[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2017025732A - Power generation system and power generation method using compost fermentation heat - Google Patents

Power generation system and power generation method using compost fermentation heat Download PDF

Info

Publication number
JP2017025732A
JP2017025732A JP2015142763A JP2015142763A JP2017025732A JP 2017025732 A JP2017025732 A JP 2017025732A JP 2015142763 A JP2015142763 A JP 2015142763A JP 2015142763 A JP2015142763 A JP 2015142763A JP 2017025732 A JP2017025732 A JP 2017025732A
Authority
JP
Japan
Prior art keywords
heat
power generation
exhaust
recovered
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015142763A
Other languages
Japanese (ja)
Inventor
陽一郎 小島
Yuichiro Kojima
陽一郎 小島
佳之 阿部
Yoshiyuki Abe
佳之 阿部
弘一 天羽
Koichi Amo
弘一 天羽
五戸 成史
Shigefumi Itsudo
成史 五戸
遠藤 聡
Satoshi Endo
聡 遠藤
佑一 飯高
Yuichi Iidaka
佑一 飯高
大 中西
Masaru Nakanishi
大 中西
洋平 西
Yohei Nishi
洋平 西
壮一 岡本
Soichi Okamoto
壮一 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Agriculture and Food Research Organization
Okamoto Seisakusho KK
Advance Riko Inc
Original Assignee
National Agriculture and Food Research Organization
Okamoto Seisakusho KK
Advance Riko Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Agriculture and Food Research Organization, Okamoto Seisakusho KK, Advance Riko Inc filed Critical National Agriculture and Food Research Organization
Priority to JP2015142763A priority Critical patent/JP2017025732A/en
Publication of JP2017025732A publication Critical patent/JP2017025732A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Landscapes

  • Greenhouses (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Fertilizers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power generation system and a power generation method which can stably generate electricity using compost fermentation heat.SOLUTION: A power generation system comprises: evacuation collection means which can collect fermentation heat of compost raw materials as evacuation; heat recovery means which can recover heat in the evacuation collected by the evacuation collection means; power generation means which can generate electricity using the recovered heat recovered by the heat recovery means; and heat feeding means which is provided between the heat recovery means and the power generation means and can control the recovered heat and feed required heat to the power generation means.SELECTED DRAWING: Figure 1

Description

本発明は、堆肥発酵熱の有効利用を可能にした発電システム及び発電方法に関するものである。   The present invention relates to a power generation system and a power generation method that enable effective use of compost fermentation heat.

近年、原子力発電の縮小や原油価格の高騰などを背景に再生可能エネルギへの社会的要望が高まっている。また、再生可能エネルギのひとつであるバイオマス資源においても、地球環境問題の顕在化に伴いクリーンで効率的なエネルギとして循環型社会の形成に有効活用する期待が高まっている。具体的には、有機性廃棄物を資源化する堆肥化工程では、有機物の分解に伴って発生する発酵熱の有効利用が求められており、堆肥化工程で生じる発酵熱の回収・利用技術について様々な研究が成されている。   In recent years, there has been an increasing social demand for renewable energy against the backdrop of shrinking nuclear power generation and rising crude oil prices. In addition, biomass resources, which are one of renewable energies, are expected to be effectively used for the formation of a recycling-oriented society as clean and efficient energy with the emergence of global environmental problems. Specifically, in the composting process that recycles organic waste, effective use of the heat of fermentation that occurs along with the decomposition of organic matter is required, and technology for recovering and using fermentation heat generated in the composting process Various studies have been conducted.

従来では、発酵熱の回収方法として、堆肥から熱を直接抽出する直接回収法や熱を排気として回収する吸引通気法がある。直接回収法による熱利用としては、堆肥原料内部に熱媒体の配管を埋設することで熱を抽出し、抽出した熱によって媒体を気化させることでタービンを駆動させるタービン発電(例えば、特許文献1)や堆肥原料内部に発電素子を用いた発電装置を埋設し、外部から低温熱源を該堆肥原料内部に送り込み、温度差発電を行うものがある(例えば、特許文献2)。また、吸引通気法による熱利用としては、堆肥原料が堆積された発酵槽の底部から空気を吸引して排気(排気熱)として熱回収し、排気自体を熱利用室(温室等)に導くものがある(例えば、特許文献3)。   Conventionally, as a method for recovering fermentation heat, there are a direct recovery method for directly extracting heat from compost and a suction aeration method for recovering heat as exhaust. As heat utilization by the direct recovery method, heat generation is performed by burying a heat medium pipe inside the compost raw material, and the medium is vaporized by the extracted heat to drive the turbine (for example, Patent Document 1). There is a type in which a power generation device using a power generation element is embedded inside a compost raw material, and a low temperature heat source is sent from the outside into the compost raw material to perform temperature difference power generation (for example, Patent Document 2). In addition, as for heat utilization by the suction aeration method, air is sucked from the bottom of the fermenter where the compost raw material is deposited and heat is recovered as exhaust (exhaust heat), and the exhaust itself is led to a heat utilization room (greenhouse, etc.) (For example, Patent Document 3).

特許第4280135号Japanese Patent No. 4280135 特開2005−204442号公報JP 2005-204442 A 特許第4418886号Patent No. 4418886

しかしながら、堆肥原料内部に熱媒体の配管を埋設する方法での熱回収は、配管周辺の堆肥原料の熱しか抽出できず、発酵熱回収率が低い。また、堆肥原料内部に発電素子を用いた発電装置を埋設する方法での熱回収は、発電装置が堆肥中のアンモニアや堆肥化過程で発生するアンモニアガス及び硫化水素の影響を受けて腐食してしまい耐久性が低下する問題がある。そして、吸引通気法での熱回収は前述の直接回収法による課題を解決可能であるが、前述の吸引通気法による熱利用はアンモニアを回収した後の排気を直接熱源として利用するため、微量とはいえ熱利用室へのアンモニア流入の懸念が残る。また、前述した従来の熱回収・利用技術では、堆肥原料の温度変化や性状変化等の発酵状態に起因する回収熱量の変動に対し、何ら変動を吸収する術がない。したがって、回収熱量の変動は熱利用効率(発電能力や熱利用室の温度)にも直接影響を及ぼす。このように、堆肥発酵熱の回収・利用技術については、効率的な回収・利用技術が確立されているとは言い難く、さらなる検討の余地がある。   However, heat recovery by the method of embedding a heat medium pipe inside the compost raw material can extract only the heat of the compost raw material around the pipe, and the fermentation heat recovery rate is low. In addition, heat recovery by the method of embedding power generation devices using power generation elements inside compost raw materials corrodes the power generation device under the influence of ammonia in compost, ammonia gas generated during composting, and hydrogen sulfide. Therefore, there is a problem that durability is lowered. And the heat recovery by the suction aeration method can solve the problems by the above-mentioned direct recovery method, but the heat utilization by the above-mentioned suction aeration method uses the exhaust gas after recovering ammonia as a direct heat source. Nevertheless, there remains concern about ammonia inflow into the heat utilization room. In addition, the conventional heat recovery / utilization technique described above does not have any technique for absorbing fluctuations in response to fluctuations in the amount of recovered heat caused by fermentation conditions such as changes in temperature and properties of compost raw materials. Therefore, fluctuations in the amount of recovered heat directly affect heat utilization efficiency (power generation capacity and heat utilization room temperature). Thus, it is difficult to say that efficient recovery / use technology has been established for the recovery / use technology of compost fermentation heat, and there is room for further study.

