[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2017141979A - Heat exchanger and heat pump system - Google Patents

Heat exchanger and heat pump system Download PDF

Info

Publication number
JP2017141979A
JP2017141979A JP2016021708A JP2016021708A JP2017141979A JP 2017141979 A JP2017141979 A JP 2017141979A JP 2016021708 A JP2016021708 A JP 2016021708A JP 2016021708 A JP2016021708 A JP 2016021708A JP 2017141979 A JP2017141979 A JP 2017141979A
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
supercritical fluid
flow
flow paths
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016021708A
Other languages
Japanese (ja)
Other versions
JP6869639B2 (en
Inventor
耕作 西田
Kosaku Nishida
耕作 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP2016021708A priority Critical patent/JP6869639B2/en
Publication of JP2017141979A publication Critical patent/JP2017141979A/en
Application granted granted Critical
Publication of JP6869639B2 publication Critical patent/JP6869639B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger configured to flow supercritical fluid as heat medium to a plurality of flow passages, which can suppress drift between the plurality of flow passages to suppress deterioration of heat exchange performance of the entire heat exchanger.SOLUTION: A heat exchange with supercritical fluid as heat medium includes: a housing into which fluid to be heated is introduced; a plurality of flow passages that are provided in parallel inside the housing, and in which the supercritical fluid flows; an inlet flow passage communicating with upstream ends of the plurality of flow passages; an outlet flow passages communicating with downstream ends of the plurality of flow passages; and an orifice with one stage or multistage provided along a flow direction of the supercritical fluid for each of the plurality of flow passages.SELECTED DRAWING: Figure 1

Description

本開示は、超臨界流体を被加熱流体とする熱交換器及び該熱交換器を備えるヒートポンプシステムに関する。   The present disclosure relates to a heat exchanger using a supercritical fluid as a fluid to be heated and a heat pump system including the heat exchanger.

乾燥機などに使用される空気加熱用の熱交換器として、蒸気や電気ヒータを用いたエロフィンタイプのフィンチューブ式熱交換器が多く用いられている。ヒートポンプシステムに組み込まれた空気加熱用熱交換器は、銅管とアルミフィンを用いたフィンチューブ式熱交換器が用いられている。
ヒートポンプシステムに組み込まれた熱交換器では、被加熱流体を高温に加熱するために、熱媒体として熱伝導率が高い超臨界流体を用いる場合がある。
例えば、特許文献1には、超臨界状態の熱媒体を用いて大きい温度差で外部流体を加熱する熱交換器を備えるヒートポンプシステムが開示されている。
As a heat exchanger for air heating used in a dryer or the like, an erotic fin type fin tube heat exchanger using steam or an electric heater is often used. As a heat exchanger for air heating incorporated in a heat pump system, a fin tube type heat exchanger using copper tubes and aluminum fins is used.
In a heat exchanger incorporated in a heat pump system, in order to heat a fluid to be heated to a high temperature, a supercritical fluid having a high thermal conductivity may be used as a heat medium.
For example, Patent Document 1 discloses a heat pump system including a heat exchanger that heats an external fluid with a large temperature difference using a supercritical heat medium.

特表2015−527559号公報JP-T-2015-527559

フィンチューブ式熱交換器で空気の大温度差加熱を行う場合、熱媒体流路の数を増加させて加熱性能を高めることができる。熱伝導率が高い超臨界状態の熱媒体を複数の流路に供給する場合、動粘性が小さい超臨界流体は流路での圧力損失が小さいため、複数の流路間で偏流が起こりやすくなる。これによって、各流路で熱媒体の流量に差が生じ、熱交換器の出口で温度ムラが生じ、熱交換器の加熱性能が低下する場合がある。   When performing large temperature difference heating of air with a finned tube heat exchanger, the number of heat medium flow paths can be increased to improve heating performance. When a supercritical heat medium with high thermal conductivity is supplied to multiple flow paths, a supercritical fluid with low kinematic viscosity has low pressure loss in the flow paths, and therefore, drift tends to occur between the multiple flow paths. . As a result, a difference in the flow rate of the heat medium occurs in each flow path, temperature unevenness occurs at the outlet of the heat exchanger, and the heating performance of the heat exchanger may deteriorate.

本発明の少なくとも一実施形態は、上記課題に鑑み、複数の流路に熱媒体として超臨界流体を流すようにした熱交換器において、複数の流路間での偏流を抑制することで、熱交換器全体の熱交換性能の低下を抑制することを目的とする。   In view of the above problems, at least one embodiment of the present invention is a heat exchanger in which a supercritical fluid is allowed to flow as a heat medium in a plurality of flow paths. It aims at suppressing the fall of the heat exchange performance of the whole exchanger.

(1)本発明の幾つかの実施形態に係る熱交換器は、
超臨界流体を熱媒体とする熱交換器であって、
被加熱流体が導入されるハウジングと、
前記ハウジングの内部に並列に設けられ、前記超臨界流体が流れる複数の流路と、
前記複数の流路の上流端に連通する入口流路と、
前記複数の流路の下流端に連通する出口流路と、
前記複数の流路の各々に前記超臨界流体の流れ方向に沿って設けられる1段又は複数段のオリフィスと、
を備える。
上記(1)の構成によれば、超臨界流体が流れる上記複数の流路の各々に上記オリフィスを備えることで、複数の流路では超臨界流体の圧力損失が大きくなるため、他の要因による各流路間の圧力損失の差を相殺できる。これによって、複数の流路間で起こる偏流を抑制できるため、各流路間で超臨界流体の流量差をなくし、熱交換器全体の熱交換性能の低下を抑制できる。
また、超臨界流体を熱媒体として用いることで、被加熱流体を加熱する過程で、凝縮過程が存在しないため、放熱に伴い連続的な温度変化をすることから、大温度差加熱(例えば、100℃→200℃)においては、エクセルギ損失が小さい高効率の加熱を行うことができる。
(1) A heat exchanger according to some embodiments of the present invention includes:
A heat exchanger using a supercritical fluid as a heat medium,
A housing into which the fluid to be heated is introduced;
A plurality of flow paths provided in parallel inside the housing and through which the supercritical fluid flows;
An inlet channel communicating with an upstream end of the plurality of channels;
An outlet channel communicating with the downstream ends of the plurality of channels;
One or more stages of orifices provided along the flow direction of the supercritical fluid in each of the plurality of flow paths;
Is provided.
According to the configuration of (1) above, by providing the orifice in each of the plurality of flow paths through which the supercritical fluid flows, the pressure loss of the supercritical fluid increases in the plurality of flow paths. The difference in pressure loss between the flow paths can be offset. Thereby, since the drift which arises between several flow paths can be suppressed, the flow volume difference of a supercritical fluid is eliminated between each flow path, and the fall of the heat exchange performance of the whole heat exchanger can be suppressed.
In addition, by using a supercritical fluid as a heat medium, there is no condensation process in the process of heating the fluid to be heated, and the temperature changes continuously with heat dissipation. (C.fwdarw.200.degree. C.), high-efficiency heating with low loss of exergy can be performed.

