構造と呼ばれる。   Similarly to the BGA 10, the semiconductor package 10 </ b> B has an electrode facing surface 12 that is a surface facing a later-described third land 220 </ b> B in the electrode 11. Furthermore, the electrode 11 of the semiconductor package 10B is bent twice along the way. After the electrode 11 bends twice, it extends in the same direction as the direction protruding from the side surface. Such an electrode 11 is generally called a gull wing structure or a centipede foot structure.

しかしながら、第2部品は、チップ部品10A及び半導体パッケージ10Bに限定されない。要するに、第2部品は、その側面に電極11を有しており、その電極11がランドと対向する電極対向面12を有していればよい。   However, the second component is not limited to the chip component 10A and the semiconductor package 10B. In short, the second component has the electrode 11 on its side surface, and the electrode 11 only needs to have the electrode facing surface 12 facing the land.

また、半導体パッケージ10Bは、本体部の側面から突出した電極を有する表面実装型の電子部品である。よって、本実施形態は、半導体パッケージ10Bに代わる他の表面実装型の電子部品であってもよく、QFP(Quad Flat Package)、QFJ(Quad Flat J-leaded Package)等も採用することができる。   The semiconductor package 10B is a surface-mount type electronic component having electrodes protruding from the side surface of the main body. Therefore, the present embodiment may be another surface-mount type electronic component that replaces the semiconductor package 10B, and may employ QFP (Quad Flat Package), QFJ (Quad Flat J-leaded Package), and the like.

背高部品10Cは、図2に示すように、BGA10、チップ部品10A及び半導体パッケージ10Bよりも背の高さが高い電子部品である。背の高さとは、回路基板20における電子部品が搭載されている側の面である実装面21に対して垂直な方向への電子部品の長さである。背高部品10Cは、例えば、アルミ電解コンデンサやソレノイドとして機能する。背高部品10Cは、BGA10、チップ部品10A及び半導体パッケージ10Bと比べて、その体格が大きいものである。   As shown in FIG. 2, the tall component 10C is an electronic component that is taller than the BGA 10, the chip component 10A, and the semiconductor package 10B. The height of the electronic component is the length of the electronic component in a direction perpendicular to the mounting surface 21 that is the surface of the circuit board 20 on which the electronic component is mounted. The tall component 10C functions as, for example, an aluminum electrolytic capacitor or a solenoid. The tall component 10C is larger in size than the BGA 10, the chip component 10A, and the semiconductor package 10B.

図6に示すように、背高部品10Cは、回路基板20に実装される側に電極11を有する。また、電極11は、背高部品10Cの側面にまで連続して形成されている。BGA10、チップ部品10A及び半導体パッケージ10Bと同様に、背高部品10Cは、電極11における後述の第4ランド220Cと対向している面である電極対向面12を有する。   As shown in FIG. 6, the tall component 10 </ b> C has the electrode 11 on the side mounted on the circuit board 20. The electrode 11 is continuously formed up to the side surface of the tall component 10C. Similar to the BGA 10, the chip component 10A, and the semiconductor package 10B, the tall component 10C has an electrode facing surface 12 that is a surface facing a later-described fourth land 220C of the electrode 11.

しかしながら、第3部品は、背高部品10Cに限定されない。要するに、第3部品は、第1部品及び第2部品よりも背の高さが高ければよい。   However, the third component is not limited to the tall component 10C. In short, the third component only needs to be taller than the first component and the second component.

回路基板20は、セラミックや樹脂等を主成分とする基材に、導電性の配線22が形成されたものである。そのため、回路基板20の線膨張係数は、おおむねセラミックや樹脂の線膨張係数と一致する。よって、回路基板20の線膨張係数は、12×10−6/ K以上16×10−6/ K以下となる。 The circuit board 20 is obtained by forming conductive wirings 22 on a base material mainly composed of ceramic, resin, or the like. Therefore, the linear expansion coefficient of the circuit board 20 generally matches the linear expansion coefficient of ceramic or resin. Therefore, the linear expansion coefficient of the circuit board 20 is 12 × 10 −6 / K or more and 16 × 10 −6 / K or less.

回路基板20は、電子部品が実装されている側の面である実装面21を有する。図3から図6までに示すように、配線22は、ランド、内部配線221及びビア222を有している。ランドは、配線22における実装面21に形成された部位である。回路基板20は、ランドとして、第1ランド220、第2ランド220A、第3ランド220B及び第4ランド220Cが形成されている。第1ランド220は、実装面21上に形成されている。第1ランド220において、BGA10の電極対向面12と対向している面を配線対向面23とする。同様に、第2ランド220A及び第3ランド220Bにおいてチップ部品10A及び半導体パッケージ10Bの電極対向面12と対向している面、第4ランド220Cにおいて背高部品10Cの電極対向面12と対向している面を配線対向面23とする。   The circuit board 20 has a mounting surface 21 that is a surface on which electronic components are mounted. As shown in FIGS. 3 to 6, the wiring 22 has a land, an internal wiring 221 and a via 222. The land is a part formed on the mounting surface 21 in the wiring 22. The circuit board 20 includes a first land 220, a second land 220A, a third land 220B, and a fourth land 220C as lands. The first land 220 is formed on the mounting surface 21. In the first land 220, a surface facing the electrode facing surface 12 of the BGA 10 is a wiring facing surface 23. Similarly, the second land 220A and the third land 220B face the electrode facing surface 12 of the chip component 10A and the semiconductor package 10B, and the fourth land 220C faces the electrode facing surface 12 of the tall component 10C. The surface that is present is the wiring facing surface 23.

なお、内部配線221及びビア222は、配線22における基材内に形成された部位である。内部配線221は、回路基板20の内部に実装面と垂直な方向において層状に形成されている。内部配線221は、実装面21と平行な方向に伸びている。ビア222は、実装面に対して垂直方向に伸びている。ビア222は、ランドと内部配線221とを電気的に接続している。また、図示はしないが、ビア222は、内部配線221どうしを電気的に接続している。   Note that the internal wiring 221 and the via 222 are portions formed in the base material in the wiring 22. The internal wiring 221 is formed in layers inside the circuit board 20 in a direction perpendicular to the mounting surface. The internal wiring 221 extends in a direction parallel to the mounting surface 21. The via 222 extends in a direction perpendicular to the mounting surface. The via 222 electrically connects the land and the internal wiring 221. Although not shown, the via 222 electrically connects the internal wirings 221 to each other.

接続はんだ30は、図3に示すように、BGA10の電極11と第1ランド220とを電気的かつ機械的に接続している。以下、電気的かつ機械的に接続していることを単に接続とも記載する。BGA10の電極11と第1ランド220とを接続している接続はんだ30は、電極対向面12と配線対向面23との間に存在している。なお、接続はんだ30のうち少なくとも一部が電極対向面12と配線対向面23との間に存在していてもよい。   As shown in FIG. 3, the connection solder 30 electrically and mechanically connects the electrode 11 of the BGA 10 and the first land 220. Hereinafter, the electrical and mechanical connection is simply referred to as connection. The connecting solder 30 that connects the electrode 11 of the BGA 10 and the first land 220 exists between the electrode facing surface 12 and the wiring facing surface 23. In addition, at least a part of the connection solder 30 may exist between the electrode facing surface 12 and the wiring facing surface 23.

BGA10と回路基板20とを接続している場合、接続はんだ30は、ボール形状である。ボール形状とは、接続はんだ30の実装面21に対して平行な断面積が、電極対向面12から接続はんだ30の中央に向かうにつれて大きくなり、配線対向面23から接続はんだ30の中央に向かうにつれても大きくなっている形状である。言い換えると、接続はんだ30の表面の傾きが、電極対向面12から接続はんだ30の中央に向かうにつれて実装面21に対して垂直になり、配線対向面23から接続はんだ30の中央に向かうにつれても実装面21に対して垂直になっている。   When the BGA 10 and the circuit board 20 are connected, the connection solder 30 has a ball shape. In the ball shape, the cross-sectional area parallel to the mounting surface 21 of the connection solder 30 increases from the electrode facing surface 12 toward the center of the connection solder 30 and from the wiring facing surface 23 toward the center of the connection solder 30. The shape is also larger. In other words, the inclination of the surface of the connection solder 30 becomes perpendicular to the mounting surface 21 as it goes from the electrode facing surface 12 to the center of the connection solder 30, and is also mounted as it goes from the wiring facing surface 23 to the center of the connection solder 30. It is perpendicular to the surface 21.

