[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2017027859A - Negative electrode active material for lithium battery - Google Patents

Negative electrode active material for lithium battery Download PDF

Info

Publication number
JP2017027859A
JP2017027859A JP2015147113A JP2015147113A JP2017027859A JP 2017027859 A JP2017027859 A JP 2017027859A JP 2015147113 A JP2015147113 A JP 2015147113A JP 2015147113 A JP2015147113 A JP 2015147113A JP 2017027859 A JP2017027859 A JP 2017027859A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode active
active material
lithium battery
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015147113A
Other languages
Japanese (ja)
Inventor
千宏 矢田
Chihiro Yada
千宏 矢田
ブライアン エリオット ヘイデン
Elliott Hayden Brian
ブライアン エリオット ヘイデン
クリストファー エドワード リー
Edward Lee Christopher
クリストファー エドワード リー
パーキンス ローラ
Perkins Laura
パーキンス ローラ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015147113A priority Critical patent/JP2017027859A/en
Publication of JP2017027859A publication Critical patent/JP2017027859A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode active material for a lithium battery capable of suppressing breakage caused by expansion/contraction at a time of cycle while maintaining high capacity.SOLUTION: The negative electrode active material includes: a crystal phase having a composition of LiAlSnPO(x+y+z+w=1, 0.10≤x≤0.30, 0.05≤y≤0.31, 0.20≤z≤0.40, 0.31≤w≤0.53, 1.3≤δ≤2.7), where SnPOis the main phase; and a glass phase composed of Li-Al-Sn-P-O.SELECTED DRAWING: Figure 1

Description

本発明は、リチウム電池用負極活物質に関する。   The present invention relates to a negative electrode active material for a lithium battery.

特許文献1には、リチウム電池用のスズ酸化物系負極活物質として、LiSnOδ(x+y=1、0.10≦x≦0.20、0.40≦y≦0.50、1.4≦δ≦2.3)からなる結晶質の負極活物質が開示されている。また、特許文献2には、酸化物換算でSnやPを所定量含む負極活物質が開示されている。 In Patent Document 1, as a tin oxide negative electrode active material for a lithium battery, Li x P y SnO δ (x + y = 1, 0.10 ≦ x ≦ 0.20, 0.40 ≦ y ≦ 0.50, A crystalline negative electrode active material comprising 1.4 ≦ δ ≦ 2.3) is disclosed. Patent Document 2 discloses a negative electrode active material containing a predetermined amount of Sn or P in terms of oxide.

特開2013−161525号公報JP 2013-161525 A 特開2011−187434号公報JP 2011-187434 A

特許文献1に開示された負極活物質は、結晶質であるため硬く、サイクル時の膨張収縮によって材料が割れる虞があり、サイクル特性が悪いという課題があった。この課題は特許文献1に特許文献2を組み合わせたとしても解決することができなかった。そこで、本発明は、高容量を維持しつつもサイクル時の膨張収縮による割れを抑制可能なリチウム電池用負極活物質を提供することを課題とする。   The negative electrode active material disclosed in Patent Document 1 is hard because it is crystalline, and there is a risk that the material may break due to expansion and contraction during the cycle, resulting in poor cycle characteristics. This problem cannot be solved even if Patent Document 1 is combined with Patent Document 1. Then, this invention makes it a subject to provide the negative electrode active material for lithium batteries which can suppress the crack by expansion / contraction at the time of a cycle, maintaining a high capacity | capacitance.

上記課題を解決するために、本発明は以下の構成を採る。すなわち、
本発明は、LiAlSnδ(x+y+z+w=1、0.10≦x≦0.30、0.05≦y≦0.31、0.20≦z≦0.40、0.31≦w≦0.53、1.3≦δ≦2.7)の組成を有し、SnPを主相とする結晶相と、Li−Al−Sn−P−Oからなるガラス相とを有する、負極活物質である。
In order to solve the above problems, the present invention adopts the following configuration. That is,
The present invention, Li x Al y Sn z P w O δ (x + y + z + w = 1,0.10 ≦ x ≦ 0.30,0.05 ≦ y ≦ 0.31,0.20 ≦ z ≦ 0.40,0 .31 ≦ w ≦ 0.53, 1.3 ≦ δ ≦ 2.7), a crystal phase having SnP 2 O 7 as a main phase, and glass made of Li—Al—Sn—P—O A negative electrode active material having a phase.