(2)幾つかの実施形態では、前記(1)の構成において、
前記複数の流路は前記超臨界流体の流れ方向に沿って波形に形成される。
上記(2)の構成によれば、超臨界流体の流路を波形に形成することで、各流路を流れる超臨界流体の圧力損失をさらに増加できる。そのため、複数の流路間の圧力損失差をさらに相殺できるため、複数の流路間の偏流をさらに効果的に抑制できる。
(2) In some embodiments, in the configuration of (1),
The plurality of flow paths are formed in a waveform along the flow direction of the supercritical fluid.
According to the configuration of (2) above, the pressure loss of the supercritical fluid flowing through each flow path can be further increased by forming the flow path of the supercritical fluid in a waveform. For this reason, the pressure loss difference between the plurality of flow paths can be further offset, so that the drift between the plurality of flow paths can be more effectively suppressed.

(3)幾つかの実施形態では、前記(1)又は(2)の構成において、
前記複数の流路の各々は前記被加熱流体の流れ方向に沿って延在すると共に、前記複数の流路は前記被加熱流体の流れ方向と交差する方向に並列に配置され、
前記入口流路及び前記出口流路は前記複数の流路が延在する方向と交差する方向に延在し、
前記入口流路の少なくとも両端で前記入口流路に連通する熱媒体供給路と、
前記出口流路の少なくとも両端で前記出口流路に連通する熱媒体排出路と、
をさらに備える。
上記(3)の構成によれば、上記熱媒体供給路は入口流路の少なくとも両端に連通することで、入口流路の延在方向において、熱媒体供給路から各流路までの距離を平均化でき、各流路の入口までの熱媒体(超臨界流体)の圧力損失の差を低減できる。同様に、上記熱媒体排出路は出口流路の少なくとも両端に連通することで、出口流路の延在方向において、熱媒体供給路から各流路までの距離を平均化でき、各流路の出口から熱媒体排出路に至る熱媒体の圧力損失の差を低減できる。
これによって、入口流路から出口流路に至るまでの複数の流路間の圧力損失の差をさらに低減できるので、複数の流路を流れる熱媒体の偏流を効果的に抑制できる。
(3) In some embodiments, in the configuration of (1) or (2),
Each of the plurality of flow paths extends along the flow direction of the heated fluid, and the plurality of flow paths are arranged in parallel in a direction intersecting the flow direction of the heated fluid,
The inlet channel and the outlet channel extend in a direction intersecting with a direction in which the plurality of channels extend,
A heat medium supply channel communicating with the inlet channel at at least both ends of the inlet channel;
A heat medium discharge path communicating with the outlet flow path at at least both ends of the outlet flow path;
Is further provided.
According to the configuration of (3) above, the heat medium supply path communicates with at least both ends of the inlet flow path, so that the distance from the heat medium supply path to each flow path is averaged in the extending direction of the inlet flow path. The difference in pressure loss of the heat medium (supercritical fluid) to the inlet of each flow path can be reduced. Similarly, the heat medium discharge path communicates with at least both ends of the outlet flow path, whereby the distance from the heat medium supply path to each flow path can be averaged in the extending direction of the outlet flow path. A difference in pressure loss of the heat medium from the outlet to the heat medium discharge path can be reduced.
Accordingly, the difference in pressure loss between the plurality of channels from the inlet channel to the outlet channel can be further reduced, so that the drift of the heat medium flowing through the plurality of channels can be effectively suppressed.

(4)幾つかの実施形態では、前記(1)〜(3)の何れかの構成において、
前記複数の流路は、
流路を形成するための孔及び前記オリフィスを形成するための溝が形成された第1の板状体と、
前記第1の板状体の一方の面に接合され、前記孔の一方の開口を塞ぐ第2の板状体と、
前記第1の板状体の他方の面に接合され、前記孔の他方の開口を塞ぐと共に、前記溝の開口を塞ぐ第3の板状体と、
で形成される。
上記(4)の構成によれば、上記複数の流路を上記第1〜第3の板状体を重ね合わせることで、簡易かつ低コストに形成できる。また、この扁平で簡素な板状体を被加熱流体の流路に間隔を置いて並べることで、多数の流路を被加熱流体に面して配置できる。このように、多数の流路を形成できることで、熱交換器の熱交換性能を向上できる。
(4) In some embodiments, in any one of the configurations (1) to (3),
The plurality of flow paths are
A first plate-like body in which a hole for forming a flow path and a groove for forming the orifice are formed;
A second plate that is bonded to one surface of the first plate and closes one of the holes;
A third plate that is joined to the other surface of the first plate, closes the other opening of the hole, and closes the opening of the groove;
Formed with.
According to the configuration of (4) above, the plurality of flow paths can be formed simply and at low cost by overlapping the first to third plate-like bodies. Further, by arranging the flat and simple plate-like bodies at intervals in the flow path of the fluid to be heated, a large number of flow paths can be arranged to face the fluid to be heated. Thus, the heat exchange performance of a heat exchanger can be improved by forming many flow paths.

(5)幾つかの実施形態では、前記(4)の構成において、
前記孔は両面エッチングで形成される。
上記(5)の構成によれば、上記孔を両面エッチングで形成することで、微細流路を正確に形成できる。
(5) In some embodiments, in the configuration of (4),
The hole is formed by double-sided etching.
According to the configuration of (5) above, the fine channel can be accurately formed by forming the hole by double-sided etching.

(6)幾つかの実施形態では、前記(4)又は(5)の構成において、
前記溝は片面エッチングで形成される。
上記(6)の構成によれば、上記溝を片面エッチングで形成することで、簡単かつ正確にオリフィスを形成できる。また、この溝によって流路にオリフィスを形成し、このオリフィスで流路を支持することで、流路の強度を増すことができ、これによって、高圧の超臨界流体に対する耐久性を向上できる。
(6) In some embodiments, in the configuration of (4) or (5),
The groove is formed by single-sided etching.
According to the configuration of (6) above, an orifice can be formed easily and accurately by forming the groove by single-sided etching. Further, by forming an orifice in the flow path by the groove and supporting the flow path with the orifice, the strength of the flow path can be increased, and thereby durability against a high-pressure supercritical fluid can be improved.

(7)幾つかの実施形態では、前記(1)〜(6)の何れかの構成において、
前記複数の流路は、断面の直径が1mm以下の微細流路である。
上記(7)の構成によれば、上記複数の流路を断面の直径が1mm以下の所謂「マイクロチャンネル」と称される微細流路であるため、超臨界流体の流路を狭いスペースに多数列形成できるため、熱交換器全体としての熱交換量を増加できると共に、熱交換器をコンパクト化でき、かつ熱媒体の保有量を低減できる。さらに、複数の流路を微細流路とすることで、高圧の超臨界流体に対する耐久性を向上できる。
また、オリフィスを微細流路に形成することで、圧力損失増加効果を向上できる。
(7) In some embodiments, in any one of the configurations (1) to (6),
The plurality of channels are fine channels having a cross-sectional diameter of 1 mm or less.
According to the configuration of (7) above, since the plurality of channels are fine channels called “microchannels” having a cross-sectional diameter of 1 mm or less, a large number of supercritical fluid channels are provided in a narrow space. Since the rows can be formed, the heat exchange amount as a whole heat exchanger can be increased, the heat exchanger can be made compact, and the amount of the heat medium held can be reduced. Furthermore, durability with respect to a high pressure supercritical fluid can be improved by making a some flow path into a fine flow path.
Moreover, the effect of increasing pressure loss can be improved by forming the orifice in the fine flow path.