接続はんだ30は、図4に示すように、チップ部品10Aの電極11と第2ランド220Aとを電気的に接続している。この場合、接続はんだ30は、電極対向面12と配線対向面23との間以外にも存在している。具体的には、接続はんだ30は、電極11の電極対向面12と垂直な面上にも形成されることで、電極対向面12と配線対向面23との間以外にも存在することになる。つまり、図4に示すように、チップ部品10Aと回路基板20とを接続している場合、接続はんだ30は、電極対向面12と配線対向面23との間以外にも存在していてもよい。   As shown in FIG. 4, the connection solder 30 electrically connects the electrode 11 of the chip component 10A and the second land 220A. In this case, the connection solder 30 is present other than between the electrode facing surface 12 and the wiring facing surface 23. Specifically, the connection solder 30 is also formed on a surface perpendicular to the electrode facing surface 12 of the electrode 11, so that the connection solder 30 exists other than between the electrode facing surface 12 and the wiring facing surface 23. . That is, as shown in FIG. 4, when the chip component 10 </ b> A and the circuit board 20 are connected, the connection solder 30 may exist other than between the electrode facing surface 12 and the wiring facing surface 23. .

また、接続はんだ30は、図5に示すように、半導体パッケージ10Bと第3ランド220Bとを接続している。この場合、接続はんだ30は、チップ部品10Aの場合と同様に電極対向面12と配線対向面23との間以外にも存在している。具体的には、接続はんだ30が電極11の電極対向面12と垂直な面上にも形成されることで、電極対向面12と配線対向面23との間以外にも接続はんだ30が存在することになる。つまり、図5に示すように、半導体パッケージ10Bと回路基板20とを接続している場合、接続はんだ30は、電極対向面12と配線対向面23との間以外にも存在していてもよい。   Further, as shown in FIG. 5, the connection solder 30 connects the semiconductor package 10B and the third land 220B. In this case, the connection solder 30 is present other than between the electrode facing surface 12 and the wiring facing surface 23 as in the case of the chip component 10A. Specifically, since the connection solder 30 is also formed on a surface perpendicular to the electrode facing surface 12 of the electrode 11, there is the connection solder 30 other than between the electrode facing surface 12 and the wiring facing surface 23. It will be. That is, as shown in FIG. 5, when the semiconductor package 10 </ b> B and the circuit board 20 are connected, the connection solder 30 may exist other than between the electrode facing surface 12 and the wiring facing surface 23. .

チップ部品10A及び半導体パッケージ10Bと回路基板20とを接続している場合、接続はんだ30は、裾野形状である。裾野形状とは、接続はんだ30の実装面21に対して平行な断面積が、電極対向面12から配線対向面23に向かうにつれて大きくなっている形状である。言い換えると、接続はんだ30の表面の傾きが、電極対向面12から配線対向面23に向かうにつれて、実装面21に対して平行に近づいていく。また、裾野形状とは、フィレット形状ともいうことができる。   When the chip component 10A and the semiconductor package 10B are connected to the circuit board 20, the connection solder 30 has a skirt shape. The skirt shape is a shape in which a cross-sectional area parallel to the mounting surface 21 of the connection solder 30 increases from the electrode facing surface 12 toward the wiring facing surface 23. In other words, the inclination of the surface of the connection solder 30 approaches parallel to the mounting surface 21 as it goes from the electrode facing surface 12 to the wiring facing surface 23. The base shape can also be referred to as a fillet shape.

接続はんだ30は、図6に示すように、背高部品10Cの電極11と第4ランド220Cとを接続している。この場合、接続はんだ30は、チップ部品10A及び半導体パッケージ10Bの場合と同様に、電極対向面12と配線対向面23との間以外にも存在している。背高部品10Cは、チップ部品10Aと同様に、電極対向面12と垂直な面に電極11を有している。よって、この垂直な面上にも接続はんだ30が形成される。よって、電極対向面12と配線対向面23との間以外にも接続はんだ30が存在することになる。   As shown in FIG. 6, the connection solder 30 connects the electrode 11 of the tall component 10C and the fourth land 220C. In this case, the connection solder 30 is present other than between the electrode facing surface 12 and the wiring facing surface 23 as in the case of the chip component 10A and the semiconductor package 10B. The tall component 10C has the electrode 11 on a surface perpendicular to the electrode facing surface 12 in the same manner as the chip component 10A. Therefore, the connection solder 30 is also formed on this vertical surface. Therefore, the connecting solder 30 exists other than between the electrode facing surface 12 and the wiring facing surface 23.

図6に示すように、背高部品10Cと回路基板20とを接続している場合、チップ部品10A及び半導体パッケージ10Bの場合と同様に、接続はんだ30は、裾野形状である。   As shown in FIG. 6, when the tall component 10 </ b> C and the circuit board 20 are connected, the connection solder 30 has a skirt shape as in the case of the chip component 10 </ b> A and the semiconductor package 10 </ b> B.

接続はんだ30は、引張強さの異なる2種類の低強度はんだ31と高強度はんだ32とを含んでいる。ここで、引張強さとは、材料を引っ張る方向に力を加えた際に、材料が破断したときの材料の単位面積当たりの力の大きさをいう。低強度はんだ31と高強度はんだ32とは、所定の引張強さを有する。   The connection solder 30 includes two types of low-strength solder 31 and high-strength solder 32 having different tensile strengths. Here, the tensile strength refers to the magnitude of the force per unit area of the material when the material is broken when a force is applied in the direction of pulling the material. The low-strength solder 31 and the high-strength solder 32 have a predetermined tensile strength.

低強度はんだ31は、例えば、接続はんだ30に含まれる材料の1つである。低強度はんだ31は、主にSnとAgとが、6:1の割合で含まれている。低強度はんだ31の引張強さは、40MPa以上50MPa以下である。   The low-strength solder 31 is one of the materials included in the connection solder 30, for example. The low-strength solder 31 mainly contains Sn and Ag at a ratio of 6: 1. The tensile strength of the low-strength solder 31 is 40 MPa or more and 50 MPa or less.

高強度はんだ32は、例えば、接続はんだ30に含まれる材料の1つである。高強度はんだ32は、Agが1質量%以上4質量%以下、Cuが0.6質量%以上0.8質量%以下、Sbが1質量%以上5質量%以下、Niが0.01質量%以上0.2質量%以下、残りがSnからなる。高強度はんだ32の引張強さは、90MPa以上100MPa以下である。   The high-strength solder 32 is one of the materials included in the connection solder 30, for example. In the high-strength solder 32, Ag is 1% by mass to 4% by mass, Cu is 0.6% by mass to 0.8% by mass, Sb is 1% by mass to 5% by mass, and Ni is 0.01% by mass. More than 0.2% by mass and the rest consists of Sn. The tensile strength of the high-strength solder 32 is 90 MPa or more and 100 MPa or less.

接続はんだ30に含まれる低強度はんだ31と高強度はんだ32の割合は、電子装置1を搭載環境の加速試験である冷熱サイクルの耐久試験結果、あるいは有限要素法などの応力解析によって算出した予測に基づいて求められる。例えば、BGA10の場合、接続はんだ30を用いて、BGA10と回路基板20との接続を行う。その後、上記の耐久試験あるいは応力解析を行う。回路基板20が損傷していると考えられるので、これを改善するために接続はんだ30に含まれる低強度はんだ31と高強度はんだ32との割合を調節して再び耐久試験あるいは応力解析を行う。これらを繰り返すと、BGA10を接続する際の接続はんだ30に含まれる低強度はんだ31と高強度はんだ32の割合を最適にすることができる。   The ratio of the low-strength solder 31 and the high-strength solder 32 included in the connection solder 30 is a prediction calculated by the endurance test result of the thermal cycle, which is an accelerated test of the environment in which the electronic device 1 is mounted, or by stress analysis such as the finite element method. Based on. For example, in the case of the BGA 10, the connection solder 30 is used to connect the BGA 10 and the circuit board 20. Thereafter, the above durability test or stress analysis is performed. Since it is considered that the circuit board 20 is damaged, the durability test or stress analysis is performed again by adjusting the ratio of the low-strength solder 31 and the high-strength solder 32 included in the connection solder 30 in order to improve this. By repeating these steps, the ratio of the low-strength solder 31 and the high-strength solder 32 contained in the connection solder 30 when connecting the BGA 10 can be optimized.

ボール形状の接続はんだ30には、低強度はんだ31のほうが高強度はんだ32よりも多く含まれている。   The ball-shaped connection solder 30 contains more low-strength solder 31 than high-strength solder 32.

裾野形状の接続はんだ30には、高強度はんだ32のほうが低強度はんだ31よりも多く含まれている。なお、裾野形状の接続はんだ30には、高強度はんだ32のみが含まれていてもよい。   The skirt-shaped connection solder 30 contains more high-strength solder 32 than low-strength solder 31. Note that the base-shaped connection solder 30 may include only the high-strength solder 32.