本発明は、上記事情に鑑みなされたもので、堆肥発酵熱を用いて安定した発電を行うことが可能な発電システム及び発電方法の提供を目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a power generation system and a power generation method capable of performing stable power generation using compost fermentation heat.

本発明に係る発電システムは、堆肥原料の発酵熱を排気として回収可能な排気回収手段と、前記排気回収手段によって回収された排気中の熱を回収可能な熱回収手段と、前記熱回収手段によって回収された回収熱を利用して発電可能な発電手段と、前記熱回収手段と前記発電手段との間に設けられ、前記回収熱を調整して当該発電手段に所定の熱を供給可能な熱供給手段と、を備える。   The power generation system according to the present invention includes an exhaust recovery unit that can recover fermentation heat of compost raw material as exhaust, a heat recovery unit that can recover heat in the exhaust recovered by the exhaust recovery unit, and the heat recovery unit. Power generation means capable of generating power using the recovered heat collected, heat provided between the heat recovery means and the power generation means, and capable of supplying the predetermined power to the power generation means by adjusting the recovered heat Supply means.

本発明によれば、上記課題を解決し、堆肥発酵熱を用いて安定した発電を行うことが可能となる。   According to the present invention, it is possible to solve the above-described problems and perform stable power generation using compost fermentation heat.

本発明の実施の形態の発電システムを示すブロック構成図である。It is a block block diagram which shows the electric power generation system of embodiment of this invention. 本発明の実施の形態の発電システムにおける発電データを示す図である。It is a figure which shows the electric power generation data in the electric power generation system of embodiment of this invention. 本発明の実施の形態の変形例の発電システムを示すブロック構成図である。It is a block block diagram which shows the electric power generation system of the modification of embodiment of this invention.

以下、本発明の実施の形態について図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の実施の形態の発電システム100を示すブロック構成図である。本発明の実施の形態の発電システム100は、堆肥発酵槽10と、排気回収部20と、熱回収部30と、バッファタンク40と、発電部50と、脱臭部60とを有する。なお、本発明の発電システム100は、堆肥原料Tの堆肥化工程において発生する排気Hを外気で希釈せずに直接回収可能な吸引通気式や密閉型の堆肥化施設への適用を推奨する。ここでは、吸引通気式の堆肥化施設を例に説明する。   FIG. 1 is a block diagram showing a power generation system 100 according to an embodiment of the present invention. The power generation system 100 according to the embodiment of the present invention includes a compost fermenter 10, an exhaust recovery unit 20, a heat recovery unit 30, a buffer tank 40, a power generation unit 50, and a deodorization unit 60. Note that the power generation system 100 of the present invention is recommended to be applied to a suction ventilation type or closed type composting facility that can directly recover the exhaust gas H generated in the composting process of the compost raw material T without diluting it with outside air. Here, a suction ventilation type composting facility will be described as an example.

本実施の形態の堆肥発酵槽10は、吸引通気式堆肥化施設に設けられる。堆肥発酵槽10の内部には堆肥原料Tが堆積され、切り返しと後述の排気回収部20による強制通気とにより堆肥化が行われる。堆肥発酵槽10では、堆肥原料Tの堆肥化によって発酵熱が発生する。なお、熱回収後の堆肥化物は、通常の堆肥化物と同様に肥料や土壌改良等の資材として利用できる。   The compost fermenter 10 of this Embodiment is provided in a suction ventilation type composting facility. The compost raw material T is deposited inside the compost fermenter 10, and composting is performed by turning back and forced ventilation by the exhaust gas recovery unit 20 described later. In the compost fermenter 10, fermentation heat is generated by composting the compost raw material T. In addition, the compost after heat recovery can be used as a material for fertilizer, soil improvement, etc. in the same manner as normal compost.

本実施の形態の排気回収部20は、ブロワなどの通気装置によって堆肥発酵槽10の底面(堆肥原料T底部)から空気を吸引することで堆肥原料Tの表面から内部へと空気を供給し、堆肥化工程において発生した発酵熱を排気Hとして回収する。このとき回収される排気Hは、高温(60〜70℃)、高湿度(約100%RH)であって、排気Hが持つ熱量の大部分を蒸発潜熱量が占める。   The exhaust gas recovery unit 20 of the present embodiment supplies air from the surface of the compost raw material T to the inside by sucking air from the bottom surface (compost raw material T bottom portion) of the compost fermenter 10 by a ventilation device such as a blower. The fermentation heat generated in the composting process is recovered as exhaust H. The exhaust H recovered at this time has a high temperature (60 to 70 ° C.) and high humidity (about 100% RH), and the amount of latent heat of evaporation occupies most of the heat amount of the exhaust H.

