[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2017017922A - Dc power supply system, and dc ground fault point examination method - Google Patents

Dc power supply system, and dc ground fault point examination method Download PDF

Info

Publication number
JP2017017922A
JP2017017922A JP2015134362A JP2015134362A JP2017017922A JP 2017017922 A JP2017017922 A JP 2017017922A JP 2015134362 A JP2015134362 A JP 2015134362A JP 2015134362 A JP2015134362 A JP 2015134362A JP 2017017922 A JP2017017922 A JP 2017017922A
Authority
JP
Japan
Prior art keywords
ground fault
current
power supply
simulated
fault current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015134362A
Other languages
Japanese (ja)
Inventor
英樹 内山
Hideki Uchiyama
英樹 内山
善朗 犬飼
Yoshiaki Inukai
善朗 犬飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Plant Systems and Services Corp
Original Assignee
Toshiba Plant Systems and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Plant Systems and Services Corp filed Critical Toshiba Plant Systems and Services Corp
Priority to JP2015134362A priority Critical patent/JP2017017922A/en
Publication of JP2017017922A publication Critical patent/JP2017017922A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Locating Faults (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a DC power supply system and a DC ground fault point examination method, capable of identifying a ground fault point using a simple structure and a method.SOLUTION: A DC power supply system 10 includes: a DC power supply 3; a DC power supply circuit 4, connected between a P line 2P and an N line 2N, for distributing and supplying the DC power supply 3; a DC ground fault detector 5, connected between the P line 2P and the N line 2N, for detecting a ground fault generated at the supply destination of the DC power supply 3; and a pseudo ground fault current supply circuit 11, connected between a bus 2 (each of the P line 2P and the N line 2N) and the earth, for making the electric conduction of a pseudo ground fault current at the point in which the ground fault occurs.SELECTED DRAWING: Figure 1

Description

本発明は、直流地絡箇所の特定がより容易な直流電源給電システム、および直流地絡箇所調査方法に関する。   The present invention relates to a DC power supply system and a DC ground fault investigation method that make it easier to identify a DC ground fault location.

発電所や変電所など電力施設では、機器制御用の電源として、交流電源よりも誘電等に強い直流電源が主に使用される。   In power facilities such as power plants and substations, a DC power source that is more resistant to dielectrics than an AC power source is mainly used as a power source for device control.

図6は、発電所等の電力施設内における、従来の直流電源が使用される施設内の電力系統(以下、「直流電源系統」とする。)に構築される直流電源給電システム1の構成例を示した概略図である。   FIG. 6 shows a configuration example of a DC power supply system 1 constructed in a power system (hereinafter referred to as “DC power system”) in a facility where a conventional DC power source is used in a power facility such as a power plant. It is the schematic which showed.

直流電源給電システム1は、例えば、母線2、すなわち、直流電源3の正極(P極)と接続される正極側母線(Pライン)2Pと直流電源3の負極(N極)と接続される負極側母線(Nライン)2Nとの間に、直流電源3を分配して供給する直流電源回路4、および地絡を検出する直流地絡検出器5が接続されて構成される。   The DC power supply system 1 includes, for example, a bus 2, that is, a positive electrode side bus (P line) 2 P connected to the positive electrode (P pole) of the DC power source 3 and a negative electrode connected to the negative electrode (N pole) of the DC power source 3. A DC power supply circuit 4 that distributes and supplies a DC power supply 3 and a DC ground fault detector 5 that detects a ground fault are connected to a side bus (N line) 2N.

直流電源3は、正極側が正極側母線(Pライン)2Pに、負極側が負極側母線(Nライン)2Nに接続され、母線2に接続される機器へ直流の電源を供給する。   The DC power source 3 is connected to the positive side bus (P line) 2P on the positive side and the negative side bus (N line) 2N on the negative side, and supplies DC power to the equipment connected to the bus 2.

直流電源回路4は、母線2(正極側母線2P−負極側母線2N間)に接続される複数のフィーダ(給電線)6を介して、下流側に接続される機器へ直流の電源を供給する回路である。   The DC power supply circuit 4 supplies DC power to devices connected downstream via a plurality of feeders (feeding lines) 6 connected to the bus 2 (between the positive-side bus 2P and the negative-side bus 2N). Circuit.