本発明に係る負極活物質によれば、SnPを主相とする結晶相によって高容量を維持しつつ、アルミニウムを含むLi−Al−Sn−P−Oからなる柔らかいガラス相によってサイクル時の膨張収縮による割れを抑制できる。 According to the negative electrode active material of the present invention, while maintaining a high capacity by the crystal phase mainly composed of SnP 2 O 7 , the soft glass phase composed of Li—Al—Sn—P—O containing aluminum is used during the cycle. It is possible to suppress cracking due to expansion and contraction.

本発明に係る負極活物質を説明するための概略図である。It is the schematic for demonstrating the negative electrode active material which concerns on this invention. 実施例にて用いた負極活物質の製造装置を説明するための概略図である。It is the schematic for demonstrating the manufacturing apparatus of the negative electrode active material used in the Example. 実施例にて用いた評価セルの層構成を説明するための概略図である。It is the schematic for demonstrating the layer structure of the evaluation cell used in the Example. 実施例1〜4に係る評価セルについて、サイクリックボルタンメトリー測定結果(5サイクル目)を示す図である。It is a figure which shows a cyclic voltammetry measurement result (5th cycle) about the evaluation cell which concerns on Examples 1-4. 実施例に係る負極活物質のX線回折結果を示す図である。It is a figure which shows the X-ray-diffraction result of the negative electrode active material which concerns on an Example.

1.負極活物質
図1に一実施形態に係る本発明の負極活物質10を概略的に示す。本発明に係る負極活物質10は、LiAlSnδ(x+y+z+w=1、0.10≦x≦0.30、0.05≦y≦0.31、0.20≦z≦0.40、0.31≦w≦0.53、1.3≦δ≦2.7)の組成を有する点に一つの特徴がある。また、本発明に係る負極活物質10は、SnPを主相とする結晶相1と、Li−Al−Sn−P−Oからなるガラス相2とを有することにもう一つの特徴がある。
1. Negative Electrode Active Material FIG. 1 schematically shows a negative electrode active material 10 according to an embodiment of the present invention. The negative electrode active material 10 according to the present invention has Li x Al y Sn z P w O δ (x + y + z + w = 1, 0.10 ≦ x ≦ 0.30, 0.05 ≦ y ≦ 0.31, 0.20 ≦ z). One feature is that it has a composition of ≦ 0.40, 0.31 ≦ w ≦ 0.53, 1.3 ≦ δ ≦ 2.7). Another feature of the negative electrode active material 10 according to the present invention is that it has a crystal phase 1 having SnP 2 O 7 as a main phase and a glass phase 2 made of Li—Al—Sn—P—O. is there.

本発明において、カチオンが上記の組成x、y、z、wを満たすことにより、リチウム電池とした場合において例えば体積エネルギー密度1000mAh/cm超と高容量な負極活物質とすることができる。特に、上記組成式中、x+y+z+w=1、0.15≦x≦0.25、0.10≦y≦0.20、0.31≦z≦0.40、0.35≦w≦0.44、1.7≦δ≦2.3であることが好ましい。この場合、例えば当該体積エネルギー密度が2000mAh/cm超と一層高容量な負極活物質とすることができる。負極活物質の組成については、公知の元素分析法により容易に特定できる。 In the present invention, when the cation satisfies the above-mentioned compositions x, y, z, and w, a negative electrode active material having a high capacity of, for example, a volume energy density exceeding 1000 mAh / cm 3 in a lithium battery can be obtained. In particular, in the above composition formula, x + y + z + w = 1, 0.15 ≦ x ≦ 0.25, 0.10 ≦ y ≦ 0.20, 0.31 ≦ z ≦ 0.40, 0.35 ≦ w ≦ 0.44. It is preferable that 1.7 ≦ δ ≦ 2.3. In this case, for example, the negative electrode active material can have a higher capacity with a volume energy density exceeding 2000 mAh / cm 3 . The composition of the negative electrode active material can be easily specified by a known elemental analysis method.