本実施の形態の熱回収部30には潜熱回収型熱交換器が用いられる。例えば、プレートフィン型熱交換器が用いられる。熱回収部30は、排気H(60〜70℃)と熱媒体31(ここでは、水)との熱交換を行い、排気Hは自身が持つ熱量によって低温の熱媒体31Lを高温の熱媒体31Hに温度変化させる。ここで、熱回収部30に取り込まれる排気Hは脱臭処理が行われていないので、熱回収部30は、排気H中に含まれるアンモニア腐食に強い耐腐食性材質で構成される。また、熱回収部30には、熱交換過程で発生する結露水Haを排出可能な排出口32が設けられている。なお、熱交換後(熱回収後)の排気Hbはアンモニアなどの悪臭原因物質を含んでいるので、後述の脱臭部60において適正に処理を行う必要がある。また、結露水Haは通常処理を要するほどの悪臭原因物質を含まないが、規定基準を超える場合には適切に処理を行う。   A latent heat recovery type heat exchanger is used for the heat recovery unit 30 of the present embodiment. For example, a plate fin type heat exchanger is used. The heat recovery unit 30 performs heat exchange between the exhaust H (60 to 70 ° C.) and the heat medium 31 (in this case, water), and the exhaust H converts the low-temperature heat medium 31L into the high-temperature heat medium 31H according to the amount of heat of the exhaust H. Change the temperature to. Here, since the exhaust H taken into the heat recovery unit 30 is not deodorized, the heat recovery unit 30 is made of a corrosion-resistant material that is resistant to ammonia corrosion contained in the exhaust H. Further, the heat recovery unit 30 is provided with a discharge port 32 through which the condensed water Ha generated in the heat exchange process can be discharged. In addition, since the exhaust gas Hb after heat exchange (after heat recovery) contains a malodor-causing substance such as ammonia, it is necessary to appropriately perform processing in the deodorizing unit 60 described later. Condensed water Ha does not contain a bad odor causing substance that normally requires treatment, but when it exceeds the specified standard, it is appropriately treated.

本実施の形態のバッファタンク40は、断熱が施された貯留タンクである。バッファタンク40は、所定時間以内(1時間程度以内)の排気Hの温度変化、すなわち蒸発潜熱量(回収熱量)の変動に対応可能な容量に設定される。具体的には、バッファタンク40の容量は、1時間当りの熱媒体31の流量より大きくなるように設定される。例えば、流量が30〜50L/分である場合には、4m3程度の容量のバッファタンク40が望ましい。そして、熱回収部30とバッファタンク40との間で熱媒体31を常時循環させることで、排気Hからの回収熱量の変動に対応可能となる。回収熱量の変動要因には、外気温度等の気候条件、排気回収部20の通気装置の運転プログラムや堆肥原料Tの状態変化等が挙げられる。バッファタンク40は、1時間程度の回収熱量の変動(すなわち熱媒体31Hの温度変化)を吸収し、熱媒体31Hの温度に急な変化があっても後段の発電部50に安定した温度の熱媒体41Hを供給できるようにする調整機能を有している。 The buffer tank 40 of the present embodiment is a storage tank that is thermally insulated. The buffer tank 40 is set to a capacity that can cope with a change in the temperature of the exhaust H within a predetermined time (within about 1 hour), that is, a change in latent heat of vaporization (recovered heat). Specifically, the capacity of the buffer tank 40 is set to be larger than the flow rate of the heat medium 31 per hour. For example, when the flow rate is 30 to 50 L / min, the buffer tank 40 having a capacity of about 4 m 3 is desirable. And by always circulating the heat medium 31 between the heat recovery part 30 and the buffer tank 40, it becomes possible to cope with fluctuations in the amount of heat recovered from the exhaust H. Factors that cause fluctuations in the amount of recovered heat include climatic conditions such as the outside air temperature, an operating program for the ventilation device of the exhaust recovery unit 20, changes in the state of the compost raw material T, and the like. The buffer tank 40 absorbs fluctuations in the amount of recovered heat for about one hour (that is, temperature change of the heat medium 31H), and even if there is a sudden change in the temperature of the heat medium 31H, heat generated at a stable temperature in the power generation unit 50 at the subsequent stage An adjustment function is provided so that the medium 41H can be supplied.

本実施の形態の発電部50は、バッファタンク40から送られる高温の熱媒体41Hによって沸点が低い媒体を液体から蒸気に状態変化させ、発生した蒸気によってタービンを駆動させる熱源利用発電(バイナリ発電)を行う。発電部50には、100℃以下の熱源を使用可能なバイナリ発電システムが適用される。バイナリ発電に使用され温度が低下した熱媒体41Lは、バッファタンク40を介して熱回収部30に送られる。   The power generation unit 50 according to the present embodiment changes the state of a medium having a low boiling point from a liquid to steam by a high-temperature heat medium 41H sent from the buffer tank 40, and uses the generated steam to drive a turbine with the generated steam (binary power generation). I do. A binary power generation system that can use a heat source of 100 ° C. or lower is applied to the power generation unit 50. The heat medium 41L used for binary power generation and having a lowered temperature is sent to the heat recovery unit 30 via the buffer tank 40.

本実施の形態の脱臭部60は、排気Hが熱回収部30を通過した後の排気Hbの脱臭処理を行う。   The deodorization part 60 of this Embodiment performs the deodorizing process of the exhaust Hb after the exhaust H passes the heat recovery part 30. FIG.

次に、図2を参照して、本発電システムにおける排気Hの温度変化が及ぼす発電量への影響について説明する。図2は、本発明の実施の形態の発電システムにおける発電データを示す図である。   Next, with reference to FIG. 2, the influence of the temperature change of the exhaust H in the power generation system on the power generation amount will be described. FIG. 2 is a diagram showing power generation data in the power generation system according to the embodiment of the present invention.

図中の細点線は、堆肥原料Tの発酵熱を含む排気Hの温度を示す。図2に示すように、排気Hの温度は、数分間隔で大きく変動する場合がある。このような排気温度の急激な低下は、排気回収部20のブロアの運転プログラム等によるもので、基本的に不可避な要因である。このほか前述したように気候変化等の影響も受けるため、平均60〜70℃の排気であっても1日の中で10℃程度温度変化が複数回(10回程度)発生する。   The thin dotted line in the figure indicates the temperature of the exhaust H containing the fermentation heat of the compost raw material T. As shown in FIG. 2, the temperature of the exhaust gas H may fluctuate greatly at intervals of several minutes. Such a rapid decrease in the exhaust temperature is due to the blower operation program of the exhaust recovery unit 20 and is basically an inevitable factor. In addition, since it is also affected by climate change and the like as described above, a temperature change of about 10 ° C. occurs a plurality of times (about 10 times) even in an exhaust of 60 to 70 ° C. on average.