直流地絡検出器5は、フィーダ6を介して、母線2に接続される機器等で生じる地絡を検出する機器であり、一端が母線2(正極側母線2Pおよび負極側母線2N)側に他端が大地に接続(接地)される。   The DC ground fault detector 5 is a device that detects a ground fault generated in a device connected to the bus 2 via the feeder 6 and has one end on the bus 2 (positive side bus 2P and negative side bus 2N) side. The other end is connected (grounded) to the ground.

このように構成される直流電源給電システム1では、複数のフィーダ6の下流側で地絡(直流地絡)が発生した場合、直流地絡検出器5によって、地絡が生じている箇所が正極(P極)側にあるか負極(N極)側にあるかを検出することができる。しかしながら、直流電源系統では、直流地絡検出器5によって地絡が生じている極を特定できても何れのフィーダ6で生じているかを特定することができない。   In the DC power supply system 1 configured as described above, when a ground fault (DC ground fault) occurs on the downstream side of the plurality of feeders 6, the location where the ground fault occurs is positive by the DC ground fault detector 5. Whether it is on the (P pole) side or the negative electrode (N pole) side can be detected. However, in the DC power supply system, even if the DC ground fault detector 5 can identify the pole where the ground fault occurs, it cannot identify which feeder 6 is causing the fault.

そのため、直流電源系統には、地絡発生箇所の特定を容易にする目的で、地絡をフィーダ6単位で検出する直流漏電装置7が設置されている場合がある。しかしながら、直流漏電装置7が設置されている直流電源系統であっても、直流漏電装置7により特定できるのは地絡が生じているフィーダ6に過ぎず、地絡発生箇所をフィーダ6単位で限定はできても、フィーダ6からさらに枝分かれしている回路(供給先)単位で特定することはできない。   Therefore, the DC power supply system may be provided with a DC leakage device 7 that detects a ground fault in units of the feeder 6 for the purpose of facilitating identification of a ground fault occurrence location. However, even in a DC power supply system in which the DC leakage device 7 is installed, what can be specified by the DC leakage device 7 is only the feeder 6 in which the ground fault has occurred, and the location where the ground fault occurs is limited to the unit of the feeder 6. However, it cannot be specified in units of circuits (supply destinations) further branched from the feeder 6.

従って、直流漏電装置7が設置されているか否かに関わらず、最終的に地絡発生箇所を特定するためには、地絡が検出されたフィーダ6の直流電源供給を停止(停電)させ、直流電源回路4を個別に、すなわち、フィーダ6からさらに枝分かれしている回路(供給先)毎に調査する必要が生じる。   Therefore, regardless of whether or not the DC leakage device 7 is installed, in order to finally identify the ground fault occurrence location, the DC power supply of the feeder 6 in which the ground fault is detected is stopped (power failure) The DC power supply circuit 4 needs to be investigated individually, that is, for each circuit (supply destination) further branched from the feeder 6.

また、制御電源の停電が必要となる場合には、プラントの停止が必要になってしまい、その影響は甚大である。機器の地絡の影響が電力施設の稼働停止等の深刻な事態を招来するのを確実に防止する観点から、直流電源系統内の給電路を冗長化し、通常時に使用される第1の給電路と地絡検出時に使用される第2の給電路とを設け、第1の給電路で地絡が検出された場合に、給電に使用する給電路を第1の給電路から第2の給電路へ切り替え可能な直流電源給電システムが提案されている(例えば、特許文献1)。   In addition, when a power failure of the control power supply is necessary, the plant must be stopped, and the influence is enormous. From the viewpoint of surely preventing the influence of the ground fault of the equipment from causing a serious situation such as the suspension of operation of the power facility, the power supply path in the DC power supply system is made redundant and the first power supply path used in normal times And a second power supply path used when detecting a ground fault, and when a ground fault is detected in the first power supply path, the power supply path used for power supply is changed from the first power supply path to the second power supply path. A DC power supply system that can be switched to is proposed (for example, Patent Document 1).