本発明に係る負極活物質10は、SnPを主相とする結晶相1を有することによって、高容量を維持することができる。ここで、「SnPを主相とする」とは、SnP相に他の元素が固溶等していてもよいことを意味する。例えば、SnPと同様の結晶構造を有しつつ、当該結晶構造中にLiやAlが固溶し、或いは、SnPの一部元素がLiやAlで置換されていてもよい。SnPにLiやAlが固溶等しているか否かは、CuKα線を用いたX線回折測定により容易に判断できる。本発明においては、当該X線回折測定において、SnPに係る回折ピークパターンと比較して、負極活物質の結晶相の回折ピークパターンのうち少なくとも一部のピークがシフトしていた場合、SnP相中にLiやAlが固溶等しているものとみなす。 The negative electrode active material 10 according to the present invention can maintain a high capacity by having the crystal phase 1 having SnP 2 O 7 as a main phase. Here, “with SnP 2 O 7 as the main phase” means that other elements may be dissolved in the SnP 2 O 7 phase. For example, while having a crystal structure similar to SnP 2 O 7 , Li or Al may be dissolved in the crystal structure, or a part of SnP 2 O 7 may be substituted with Li or Al. . Whether or not Li or Al is dissolved in SnP 2 O 7 can be easily determined by X-ray diffraction measurement using CuKα rays. In the present invention, in the X-ray diffraction measurement, in comparison with the diffraction peak pattern related to SnP 2 O 7, when at least a part of the peak of the diffraction peak pattern of the crystalline phase of the negative electrode active material is shifted, It is considered that Li or Al is dissolved in the SnP 2 O 7 phase.

本発明に係る負極活物質10は、アルミニウムを含むLi−Al−Sn−P−Oからなる柔らかいガラス相2を有することによって、サイクル時の膨張収縮による割れを抑制できる。Li−Al−Sn−P−Oからなるガラス相の存在についても、上述のCuKα線を用いたX線回折測定により容易に確認できる。本発明においては、負極活物質が上記組成を有することを前提として、当該負極活物質に対して当該X線回折測定を行った場合に、10〜30℃においてハロー(幅広の緩やかなピーク)が確認された場合、負極活物質中にはLi−Al−Sn−P−Oからなるガラス相が含まれているものとみなす。   The negative electrode active material 10 according to the present invention has a soft glass phase 2 made of Li—Al—Sn—P—O containing aluminum, thereby suppressing cracks due to expansion and contraction during the cycle. The presence of a glass phase composed of Li—Al—Sn—P—O can also be easily confirmed by X-ray diffraction measurement using the above CuKα ray. In the present invention, on the assumption that the negative electrode active material has the above composition, when the X-ray diffraction measurement is performed on the negative electrode active material, a halo (wide and gentle peak) is observed at 10 to 30 ° C. When it is confirmed, it is considered that the negative electrode active material contains a glass phase composed of Li—Al—Sn—P—O.

本発明に係る負極活物質において、上記の結晶相及びガラス層の比率(質量比や体積比)は特に限定されるものではない。上述したような所定の組成を有するとともに、X線回折測定においてSnPを主相とする結晶相の回折ピークが確認され、且つ、ガラス相に由来するハローが確認されるものであればよい。 In the negative electrode active material according to the present invention, the ratio (mass ratio or volume ratio) between the crystal phase and the glass layer is not particularly limited. As long as it has a predetermined composition as described above, a diffraction peak of a crystal phase mainly composed of SnP 2 O 7 is confirmed in X-ray diffraction measurement, and a halo derived from a glass phase is confirmed. Good.