図中の破線は、バッファタンク40から発電部50に供給される熱媒体41Hの温度を示す。また、図中の実線は、発電部50の発電量を示す。前述したように、本実施の形態では、熱媒体の1時間当りの流量よりも大きな容量のバッファタンク40を熱回収部30と発電部50との間に介在させることによって、数分〜数時間単位の期間での排気H(発酵熱)の温度変化があっても後段の発電部50での熱利用に影響が及ばないようにしている。   The broken line in the figure indicates the temperature of the heat medium 41H supplied from the buffer tank 40 to the power generation unit 50. In addition, the solid line in the figure indicates the power generation amount of the power generation unit 50. As described above, in the present embodiment, a buffer tank 40 having a capacity larger than the flow rate per hour of the heat medium is interposed between the heat recovery unit 30 and the power generation unit 50, so that several minutes to several hours. Even if there is a temperature change of the exhaust H (fermentation heat) during the unit period, the heat utilization in the power generation unit 50 in the subsequent stage is not affected.

したがって、図2の破線に示すように、バッファタンク40から送り出される熱媒体41Hの温度は、排気Hの温度低下が発生してもその影響(熱媒体41Hの温度低下)が小さい。このため、図2の実線に示すように、発電部50における発電量は、排気Hの温度低下が発生しても安定した発電量を保つことができる。   Therefore, as shown by the broken line in FIG. 2, the temperature of the heat medium 41H sent out from the buffer tank 40 has a small influence (temperature decrease of the heat medium 41H) even if the temperature of the exhaust H is decreased. For this reason, as shown by the solid line in FIG. 2, the power generation amount in the power generation unit 50 can maintain a stable power generation amount even when the temperature of the exhaust H decreases.

このように、堆肥化工程において排気Hの温度は一時的に低下するが、熱媒体41Hの温度は排気温度低下による影響が小さく、発電量にいたってはほぼ影響がないことが見てとれる。   Thus, although the temperature of the exhaust gas H temporarily decreases in the composting process, it can be seen that the temperature of the heat medium 41H is less affected by the exhaust gas temperature decrease and has almost no effect on the power generation amount.

(実施の形態の効果)
本発明の実施の形態の発電システムによれば、堆肥化特性に対応して堆肥発酵熱の効率的な回収・利用を行うことができる。具体的には、実際の堆肥化において不可避な堆肥原料Tの温度変化や性状変化に起因する堆肥発酵熱の回収熱量の変動に対し、バッファタンク40を介在させることで該変動の影響を最小限にした熱源を発電部50に提供することができる。バッファタンク40は、単に熱源流量を安定化する量的補填機能だけでなく、安定した発電に必要な熱源の温度や熱量といった質的補填機能を備えており、これにより堆肥化において不可避な変動特性を有する堆肥発酵熱を用いても安定した発電を提供することができる。
(Effect of embodiment)
According to the power generation system of the embodiment of the present invention, it is possible to efficiently recover and use compost fermentation heat corresponding to composting characteristics. Specifically, the influence of the fluctuation is minimized by interposing the buffer tank 40 with respect to the fluctuation of the recovered heat amount of the compost fermentation heat caused by the temperature change and property change of the compost raw material T unavoidable in actual composting. The generated heat source can be provided to the power generation unit 50. The buffer tank 40 has not only a quantitative compensation function for stabilizing the heat source flow rate, but also a qualitative compensation function such as the temperature and heat quantity of the heat source necessary for stable power generation, thereby unavoidable fluctuation characteristics in composting. Stable power generation can be provided even with the use of compost fermentation heat.

また、バッファタンク40は、所定時間(1時間)当りの熱媒体31の流量よりも大きな容量を有するので、排気Hの温度変化、すなわち回収熱量の変動の影響を緩和させることができる。したがって、熱回収部30からバッファタンク40に供給される熱媒体31Hの温度に急な変化があっても後段の発電部50に安定した温度の熱媒体41Hを供給することができる。   Further, since the buffer tank 40 has a capacity larger than the flow rate of the heat medium 31 per predetermined time (1 hour), the influence of the temperature change of the exhaust H, that is, the fluctuation of the recovered heat amount can be reduced. Therefore, even if there is a sudden change in the temperature of the heat medium 31H supplied from the heat recovery unit 30 to the buffer tank 40, the heat medium 41H having a stable temperature can be supplied to the subsequent power generation unit 50.

また、熱源となる堆肥発酵熱は排気Hとして外気で希釈されることなく回収されるので、熱回収効率が良い。また、堆肥化に不可欠な通気により堆肥発酵熱を回収することができるので、堆肥化施設そのものに大幅な変更を施す必要がない。したがって、本発電システムは、堆肥化過程や堆肥化物の品質に影響を及ぼすことなく、必要機器(熱回収部30、バッファタンク40及び発電部50)の追加で導入可能である。また、発電システムを循環する熱媒体31及び41に水を利用することができるので、ランニングコストを抑えることができる。よって、利用の促進が期待できる。   Moreover, since the compost fermentation heat | fever used as a heat source is collect | recovered without being diluted with the external air as the exhaust_gas | exhaustion H, heat recovery efficiency is good. Moreover, since the compost fermentation heat can be recovered by aeration essential for composting, it is not necessary to make significant changes to the composting facility itself. Therefore, this power generation system can be introduced by adding necessary equipment (the heat recovery unit 30, the buffer tank 40, and the power generation unit 50) without affecting the composting process and the quality of the compost. Moreover, since water can be utilized for the heat mediums 31 and 41 circulating in the power generation system, the running cost can be suppressed. Therefore, promotion of use can be expected.

また、排気Hの堆肥発酵熱は熱回収部30で熱交換されて発電部50へと熱源供給されるので、堆肥原料Tや排気Hに含まれるアンモニアと発電部50とが直接触れることがない。したがって、発電部50の腐食等のリスクを大幅に低減できるとともに、熱利用において直接排気を利用する場合よりも施設や作業者への悪影響を大幅に低減することができる。   Further, since the heat of compost fermentation of the exhaust H is heat-exchanged by the heat recovery unit 30 and supplied to the power generation unit 50, the ammonia contained in the compost raw material T and the exhaust H and the power generation unit 50 are not in direct contact with each other. . Therefore, the risk of corrosion of the power generation unit 50 can be significantly reduced, and the adverse effects on facilities and workers can be greatly reduced as compared to the case of using exhaust directly in heat utilization.