ここで、裾野形状の接続はんだ30には、高強度はんだ32のほうが低強度はんだ31よりも多く含まれているとした。しかし、例外的に、接続はんだ30の形状にかかわらず、背高部品10Cと回路基板20とを接続する接続はんだ30には、低強度はんだ31のほうが高強度はんだ32よりも多く含まれている。   Here, it is assumed that the skirt-shaped connection solder 30 contains more high-strength solder 32 than low-strength solder 31. However, exceptionally, regardless of the shape of the connection solder 30, the connection solder 30 that connects the tall component 10 </ b> C and the circuit board 20 includes more low-strength solder 31 than high-strength solder 32. .

なお、本実施形態の電子装置1は、コネクタ40に接続されている。コネクタ40は、外部機器と電子装置1との接続部分である。コネクタ40は、図1に示すように、端子41がハウジング42で覆われている。端子41は、回路基板20に接続される導電部材である。   Note that the electronic device 1 of the present embodiment is connected to the connector 40. The connector 40 is a connection part between the external device and the electronic device 1. As shown in FIG. 1, the connector 40 has a terminal 41 covered with a housing 42. The terminal 41 is a conductive member connected to the circuit board 20.

また、本実施形態の電子装置1は、ケース50内に収容されている。ケース50は、主にアルミニウムで作られる。ケース50は、電子装置1を外部から保護している。   In addition, the electronic device 1 of the present embodiment is accommodated in the case 50. The case 50 is mainly made of aluminum. The case 50 protects the electronic device 1 from the outside.

(本実施形態の製造方法)
ここで、図7から図15までを用いて電子装置1の製造方法について説明する。本実施形態が開示する電子装置1の製造方法は、塗布工程、配置工程及びリフロー工程をこの順で行う。なお、図7から図15までを用いて各電子部品について説明をするが、図面を簡略化するために回路基板20の片面にのみ各電子部品を実装する製造工程を図示している。したがって、電子装置1の製造方法は、片面にのみ各電子部品を実装する製造方法に限定されない。
(Manufacturing method of this embodiment)
Here, a method of manufacturing the electronic device 1 will be described with reference to FIGS. The manufacturing method of the electronic device 1 disclosed in this embodiment performs the coating process, the arranging process, and the reflow process in this order. Although each electronic component will be described with reference to FIGS. 7 to 15, a manufacturing process for mounting each electronic component only on one side of the circuit board 20 is shown in order to simplify the drawing. Therefore, the manufacturing method of the electronic apparatus 1 is not limited to the manufacturing method which mounts each electronic component only on one side.

(塗布工程)
塗布工程では、図7に示すように、回路基板20の各ランド上に低強度はんだ31を塗布する。具体的には、塗布工程では、第1ランド220上に低強度はんだ31を塗布する。また、第2ランド220A上に低強度はんだ31を塗布する。さらに、第3ランド220B上に低強度はんだ31を塗布する。そして、第4ランド220C上に低強度はんだ31を塗布する。塗布工程では、ディスペンサー等を用いた塗布やスクリーン印刷によって、予め決められた量の低強度はんだ31をランド上に塗布する。つまり、各ランドに一つずつ低強度はんだ31を塗布してもよいし、全ランドにまとめて一度に低強度はんだ31を塗布してもよい。
(Coating process)
In the coating process, as shown in FIG. 7, a low-strength solder 31 is applied on each land of the circuit board 20. Specifically, in the application process, the low-strength solder 31 is applied on the first land 220. Further, the low-strength solder 31 is applied on the second land 220A. Further, the low-strength solder 31 is applied on the third land 220B. Then, the low-strength solder 31 is applied on the fourth land 220C. In the application process, a predetermined amount of low-strength solder 31 is applied on the lands by application using a dispenser or the like or screen printing. That is, one low-strength solder 31 may be applied to each land, or the low-strength solder 31 may be applied to all lands at once.

なお、本実施形態では、一例として、ランド上に低強度はんだ31を塗布する塗布工程を採用した。しかしながら、本発明は、これに限定されず、ランド上に高強度はんだ32を塗布する塗布工程であっても採用できる。   In the present embodiment, as an example, an application process of applying the low-strength solder 31 onto the land is employed. However, the present invention is not limited to this, and can be adopted even in an application process in which the high-strength solder 32 is applied on the land.

(配置工程)
配置工程では、塗布工程にて各ランドに塗布された低強度はんだ31上に、高強度はんだ32と、BGA10、チップ部品10A、半導体パッケージ10B及び背高部品10Cとを配置する。なお、この配置工程では、BGA10、チップ部品10A、半導体パッケージ10B及び背高部品10Cのそれぞれに関して個別に説明する。
(Arrangement process)
In the placement process, the high-strength solder 32, the BGA 10, the chip part 10A, the semiconductor package 10B, and the tall part 10C are placed on the low-strength solder 31 applied to each land in the coating process. In this arrangement step, each of the BGA 10, the chip component 10A, the semiconductor package 10B, and the tall component 10C will be described individually.

まず、図8、図9を用いて、高強度はんだ32とBGA10の配置に関して説明する。図8に示すように、配置工程では、BGA10用の低強度はんだ31の真上に、チップマウンタ等を用いて電極11に高強度はんだ32が形成された状態のBGA10を配置する。高強度はんだ32は、複数の電極11上のそれぞれに形成されている。   First, the arrangement of the high-strength solder 32 and the BGA 10 will be described with reference to FIGS. As shown in FIG. 8, in the arranging step, the BGA 10 in a state where the high-strength solder 32 is formed on the electrode 11 using a chip mounter or the like is arranged just above the low-strength solder 31 for the BGA 10. The high strength solder 32 is formed on each of the plurality of electrodes 11.

図9に示すように、配置工程では、高強度はんだ32が塗布されたBGA10を第1ランド220上の低強度はんだ31に配置する。電極11に形成されている高強度はんだ32の量は、塗布工程で塗布された低強度はんだ31の量よりも少ない。つまり、配置工程では、塗布工程で予め決められた量の低強度はんだ31よりも、少ない量の高強度はんだ32が配置される。配置工程では、低強度はんだ31と高強度はんだ32を電極対向面12と配線対向面23との間に配置する。   As shown in FIG. 9, in the placement step, the BGA 10 to which the high strength solder 32 is applied is placed on the low strength solder 31 on the first land 220. The amount of the high-strength solder 32 formed on the electrode 11 is smaller than the amount of the low-strength solder 31 applied in the application process. That is, in the placement process, a smaller amount of high-strength solder 32 is placed than the amount of low-strength solder 31 predetermined in the coating process. In the placement step, the low-strength solder 31 and the high-strength solder 32 are placed between the electrode facing surface 12 and the wiring facing surface 23.

次に、図10、図11を用いて、高強度はんだ32とチップ部品10Aの配置に関して説明する。図10に示すように、配置工程では、チップ部品10A用の低強度はんだ31上に、チップ部品10Aと高強度はんだ32とを別々に配置する。つまり、配置工程では、チップ部品10Aを、電極11に高強度はんだ32が形成されていない状態で、低強度はんだ31上に配置する。配置工程では、チップマウンタ等を用いてチップ部品10Aを低強度はんだ31上に配置する。このとき、配置工程では、低強度はんだ31の少なくとも一部が電極対向面12と配線対向面23との間に存在するようにチップ部品10Aを配置する。   Next, the arrangement of the high-strength solder 32 and the chip component 10A will be described with reference to FIGS. As shown in FIG. 10, in the arrangement step, the chip component 10A and the high-strength solder 32 are separately arranged on the low-strength solder 31 for the chip component 10A. That is, in the arranging step, the chip component 10 </ b> A is arranged on the low-strength solder 31 in a state where the high-strength solder 32 is not formed on the electrode 11. In the placement step, the chip component 10A is placed on the low-strength solder 31 using a chip mounter or the like. At this time, in the arranging step, the chip component 10 </ b> A is arranged so that at least a part of the low-strength solder 31 exists between the electrode facing surface 12 and the wiring facing surface 23.