(8)本発明の少なくとも一実施形態に係るヒートポンプシステムは、
熱媒体が循環する循環路と、
前記循環路に設けられたヒートポンプサイクル構成機器と、
を備え、
前記ヒートポンプサイクル構成機器は、
前記熱媒体を圧縮して高温高圧の超臨界流体とするための圧縮機と、
前記超臨界流体を熱媒体とする請求項1乃至7の何れか1項に記載の熱交換器と、
前記熱交換器で熱交換後の前記熱媒体を減圧させるための膨張部と、
前記膨張部で減圧された前記熱媒体と熱源媒体とを熱交換して気化させるための蒸発器と、
を備える。
上記(8)の構成によれば、上記熱交換器において、超臨界流体が流れる複数の流路の各々に上記オリフィスを備えることで、各流路を流れる超臨界流体の圧力損失を増加させ、これによって、各流路間で起こる偏流を抑制でき、熱交換器全体の熱交換性能の低下を抑制できる。
また、超臨界流体を熱媒体として用いることで、被加熱流体を加熱する過程で、凝縮過程が存在しないため、放熱に伴い連続的な温度変化をすることから、大温度差加熱においては、エクセルギ損失が小さい高効率の加熱を行うことができる。
(8) A heat pump system according to at least one embodiment of the present invention includes:
A circulation path through which the heat medium circulates;
A heat pump cycle component device provided in the circulation path;
With
The heat pump cycle component device is:
A compressor for compressing the heat medium into a high-temperature and high-pressure supercritical fluid;
The heat exchanger according to any one of claims 1 to 7, wherein the supercritical fluid is a heat medium;
An expansion part for decompressing the heat medium after heat exchange in the heat exchanger;
An evaporator for exchanging heat and vaporizing the heat medium and the heat source medium decompressed in the expansion section;
Is provided.
According to the configuration of (8), in the heat exchanger, by providing the orifice in each of the plurality of flow paths through which the supercritical fluid flows, the pressure loss of the supercritical fluid flowing through each flow path is increased, Thereby, the drift which arises between each flow path can be suppressed, and the fall of the heat exchange performance of the whole heat exchanger can be suppressed.
In addition, by using a supercritical fluid as a heat medium, there is no condensation process in the process of heating the fluid to be heated, and the temperature changes continuously with heat dissipation. High-efficiency heating with low loss can be performed.

本発明の少なくとも一実施形態によれば、超臨界流体が流れ並列に配置された複数の流路を有する熱交換器において、複数の流路間で偏流を抑制し、熱交換器全体の熱交換性能の低下を抑制できる。   According to at least one embodiment of the present invention, in a heat exchanger having a plurality of flow paths in which a supercritical fluid flows and is arranged in parallel, uneven flow is suppressed between the plurality of flow paths, and heat exchange of the entire heat exchanger is performed. A decrease in performance can be suppressed.

一実施形態に係る熱交換器の正面図である。It is a front view of the heat exchanger which concerns on one Embodiment. 一実施形態に係る熱交換器の側面図である。It is a side view of the heat exchanger which concerns on one Embodiment. 一実施形態に係る熱交換器のA部を拡大した正面図である。It is the front view to which the A section of the heat exchanger concerning one embodiment was expanded. 一実施形態に係る板状体の一面を示す正面図(図3中のB−B視)である。It is a front view (BB view in Drawing 3) showing one side of a tabular object concerning one embodiment. 一実施形態に係る板状体の他面を示す正面図(図3中のC−C視)である。It is a front view (CC view in FIG. 3) which shows the other surface of the plate-shaped body which concerns on one Embodiment. 一実施形態に係る板状体の一部を拡大した正面図である。It is the front view which expanded a part of plate-shaped object concerning one embodiment. 図6中のD−D線に沿う断面図である。It is sectional drawing which follows the DD line | wire in FIG. 図6中のE−E線に沿う断面図である。It is sectional drawing which follows the EE line in FIG. (A)は比較例に係る超臨界流体の圧力損失を示すグラフであり、(B)及び(C)は実施形態に係る超臨界流体の圧力損失を示すグラフである。(A) is a graph which shows the pressure loss of the supercritical fluid which concerns on a comparative example, (B) and (C) are graphs which show the pressure loss of the supercritical fluid which concerns on embodiment. 一実施形態に係るヒートポンプシステムの系統図である。It is a systematic diagram of the heat pump system concerning one embodiment. 一実施形態に係るヒートポンプシステムのモリエル線図である。It is a Mollier diagram of a heat pump system concerning one embodiment.

以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載され又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一つの構成要素を「備える」、「具える」、「具備する」、「含む」、又は「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in the embodiments or shown in the drawings are not intended to limit the scope of the present invention, but are merely illustrative examples.
For example, expressions expressing relative or absolute arrangements such as “in a certain direction”, “along a certain direction”, “parallel”, “orthogonal”, “center”, “concentric” or “coaxial” are strictly In addition to such an arrangement, it is also possible to represent a state of relative displacement with an angle or a distance such that tolerance or the same function can be obtained.
For example, an expression indicating that things such as “identical”, “equal”, and “homogeneous” are in an equal state not only represents an exactly equal state, but also has a tolerance or a difference that can provide the same function. It also represents the existing state.
For example, expressions representing shapes such as quadrangular shapes and cylindrical shapes represent not only geometrically strict shapes such as quadrangular shapes and cylindrical shapes, but also irregularities and chamfers as long as the same effects can be obtained. A shape including a part or the like is also expressed.
On the other hand, the expressions “comprising”, “comprising”, “comprising”, “including”, or “having” one constituent element are not exclusive expressions for excluding the existence of other constituent elements.

本発明の幾つかの実施形態に係る熱交換器10は、図1〜図3に示すように、超臨界流体を熱媒体とし、超臨界流体によって被加熱流体Fhを加熱するものである。熱交換器10は被加熱流体Fh被加熱流体が導入されるハウジング12を備える。
図4及び図5に示すように、ハウジング12の内部に熱媒体として超臨界流体が流れる複数の流路14が互いに並列に設けられる。また、複数の流路14の上流端に連通する入口流路16と、複数の流路14の下流端に連通する出口流路18とを備える。さらに、複数の流路14の各々に超臨界流体の流れ方向に沿って設けられる1段又は複数段のオリフィス20を備える。
As shown in FIGS. 1 to 3, the heat exchanger 10 according to some embodiments of the present invention uses a supercritical fluid as a heat medium and heats the fluid Fh to be heated by the supercritical fluid. The heat exchanger 10 includes a housing 12 into which a heated fluid Fh heated fluid is introduced.
As shown in FIGS. 4 and 5, a plurality of flow paths 14 through which a supercritical fluid flows as a heat medium are provided in parallel inside the housing 12. In addition, an inlet channel 16 that communicates with the upstream ends of the plurality of channels 14 and an outlet channel 18 that communicates with the downstream ends of the plurality of channels 14 are provided. Furthermore, each of the plurality of flow paths 14 includes one or more stages of orifices 20 provided along the flow direction of the supercritical fluid.