また、発電部50には、低温熱源(100℃以下)で発電可能なバイナリ発電装置を用いる。家畜ふん尿の堆肥化工程では、微生物の分解により堆肥温度が70℃程度まで上昇し、水蒸気とアンモニアを含んだ発酵排気Hが多量に発生するが、工業系の排気に比べ低温であるため、これまで発酵排気H(60〜70℃)を熱源としたバイナリ発電は難しかった。近年開発された低温熱源による発電可能なバイナリ発電装置により、60〜70℃程度の家畜堆肥発酵熱を発電の熱源とすることができ、堆肥を燃焼させてタービンを駆動させる従来方法に比して環境負荷を低減可能なエネルギの実現が可能となる。また、発電部50で得られる電力は通常の電気として使用することが可能なので、堆肥発酵熱を直接熱として利用する場合に比べて汎用性がある。   The power generation unit 50 uses a binary power generation device that can generate power with a low-temperature heat source (100 ° C. or less). In the composting process of livestock manure, the compost temperature rises to about 70 ° C due to the decomposition of microorganisms, and a large amount of fermentation exhaust H containing water vapor and ammonia is generated, but this is lower than industrial exhaust. Binary power generation using fermentation exhaust H (60 to 70 ° C.) as a heat source was difficult. Compared with the conventional method of driving livestock compost fermentation heat of about 60-70 ° C as a heat source for power generation by a binary power generator that can generate power with a low-temperature heat source developed in recent years, and burning the compost to drive the turbine Energy that can reduce the environmental load can be realized. Moreover, since the electric power obtained by the electric power generation part 50 can be used as normal electricity, it is versatile compared with the case where compost fermentation heat is directly used as heat.

このように、家畜廃棄物の堆肥発酵熱を用いた発電は、太陽光発電等の他の再生可能エネルギと異なり、堆肥製造中、常時・安定的に利用できるエネルギであるので、利用推進を促進させることができる。   In this way, unlike other renewable energy such as photovoltaic power generation, power generation using fertilization heat of livestock waste is energy that can be used constantly and stably during the production of compost. Can be made.

なお、堆肥発酵熱を発電に用いるため、堆肥原料Tを高温に維持しようとする結果、副次的に良好な堆肥化過程となるので、各種病原菌や雑草種子が死滅し、易分解性有機物が減少した高品質堆肥生産に寄与することができる。さらに、高温堆肥化過程を経ることで堆肥化物の含水率が低下するので、該堆肥化物はオガクズ等に代わる家畜敷料・ふん尿水分調整資材として用途を拡大することができる。   Since compost fermentation heat is used for power generation, as a result of maintaining the compost raw material T at a high temperature, a secondary composting process is achieved. It can contribute to reduced high quality compost production. Furthermore, since the moisture content of the compost is reduced through the high-temperature composting process, the compost can be expanded as a livestock litter or manure moisture adjusting material in place of sawdust and the like.

なお、本発明の実施の形態の発電システムでは、堆肥発酵熱の回収熱量の変動に対し、該変動の影響が最小限になるよう調整した熱源を発電部50に供給可能な熱供給手段として、バッファタンク40を設けているが、これに限らない。堆肥原料の発酵熱を排気として回収し、回収された排気中の熱を回収し、回収された回収熱を利用して行う発電であって、安定した熱(所定の熱)を発電に供給するために回収熱を調整可能にするものであれば問題ない。例えば、熱回収部30からの熱媒体31Hをヒーターやヒートポンプによって加温調整して発電部50に安定した温度の熱媒体41Hを供給するようにしても、本発明の目的である堆肥発酵熱を用いた安定発電を達成することができる。バッファタンク40は、外部からの追加熱源やセンサによる制御なしに達成できるので、追加熱源が不要な分、システム全体としてエネルギ効率がよく、設備や管理を簡素化し、コスト低減を図ることができる点で、より効率的で有益な熱供給手段であると言える。   In the power generation system according to the embodiment of the present invention, as a heat supply unit capable of supplying the power generation unit 50 with a heat source adjusted to minimize the influence of the fluctuation with respect to the fluctuation of the recovered heat amount of the compost fermentation heat, Although the buffer tank 40 is provided, it is not limited to this. It is a power generation that collects the fermentation heat of compost raw material as exhaust, recovers the heat in the recovered exhaust, and uses the recovered heat recovered, and supplies stable heat (predetermined heat) to the power generation Therefore, there is no problem if the recovered heat can be adjusted. For example, even if the heating medium 31H from the heat recovery unit 30 is heated and adjusted by a heater or a heat pump and the heating medium 41H having a stable temperature is supplied to the power generation unit 50, the compost fermentation heat that is the object of the present invention is maintained. The stable power generation used can be achieved. Since the buffer tank 40 can be achieved without the control of an additional heat source or sensor from the outside, the additional heat source is unnecessary, so that the entire system is energy efficient, the facilities and management can be simplified, and the cost can be reduced. It can be said that this is a more efficient and useful heat supply means.

(実施の形態の変形例)
続いて、図3を参照して、前述した本発電システム100の熱媒体(水)の循環に着目してさらに効率的な発酵熱の回収・利用を可能とする循環パターンについて説明する。図3は、本発明の実施の形態の変形例の発電システムを示すブロック構成図であり、(A)循環パターン1、(B)循環パターン2を示す図である。
(Modification of the embodiment)
Next, with reference to FIG. 3, a circulation pattern that enables more efficient recovery and use of fermentation heat will be described by paying attention to the circulation of the heat medium (water) of the power generation system 100 described above. FIG. 3 is a block diagram showing a power generation system according to a modification of the embodiment of the present invention, and shows (A) circulation pattern 1 and (B) circulation pattern 2.

前述の実施の形態では、バッファタンク40は、熱回収部30に低温水31Lを供給し、排気Hとの熱交換により高温水31H(回収熱)を受け取る。そして、後段の発電部50に高温水41H(所定の熱)を供給するとともに、発電部50からの低温水41L(発電に使われなかった熱)を受け取っている。   In the above-described embodiment, the buffer tank 40 supplies the low temperature water 31L to the heat recovery unit 30 and receives the high temperature water 31H (recovered heat) by heat exchange with the exhaust H. And while supplying the high temperature water 41H (predetermined heat) to the power generation part 50 of the back | latter stage, the low temperature water 41L (heat which was not used for electric power generation) from the power generation part 50 is received.