本発明に係る負極活物質は、その形態(形状)について特に限定されるものではない。粒子状、薄膜状等、種々の形状が採用できる。例えば、後述する蒸着法により薄膜状の負極活物質を得る場合、当該薄膜の厚みは、下限が200nm以上であることが好ましく、500nm以上であることがより好ましく、800nm以上であることがさらに好ましい。また、上限が5μm以下であることが好ましく、3μm以下であることがより好ましく、2μm以下であることがさらに好ましい。   The form (shape) of the negative electrode active material according to the present invention is not particularly limited. Various shapes such as particles and thin films can be employed. For example, when a thin-film negative electrode active material is obtained by a vapor deposition method to be described later, the lower limit of the thickness of the thin film is preferably 200 nm or more, more preferably 500 nm or more, and even more preferably 800 nm or more. . The upper limit is preferably 5 μm or less, more preferably 3 μm or less, and further preferably 2 μm or less.

以上の通り、本発明に係る負極活物質によれば、所定の組成を有するとともに、SnPを主相とする結晶相によって高容量を維持しつつ、アルミニウムを含むLi−Al−Sn−P−Oからなる柔らかいガラス相によってサイクル時の膨張収縮による割れを抑制できる。 As described above, according to the negative electrode active material of the present invention, Li-Al-Sn- containing aluminum and having a predetermined composition and maintaining a high capacity by a crystal phase mainly composed of SnP 2 O 7. Cracks due to expansion and contraction during the cycle can be suppressed by the soft glass phase made of PO.

2.負極活物質の製造方法
本発明に係る負極活物質は、その製造方法について特に限定されるものではない。例えば、特許文献1(特開2013−161525号公報)に記載された蒸着法を応用することが好ましい。すなわち、1×10−10mBar以下の減圧下(高真空下)でOプラズマを発生させると同時に、抵抗加熱法や電子ビーム法等によってLi、Al、Snを揮発させつつ、リンクラッカー等によりPを揮発させることによって、基板上にLi−Al−Sn−P−Oからなる薄膜を蒸着させたうえで、蒸着と同時に加熱することにより、或いは、蒸着後に大気雰囲気や不活性ガス雰囲気にて加熱することにより、本発明に係る負極活物質からなる薄膜を得ることができる。薄膜の組成はシャッター等を用いて各元素の蒸着量を変化させることによってコントロールでき、薄膜の厚みは蒸着時間を変化させることでコントロールできる。尚、本発明においては、負極活物質にガラス相を残存させる必要があるため、加熱温度は低温とすることが好ましい。例えば、400℃〜700℃程度が好ましい。加熱時間は特に限定されるものではなく、例えば、10秒以上5時間以下とすることができる。
2. Method for Producing Negative Electrode Active Material The negative electrode active material according to the present invention is not particularly limited with respect to the production method. For example, it is preferable to apply the vapor deposition method described in Patent Document 1 (Japanese Patent Laid-Open No. 2013-161525). That is, O 2 plasma is generated under a reduced pressure (high vacuum) of 1 × 10 −10 mBar or less, and at the same time, Li, Al, Sn is volatilized by a resistance heating method or an electron beam method, and a link lacquer is used. By volatilizing P, a thin film made of Li—Al—Sn—P—O is vapor-deposited on the substrate, and then heated at the same time as vapor deposition, or in an air atmosphere or an inert gas atmosphere after vapor deposition. By heating, a thin film made of the negative electrode active material according to the present invention can be obtained. The composition of the thin film can be controlled by changing the deposition amount of each element using a shutter or the like, and the thickness of the thin film can be controlled by changing the deposition time. In the present invention, since it is necessary to leave the glass phase in the negative electrode active material, the heating temperature is preferably low. For example, about 400 ° C to 700 ° C is preferable. The heating time is not particularly limited and can be, for example, 10 seconds to 5 hours.

尚、このように基板への蒸着によって負極活物質薄膜を得る場合、基板として固体電解質からなる基板を用いることで、固体電解質の上に負極活物質薄膜を形成でき、そのままリチウム電池の固体電解質層及び負極層として利用できる。一方、粒子状の負極活物質を得る方法としては上記の薄膜を破砕する形態や、原料粉末を混合して低温での固相反応を行う形態等が考えられる。負極活物質の製造方法の一例については、後述の実施例においてより詳細に説明する。   In addition, when obtaining a negative electrode active material thin film by vapor deposition on a substrate in this way, a negative electrode active material thin film can be formed on a solid electrolyte by using a substrate made of a solid electrolyte as a substrate, and the solid electrolyte layer of a lithium battery can be used as it is. And can be used as a negative electrode layer. On the other hand, as a method for obtaining a particulate negative electrode active material, a form in which the above thin film is crushed, a form in which raw material powders are mixed and a solid phase reaction is performed at a low temperature, and the like are considered. An example of the method for producing the negative electrode active material will be described in more detail in Examples described later.