流路を流れる流体の流量Qは、次式(i)に示すように、圧力損失の1/2乗に比例する。
Q=C・ΔP1/2 (i)
ここで、Cは流量常数であり、ΔPは圧力損失である。
上記構成によれば、複数の流路14の各々にオリフィス20を備えることで、複数の流路14を流れる超臨界流体の圧力損失が大きくなるため、他の要因による各流路間の圧力損失の差を相殺できる。これによって、複数の流路14間で起こる偏流を抑制できるため、各流路間で超臨界流体の流量差をなくし、熱交換器全体の熱交換性能の低下を抑制できる。
また、超臨界流体を熱媒体として用いることで、被加熱流体Fhを加熱する過程で、凝縮過程が存在しないため、放熱に伴い連続的な温度変化をすることから、大温度差加熱(例えば、100℃→200℃)においては、エクセルギ損失が小さい高効率の加熱を行うことができる。
The flow rate Q of the fluid flowing through the flow path is proportional to the 1/2 power of the pressure loss, as shown in the following equation (i).
Q = C A · ΔP 1/2 (i)
Here, C A is the flow rate constant, [Delta] P is the pressure loss.
According to the above configuration, since the orifice 20 is provided in each of the plurality of flow paths 14, the pressure loss of the supercritical fluid flowing through the plurality of flow paths 14 increases, and therefore the pressure loss between the flow paths due to other factors. Can be offset. Thereby, since the drift which arises between several flow paths 14 can be suppressed, the flow volume difference of a supercritical fluid is eliminated between each flow paths, and the fall of the heat exchange performance of the whole heat exchanger can be suppressed.
In addition, by using a supercritical fluid as a heat medium, there is no condensation process in the process of heating the fluid Fh to be heated, and therefore the temperature changes continuously with heat dissipation. (100 ° C. → 200 ° C.), high-efficiency heating with low exergy loss can be performed.

図示した実施形態では、図5に示すように、オリフィス20は超臨界流体の流れ方向に沿って複数段に設けられている。   In the illustrated embodiment, as shown in FIG. 5, the orifices 20 are provided in a plurality of stages along the flow direction of the supercritical fluid.

幾つかの実施形態では、図4〜図6に示すように、複数の流路14は超臨界流体Fsの流れ方向に沿って波形に形成される。
このように、超臨界流体Fsの流路14を波形に形成することで、各流路を流れる超臨界流体Fsの圧力損失をさらに増加できる。これによって、複数の流路14間の圧力損失差をさらに相殺でき、複数の流路14間の偏流をさらに効果的に抑制できる。
図示した実施形態では、被加熱流体Fcの流れ方向と超臨界流体Fsの流れ方向とは互いに交流となるように設定される。これによって、熱交換する被加熱流体Fcと超臨界流体Fsとの熱交換時の温度差を大きくできるので、熱交換量を増加できる。
In some embodiments, as shown in FIGS. 4 to 6, the plurality of flow paths 14 are formed in a waveform along the flow direction of the supercritical fluid Fs.
Thus, by forming the flow path 14 of the supercritical fluid Fs in a waveform, the pressure loss of the supercritical fluid Fs flowing through each flow path can be further increased. Thereby, the pressure loss difference between the plurality of flow paths 14 can be further offset, and the drift between the plurality of flow paths 14 can be further effectively suppressed.
In the illustrated embodiment, the flow direction of the heated fluid Fc and the flow direction of the supercritical fluid Fs are set to be alternating with each other. As a result, the temperature difference during heat exchange between the heated fluid Fc to be heat exchanged and the supercritical fluid Fs can be increased, and the amount of heat exchange can be increased.

幾つかの実施形態では、図4〜図6に示すように、複数の流路14の各々は被加熱流体Fcの流れ方向に沿って延在すると共に、複数の流路14は被加熱流体Fcの流れ方向と交差する方向に並列に配置される。また、図4及び図5に示すように、入口流路16及び出口流路18は被加熱流体Fcの流れ方向と交差する方向に延在する。
そして、図4に示すように、超臨界流体Fsの供給路22が入口流路16の少なくとも両端で入口流路16に連通し、超臨界流体Fsの排出路24が出口流路18の少なくとも両端で出口流路18に連通している。
このように、供給路22が入口流路16の少なくとも両端に連通することで、入口流路16の延在方向において、供給路22から各流路14までの距離を平均化でき、入口流路16から各流路14の入口に至るまでの超臨界流体の圧力損失の差を低減できる。同様に、排出路24は出口流路18の少なくとも両端に連通することで、出口流路18の延在方向において、各流路14の出口から排出路24の入口に至るまでの超臨界流体の圧力損失の差を低減できる。
これによって、複数の流路14の各々を流れる超臨界流体の圧力損失の差を低減できるので、複数の流路14間の超臨界流体の偏流を抑制できる。
In some embodiments, as shown in FIGS. 4 to 6, each of the plurality of channels 14 extends along the flow direction of the heated fluid Fc, and the plurality of channels 14 are heated fluid Fc. Are arranged in parallel in a direction crossing the flow direction. As shown in FIGS. 4 and 5, the inlet channel 16 and the outlet channel 18 extend in a direction intersecting the flow direction of the heated fluid Fc.
As shown in FIG. 4, the supply path 22 for the supercritical fluid Fs communicates with the inlet flow path 16 at at least both ends of the inlet flow path 16, and the discharge path 24 for the supercritical fluid Fs flows at least at both ends of the outlet flow path 18. To the outlet channel 18.
In this way, the supply path 22 communicates with at least both ends of the inlet flow path 16, whereby the distance from the supply path 22 to each flow path 14 can be averaged in the extending direction of the inlet flow path 16. The difference in pressure loss of the supercritical fluid from 16 to the inlet of each flow path 14 can be reduced. Similarly, the discharge path 24 communicates with at least both ends of the outlet flow path 18, so that the supercritical fluid from the outlet of each flow path 14 to the inlet of the discharge path 24 in the extending direction of the outlet flow path 18. The difference in pressure loss can be reduced.
As a result, the difference in pressure loss of the supercritical fluid flowing through each of the plurality of flow paths 14 can be reduced, so that the drift of the supercritical fluid between the plurality of flow paths 14 can be suppressed.

図示した実施形態では、図4及び図5に示すように、複数の流路14は被加熱流体Fcの流れ方向と直交する方向(図1中矢印w方向。以下「熱交換器幅方向」とも言う。)に並列に配置される。また、入口流路16及び出口流路18は被加熱流体Fcの流れ方向と直交する方向に延在する。
また、図1、図2及び図4に示すように、供給路22が入口流路16の両端2か所で入口流路16に連通し、排出路24は出口流路18の両端2か所で出口流路18に連通している。
供給路22は被加熱流体Fhの流れ方向上流端のハウジング12の上面で熱交換器幅方向(被加熱流体Fhの流路の幅方向)両端に設けられた供給部26に開口すると共に上下方向に延在し、上下方向に複数存在する入口流路16の各々に連通する。
排出路24は被加熱流体Fcの流れ方向下流端のハウジング12の上面で熱交換器幅方向両端に設けられた排出部28に開口すると共に上下方向に延在し、上下方向に複数存在する出口流路18の各々に連通する。
In the illustrated embodiment, as shown in FIGS. 4 and 5, the plurality of flow paths 14 are in a direction orthogonal to the flow direction of the fluid Fc to be heated (the direction of the arrow w in FIG. 1, hereinafter also referred to as “heat exchanger width direction”). Arranged in parallel. Further, the inlet channel 16 and the outlet channel 18 extend in a direction orthogonal to the flow direction of the heated fluid Fc.
1, 2, and 4, the supply path 22 communicates with the inlet flow path 16 at two ends of the inlet flow path 16, and the discharge path 24 has two ends of the outlet flow path 18. To the outlet channel 18.
The supply path 22 opens in the supply section 26 provided at both ends of the heat exchanger width direction (width direction of the flow path of the heated fluid Fh) on the upper surface of the housing 12 at the upstream end in the flow direction of the heated fluid Fh and vertically. And communicate with each of the plurality of inlet channels 16 in the vertical direction.
The discharge passage 24 opens to the discharge portions 28 provided at both ends in the heat exchanger width direction on the upper surface of the housing 12 at the downstream end in the flow direction of the fluid to be heated Fc, and extends in the vertical direction. It communicates with each of the flow paths 18.