図11に示すように、配置工程では、チップ部品10Aを低強度はんだ31上に配置した後、高強度はんだ32を塗布する。このとき、配置工程では、高強度はんだ32をチップ部品10Aの電極11が配置されている箇所以外に塗布する。この高強度はんだ32の量は、塗布工程で塗布された低強度はんだ31の量よりも多い。つまり、配置工程では、塗布工程で予め決められた量の低強度はんだ31よりも、多い量の高強度はんだ32を塗布する。チップ部品10Aと高強度はんだ32とは、低強度はんだ31上に配置される。配置工程では、ディスペンサー等を用いて高強度はんだ32を低強度はんだ31上に塗布する。   As shown in FIG. 11, in the placement step, the chip component 10 </ b> A is placed on the low-strength solder 31 and then the high-strength solder 32 is applied. At this time, in the arranging step, the high-strength solder 32 is applied to a portion other than the place where the electrode 11 of the chip component 10A is arranged. The amount of the high-strength solder 32 is larger than the amount of the low-strength solder 31 applied in the application process. That is, in the arranging step, a larger amount of high-strength solder 32 is applied than the amount of low-strength solder 31 predetermined in the application step. The chip component 10 </ b> A and the high-strength solder 32 are disposed on the low-strength solder 31. In the arranging step, the high-strength solder 32 is applied on the low-strength solder 31 using a dispenser or the like.

次に、図12、図13を用いて、高強度はんだ32と半導体パッケージ10Bの配置に関して説明する。図12に示すように、配置工程では、半導体パッケージ10B用の低強度はんだ31上には、半導体パッケージ10Bと高強度はんだ32とを別々に配置する。つまり、半導体パッケージ10Bは、電極11に高強度はんだ32が形成されていない状態で、低強度はんだ31上に配置される。配置工程では、チップマウンタ等を用いて半導体パッケージ10Bを配置する。このとき、配置工程では、チップ部品10Aと同様に、低強度はんだ31の少なくとも一部が電極対向面12と配線対向面23との間に存在するように半導体パッケージ10Bを配置する。   Next, the arrangement of the high-strength solder 32 and the semiconductor package 10B will be described with reference to FIGS. As shown in FIG. 12, in the arranging step, the semiconductor package 10B and the high strength solder 32 are separately arranged on the low strength solder 31 for the semiconductor package 10B. That is, the semiconductor package 10 </ b> B is disposed on the low-strength solder 31 in a state where the high-strength solder 32 is not formed on the electrode 11. In the placement step, the semiconductor package 10B is placed using a chip mounter or the like. At this time, in the arranging step, the semiconductor package 10B is arranged so that at least a part of the low-strength solder 31 exists between the electrode facing surface 12 and the wiring facing surface 23, similarly to the chip component 10A.

図13に示すように、配置工程では、半導体パッケージ10Bを低強度はんだ31上に配置した後、高強度はんだ32を塗布する。このとき、配置工程では、半導体パッケージ10Bの電極11が配置されている箇所以外に塗布する。この高強度はんだ32の量は、チップ部品10Aにおける配置工程と同様に、塗布工程で塗布された低強度はんだ31の量よりも多い。配置工程では、半導体パッケージ10Bと高強度はんだ32を低強度はんだ31上に配置する。配置工程では、チップ部品10Aにおける配置工程と同様に、ディスペンサー等を用いて高強度はんだ32を低強度はんだ31上に塗布する。   As shown in FIG. 13, in the placement step, the semiconductor package 10 </ b> B is placed on the low-strength solder 31 and then the high-strength solder 32 is applied. At this time, in the placement step, the coating is applied to a portion other than the place where the electrode 11 of the semiconductor package 10B is placed. The amount of the high-strength solder 32 is larger than the amount of the low-strength solder 31 applied in the application step, as in the placement step in the chip component 10A. In the placement step, the semiconductor package 10 </ b> B and the high strength solder 32 are placed on the low strength solder 31. In the placement step, the high-strength solder 32 is applied onto the low-strength solder 31 using a dispenser or the like, similarly to the placement step in the chip component 10A.

そして、図14、図15を用いて、高強度はんだ32と背高部品10Cの配置に関して説明する。図14に示すように、配置工程では、背高部品10C用の低強度はんだ31上に、背高部品10Cと高強度はんだ32とを別々に配置する。つまり、配置工程では、背高部品10Cを、電極11に高強度はんだ32が形成されていない状態で、低強度はんだ31上に配置する。配置工程では、チップマウンタ等を用いて、背高部品10Cを低強度はんだ31上に配置する。このとき、配置工程では、チップ部品10Aと同様に、低強度はんだ31の少なくとも一部が電極対向面12と配線対向面23との間に存在するように背高部品10Cを配置する。   The arrangement of the high-strength solder 32 and the tall component 10C will be described with reference to FIGS. As shown in FIG. 14, in the placement step, the tall component 10C and the high strength solder 32 are separately placed on the low strength solder 31 for the tall component 10C. That is, in the arranging step, the tall component 10 </ b> C is arranged on the low-strength solder 31 in a state where the high-strength solder 32 is not formed on the electrode 11. In the placement step, the tall component 10C is placed on the low-strength solder 31 using a chip mounter or the like. At this time, in the arranging step, the tall component 10C is arranged so that at least a part of the low-strength solder 31 exists between the electrode facing surface 12 and the wiring facing surface 23, similarly to the chip component 10A.

図15に示すように、配置工程では、背高部品10Cを低強度はんだ31上に配置した後、高強度はんだ32を塗布する。背高部品10Cが配置されている箇所以外に塗布される高強度はんだ32の量は、塗布工程で塗布された低強度はんだ31の量よりも多い。配置工程では、第3部品10Cと高強度はんだ32とを低強度はんだ31上に配置する。配置工程では、チップ部品10A及び半導体パッケージ10Bにおける配置工程と同様に、ディスペンサー等を用いて高強度はんだ32を低強度はんだ31上に塗布する。   As shown in FIG. 15, in the arranging step, the high-strength solder 32 is applied after the tall component 10 </ b> C is arranged on the low-strength solder 31. The amount of the high-strength solder 32 applied other than the place where the tall component 10C is disposed is larger than the amount of the low-strength solder 31 applied in the application process. In the arranging step, the third component 10 </ b> C and the high strength solder 32 are arranged on the low strength solder 31. In the placement step, the high-strength solder 32 is applied onto the low-strength solder 31 using a dispenser or the like, similarly to the placement step in the chip component 10A and the semiconductor package 10B.

なお、本実施形態では、一例として、低強度はんだ31上に高強度はんだ32を配置する配置工程を採用した。しかし、これに限られずに、配置工程では、塗布工程にて塗布された高強度はんだ32上に低強度はんだ31を配置してもよい。   In the present embodiment, as an example, an arrangement process of arranging the high-strength solder 32 on the low-strength solder 31 is employed. However, the present invention is not limited to this, and in the arranging step, the low-strength solder 31 may be arranged on the high-strength solder 32 applied in the applying step.

(リフロー工程)
リフロー工程では、低強度はんだ31と高強度はんだ32とを溶融及び硬化させることで接続はんだ30を形成する。そして、接続はんだ30を形成することで、各電子部品と回路基板20とを接続する。
(Reflow process)
In the reflow process, the connection solder 30 is formed by melting and curing the low-strength solder 31 and the high-strength solder 32. Then, by forming the connection solder 30, each electronic component and the circuit board 20 are connected.

BGA10の場合、電極対向面12と配線対向面23との間にある低強度はんだ31及び高強度はんだ32が加熱によって溶融する。溶融した低強度はんだ31及び高強度はんだ32は、対流によって互いに混ざり合う。そして、溶融状態の接続はんだ30ができる。電極対向面12と配線対向面23との間にある溶融した接続はんだ30は、その表面張力によって丸みを帯びる。その後、硬化することでボール形状の接続はんだ30を形成する。   In the case of the BGA 10, the low strength solder 31 and the high strength solder 32 between the electrode facing surface 12 and the wiring facing surface 23 are melted by heating. The melted low-strength solder 31 and high-strength solder 32 are mixed with each other by convection. And the connection solder 30 of a molten state is made. The molten connection solder 30 between the electrode facing surface 12 and the wiring facing surface 23 is rounded by the surface tension. Thereafter, the ball-shaped connection solder 30 is formed by curing.

チップ部品10Aの場合、低強度はんだ31及び低強度はんだ31上に配置された高強度はんだ32が加熱によって溶融する。BGA10におけるリフロー工程の場合と同様に、溶融した低強度はんだ31及び高強度はんだ32が互いに混ざり合い、そして、溶融状態の接続はんだ30ができる。溶融状態の接続はんだ30は、チップ部品10Aの電極対向面12と垂直な面上と配線対向面23上を濡れ拡がっていく。溶融状態の接続はんだ30が濡れ拡がることで、電極対向面12と配線対向面との間にある接続はんだ30に裾野が形成される。その後、硬化することで裾野形状の接続はんだ30を形成する。   In the case of the chip component 10A, the low-strength solder 31 and the high-strength solder 32 disposed on the low-strength solder 31 are melted by heating. As in the case of the reflow process in the BGA 10, the molten low-strength solder 31 and the high-strength solder 32 are mixed with each other, and the connection solder 30 in the molten state is formed. The molten connection solder 30 wets and spreads on the surface perpendicular to the electrode facing surface 12 and the wiring facing surface 23 of the chip component 10A. As the connection solder 30 in the molten state wets and spreads, a skirt is formed in the connection solder 30 between the electrode facing surface 12 and the wiring facing surface. Then, the bottom-shaped connection solder 30 is formed by hardening.