これに対し、変形例では、図3(A)及び(B)に示すように、排気Hの流路上に熱回収部30と直列に熱回収部35が追加で設けられ、バッファタンク40は熱回収部35を介して発電部50に高温水41H(所定の熱)を供給する。なお、熱回収部35における排気Hと高温水41Hとの熱交換は、すでに熱媒体の水が高温になっており双方の温度差が小さいのでほとんど行われない。熱回収部35では排気Hとの熱交換で高温水41Hが少し加温されて高温水41H+になる。そして、高温水41H+が発電部50に供給される。したがって、熱回収部30に導入される排気は、排気回収部20によって回収された排気Hと同等である。   On the other hand, in the modification, as shown in FIGS. 3A and 3B, a heat recovery unit 35 is additionally provided in series with the heat recovery unit 30 on the flow path of the exhaust H, and the buffer tank 40 is heated. High temperature water 41H (predetermined heat) is supplied to the power generation unit 50 via the recovery unit 35. The heat exchange between the exhaust H and the high temperature water 41H in the heat recovery unit 35 is hardly performed because the temperature of the heat medium is already high and the temperature difference between the two is small. In the heat recovery unit 35, the high temperature water 41H is slightly heated by heat exchange with the exhaust H to become high temperature water 41H +. Then, the high temperature water 41H + is supplied to the power generation unit 50. Therefore, the exhaust gas introduced into the heat recovery unit 30 is equivalent to the exhaust gas H recovered by the exhaust gas recovery unit 20.

さらに、図3(A)に示す循環パターン1では、発電部50からの低温水31L(発電に使われなかった熱)はバッファタンク40を経由せずに熱回収部30が直接受け取る。したがって、循環パターン1は、熱回収部30における排気Hとの熱交換により後述する低温水31Lが加温されて高温水31H(回収熱)となる。   Further, in the circulation pattern 1 shown in FIG. 3A, the heat recovery unit 30 directly receives the low temperature water 31L (heat not used for power generation) from the power generation unit 50 without passing through the buffer tank 40. Therefore, in the circulation pattern 1, low-temperature water 31 </ b> L, which will be described later, is heated by heat exchange with the exhaust H in the heat recovery unit 30 to become high-temperature water 31 </ b> H (recovered heat).

高温水31Hは、バッファタンク40に貯留された後、高温水41H(所定の熱)としてバッファタンクから送り出され、熱回収部35でさらに加温されて高温水41H+となって発電部50に供給される。ここで、排気Hの温度低下が発生した場合には、高温水31Hは通常よりも低い温度でバッファタンク40に流入することになるので、バッファタンク40の調整機能が作動し、高温水31Hはタンク内の十分な量の高温貯留水との混合によって発電に必要な温度範囲内の高温水41Hとなる。   After the hot water 31H is stored in the buffer tank 40, it is sent out from the buffer tank as high-temperature water 41H (predetermined heat), further heated by the heat recovery unit 35, and supplied to the power generation unit 50 as high-temperature water 41H +. Is done. Here, when the temperature drop of the exhaust H occurs, the high temperature water 31H flows into the buffer tank 40 at a temperature lower than usual, so that the adjustment function of the buffer tank 40 is activated, and the high temperature water 31H is By mixing with a sufficient amount of high temperature stored water in the tank, it becomes high temperature water 41H within the temperature range necessary for power generation.

発電部50では熱媒体の温度差を利用したバイナリ発電が行われるので、発電部50から熱回収部30に供給される温水は、温度が下がり低温水31Lとなる。そして、低温水31Lは熱回収部30で排気Hとの熱交換により加温されて高温水31Hとなり、循環を繰り返す。なお、発電部50は、バッファタンク40に導入されて循環する原水が排気Hとの熱交換によって加温されて所定温度(63℃程度)の温水になったら稼動開始する。   Since the power generation unit 50 performs binary power generation using the temperature difference of the heat medium, the temperature of the hot water supplied from the power generation unit 50 to the heat recovery unit 30 decreases and becomes low-temperature water 31L. The low-temperature water 31L is heated by heat exchange with the exhaust H in the heat recovery unit 30 to become high-temperature water 31H and repeats circulation. The power generation unit 50 starts operation when the raw water introduced and circulated into the buffer tank 40 is heated by heat exchange with the exhaust H to become warm water of a predetermined temperature (about 63 ° C.).

また、図3(B)に示す循環パターン2では、熱回収部30に排気Hとの熱交換によって加温された高温水31Hはバッファタンク40に供給されたのち、バッファタンク40、熱回収部35及び発電部50を循環し、熱回収部30を循環しない。したがって、循環パターン2は、熱回収部30における排気Hとの熱交換により原水が加温されて高温水31H(回収熱)となる。   Further, in the circulation pattern 2 shown in FIG. 3B, the high temperature water 31H heated by the heat exchange with the exhaust gas H is supplied to the buffer tank 40, and then the buffer tank 40, the heat recovery unit 35 and the power generation unit 50 are circulated, and the heat recovery unit 30 is not circulated. Therefore, in the circulation pattern 2, the raw water is heated by heat exchange with the exhaust H in the heat recovery unit 30 to become high-temperature water 31 </ b> H (recovered heat).

高温水31Hは、バッファタンク40に貯留された後、高温水41H(所定の熱)としてバッファタンクから送り出され、熱回収部35でさらに加温されて高温水41H+となって発電部50に供給される。ここで、排気Hの温度低下が発生した場合には、高温水31Hは通常よりも低い温度でバッファタンク40に流入することになるので、バッファタンク40の調整機能が作動し、高温水31Hはタンク内の十分な量の高温貯留水との混合によって発電に必要な温度範囲内の高温水41Hとなる。   After the hot water 31H is stored in the buffer tank 40, it is sent out from the buffer tank as high-temperature water 41H (predetermined heat), further heated by the heat recovery unit 35, and supplied to the power generation unit 50 as high-temperature water 41H +. Is done. Here, when the temperature drop of the exhaust H occurs, the high temperature water 31H flows into the buffer tank 40 at a temperature lower than usual, so that the adjustment function of the buffer tank 40 is activated, and the high temperature water 31H is By mixing with a sufficient amount of high temperature stored water in the tank, it becomes high temperature water 41H within the temperature range necessary for power generation.