幾つかの実施形態では、図3に示すように、複数の流路14は、互いに積層される第1の板状体30、第2の板状体32及び第3の板状体34で構成される。
第1の板状体30は、図7及び図8に示すように、超臨界流体が流れる複数の流路14を形成するための孔(貫通孔)36及びオリフィス20を形成するための溝38が形成されている。
第2の板状体32は、第1の板状体30の一方の面に接合され、孔36の一方の開口を塞ぐ。第3の板状体34は第1の板状体30の他方の面に接合され、孔36の他方の開口を塞ぐと共に、溝38の開口を塞ぐ。
かかる構成によれば、複数の流路14を第1〜第3の板状体30,32及び34を重ね合わせた偏平な積層体40で低コストに構成できる。また、この簡素な積層体40を被加熱流体Fcの流路に間隔を置いて並べることで、多数の流路14を配置できるため、熱交換器10の熱交換性能を向上できる。
In some embodiments, as shown in FIG. 3, the plurality of flow paths 14 include a first plate 30, a second plate 32, and a third plate 34 that are stacked on each other. Is done.
As shown in FIGS. 7 and 8, the first plate-like body 30 has holes (through holes) 36 for forming a plurality of flow paths 14 through which a supercritical fluid flows and grooves 38 for forming the orifices 20. Is formed.
The second plate-like body 32 is joined to one surface of the first plate-like body 30 and closes one opening of the hole 36. The third plate-like body 34 is joined to the other surface of the first plate-like body 30 to block the other opening of the hole 36 and the opening of the groove 38.
According to this configuration, the plurality of flow paths 14 can be configured at a low cost by the flat laminate 40 in which the first to third plate-like bodies 30, 32, and 34 are overlapped. Further, by arranging the simple laminates 40 at intervals in the flow path of the fluid Fc to be heated, a large number of flow paths 14 can be arranged, so that the heat exchange performance of the heat exchanger 10 can be improved.

図示した実施形態では、図1及び図3に示すように、第1〜第3の板状体30,32及び34は実質的に同一の大きさで四角形状を有する。第2の板状体32及び第3の板状体34には孔及び溝が形成されていない。
また、多数の積層体40が上下方向に間隔を置いて配置され、各積層体40の間に波形の放熱フィン42が介装されている。第1〜第3の板状体30,32及び34は、例えば、互いに拡散接合で接合され、放熱フィン42の両端は上下に位置する積層体40に、例えば、ロウ付けで接合される。
各積層体40の間には、熱交換器10の幅方向両端にスペーサ44が介装され、図2に示すように、ハウジング12の側面はスペーサ44で密閉されている。
In the illustrated embodiment, as shown in FIGS. 1 and 3, the first to third plate-like bodies 30, 32, and 34 have substantially the same size and a quadrangular shape. Holes and grooves are not formed in the second plate-like body 32 and the third plate-like body 34.
In addition, a large number of laminated bodies 40 are arranged at intervals in the vertical direction, and corrugated heat radiation fins 42 are interposed between the laminated bodies 40. The first to third plate-like bodies 30, 32, and 34 are joined to each other by diffusion bonding, for example, and both ends of the radiating fins 42 are joined to the laminated body 40 positioned above and below, for example, by brazing.
Between each laminated body 40, the spacer 44 is interposed at the width direction both ends of the heat exchanger 10, and the side surface of the housing 12 is sealed with the spacer 44 as shown in FIG.

例示的な実施形態では、孔36は両面エッチングで形成される。
これによって、超臨界流体Fsが流れる流路14を多数の微細流路として正確に形成できる。
In the exemplary embodiment, holes 36 are formed by double-sided etching.
Thereby, the flow path 14 through which the supercritical fluid Fs flows can be accurately formed as a large number of fine flow paths.

例示的な実施形態では、溝38は片面エッチングで形成される。
これによって、流路14を多数の微細流路として形成したとき、オリフィス20の形成が容易になり、また、オリフィス20を正確に形成できる。また、溝38によって流路14にオリフィス20を形成し、このオリフィス20で流路14を支持することで、流路14の強度を増すことができ、これによって、高圧の超臨界流体Fsに対する耐久性を向上できる。
In the exemplary embodiment, groove 38 is formed by single-sided etching.
Accordingly, when the flow path 14 is formed as a large number of fine flow paths, the orifice 20 can be easily formed, and the orifice 20 can be formed accurately. Further, the orifice 20 is formed in the flow path 14 by the groove 38, and the strength of the flow path 14 can be increased by supporting the flow path 14 by the orifice 20, and thereby, the durability against the high-pressure supercritical fluid Fs can be increased. Can be improved.

例示的な実施形態では、流路14及びオリフィス20は、断面の直径が1mm以下の微細流路に形成される。
このように、流路14を断面の直径が1mm以下の所謂「マイクロチャンネル」と称される微細流路で形成するため、流路14を狭いスペースに多数列形成でき、これによって、熱交換器全体としての熱交換量を増加できる。さらに、複数の流路を微細流路とすることで、高圧の超臨界流体Fsに対する耐久性を向上できる。
また、オリフィス20を同様の微細流路で構成することで、圧力損失増加効果を向上できる。
In the exemplary embodiment, the flow path 14 and the orifice 20 are formed in a fine flow path having a cross-sectional diameter of 1 mm or less.
In this way, since the flow path 14 is formed of so-called “microchannels” having a cross-sectional diameter of 1 mm or less, a large number of rows of the flow paths 14 can be formed in a narrow space. The amount of heat exchange as a whole can be increased. Furthermore, durability with respect to the high-pressure supercritical fluid Fs can be improved by making the plurality of channels into fine channels.
Moreover, the effect of increasing pressure loss can be improved by configuring the orifice 20 with the same fine flow path.

図9は、被加熱流体Fcに面して熱交換器10のハウジング12の幅方向に並列に配置された多数の流路14における超臨界流体の圧力損失を模式的に示すグラフである。図中、ΔPは入口流路16における超臨界流体の圧力損失を示し、ΔPは流路14における超臨界流体の圧力損失を示し、ΔPは出口流路18における超臨界流体の圧力損失を示す。 FIG. 9 is a graph schematically showing the pressure loss of the supercritical fluid in the multiple flow paths 14 arranged in parallel in the width direction of the housing 12 of the heat exchanger 10 so as to face the heated fluid Fc. In the figure, ΔP 1 indicates the pressure loss of the supercritical fluid in the inlet channel 16, ΔP 2 indicates the pressure loss of the supercritical fluid in the channel 14, and ΔP 3 indicates the pressure loss of the supercritical fluid in the outlet channel 18. Indicates.