半導体パッケージ10Bの場合、低強度はんだ31及び低強度はんだ31上に配置された高強度はんだ32が加熱によって溶融する。BGA10及びチップ部品10Aにおけるリフロー工程の場合と同様に、溶融した低強度はんだ31及び高強度はんだ32が互いに混ざり合い、そして、溶融状態の接続はんだ30ができる。溶融状態の接続はんだ30は、半導体パッケージ10Bの配線対向面23上を濡れ拡がっていく。その後、チップ部品10Aの場合と同様に、硬化することで裾野形状の接続はんだ30を形成する。   In the case of the semiconductor package 10B, the low-strength solder 31 and the high-strength solder 32 disposed on the low-strength solder 31 are melted by heating. As in the case of the reflow process in the BGA 10 and the chip component 10A, the molten low-strength solder 31 and the high-strength solder 32 are mixed with each other, and the molten connection solder 30 is formed. The molten connection solder 30 wets and spreads on the wiring facing surface 23 of the semiconductor package 10B. Thereafter, as in the case of the chip component 10A, the bottom-shaped connection solder 30 is formed by curing.

背高部品10Cの場合、チップ部品10A及び半導体パッケージ10Bと同様に、低強度はんだ31及び低強度はんだ31上に配置された高強度はんだ32が加熱によって溶融する。BGA10、チップ部品10A及び半導体パッケージ10Bにおけるリフロー工程の場合と同様に、溶融した低強度はんだ31及び高強度はんだ32が互いに混ざり合い、そして、溶融状態の接続はんだ30ができる。溶融状態の接続はんだ30は、背高部品10Cの電極対向面12と垂直な面上と配線対向面23上を濡れ拡がっていく。その後、チップ部品10A及び半導体パッケージ10Bの場合と同様に、硬化することで裾野形状の接続はんだ30を形成する。   In the case of the tall component 10C, similarly to the chip component 10A and the semiconductor package 10B, the low-strength solder 31 and the high-strength solder 32 disposed on the low-strength solder 31 are melted by heating. As in the case of the reflow process in the BGA 10, the chip component 10A, and the semiconductor package 10B, the molten low-strength solder 31 and the high-strength solder 32 are mixed with each other, and the connection solder 30 in the molten state is formed. The molten connection solder 30 wets and spreads on the surface perpendicular to the electrode facing surface 12 and the wiring facing surface 23 of the tall component 10C. Thereafter, as in the case of the chip component 10A and the semiconductor package 10B, the base-shaped connection solder 30 is formed by curing.

なお、電子装置1の製造方法では、低強度はんだ31及び高強度はんだ32を別工程で塗布している。しかし、この開示はこれに限定されず、例えば、BGA10を回路基板20に電気的に接続する場合、予め高強度はんだ32の量より低強度はんだ31の量を多くして、予め低強度はんだ31と高強度はんだ32とを混合させたはんだを用いてもよい。同様に、チップ部品10A及び半導体パッケージ10Bを回路基板20に電気的に接続する場合、予め低強度はんだ31の量より高強度はんだ32の量を多くして、予め低強度はんだ31と高強度はんだ32とを混合させたはんだを用いてもよい。同様に、背高部品10Cを回路基板20に電気的に接続する場合、予め高強度はんだ32の量より低強度はんだ31の量を多くして、予め低強度はんだ31と高強度はんだ32とを混合させたはんだを用いてもよい。   In the method for manufacturing the electronic device 1, the low-strength solder 31 and the high-strength solder 32 are applied in separate steps. However, this disclosure is not limited to this. For example, when the BGA 10 is electrically connected to the circuit board 20, the amount of the low-strength solder 31 is increased in advance than the amount of the high-strength solder 32, and the low-strength solder 31 is preliminarily used. Solder in which high-strength solder 32 is mixed may be used. Similarly, when the chip component 10A and the semiconductor package 10B are electrically connected to the circuit board 20, the amount of the high-strength solder 32 is increased in advance than the amount of the low-strength solder 31, and the low-strength solder 31 and the high-strength solder are preliminarily increased. Solder mixed with 32 may be used. Similarly, when electrically connecting the tall component 10C to the circuit board 20, the amount of the low-strength solder 31 is increased in advance from the amount of the high-strength solder 32, and the low-strength solder 31 and the high-strength solder 32 are previously added. Mixed solder may be used.

なお、本実施形態では、一例として、予め決められた量の低強度はんだ31を塗布する塗布工程を採用した。しかし、これに限られずに、塗布工程で第1ランド220上には、配置工程で塗布される高強度はんだ32よりも多い量の低強度はんだ31を塗布するとしてもよい。同様に、塗布工程で第2ランド220A及び第3ランド220B上には、配置工程で塗布される高強度はんだ32よりも少ない量の低強度はんだ31を塗布するとしてもよい。同様に、塗布工程で第4ランド220C上には、配置工程で塗布される高強度はんだ32よりも少ない量の低強度はんだ31を塗布するとしてもよい。そして、この後、配置工程では、所定量の高強度はんだ32を塗布してもよい。   In the present embodiment, as an example, an application process of applying a predetermined amount of low-strength solder 31 is employed. However, the present invention is not limited to this, and the amount of low-strength solder 31 that is larger than the high-strength solder 32 applied in the placement step may be applied on the first land 220 in the application step. Similarly, the low-strength solder 31 having a smaller amount than the high-strength solder 32 applied in the arranging step may be applied on the second land 220A and the third land 220B in the applying step. Similarly, the low-strength solder 31 having a smaller amount than the high-strength solder 32 applied in the arranging step may be applied on the fourth land 220C in the applying step. Thereafter, a predetermined amount of high-strength solder 32 may be applied in the arranging step.

(本実施形態の作用効果)
この実施形態によると、電子部品の種類に応じて低強度はんだ31及び高強度はんだ32が含まれる割合を調節した接続はんだ30を用いることで、従来の電子装置に比べて、装置が正常に機能する期間を延ばすことができる。
(Operational effect of this embodiment)
According to this embodiment, by using the connection solder 30 in which the ratio of the low-strength solder 31 and the high-strength solder 32 is adjusted according to the type of electronic component, the device functions normally compared to the conventional electronic device. You can extend the period.

詳述すると、BGA10と回路基板20とを電気的に接続している接続はんだ30は、ボール形状である。ボール形状では、接続はんだ30の中央から電極対向面12及び配線対向面23へ向かうにつれて、接続はんだ30の実装面21と平行な断面での断面積が小さくなる。つまり、接続はんだ30の表面と電極対向面12とがつくる角が鋭角となる。このため、外気温が大きく変化することで生ずるせん断応力によって、回路基板20側へひび割れが生じやすいと想定される。そこで、接続はんだ30へも応力を分散させ、回路基板20へせん断応力の集中を緩和するため、BGA10と回路基板20とを電気的に接続している接続はんだ30には、低強度はんだ31が高強度はんだ32よりも多く含まれている。低強度はんだ31の引張強さは、高強度はんだ32の引張強さよりも小さいので、せん断応力を接続はんだ30内で分散しやすくなる。よって、外気温が大きく変化する環境下でも、BGA10と回路基板20とを電気的に接続しているボール形状の接続はんだ30の接続信頼性を高めることができる。   More specifically, the connection solder 30 that electrically connects the BGA 10 and the circuit board 20 has a ball shape. In the ball shape, the cross-sectional area in a cross section parallel to the mounting surface 21 of the connection solder 30 decreases from the center of the connection solder 30 toward the electrode facing surface 12 and the wiring facing surface 23. That is, the angle formed by the surface of the connection solder 30 and the electrode facing surface 12 is an acute angle. For this reason, it is assumed that cracks are likely to occur on the side of the circuit board 20 due to shear stress generated by a large change in the outside air temperature. Therefore, in order to disperse the stress to the connection solder 30 and alleviate the concentration of the shear stress on the circuit board 20, the low-strength solder 31 is included in the connection solder 30 that electrically connects the BGA 10 and the circuit board 20. More than the high-strength solder 32 is contained. Since the tensile strength of the low-strength solder 31 is smaller than the tensile strength of the high-strength solder 32, the shear stress is easily dispersed in the connection solder 30. Therefore, the connection reliability of the ball-shaped connection solder 30 that electrically connects the BGA 10 and the circuit board 20 can be enhanced even in an environment where the outside air temperature changes greatly.