3.負極活物質の用途
本発明に係る負極活物質はリチウム電池用の負極層を構成する負極活物質として用いることができる。この場合、当該負極活物質をNASICON型の固体電解質と組み合わせてリチウム二次電池の固体電解質層及び負極層を構成することが好ましい。例えば、上記した蒸着用基板として当該固体電解質からなる焼結体基板を用いるとよい。NASICON型の固体電解質としてはLi1.5Al0.5Ge1.5(PO又はLi1.5Al0.5Ti1.5(POを用いることが好ましい。特に、Li1.5Al0.5Ge1.5(POが好ましい。尚、リチウム電池とする場合、その層構成等については、本発明に係る負極活物質を用いる点を除き、従来のリチウム電池と同様の構成とすればよい。例えば、特許文献1(特開2013−161525号公報)等を参照することで、容易にリチウム電池を作製できる。
3. Use of negative electrode active material The negative electrode active material according to the present invention can be used as a negative electrode active material constituting a negative electrode layer for a lithium battery. In this case, it is preferable that the negative electrode active material is combined with a NASICON type solid electrolyte to form a solid electrolyte layer and a negative electrode layer of a lithium secondary battery. For example, a sintered body substrate made of the solid electrolyte may be used as the above-described deposition substrate. As the NASICON solid electrolyte, Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 or Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 is preferably used. In particular, Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 is preferable. In addition, when setting it as a lithium battery, what is necessary is just to set it as the structure similar to the conventional lithium battery about the layer structure etc. except the point which uses the negative electrode active material which concerns on this invention. For example, a lithium battery can be easily manufactured by referring to Patent Document 1 (Japanese Patent Laid-Open No. 2013-161525).

1.負極活物質の作製
図2に示す装置を用いて、基板14上に負極活物質を作製した。
まず、原料として、リチウム金属(ribbon、純度99.9%、Sigma Aldrich社製)、アルミニウム金属(純度99.9%、Sigma Aldrich社製)、スズ金属(純度99.98%、Alfa Aesar社製)及びリン(純度99.99%、Sigma Aldrich社製)を用意した。原料はそれぞれ坩堝12やリンクラッカー13に入れた。また、基板14として1.0mm厚のLi1.5Al0.5Ge1.5(PO焼結体(豊島製作所製)を用い、蒸着面積を0.785cm(φ10mm相当)とし、原料から基板14までの距離を500mmとした。次に、チャンバー11内を1×10−10mBar以下の高真空とした。
1. Production of Negative Electrode Active Material A negative electrode active material was produced on the substrate 14 using the apparatus shown in FIG.
First, lithium metal (ribbon, purity 99.9%, manufactured by Sigma Aldrich), aluminum metal (purity 99.9%, manufactured by Sigma Aldrich), tin metal (purity 99.98%, manufactured by Alfa Aesar) ) And phosphorus (purity 99.99%, manufactured by Sigma Aldrich). The raw materials were put in the crucible 12 and the link lacquer 13, respectively. Further, a Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 sintered body (manufactured by Toyoshima Seisakusho) having a thickness of 1.0 mm is used as the substrate 14, and the deposition area is 0.785 cm 2 (equivalent to φ10 mm). The distance from the raw material to the substrate 14 was 500 mm. Next, the inside of the chamber 11 was set to a high vacuum of 1 × 10 −10 mBar or less.