図9(A)は、供給路22が入口流路16の一端に1か所連通し、排出路24が出口流路18の一端に1か所連通した場合であって、流路14にオリフィス20が設けられておらず、かつ流路14が被加熱流体Fhの流れ方向に波形でなく直線状に延在する例(比較例)を示す。
この比較例では、入口流路16及び出口流路18において、熱交換器幅方向で圧力勾配が発生し、各流路14間で圧力損失差が生じる。また、流路14における超臨界流体の圧力損失が小さいため、各流路14間の圧力損失差が相殺されない。そのため、各流路14の超臨界流体Fsの流量に大きな差が生じ、偏流が発生する。この偏流によって熱交換器10の出口で被加熱流体Fhの温度ムラが発生し、熱交換性能が低下するおそれがある。
FIG. 9A shows a case where the supply path 22 communicates with one end of the inlet flow path 16 and the discharge path 24 communicates with one end of the outlet flow path 18. 20 shows an example (comparative example) in which 20 is not provided and the flow path 14 extends linearly in the flow direction of the heated fluid Fh instead of a waveform.
In this comparative example, a pressure gradient is generated in the heat exchanger width direction in the inlet channel 16 and the outlet channel 18, and a pressure loss difference is generated between the channels 14. Moreover, since the pressure loss of the supercritical fluid in the flow path 14 is small, the pressure loss difference between the flow paths 14 is not offset. Therefore, a large difference occurs in the flow rate of the supercritical fluid Fs in each flow path 14, and a drift occurs. Due to this drift, temperature unevenness of the heated fluid Fh occurs at the outlet of the heat exchanger 10, and the heat exchange performance may be deteriorated.

図9(B)は、供給路22が入口流路16の一端に1か所連通し、排出路24が出口流路18の一端に1か所連通した場合であって、流路14にオリフィス20が設けられる例(一実施形態)を示す。
この実施形態では、流路14における圧力損失が大きくなっているため、入口流路16と出口流路18との間で各流路14間の圧力損失差は、図9(A)と比べて減殺されている。従って、各流路14間での偏流は抑制され、熱交換器10の出口で温度ムラは発生しにくくなっている。
FIG. 9B shows a case where the supply path 22 communicates with one end of the inlet flow path 16 and the discharge path 24 communicates with one end of the outlet flow path 18. An example (one embodiment) in which 20 is provided is shown.
In this embodiment, since the pressure loss in the flow path 14 is large, the pressure loss difference between the flow paths 14 between the inlet flow path 16 and the outlet flow path 18 is larger than that in FIG. 9A. Has been killed. Therefore, uneven flow between the flow paths 14 is suppressed, and temperature unevenness is less likely to occur at the outlet of the heat exchanger 10.

図9(C)は、供給路22が入口流路16の両端2か所で連通し、排出路24が出口流路18の両端2か所で連通している場合であって、流路14にオリフィス20が設けられる例(一実施形態)を示す。
この実施形態では、入口流路16及び出口流路18における各流路14間の圧力損失差が減少している。従って、各流路14間における入口流路16から出口流路18までの圧力損失の差は、図9(B)に示す実施形態よりもさらに相殺される。従って、各流路14間の偏流の発生は起こりにくくなっている。
FIG. 9C shows a case where the supply path 22 communicates at two ends of the inlet channel 16 and the discharge path 24 communicates at two ends of the outlet channel 18. Shows an example (one embodiment) in which an orifice 20 is provided.
In this embodiment, the pressure loss difference between each flow path 14 in the inlet flow path 16 and the outlet flow path 18 is reduced. Therefore, the difference in pressure loss between the inlet channel 16 and the outlet channel 18 between the channels 14 is further offset than in the embodiment shown in FIG. 9B. Therefore, the occurrence of drift between the flow paths 14 is less likely to occur.

幾つかの実施形態に係るヒートポンプシステム50は、図10に示すように、熱媒体が循環する循環路52と、循環路52に設けられたヒートポンプサイクル構成機器と、を備える。
循環路52に設けられたヒートポンプサイクル構成機器は、圧縮機54、上記構成の熱交換器10と、膨張部56と、蒸発器58とを含む。圧縮機54は熱交換媒体を圧縮して高温高圧の超臨界流体とする。超臨界流体となった熱媒体は熱交換器10で被加熱流体を加熱する。被加熱流体を加熱した後、熱媒体は膨張部56で減圧され、その後、蒸発器58で熱源流体Whと熱交換して蒸発する。
かかる構成によれば、熱交換器10は、超臨界流体となった熱媒体が流れる複数の流路14の各々にオリフィス20を備えることで、複数の流路14間の圧力損失の差を相殺できる。これによって、複数の流路14間で起こる偏流を抑制できるため、熱交換器10の出口温度ムラを抑制し、熱交換性能の低下を抑制できる。
また、超臨界流体を熱媒体として用いることで、被加熱流体Fhを加熱する過程で、凝縮過程が存在しないため、放熱に伴い連続的な温度変化をすることから、大温度差加熱においては、エクセルギ損失が小さい高効率の加熱を行うことができる。
As shown in FIG. 10, the heat pump system 50 according to some embodiments includes a circulation path 52 through which the heat medium circulates and heat pump cycle components provided in the circulation path 52.
The heat pump cycle component device provided in the circulation path 52 includes a compressor 54, the heat exchanger 10 having the above configuration, an expansion unit 56, and an evaporator 58. The compressor 54 compresses the heat exchange medium into a high temperature and high pressure supercritical fluid. The heat medium that has become a supercritical fluid heats the fluid to be heated by the heat exchanger 10. After heating the fluid to be heated, the heat medium is depressurized by the expansion unit 56, and then is evaporated by exchanging heat with the heat source fluid Wh by the evaporator 58.
According to this configuration, the heat exchanger 10 includes the orifice 20 in each of the plurality of flow paths 14 through which the heat medium that has become a supercritical fluid flows, thereby canceling the difference in pressure loss between the plurality of flow paths 14. it can. Thereby, since the drift which arises between several flow paths 14 can be suppressed, the exit temperature nonuniformity of the heat exchanger 10 can be suppressed, and the fall of heat exchange performance can be suppressed.
In addition, since there is no condensation process in the process of heating the fluid Fh to be heated by using a supercritical fluid as a heat medium, the temperature changes continuously with heat dissipation. High-efficiency heating with low exergy loss can be performed.