チップ部品10A及び半導体パッケージ10Bと回路基板20とを電気的に接続している接続はんだ30は、裾野形状である。裾野形状では、電極対向面12から配線対向面23へ向かうにつれて、接続はんだ30の実装面21と平行な断面での断面積が大きくなる。つまり、接続はんだ30の表面と電極対向面12とがつくる角が鈍角となる。このため、外気温が大きく変化することで生ずるせん断応力は、回路基板20側に加わりにくく、接続はんだ30に集中すると想定される。そこで、集中するせん断応力に対する耐久性を確保するため、チップ部品10A及び半導体パッケージ10Bと回路基板20とを電気的に接続している接続はんだ30には、高強度はんだ32が低強度はんだ31よりも多く含まれている。高強度はんだ32の引張強さは、低強度はんだ31の引張強さよりも大きいので、接続はんだ30は、せん断応力に対して十分な強度を確保することができる。よって、外気温が大きく変化する環境下でも、チップ部品10A及び半導体パッケージ10Bと回路基板20とを電気的に接続している裾野形状の接続はんだ30の接続信頼性を高めることができる。   The connection solder 30 that electrically connects the chip component 10A and the semiconductor package 10B to the circuit board 20 has a base shape. In the base shape, the cross-sectional area in a cross section parallel to the mounting surface 21 of the connection solder 30 increases from the electrode facing surface 12 toward the wiring facing surface 23. That is, the angle formed by the surface of the connection solder 30 and the electrode facing surface 12 is an obtuse angle. For this reason, it is assumed that the shear stress generated when the outside air temperature greatly changes is less likely to be applied to the circuit board 20 side and concentrated on the connection solder 30. Therefore, in order to ensure durability against concentrated shear stress, the high-strength solder 32 is higher than the low-strength solder 31 in the connection solder 30 that electrically connects the chip component 10 </ b> A and the semiconductor package 10 </ b> B and the circuit board 20. Many are also included. Since the tensile strength of the high-strength solder 32 is greater than the tensile strength of the low-strength solder 31, the connection solder 30 can ensure a sufficient strength against shear stress. Therefore, the connection reliability of the bottom-shaped connection solder 30 that electrically connects the chip component 10 </ b> A and the semiconductor package 10 </ b> B and the circuit board 20 can be improved even in an environment in which the outside air temperature changes greatly.

以上より、上述のような割合で混合された接続はんだ30を用いることで、単一種類のはんだを用いていた従来の電子装置よりも、電子装置1が正常に機能する期間を延ばすことができる。   As described above, by using the connection solder 30 mixed at the above-described ratio, the period during which the electronic device 1 functions normally can be extended as compared with the conventional electronic device using a single type of solder. .

また、背高部品10Cと回路基板20とを電気的に接続している接続はんだ30は、裾野形状である。よって、上記のせん断応力は、接続はんだ30に集中すると想定されるため、接続はんだ30には高強度はんだ32が低強度はんだ31よりも多く含ませるべきである。しかし、電子装置1が落下したとき、落下による衝撃が全電子部品に加わる。背高部品10Cは、BGA10、チップ部品10A及び半導体パッケージ10Bよりも背が高いため、他の電子部品に比べて落下衝撃の影響を受けやすい。そして、落下衝撃の影響は、接続はんだ30と配線対向面23との境界面に集中すると想定される。   The connection solder 30 that electrically connects the tall component 10C and the circuit board 20 has a base shape. Therefore, since it is assumed that the above-described shear stress is concentrated on the connection solder 30, the connection solder 30 should contain more high-strength solder 32 than low-strength solder 31. However, when the electronic device 1 falls, an impact due to the drop is applied to all electronic components. Since the tall component 10C is taller than the BGA 10, the chip component 10A, and the semiconductor package 10B, the tall component 10C is more susceptible to a drop impact than other electronic components. Then, it is assumed that the influence of the drop impact is concentrated on the boundary surface between the connection solder 30 and the wiring facing surface 23.

そこで、落下衝撃が接続はんだ30と配線対向面23との境界面に集中することを緩和するため、背高部品10Cと回路基板20とを接続しているには、接続はんだ30の形状にかかわらず、低強度はんだ31が高強度はんだ32よりも多く含まれている。よって、高強度はんだ32のみが含まれている接続はんだ30に比べ、接続はんだ30内で力を分散させることができる。したがって、せん断応力に対して十分な強度を確保しつつ、落下衝撃による影響を緩和することができる。   Therefore, in order to mitigate the concentration of the drop impact on the boundary surface between the connection solder 30 and the wiring facing surface 23, the connection between the tall component 10C and the circuit board 20 depends on the shape of the connection solder 30. The low-strength solder 31 is contained more than the high-strength solder 32. Therefore, the force can be dispersed in the connection solder 30 as compared with the connection solder 30 containing only the high-strength solder 32. Therefore, it is possible to reduce the influence of the drop impact while securing a sufficient strength against the shear stress.

また、この実施形態の製造方法によると、電子部品の種類に応じて低強度はんだ31と高強度はんだ32を塗布する割合を調節した接続はんだ30を形成することで、本実施形態の電子装置1を製造することができる。   Moreover, according to the manufacturing method of this embodiment, the connection solder 30 in which the ratio of applying the low-strength solder 31 and the high-strength solder 32 is adjusted according to the type of the electronic component is formed, whereby the electronic device 1 of the present embodiment. Can be manufactured.

詳述すると、BGA10を回路基板20に接続する場合には、配置工程で低強度はんだ31上に、BGA10、当該低強度はんだ31よりも少ない量の高強度はんだ32を配置する。その後、リフロー工程を経て、高強度はんだ32よりも多く低強度はんだ31が含まれた接続はんだ30を形成する。   More specifically, when the BGA 10 is connected to the circuit board 20, the BGA 10 and a smaller amount of the high strength solder 32 than the low strength solder 31 are arranged on the low strength solder 31 in the arrangement step. Thereafter, through a reflow process, the connection solder 30 including the low-strength solder 31 more than the high-strength solder 32 is formed.

また、チップ部品10A及び半導体パッケージ10Bを回路基板20に接続する場合には、配置工程で低強度はんだ31上に、チップ部品10A及び半導体パッケージ10B、当該低強度はんだ31よりも多い量の高強度はんだ32を配置する。その後、リフロー工程を経て、低強度はんだ31よりも多く高強度はんだ32が含まれた接続はんだ30を形成する。   Further, when the chip component 10A and the semiconductor package 10B are connected to the circuit board 20, the chip component 10A, the semiconductor package 10B, and the high-strength of a larger amount than the low-strength solder 31 are disposed on the low-strength solder 31 in the placement process. Solder 32 is disposed. Thereafter, through a reflow process, the connection solder 30 including the high-strength solder 32 more than the low-strength solder 31 is formed.

さらに、背高部品10Cを回路基板20に接続する場合には、配置工程で低強度はんだ31上に、背高部品10C、当該低強度はんだ31よりも少ない量の高強度はんだ32を配置する。その後、リフロー工程を経て、BGA10の場合と同様に、高強度はんだ32よりも多く低強度はんだ31が含まれた接続はんだ30を形成する。   Furthermore, when connecting the tall component 10 </ b> C to the circuit board 20, the tall component 10 </ b> C and the high-strength solder 32 having a smaller amount than the low-strength solder 31 are disposed on the low-strength solder 31 in the arranging step. Thereafter, through a reflow process, as in the case of the BGA 10, the connection solder 30 including the low-strength solder 31 more than the high-strength solder 32 is formed.

したがって、低強度はんだ31及び高強度はんだ32が含まれる割合が回路基板20に接続される各電子部品の種類に応じて調節された接続はんだ30を用いた本実施形態の電子装置1を製造することができる。なお、塗布工程にて低強度はんだ31の代わりに高強度はんだ32を塗布して、配置工程にて低強度はんだ31を配置する製造方法でも、上述と同様の作用効果を奏する。   Therefore, the electronic device 1 according to this embodiment is manufactured using the connection solder 30 in which the ratio of the low-strength solder 31 and the high-strength solder 32 is adjusted according to the type of each electronic component connected to the circuit board 20. be able to. Note that the manufacturing method in which the high-strength solder 32 is applied instead of the low-strength solder 31 in the application step and the low-strength solder 31 is arranged in the arrangement step has the same effects as described above.