その後、リチウム金属が入った坩堝12に対して抵抗加熱(Knudsen Cells)を行い、リチウムを揮発させ、同時に、アルミニウム金属が入った坩堝12及びスズ金属が入った坩堝12に対して、電子ビーム照射を行い、アルミニウム金属及びスズ金属を揮発させた。一方、リンクラッカー14(Veeco EP1-500V-P-IV、500cmのバルブ付きクラッキング噴散源)を用いて、リンを噴散した。同時に、酸素プラズマ発生装置(Oxford Applied Research社製、RF source、HD25)を用いてチャンバー11内に酸素プラズマを発生させ、揮発させた原料と反応させることで、基板14上に薄膜状の負極活物質10を得た。尚、基板の温度を600℃程度に制御することで、薄膜状の負極活物質10においてガラス相を残存させつつ一部を結晶化させた。
シャッターにより揮発元素の量を調整することで様々な組成を有する負極活物質薄膜10を作製した。偏光解析法(Woollam M-200Fi Spectroscopic Ellipsometer)によって、得られた薄膜の厚みを測定した。その結果、厚みは300〜650nmであった。尚、薄膜の厚みは蒸着時間によってコントロール可能である。
Thereafter, resistance heating (Knudsen Cells) is performed on the crucible 12 containing lithium metal to volatilize lithium, and at the same time, the crucible 12 containing aluminum metal and the crucible 12 containing tin metal are irradiated with an electron beam. The aluminum metal and the tin metal were volatilized. On the other hand, phosphorus was sprayed using a link lacquer 14 (Veeco EP1-500V-P-IV, cracking spraying source with a valve of 500 cm 3 ). At the same time, an oxygen plasma generator (Oxford Applied Research, RF source, HD25) is used to generate oxygen plasma in the chamber 11 and react with the volatilized raw material, thereby forming a thin film negative electrode active on the substrate 14. Material 10 was obtained. In addition, by controlling the temperature of the substrate to about 600 ° C., a part of the thin film negative electrode active material 10 was crystallized while the glass phase remained.
Negative electrode active material thin films 10 having various compositions were prepared by adjusting the amount of volatile elements with a shutter. The thickness of the obtained thin film was measured by ellipsometry (Woollam M-200Fi Spectroscopic Ellipsometer). As a result, the thickness was 300 to 650 nm. The thickness of the thin film can be controlled by the deposition time.

2.負極活物質の評価
ICP分析により、負極活物質薄膜に含まれるカチオンの組成を確認した。
また、CuKα線を用いたX回折(Bruker D8回折装置、GADDS検出器及び高強度点線源を装備)により、2θ=5〜40°の範囲で、負極活物質薄膜の回折ピークを確認した。
2. Evaluation of negative electrode active material The composition of the cation contained in the negative electrode active material thin film was confirmed by ICP analysis.
Moreover, the diffraction peak of the negative electrode active material thin film was confirmed in the range of 2θ = 5 to 40 ° by X diffraction using a CuKα ray (equipped with a Bruker D8 diffractometer, a GADDS detector and a high-intensity point ray source).

3.充放電特性の評価
図3に評価に用いた電気化学セルの構成を示す。上述のように、Li1.5Al0.5Ge1.5(PO基板14の一方面に負極活物質薄膜10を蒸着し、他方面に1M LiPF電解液(溶媒としてEC:DMC=1:1の混合溶媒を用いた)を浸漬したセルガード製のセパレータ15を接触させた。また、対極としてリチウム金属16を用いて評価用の電気化学セルを構成した。セルを組み立てた後、0.5mV/secの掃引速度で0.4−2.9Vの範囲でサイクリックボルタンメトリー測定を5サイクル実施し、5サイクル後の放電容量を評価した。
3. Evaluation of Charging / Discharging Characteristics FIG. 3 shows the configuration of the electrochemical cell used for the evaluation. As described above, the negative electrode active material thin film 10 is deposited on one surface of the Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 substrate 14, and 1M LiPF 6 electrolyte (EC: A separator 15 made of Celgard dipped in a mixed solvent of DMC = 1: 1) was brought into contact. Moreover, the electrochemical cell for evaluation was comprised using the lithium metal 16 as a counter electrode. After assembling the cell, cyclic voltammetry measurement was performed for 5 cycles in the range of 0.4 to 2.9 V at a sweep rate of 0.5 mV / sec, and the discharge capacity after 5 cycles was evaluated.