図示した実施形態では、循環路52に熱媒体熱交換器60を備える。熱媒体熱交換器60は、圧縮機54入口側の熱媒体と熱交換器10出口側の熱媒体とを熱交換させ、圧縮機入口側の熱媒体を加熱する。圧縮機54はモータ62で回転駆動され、膨張部56は膨張弁が用いられる。被加熱流体Fhは例えば空気であり、熱源流体Whは例えば熱源水が用いられる。
図11は、この実施形態に係るヒートポンプシステムのモリエル線図を示す。図中のa点〜f点は図10中に付されたa〜fに対応し、それらの箇所の状態量を示す。図中のΔhは熱媒体熱交換器60で熱媒体同士が熱交換するエンタルピ量を示している。
熱媒体として、例えば、NH,CO、代替フロン、HC系(例えばノルマルブタン)等、通常ヒートポンプ、冷凍機等に用いられる熱媒体を使用できる。
この実施形態によれば、80℃前後の比較的低温の熱源水を用いて、100℃の空気を180℃まで加熱する大温度差加熱が可能になる。
In the illustrated embodiment, a heat medium heat exchanger 60 is provided in the circulation path 52. The heat medium heat exchanger 60 exchanges heat between the heat medium on the compressor 54 inlet side and the heat medium on the heat exchanger 10 outlet side, and heats the heat medium on the compressor inlet side. The compressor 54 is rotationally driven by a motor 62, and an expansion valve is used as the expansion unit 56. The heated fluid Fh is, for example, air, and the heat source fluid Wh is, for example, heat source water.
FIG. 11 shows a Mollier diagram of the heat pump system according to this embodiment. Points a to f in the figure correspond to a to f given in FIG. 10 and indicate the state quantities of those locations. Δh in the figure indicates the amount of enthalpy with which the heat medium exchanges heat in the heat medium heat exchanger 60.
As the heat medium, for example, NH 3 , CO 2 , alternative chlorofluorocarbon, HC system (for example, normal butane), or the like, a heat medium usually used in a heat pump, a refrigerator, or the like can be used.
According to this embodiment, the large temperature difference heating which heats 100 degreeC air to 180 degreeC using the comparatively low temperature heat source water of about 80 degreeC is attained.

本発明の少なくとも一実施形態によれば、並列に配置され熱媒体が超臨界流体として流れる複数の流路を備える熱交換器において、複数の流路間で偏流を抑制し、熱交換器全体の加熱性能の低下を抑制でき、例えば、乾燥機などに使用される空気加熱用熱交換器などに適用できる。   According to at least one embodiment of the present invention, in a heat exchanger that includes a plurality of flow paths that are arranged in parallel and through which a heat medium flows as a supercritical fluid, uneven flow is suppressed between the plurality of flow paths, and the entire heat exchanger The deterioration of the heating performance can be suppressed, and for example, it can be applied to an air heating heat exchanger used in a dryer or the like.

10 熱交換器
12 ハウジング
14 流路
16 入口流路
18 出口流路
20 オリフィス
22 供給路
24 排出路
26 供給部
28 排出部
30 第1の板状体
32 第2の板状体
34 第3の板状体
36 孔
38 溝
40 積層体
42 放熱フィン
44 スペーサ
50 ヒートポンプシステム
52 循環路
54 圧縮機
56 膨張部
58 蒸発器
60 熱媒体熱交換器
62 モータ
Fh 被加熱流体
Fs 超臨界流体
Wh 熱源流体
ΔP、ΔP、ΔP 圧力損失
DESCRIPTION OF SYMBOLS 10 Heat exchanger 12 Housing 14 Flow path 16 Inlet flow path 18 Outlet flow path 20 Orifice 22 Supply path 24 Discharge path 26 Supply part 28 Discharge part 30 1st plate-shaped body 32 2nd plate-shaped body 34 3rd board Form 36 Hole 38 Groove 40 Laminate 42 Radiation Fin 44 Spacer 50 Heat Pump System 52 Circulation Path 54 Compressor 56 Expansion Part 58 Evaporator 60 Heat Medium Heat Exchanger 62 Motor Fh Heated Fluid Fs Supercritical Fluid Wh Heat Source Fluid ΔP 1 , ΔP 2 , ΔP 3 Pressure loss

Claims (8)

超臨界流体を熱媒体とする熱交換器であって、
被加熱流体が導入されるハウジングと、
前記ハウジングの内部に並列に設けられ、前記超臨界流体が流れる複数の流路と、
前記複数の流路の上流端に連通する入口流路と、
前記複数の流路の下流端に連通する出口流路と、
前記複数の流路の各々に前記超臨界流体の流れ方向に沿って設けられる1段又は複数段のオリフィスと、
を備えることを特徴とする熱交換器。
A heat exchanger using a supercritical fluid as a heat medium,
A housing into which the fluid to be heated is introduced;
A plurality of flow paths provided in parallel inside the housing and through which the supercritical fluid flows;
An inlet channel communicating with an upstream end of the plurality of channels;
An outlet channel communicating with the downstream ends of the plurality of channels;
One or more stages of orifices provided along the flow direction of the supercritical fluid in each of the plurality of flow paths;
A heat exchanger comprising:
前記複数の流路は前記超臨界流体の流れ方向に沿って波形に形成されることを特徴とする請求項1に記載の熱交換器。   The heat exchanger according to claim 1, wherein the plurality of flow paths are formed in a waveform along the flow direction of the supercritical fluid. 前記複数の流路の各々は前記被加熱流体の流れ方向に沿って延在すると共に、前記複数の流路は前記被加熱流体の流れ方向と交差する方向に並列に配置され、
前記入口流路及び前記出口流路は前記複数の流路が延在する方向と交差する方向に延在し、
前記入口流路の少なくとも両端で前記入口流路に連通する熱媒体供給路と、
前記出口流路の少なくとも両端で前記出口流路に連通する超臨界流体排出路と、
をさらに備えることを特徴とする請求項1又は2に記載の熱交換器。
Each of the plurality of flow paths extends along the flow direction of the heated fluid, and the plurality of flow paths are arranged in parallel in a direction intersecting the flow direction of the heated fluid,
The inlet channel and the outlet channel extend in a direction intersecting with a direction in which the plurality of channels extend,
A heat medium supply channel communicating with the inlet channel at at least both ends of the inlet channel;
A supercritical fluid discharge channel communicating with the outlet channel at at least both ends of the outlet channel;
The heat exchanger according to claim 1, further comprising:
前記複数の流路は、
流路を形成するための孔及び前記オリフィスを形成するための溝が形成された第1の板状体と、
前記第1の板状体の一方の面に接合され、前記孔の一方の開口を塞ぐ第2の板状体と、
前記第1の板状体の他方の面に接合され、前記孔の他方の開口を塞ぐと共に、前記溝の開口を塞ぐ第3の板状体と、
で形成されることを特徴とする請求項1乃至3の何れか1項に記載の熱交換器。
The plurality of flow paths are
A first plate-like body in which a hole for forming a flow path and a groove for forming the orifice are formed;
A second plate that is bonded to one surface of the first plate and closes one of the holes;
A third plate that is joined to the other surface of the first plate, closes the other opening of the hole, and closes the opening of the groove;
The heat exchanger according to claim 1, wherein the heat exchanger is formed by:
前記孔は両面エッチングで形成されることを特徴とする請求項4に記載の熱交換器。   The heat exchanger according to claim 4, wherein the hole is formed by double-sided etching. 前記溝は片面エッチングで形成されることを特徴とする請求項4又は5に記載の熱交換器。   The heat exchanger according to claim 4 or 5, wherein the groove is formed by single-side etching. 前記複数の流路は、断面の直径が1mm以下の微細流路であることを特徴とする請求項1乃至6の何れか1項に記載の熱交換器。   The heat exchanger according to any one of claims 1 to 6, wherein the plurality of channels are fine channels having a cross-sectional diameter of 1 mm or less. 熱媒体が循環する循環路と、
前記循環路に設けられたヒートポンプサイクル構成機器と、
を備え、
前記ヒートポンプサイクル構成機器は、
前記熱媒体を圧縮して高温高圧の超臨界流体とするための圧縮機と、
前記超臨界流体を熱媒体とする請求項1乃至7の何れか1項に記載の熱交換器と、
前記熱交換器で熱交換後の前記熱媒体を減圧させるための膨張部と、
前記膨張部で減圧された前記熱媒体と熱源媒体とを熱交換して気化させるための蒸発器と、
を備えることを特徴とするヒートポンプシステム。
A circulation path through which the heat medium circulates;
A heat pump cycle component device provided in the circulation path;
With
The heat pump cycle component device is:
A compressor for compressing the heat medium into a high-temperature and high-pressure supercritical fluid;
The heat exchanger according to any one of claims 1 to 7, wherein the supercritical fluid is a heat medium;
An expansion part for decompressing the heat medium after heat exchange in the heat exchanger;
An evaporator for exchanging heat and vaporizing the heat medium and the heat source medium decompressed in the expansion section;
A heat pump system comprising:
JP2016021708A 2016-02-08 2016-02-08 Heat exchanger and heat pump system Active JP6869639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016021708A JP6869639B2 (en) 2016-02-08 2016-02-08 Heat exchanger and heat pump system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016021708A JP6869639B2 (en) 2016-02-08 2016-02-08 Heat exchanger and heat pump system