また、低強度はんだ31は、フラックスを含んだペースト状でもよい。フラックスを含んだ低強度はんだ31は、フラックスを含まない低強度はんだ31よりも粘性が高くなる。よって、配置工程では、低強度はんだ31上の一部にチップ部品10A及び半導体パッケージ10B及び背高部品10Cの電極11を接触させて配置する際に、チップ部品10A及び半導体パッケージ10B及び背高部品10Cを安定して配置することができる。つまり、配置工程では、低強度はんだ31上にチップ部品10Aなどを配置した場合に、チップ部品10Aが低強度はんだ31から滑り落ちることを抑制できる。なお、塗布工程にて、高強度はんだ32をランド上に塗布する際も同様に、高強度はんだ32にフラックスを含めることで、配置工程にて、高強度はんだ32上にチップ部品10A及び半導体パッケージ10B及び背高部品10Cを安定して配置することができる。   The low-strength solder 31 may be a paste containing a flux. The low-strength solder 31 including the flux has higher viscosity than the low-strength solder 31 not including the flux. Therefore, in the placement step, when placing the chip component 10A, the semiconductor package 10B, and the electrode 11 of the tall component 10C in contact with part of the low-strength solder 31, the chip component 10A, the semiconductor package 10B, and the tall component. 10C can be stably arranged. That is, in the placement step, when the chip component 10 </ b> A or the like is placed on the low-strength solder 31, the chip component 10 </ b> A can be prevented from sliding off from the low-strength solder 31. Similarly, when the high-strength solder 32 is applied on the land in the application process, the chip component 10A and the semiconductor package are placed on the high-strength solder 32 in the arrangement process by including the flux in the high-strength solder 32. 10B and the tall component 10C can be stably arranged.

1…電子装置、10…BGA、10A…チップ部品、10B…半導体パッケージ、10C…背高部品、11…電極、12…電極対向面、20…回路基板、21…実装面、22…配線、30…接続はんだ、31…低強度はんだ、32…高強度はんだ   DESCRIPTION OF SYMBOLS 1 ... Electronic device, 10 ... BGA, 10A ... Chip component, 10B ... Semiconductor package, 10C ... Tall component, 11 ... Electrode, 12 ... Electrode facing surface, 20 ... Circuit board, 21 ... Mounting surface, 22 ... Wiring, 30 ... Connection solder, 31 ... Low-strength solder, 32 ... High-strength solder

Claims (7)

電極(11)を有する少なくとも2種類以上の電子部品と、
前記電子部品が実装されている側の面である実装面(21)に配線(22)を有している回路基板(20)と、
前記電子部品と前記回路基板とを電気的かつ機械的に接続している接続はんだ(30)と、を備え、
前記接続はんだの少なくとも一部が、前記電極における前記実装面と対向している面である電極対向面(12)と前記配線の一部が前記電極対向面と対向している面である配線対向面(23)との間に配置されており、
前記電子部品は、ボール形状の前記接続はんだで前記回路基板に接続されている第1部品(10)と、裾野形状の前記接続はんだで前記回路基板に接続されている第2部品(10A、10B)と、を含んでおり、
前記接続はんだには、所定の引張強さを有する低強度はんだ(31)及び前記低強度はんだよりも引張強さが大きい高強度はんだ(32)が含まれており、
前記第1部品は、前記高強度はんだより前記低強度はんだが多い前記接続はんだで前記回路基板に接続されており、
前記第2部品は、前記低強度はんだより前記高強度はんだが多い前記接続はんだで前記回路基板に接続されている電子装置。
At least two kinds of electronic components having an electrode (11);
A circuit board (20) having wiring (22) on a mounting surface (21) which is a surface on which the electronic component is mounted;
A connection solder (30) for electrically and mechanically connecting the electronic component and the circuit board;
At least part of the connection solder is an electrode facing surface (12) which is a surface facing the mounting surface of the electrode, and wiring facing is a surface where a part of the wiring is facing the electrode facing surface. Between the surface (23) and
The electronic component includes a first component (10) connected to the circuit board with the ball-shaped connection solder and a second component (10A, 10B) connected to the circuit board with the bottom-shaped connection solder. ), And
The connection solder includes a low strength solder (31) having a predetermined tensile strength and a high strength solder (32) having a higher tensile strength than the low strength solder,
The first component is connected to the circuit board with the connection solder in which the low-strength solder is more than the high-strength solder,
The electronic device in which the second component is connected to the circuit board with the connection solder in which the high-strength solder is more than the low-strength solder.
前記電子部品は、前記電子部品の前記実装面からの高さを部品高さとし、前記第1部品及び前記第2部品よりも前記部品高さが高い第3部品(10C)を含んでおり、
前記第3部品は、前記接続はんだの形状にかかわらず、前記高強度はんだより前記低強度はんだが多く前記接続はんだで前記回路基板に接続されている請求項1に記載の電子装置。
The electronic component includes a third component (10C) in which the height from the mounting surface of the electronic component is a component height, and the component height is higher than the first component and the second component,
2. The electronic device according to claim 1, wherein the third component includes more low-strength solder than the high-strength solder and is connected to the circuit board with the connection solder regardless of the shape of the connection solder.
前記第1部品は、前記実装面と対向する面のみに前記電極を有しており、
前記第2部品は、少なくとも前記実装面と対向しない面に前記電極を有している請求項1又は2に記載の電子装置。
The first component has the electrode only on the surface facing the mounting surface,
The electronic device according to claim 1, wherein the second component has the electrode on at least a surface that does not face the mounting surface.
前記接続はんだには、フラックスが含まれている請求項1から3までのいずれか1項に記載の電子装置。   The electronic device according to claim 1, wherein the connection solder contains a flux. 電極(11)を有する少なくとも2種類以上の電子部品と、
前記電子部品が実装されている側の面である実装面(21)に配線(22)を有している回路基板(20)と、
前記電子部品と前記回路基板とを電気的かつ機械的に接続している接続はんだ(30)と、を備え、
前記接続はんだの少なくとも一部が、前記電極における前記実装面と対向している面である電極対向面(12)と前記配線の一部が前記電極対向面と対向している面である配線対向面(23)との間に配置されており、
前記電子部品は、ボール形状の前記接続はんだで前記回路基板に接続されている第1部品(10)と、裾野形状の前記接続はんだで前記回路基板に接続されている第2部品(10A、10B)と、を含んでおり、
前記接続はんだには、所定の引張強さを有する低強度はんだ(31)及び前記低強度はんだよりも引張強さが大きい高強度はんだ(32)が含まれており、
前記第1部品は、前記高強度はんだより前記低強度はんだが多い前記接続はんだで前記回路基板に接続されており、
前記第2部品は、前記低強度はんだより前記高強度はんだが多い前記接続はんだで前記回路基板に接続されている電子装置の製造方法であって、
前記低強度はんだと前記高強度はんだのうち、いずれか一方のはんだを前記配線上に塗布し、
前記一方のはんだ上に、前記第1部品と前記高強度はんだより前記低強度はんだが多くなるように他方のはんだとを配置するとともに、
前記一方のはんだ上に、前記第2部品と前記低強度はんだより前記高強度はんだが多くなるように他方のはんだとを配置し、
前記一方のはんだ及び前記他方のはんだをリフローし、前記接続はんだを形成することで前記第1部品及び前記第2部品と前記回路基板とを電気的に接続する電子装置の製造方法。
At least two kinds of electronic components having an electrode (11);
A circuit board (20) having wiring (22) on a mounting surface (21) which is a surface on which the electronic component is mounted;
A connection solder (30) for electrically and mechanically connecting the electronic component and the circuit board;
At least part of the connection solder is an electrode facing surface (12) which is a surface facing the mounting surface of the electrode, and wiring facing is a surface where a part of the wiring is facing the electrode facing surface. Between the surface (23) and
The electronic component includes a first component (10) connected to the circuit board with the ball-shaped connection solder and a second component (10A, 10B) connected to the circuit board with the bottom-shaped connection solder. ), And
The connection solder includes a low strength solder (31) having a predetermined tensile strength and a high strength solder (32) having a higher tensile strength than the low strength solder,
The first component is connected to the circuit board with the connection solder in which the low-strength solder is more than the high-strength solder,
The second component is a manufacturing method of an electronic device connected to the circuit board with the connection solder in which the high-strength solder is more than the low-strength solder,
One of the low-strength solder and the high-strength solder is applied onto the wiring,
On the one solder, the other solder is arranged so that the first component and the low-strength solder are more than the high-strength solder,
On the one solder, arrange the other solder so that the second component and the high-strength solder are more than the low-strength solder,
A method of manufacturing an electronic device for electrically connecting the first component, the second component, and the circuit board by reflowing the one solder and the other solder to form the connection solder.
前記電子部品は、前記電子部品の前記実装面からの高さを部品高さとし、前記第1部品及び前記第2部品よりも前記部品高さが高い第3部品(10C)を含んでおり、
前記第3部品は、前記接続はんだの形状にかかわらず、前記高強度はんだより前記低強度はんだが多く前記接続はんだで前記回路基板に接続されている電子装置の製造方法であって、
前記一方のはんだの上に、前記第3部品と前記高強度はんだより前記低強度はんだが多くなるように他方のはんだとを配置し、
前記一方のはんだ及び前記他方のはんだをリフローし、前記接続はんだを形成することで前記第3部品と前記回路基板とを電気的に接続する請求項5に記載の電子装置の製造方法。
The electronic component includes a third component (10C) in which the height from the mounting surface of the electronic component is a component height, and the component height is higher than the first component and the second component,
The third component is a method of manufacturing an electronic device in which the low-strength solder is more than the high-strength solder and is connected to the circuit board with the connection solder regardless of the shape of the connection solder,
On the one solder, arrange the other solder so that the third component and the low-strength solder are more than the high-strength solder,
The method for manufacturing an electronic device according to claim 5, wherein the third component and the circuit board are electrically connected by reflowing the one solder and the other solder to form the connection solder.
フラックスが含まれている前記一方のはんだを前記配線上に塗布し、
フラックスが含まれた前記一方のはんだ上の一部と前記第2部品及び前記第3部品の前記電極とが接触するように配置し、
フラックスが含まれた前記一方のはんだ上で前記第2部品及び前記第3部品の前記電極で覆われている箇所以外に前記他方のはんだを塗布する請求項6に記載の電子装置の製造方法。
Apply one solder containing flux on the wiring,
Arranged so that a part of the solder containing the flux is in contact with the electrodes of the second part and the third part,
The method of manufacturing an electronic device according to claim 6, wherein the other solder is applied to a portion other than the portion covered with the electrode of the second component and the third component on the one solder including the flux.
JP2016024047A 2016-02-10 2016-02-10 Electronic device and manufacturing method thereof Active JP6489037B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016024047A JP6489037B2 (en) 2016-02-10 2016-02-10 Electronic device and manufacturing method thereof
DE102017202005.9A DE102017202005B4 (en) 2016-02-10 2017-02-08 ELECTRONIC DEVICE AND MANUFACTURING METHOD FOR THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016024047A JP6489037B2 (en) 2016-02-10 2016-02-10 Electronic device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2017143196A true JP2017143196A (en) 2017-08-17
JP6489037B2 JP6489037B2 (en) 2019-03-27