発電部50では熱媒体の温度差を利用したバイナリ発電が行われるので、発電部50からバッファタンク40に供給される温水は、温度が下がり低温水41Lとなる。そして、低温水41Lはバッファタンク40に供給される。ここでは、バッファタンク40の温水が熱回収部35及び発電部50を循環する。なお、発電部50は、熱回収部30に導入されて循環する原水が排気Hとの熱交換によって加温されて所定温度(63℃程度)の温水になったら稼動開始する。   Since the power generation unit 50 performs binary power generation using the temperature difference of the heat medium, the temperature of the hot water supplied from the power generation unit 50 to the buffer tank 40 is reduced to 41L. Then, the low temperature water 41L is supplied to the buffer tank 40. Here, the hot water in the buffer tank 40 circulates through the heat recovery unit 35 and the power generation unit 50. The power generation unit 50 starts operating when the raw water introduced and circulated into the heat recovery unit 30 is heated by heat exchange with the exhaust H to become hot water of a predetermined temperature (about 63 ° C.).

(実施の形態の変形例の効果)
実施の形態の変形例の発電システムによれば、前述した実施の形態と基本概念が同じなので同等の効果を得ることができるとともに、バッファタンク40と発電部50との間に熱回収部35を設けることでより効率的な堆肥発酵熱の回収・利用を提供することができる。具体的には、バッファタンク40から発電部50に通じる配管が室外に設けられたり長い場合には、発電部50に必要な高温水41H(所定の熱)が当該配管を流れる間に温度低下を招くといった懸念があるが、熱回収部35を介在させることで発電部50に供給する前に加温することが可能となり、当該懸念を払拭するとともに適切な熱量を発電部50に提供することができる。
(Effect of modification of embodiment)
According to the power generation system of the modification of the embodiment, since the basic concept is the same as that of the above-described embodiment, the same effect can be obtained, and the heat recovery unit 35 is provided between the buffer tank 40 and the power generation unit 50. By providing it, it is possible to provide more efficient recovery and use of compost fermentation heat. Specifically, when a pipe leading from the buffer tank 40 to the power generation unit 50 is provided outdoors or is long, the temperature drops while the high-temperature water 41H (predetermined heat) necessary for the power generation unit 50 flows through the pipe. Although there is a concern that the heat recovery unit 35 is interposed, the heat recovery unit 35 can be heated before being supplied to the power generation unit 50, so that the concern can be eliminated and an appropriate amount of heat can be provided to the power generation unit 50. it can.

また、発電部50への供給直前に高温水41(所定の熱)が熱回収部35で多少加温されることになるので、前述のような懸念がなければバッファタンク40から発電部50に直接供給する場合(高温水41H)よりも高温の温水(高温水41H+)を発電部50に供給できる。よって、発電部50における発電をさらに安定したものにすることができる。   Moreover, since the high temperature water 41 (predetermined heat) is slightly heated by the heat recovery unit 35 immediately before the supply to the power generation unit 50, if there is no concern as described above, the buffer tank 40 changes to the power generation unit 50. Hot water (high temperature water 41H +) that is higher in temperature than the direct supply (high temperature water 41H) can be supplied to the power generation unit 50. Therefore, the power generation in the power generation unit 50 can be further stabilized.

また、循環パターン1は熱回収部30及び熱回収部35を循環経路に含めているので、循環パターン2の熱回収部35のみを循環経路に含める場合よりも循環する温水温度が安定する。したがって、より効率的な堆肥発酵熱の回収・利用を提供することができる。   In addition, since the circulation pattern 1 includes the heat recovery unit 30 and the heat recovery unit 35 in the circulation path, the temperature of the circulating hot water is more stable than when only the heat recovery unit 35 of the circulation pattern 2 is included in the circulation path. Therefore, more efficient recovery and use of compost fermentation heat can be provided.

なお、本発明は上述した実施の形態に何ら限定されるものではなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

例えば、上述した実施の形態では、家畜ふん尿等の畜産廃棄物の堆肥化処理を例に挙げたが、一般廃棄物処理や産業廃棄物にも適用することができる。   For example, in the above-described embodiment, composting processing of livestock waste such as livestock excreta is taken as an example, but it can also be applied to general waste processing and industrial waste.

100 発電システム
10 堆肥発酵槽
20 排気回収部
30 熱回収部(熱交換器)
31 熱媒体(水)
32 排出口
40 バッファタンク(熱供給部)
41 熱媒体(水)
50 発電部(バイナリ発電装置)
60 脱臭部
T 堆肥原料
H 排気
Ha 結露水
Hb 熱回収された後の排気
100 Power generation system 10 Compost fermenter 20 Exhaust recovery unit 30 Heat recovery unit (heat exchanger)
31 Heat medium (water)
32 Discharge port 40 Buffer tank (heat supply part)
41 Heat medium (water)
50 Power generator (binary power generator)
60 Deodorizing part T Compost raw material H Exhaust Ha Condensed water Hb Exhaust after heat recovery

Claims (4)

堆肥原料の発酵熱を排気として回収可能な排気回収手段と、
前記排気回収手段によって回収された排気中の熱を回収可能な熱回収手段と、
前記熱回収手段によって回収された回収熱を利用して発電可能な発電手段と、
前記熱回収手段と前記発電手段との間に設けられ、前記回収熱を調整して当該発電手段に所定の熱を供給可能な熱供給手段と、
を備える発電システム。
Exhaust recovery means capable of recovering the fermentation heat of compost raw material as exhaust;
Heat recovery means capable of recovering heat in the exhaust recovered by the exhaust recovery means;
Power generation means capable of generating power using the recovered heat recovered by the heat recovery means;
A heat supply means provided between the heat recovery means and the power generation means, capable of adjusting the recovered heat and supplying predetermined heat to the power generation means;
A power generation system comprising:
前記熱供給手段は、前記排気の温度変化に伴う前記回収熱の変動を吸収し、前記発電手段による発電に必要な前記所定の熱を安定供給することを特徴とする請求項1に記載の発電システム。   2. The power generation according to claim 1, wherein the heat supply unit absorbs a fluctuation in the recovered heat accompanying a temperature change of the exhaust gas and stably supplies the predetermined heat necessary for power generation by the power generation unit. system. 前記熱回収手段は、前記排気を熱源として熱媒体と熱交換し、
前記熱供給手段は、所定時間当りの当該熱供給手段に流入可能な前記熱媒体の合計量よりも大きな容量を有することを特徴とする請求項1又は2に記載の発電システム。
The heat recovery means exchanges heat with a heat medium using the exhaust as a heat source,
The power generation system according to claim 1, wherein the heat supply unit has a capacity larger than a total amount of the heat medium that can flow into the heat supply unit per predetermined time.
堆肥原料の発酵熱を排気として回収可能な排気回収工程と、
前記排気回収工程で回収された排気中の熱を回収可能な熱回収工程と、
前記熱回収工程で回収された回収熱を利用して発電可能な発電工程と、
前記熱回収工程と前記発電工程との間で実行可能であり、前記回収熱を調整して当該発電工程に所定の熱を供給可能な熱供給工程と、
を含む発電方法。