Publications (2)

Publication Number Publication Date
JP2017141979A true JP2017141979A (en) 2017-08-17
JP6869639B2 JP6869639B2 (en) 2021-05-12

Family

ID=59627318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016021708A Active JP6869639B2 (en) 2016-02-08 2016-02-08 Heat exchanger and heat pump system

Country Status (1)

Country Link
JP (1) JP6869639B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108489144A (en) * 2018-01-29 2018-09-04 同济大学 A kind of drying system using overlapping multiple heat pump
CN114111393A (en) * 2021-11-24 2022-03-01 中国石油大学(华东) Heat exchange plate, core and printed circuit board heat exchanger based on supercritical working medium
CN114353560A (en) * 2021-11-26 2022-04-15 中国船舶重工集团公司第七一九研究所 Cooling device for deep sea supercritical carbon dioxide power system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177791A (en) * 1989-12-05 1991-08-01 Matsushita Refrig Co Ltd Lamination type heat exchanger
JP2001221580A (en) * 2000-02-08 2001-08-17 Sanden Corp Heat exchanger
JP2003028539A (en) * 2001-07-18 2003-01-29 Matsushita Electric Ind Co Ltd Heat exchanger and refrigerating cycle system
JP2003090690A (en) * 2001-09-18 2003-03-28 Hitachi Ltd Lamination type heat exchanger and refrigerating cycle
JP2007155192A (en) * 2005-12-02 2007-06-21 Hokkaido Electric Power Co Inc:The Refrigerating cycle device
JP2015114080A (en) * 2013-12-13 2015-06-22 株式会社前川製作所 Microchannel heat exchanger
JP2015527559A (en) * 2012-08-02 2015-09-17 エレクトリシテ・ドゥ・フランス Equipment including heat pump for heating external fluids with large temperature difference

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177791A (en) * 1989-12-05 1991-08-01 Matsushita Refrig Co Ltd Lamination type heat exchanger
JP2001221580A (en) * 2000-02-08 2001-08-17 Sanden Corp Heat exchanger
JP2003028539A (en) * 2001-07-18 2003-01-29 Matsushita Electric Ind Co Ltd Heat exchanger and refrigerating cycle system
JP2003090690A (en) * 2001-09-18 2003-03-28 Hitachi Ltd Lamination type heat exchanger and refrigerating cycle
JP2007155192A (en) * 2005-12-02 2007-06-21 Hokkaido Electric Power Co Inc:The Refrigerating cycle device
JP2015527559A (en) * 2012-08-02 2015-09-17 エレクトリシテ・ドゥ・フランス Equipment including heat pump for heating external fluids with large temperature difference
JP2015114080A (en) * 2013-12-13 2015-06-22 株式会社前川製作所 Microchannel heat exchanger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108489144A (en) * 2018-01-29 2018-09-04 同济大学 A kind of drying system using overlapping multiple heat pump
CN114111393A (en) * 2021-11-24 2022-03-01 中国石油大学(华东) Heat exchange plate, core and printed circuit board heat exchanger based on supercritical working medium
CN114111393B (en) * 2021-11-24 2023-08-29 中国石油大学(华东) Heat exchange plate based on supercritical working medium, core body and printed circuit board type heat exchanger
CN114353560A (en) * 2021-11-26 2022-04-15 中国船舶重工集团公司第七一九研究所 Cooling device for deep sea supercritical carbon dioxide power system

Also Published As

Publication number Publication date
JP6869639B2 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
US10907906B2 (en) Plate heat exchanger and heat pump heating and hot water supply system including the plate heat exchanger
JP6615423B1 (en) Plate heat exchanger, heat pump device equipped with plate heat exchanger, and heat pump air-conditioning / hot water supply system equipped with heat pump device
EP2977704A1 (en) Plate-type heat exchanger and refrigeration cycle device with same
JP6594598B1 (en) Plate type heat exchanger, heat pump device provided with plate type heat exchanger, and heat pump type heating hot water supply system provided with heat pump device
JPWO2018116413A1 (en) Distributor, heat exchanger, and refrigeration cycle device
CN109564070B (en) Heat exchanger and refrigeration system using the same
JP6529709B1 (en) Plate type heat exchanger, heat pump device and heat pump type heating and cooling system
WO2010084732A1 (en) Water heat exhanger and hot-water heat source device
CN109844439B (en) Heat exchanger and refrigeration system using the same
WO2014125566A1 (en) Plate-type heat exchanger and refrigeration cycle device
WO2017175346A1 (en) Distributor, heat exchanger, and air conditioning device
EP3088831B1 (en) Heat exchanger and air conditioning apparatus
JP2017141979A (en) Heat exchanger and heat pump system
WO2013132679A1 (en) Heat exchanger and refrigeration cycle device
JP2018189352A (en) Heat exchanger
JP6188926B2 (en) Laminated header, heat exchanger, and air conditioner
KR20210002712A (en) Stacked heat exchanger
JP7112164B2 (en) Refrigerant distributors, heat exchangers and air conditioners
JP2010060214A (en) Refrigeration system
KR20130023487A (en) Evaporator for heat pump including microchannel heat exchanger
JP6827179B2 (en) Heat exchanger and refrigeration system using it
JP5858877B2 (en) Heat exchanger
JP2006329537A (en) Heat exchanger
JP2019100565A (en) Heat exchanger and refrigeration system using the same
JP2010060215A (en) Refrigerating device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170314

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200611

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200611

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200619

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200623

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200710

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200714

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20201006

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20201013

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20201215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210119

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210224

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210330

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210414

R150 Certificate of patent or registration of utility model

Ref document number: 6869639

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250