4.評価結果
実施例、比較例に係る負極活物質のカチオン組成、及び、当該負極活物質を用いた評価セルの5サイクル後の放電容量について、下記表1、2に示す。また、図4(a)〜(d)に、実施例1〜4についてのサイクリックボルタンメトリー測定結果(5サイクル目)を示す。
4). Evaluation Results Tables 1 and 2 below show the cation composition of the negative electrode active materials according to Examples and Comparative Examples, and the discharge capacity after 5 cycles of the evaluation cell using the negative electrode active material. Moreover, to Fig.4 (a)-(d), the cyclic voltammetry measurement result (5th cycle) about Examples 1-4 is shown.

表1、2及び図4に示す結果から以下のことが分かる。
(1)負極活物質の組成LiAlSnδ(x+y+z+w=1)について、0.10≦x≦0.30、0.05≦y≦0.31、0.20≦z≦0.40、0.31≦w≦0.53、1.3≦δ≦2.7を満たす実施例1〜33に係るセルにあっては、5サイクル目でも放電容量1000mAh/cm以上と、高容量である。
(2)特に、0.15≦x≦0.25、0.10≦y≦0.20、0.31≦z≦0.40、0.35≦w≦0.44、1.7≦δ≦2.3を満たす実施例1〜15に係るセルにあっては、5サイクル目でも放電容量2000mAh/cm以上と、一層高容量である。
(3)一方で、上記(1)に係る組成を満たさない比較例1〜12に係るセルは、5サイクル目においていずれも1000mAh/cm未満と、低容量である。
From the results shown in Tables 1 and 2 and FIG.
(1) Composition of negative electrode active material Li x Al y Sn z P w O δ (x + y + z + w = 1) 0.10 ≦ x ≦ 0.30, 0.05 ≦ y ≦ 0.31, 0.20 ≦ z In the cells according to Examples 1 to 33 that satisfy ≦ 0.40, 0.31 ≦ w ≦ 0.53, and 1.3 ≦ δ ≦ 2.7, the discharge capacity is 1000 mAh / cm 3 or more even at the fifth cycle. And high capacity.
(2) In particular, 0.15 ≦ x ≦ 0.25, 0.10 ≦ y ≦ 0.20, 0.31 ≦ z ≦ 0.40, 0.35 ≦ w ≦ 0.44, 1.7 ≦ δ In the cells according to Examples 1 to 15 that satisfy ≦ 2.3, the discharge capacity is 2000 mAh / cm 3 or more even in the fifth cycle, which is a higher capacity.
(3) On the other hand, the cells according to Comparative Examples 1 to 12 that do not satisfy the composition according to (1) have a low capacity of less than 1000 mAh / cm 3 in the fifth cycle.

図5に、実施例1に係る負極活物質薄膜に対するX線回折測定結果を示す。得られたX線回折パターンをJCPDSデータベースと照合した結果、SnPを主相とする結晶相が得られていることが分かった(図5中、横軸目盛り線から垂直に伸びる直線は、データベースに登録されたSnPの回折パターンと対応する。)。データベースの結果よりもわずかにピークがシフトしていることから、SnPにLiやAl等の元素が固溶等しているものと考えられる。また、2θ=10〜30°においてガラス成分に由来するハローが観察されたことから、Li−Al−Sn−P−Oからなるガラス相の存在が確認された。その他の実施例についても同様の結果が確認された。 In FIG. 5, the X-ray-diffraction measurement result with respect to the negative electrode active material thin film which concerns on Example 1 is shown. As a result of collating the obtained X-ray diffraction pattern with the JCPDS database, it was found that a crystal phase having SnP 2 O 7 as a main phase was obtained (in FIG. 5, the straight line extending vertically from the horizontal axis graduation line is , Corresponding to the diffraction pattern of SnP 2 O 7 registered in the database). Since the peak is slightly shifted from the results of the database, it is considered that elements such as Li and Al are dissolved in SnP 2 O 7 . Moreover, since the halo derived from a glass component was observed in 2 (theta) = 10-30 degrees, presence of the glass phase which consists of Li-Al-Sn-PO was confirmed. Similar results were confirmed for the other examples.