Family

ID=59382113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016024047A Active JP6489037B2 (en) 2016-02-10 2016-02-10 Electronic device and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP6489037B2 (en)
DE (1) DE102017202005B4 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017170465A (en) * 2016-03-22 2017-09-28 株式会社タムラ製作所 Lead-free solder alloy, electronic circuit board, and electronic control device
CN108091582A (en) * 2017-11-29 2018-05-29 上海无线电设备研究所 A kind of assembly method of high power density complex combination system microwave components
US10456872B2 (en) 2017-09-08 2019-10-29 Tamura Corporation Lead-free solder alloy, electronic circuit substrate, and electronic device
US10926360B2 (en) 2016-03-22 2021-02-23 Tamura Corporation Lead-free solder alloy, solder joint, solder paste composition, electronic circuit board, and electronic device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218989A (en) * 1988-07-07 1990-01-23 Matsushita Electric Ind Co Ltd Soldering method
JPH02205098A (en) * 1989-02-02 1990-08-14 Fujitsu Ltd Soldering method for surface mounting parts
JPH07254780A (en) * 1994-03-16 1995-10-03 Fuji Electric Co Ltd Soldering of electronic component to printed-wiring board
JP2001044615A (en) * 1999-07-29 2001-02-16 Matsushita Electric Ind Co Ltd Soldering method
JP2007324505A (en) * 2006-06-05 2007-12-13 Toshiba Lighting & Technology Corp Printed circuit board and electric device
JP2011018787A (en) * 2009-07-09 2011-01-27 Panasonic Corp Component mounting substrate, and method of manufacturing the same
JP2012199366A (en) * 2011-03-22 2012-10-18 Nec Corp Electronic component mounting structure
JP2015153997A (en) * 2014-02-18 2015-08-24 富士通株式会社 Electronic component, method of manufacturing electronic component and method of manufacturing electronic component

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811304B2 (en) 1978-10-16 1983-03-02 本田技研工業株式会社 Frames for motorcycles, etc.
JP2004221378A (en) 2003-01-16 2004-08-05 Matsushita Electric Ind Co Ltd Method for mounting electronic component
JP2007157851A (en) 2005-12-01 2007-06-21 Tdk Corp Method of supplying solder, method of manufacturing mounting substrate, and mounting substrate
JP2015077601A (en) 2013-04-02 2015-04-23 千住金属工業株式会社 Lead-free solder alloy

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218989A (en) * 1988-07-07 1990-01-23 Matsushita Electric Ind Co Ltd Soldering method
JPH02205098A (en) * 1989-02-02 1990-08-14 Fujitsu Ltd Soldering method for surface mounting parts
JPH07254780A (en) * 1994-03-16 1995-10-03 Fuji Electric Co Ltd Soldering of electronic component to printed-wiring board
JP2001044615A (en) * 1999-07-29 2001-02-16 Matsushita Electric Ind Co Ltd Soldering method
JP2007324505A (en) * 2006-06-05 2007-12-13 Toshiba Lighting & Technology Corp Printed circuit board and electric device
JP2011018787A (en) * 2009-07-09 2011-01-27 Panasonic Corp Component mounting substrate, and method of manufacturing the same
JP2012199366A (en) * 2011-03-22 2012-10-18 Nec Corp Electronic component mounting structure
JP2015153997A (en) * 2014-02-18 2015-08-24 富士通株式会社 Electronic component, method of manufacturing electronic component and method of manufacturing electronic component

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017170465A (en) * 2016-03-22 2017-09-28 株式会社タムラ製作所 Lead-free solder alloy, electronic circuit board, and electronic control device
US10926360B2 (en) 2016-03-22 2021-02-23 Tamura Corporation Lead-free solder alloy, solder joint, solder paste composition, electronic circuit board, and electronic device
US10456872B2 (en) 2017-09-08 2019-10-29 Tamura Corporation Lead-free solder alloy, electronic circuit substrate, and electronic device
CN108091582A (en) * 2017-11-29 2018-05-29 上海无线电设备研究所 A kind of assembly method of high power density complex combination system microwave components
CN108091582B (en) * 2017-11-29 2019-11-08 上海无线电设备研究所 A kind of assembly method of high power density complex combination system microwave components

Also Published As

Publication number Publication date
DE102017202005B4 (en) 2022-01-05
JP6489037B2 (en) 2019-03-27
DE102017202005A1 (en) 2017-08-10

Similar Documents

Publication Publication Date Title
US5641113A (en) Method for fabricating an electronic device having solder joints
KR101332861B1 (en) IC Package and Manufacturing Method Thereof
US20070018308A1 (en) Electronic component and electronic configuration
KR101302640B1 (en) Electronic component built-in substrate and method of manufacturing electronic component built-in substrate
JP6489037B2 (en) Electronic device and manufacturing method thereof
US7183652B2 (en) Electronic component and electronic configuration
US20130329391A1 (en) Printed wiring board, electronic device, and method for manufacturing electronic device
KR20040068169A (en) Ball grid array package
JP2019502258A (en) Bulk MLCC capacitor module
US20090256256A1 (en) Electronic Device and Method of Manufacturing Same
US7582552B2 (en) Electronic apparatus with busbar assembly and electronic component mounted thereon by soldering
US20200243470A1 (en) Electronic control device
WO2011102101A1 (en) Stacked semiconductor device
JP2008153536A (en) Substrate having built-in electronic component and manufacturing method of same
US6583366B2 (en) Substrate having pins
US11094658B2 (en) Substrate, electronic substrate, and method for producing electronic substrate
US10833050B1 (en) Interposer, electronic substrate, and method for producing electronic substrate
JP5062376B1 (en) Manufacturing method of electronic component mounting board
US7560373B1 (en) Low temperature solder metallurgy and process for packaging applications and structures formed thereby
JP3450838B2 (en) Manufacturing method of electronic component package
JP7136681B2 (en) electronic controller
KR20030095036A (en) Solder bump interconnection method of flip chip package
JP2019508908A (en) Packaging structure with solder balls and method of manufacturing the packaging structure
JP2009231467A (en) Board unit, electronic apparatus, and board unit manufacturing method
CN105307386A (en) Printed circuit board and semiconductor package component with same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190211

R151 Written notification of patent or utility model registration

Ref document number: 6489037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250