An exhaust recovery process capable of recovering the fermentation heat of compost raw material as exhaust;
A heat recovery step capable of recovering heat in the exhaust recovered in the exhaust recovery step;
A power generation process capable of generating power using the recovered heat recovered in the heat recovery process;
A heat supply step that can be performed between the heat recovery step and the power generation step, adjusts the recovered heat, and can supply predetermined heat to the power generation step;
Including power generation method.

JP2015142763A 2015-07-17 2015-07-17 Power generation system and power generation method using compost fermentation heat Pending JP2017025732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015142763A JP2017025732A (en) 2015-07-17 2015-07-17 Power generation system and power generation method using compost fermentation heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015142763A JP2017025732A (en) 2015-07-17 2015-07-17 Power generation system and power generation method using compost fermentation heat

Publications (1)

Publication Number Publication Date
JP2017025732A true JP2017025732A (en) 2017-02-02

Family

ID=57946366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015142763A Pending JP2017025732A (en) 2015-07-17 2015-07-17 Power generation system and power generation method using compost fermentation heat

Country Status (1)

Country Link
JP (1) JP2017025732A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102192793B1 (en) * 2020-06-16 2020-12-18 황우정 Smart eco farm with low or waste heat power generator and using method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841210A (en) * 1981-09-04 1983-03-10 Hitachi Ltd Waste heat recovering power plant
JPS61152912A (en) * 1984-12-27 1986-07-11 Toshiba Corp Exhaust heat utilizing system
JPH0685100U (en) * 1993-05-26 1994-12-06 篠原精機株式会社 Dryer for water-containing organic matter
US5716013A (en) * 1995-04-26 1998-02-10 Benson; Jack M. Polygon-shaped rotatable apparatus and its use in composting and cement industries
JPH1113009A (en) * 1997-06-19 1999-01-19 Kensetsusho Tohoku Chiho Kensetsu Kyokucho Snow melting facility utilizing natural energy
JP2002059133A (en) * 2000-08-18 2002-02-26 Fukushima Seisakusho:Kk Disposer for garbage
JP2005083324A (en) * 2003-09-10 2005-03-31 Yamato Sekkei Kk Compost fermentation heat power generating method and device
WO2012098675A1 (en) * 2011-01-21 2012-07-26 株式会社ユニテック Wastewater fermentation heat electricity generation method and wastewater fermentation heat electricity generation device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841210A (en) * 1981-09-04 1983-03-10 Hitachi Ltd Waste heat recovering power plant
JPS61152912A (en) * 1984-12-27 1986-07-11 Toshiba Corp Exhaust heat utilizing system
JPH0685100U (en) * 1993-05-26 1994-12-06 篠原精機株式会社 Dryer for water-containing organic matter
US5716013A (en) * 1995-04-26 1998-02-10 Benson; Jack M. Polygon-shaped rotatable apparatus and its use in composting and cement industries
JPH1113009A (en) * 1997-06-19 1999-01-19 Kensetsusho Tohoku Chiho Kensetsu Kyokucho Snow melting facility utilizing natural energy
JP2002059133A (en) * 2000-08-18 2002-02-26 Fukushima Seisakusho:Kk Disposer for garbage
JP2005083324A (en) * 2003-09-10 2005-03-31 Yamato Sekkei Kk Compost fermentation heat power generating method and device
WO2012098675A1 (en) * 2011-01-21 2012-07-26 株式会社ユニテック Wastewater fermentation heat electricity generation method and wastewater fermentation heat electricity generation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102192793B1 (en) * 2020-06-16 2020-12-18 황우정 Smart eco farm with low or waste heat power generator and using method thereof

Similar Documents

Publication Publication Date Title
Irvine et al. Energy from waste: reuse of compost heat as a source of renewable energy
Parekh et al. Solar desalination with a humidification-dehumidification technique—a comprehensive technical review
Bustamante et al. A self-sustaining high-strength wastewater treatment system using solar-bio-hybrid power generation
Arshad Clean and sustainable energy technologies
RU2566248C1 (en) Method of disposal of heat energy generated by electric power station
Smith et al. Heat recovery from compost
KR101493731B1 (en) Apparatus for removing rapidly moisture from biogas
CN102778080A (en) Waste residual heat recycling system
Luqman et al. Energy, water and food security through a waste-driven polygeneration system for sustainable dairy production
JP2017025732A (en) Power generation system and power generation method using compost fermentation heat
Lee et al. Resource-recovery processes from animal waste as best available technology
Moqbel Evaluating bioreactor landfill as an energy source
KR20190143045A (en) Plant Growth System Linked to Distributed Generation System
JP6453037B2 (en) Sludge drying system and sludge drying method
GB201106891D0 (en) Biomass plant
Costantino et al. The use of renewable energy sources as a driver to reduce the carbon footprint of the livestock sector
KR101040282B1 (en) The hybrid biogas-liquid fertilizer system
CN106536924B (en) Closed-loop data center and organic life ecosystem
JP6044132B2 (en) Energy supply method and energy supply system for plant cultivation facility
Murali et al. Experimental assessment of a solar photovoltaic-thermal system in a livestock farm in Italy
Vourdoubas Overview of the use of sustainable energies in agricultural greenhouses
DE102006050270A1 (en) Energy e.g. thermal energy, dissipating method for e.g. greenhouse, involves loading thermo-chemical energy in storage device such that air in collector is moisturized with portion of solution mixture from collector
Gorjian et al. Applications of renewable energy sources in agriculture from a complementarity perspective
KR102726200B1 (en) Exhaust gas dehumidification and absorption carbonic acid fertilization system
DE202012004909U1 (en) Device as ORC power generation from waste heat plants via heat storage

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160630

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160923

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160923

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190903