本発明に係る負極活物質はリチウム電池用の新規負極活物質として広く利用可能である。   The negative electrode active material according to the present invention can be widely used as a new negative electrode active material for lithium batteries.

Claims (1)

LiAlSnδ(x+y+z+w=1、0.10≦x≦0.30、0.05≦y≦0.31、0.20≦z≦0.40、0.31≦w≦0.53、1.3≦δ≦2.7)の組成を有し、
SnPを主相とする結晶相と、Li−Al−Sn−P−Oからなるガラス相とを有する、
負極活物質。
Li x Al y Sn z P w O δ (x + y + z + w = 1,0.10 ≦ x ≦ 0.30,0.05 ≦ y ≦ 0.31,0.20 ≦ z ≦ 0.40,0.31 ≦ w ≦ 0.53, 1.3 ≦ δ ≦ 2.7)
It has a crystal phase mainly composed of SnP 2 O 7 and a glass phase composed of Li—Al—Sn—P—O.
Negative electrode active material.
JP2015147113A 2015-07-24 2015-07-24 Negative electrode active material for lithium battery Pending JP2017027859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015147113A JP2017027859A (en) 2015-07-24 2015-07-24 Negative electrode active material for lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015147113A JP2017027859A (en) 2015-07-24 2015-07-24 Negative electrode active material for lithium battery

Publications (1)

Publication Number Publication Date
JP2017027859A true JP2017027859A (en) 2017-02-02

Family

ID=57946747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015147113A Pending JP2017027859A (en) 2015-07-24 2015-07-24 Negative electrode active material for lithium battery

Country Status (1)

Country Link
JP (1) JP2017027859A (en)

Similar Documents

Publication Publication Date Title
Lobe et al. Physical vapor deposition in solid‐state battery development: from materials to devices
JP6630040B2 (en) Method for manufacturing all-solid electrode in which solid electrolyte has concentration gradient
US10115999B2 (en) All-solid-state lithium-ion secondary battery including a solid electrolyte and an intermediate layer
US7993782B2 (en) All-solid lithium battery
WO2016104702A1 (en) Sulfide-based solid electrolyte for lithium ion cell, and solid electrolyte compound
WO2011128976A1 (en) Solid electrolyte material, lithium battery, and manufacturing method for solid electrolyte material
JP2019199394A (en) Sulfide-based solid electrolyte, method for producing the sulfide-based solid electrolyte, and method for producing all solid-state battery
WO2005101549A1 (en) Negative electrode member for secondary lithium battery and process for producing the same
JP2019518311A5 (en)
Tan et al. Controllable crystalline preferred orientation in Li–Co–Ni–Mn oxide cathode thin films for all-solid-state lithium batteries
WO2013031507A1 (en) Method for producing lithium-ion conductive solid electrolyte, and lithium-ion secondary battery
JP2011511399A5 (en)
US20150380765A1 (en) Solid electrolyte and all-solid state ion secondary battery using the same
TW201503185A (en) Composite electrode for lithium-ion capacitor
JP6756624B2 (en) Power storage system with separate plate-shaped elements, separate plate-shaped elements, manufacturing method thereof, and its use
US20130189588A1 (en) Method for producing solid electrolyte membrane
JP6234594B2 (en) Deposition method for producing amorphous lithium-containing compounds
JP2008112635A (en) All solid lithium ion battery and its manufacturing method
JP3716833B2 (en) Lithium secondary battery negative electrode member and manufacturing method thereof
TW201503456A (en) A ceramic electrolyte material comprising a modified polycrystalline lithium metal phosphate
CN115699213B (en) Lithium ion conductive solid electrolyte and all-solid battery
CN112585294B (en) Method for preparing amorphous lithium borosilicate
JP2013073907A (en) Method for manufacturing electrode mixture
JP2015185462A (en) Method for manufacturing solid electrolytic member for solid batteries
KR20110112067A (en) Thin film battery having improved anode characteristics and method of manufacturing the same