特開2003−61239号公報JP 2003-61239 A

しかしながら、上述した特許文献1等の従来の直流電源給電システムでは、機器の地絡の影響が電力施設の稼働停止等の深刻な事態を招くことはないが、必要となる給電路は増大し、システムが大掛かりとなるため、構成機器の占有範囲が大きくなり、費用も高くなるという課題がある。   However, in the conventional DC power supply system such as Patent Document 1 described above, the influence of the ground fault of the device does not cause a serious situation such as the suspension of operation of the power facility, but the required power supply path increases. Since the system becomes large-scale, there is a problem that the occupation range of the constituent devices is increased and the cost is increased.

本発明は、上述した事情を考慮してなされたもので、従来よりも簡潔な構成および方法によって、直流電源の供給を停止(停電)させることなく、地絡箇所を特定可能な直流電源給電システムおよび直流地絡箇所調査方法を提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and a DC power supply system capable of specifying a ground fault location without stopping (power failure) the supply of DC power by a simpler configuration and method than conventional ones. And it aims at providing a direct current ground fault investigation method.

本発明の実施形態に係る直流電源給電システムは、上述した課題を解決するため、直流電源と、前記直流電源が接続される正極側の母線および負極側の母線の間に接続され、前記直流電源を分配して供給する直流電源回路と、前記直流電源の供給先で生じた地絡を検出する直流地絡検出手段と、前記直流電源が接続される正極側の母線および負極側の母線の間に接続され、地絡が生じた箇所に模擬的な地絡電流を通電させる模擬地絡電流供給手段とを具備する。   In order to solve the above-described problem, a DC power supply system according to an embodiment of the present invention is connected between a DC power supply and a positive-side bus and a negative-side bus to which the DC power is connected. A DC power supply circuit for distributing and supplying, a DC ground fault detecting means for detecting a ground fault occurring at a supply destination of the DC power source, and a positive side bus and a negative side bus connected to the DC power source And a ground fault current supply means for supplying a ground fault current to a location where a ground fault has occurred.

本発明の実施形態に係る直流地絡箇所調査方法は、上述した課題を解決するため、直流電源が接続される正極側の母線および負極側の母線の間に接続され、前記直流電源を分配して供給する直流電源回路と、前記直流電源の供給先で生じた地絡を検出する直流地絡検出手段とを具備する直流電源給電システムの前記直流電源の供給先で生じた地絡の発生箇所を特定する方法であり、前記直流地絡検出手段が前記正極側および前記負極側の何れかの極で地絡を検出した場合に、前記地絡が生じた箇所に模擬的な地絡電流を通電させる模擬地絡電流供給手段を前記直流地絡検出手段が地絡を検出した極と異なる極側の母線と大地との間に接続するステップと、前記直流地絡検出手段が地絡を検出した極と異なる極側の母線を地絡することで、前記地絡が生じた箇所に模擬的な地絡電流を通電させるステップと、前記直流電源の供給先を通電する電流を計測し、通電させた前記模擬的な地絡電流が流れる前記直流電源の供給先を特定するステップと、を備えることを特徴とする。   In order to solve the above-described problem, a DC ground fault investigation method according to an embodiment of the present invention is connected between a positive-side bus and a negative-side bus to which a DC power is connected, and distributes the DC power. The location of the occurrence of a ground fault in the DC power supply destination of a DC power supply system comprising a DC power supply circuit to be supplied and a DC ground fault detection means for detecting a ground fault generated in the DC power supply destination When the DC ground fault detection means detects a ground fault at one of the positive electrode side and the negative electrode side, a simulated ground fault current is generated at the location where the ground fault has occurred. Connecting a simulated ground fault current supply means to be energized between a bus on the pole side different from the pole where the DC ground fault detection means has detected a ground fault and the ground, and the DC ground fault detection means detecting a ground fault. By grounding the bus on the pole side that is different from the pole A step of energizing a simulated ground fault current at a place where a fault has occurred, a current of energizing the supply destination of the DC power supply, and a supply destination of the DC power source through which the simulated ground fault current flows And a step of specifying.

本発明によれば、従来よりも簡潔な構成および方法によって、直流電源の供給を停止(停電)させることなく、地絡箇所を特定することができる。   According to the present invention, a ground fault location can be identified by a simpler configuration and method than before without stopping the supply of DC power (power failure).

本発明の実施形態に係る直流電源給電システムの構成例(第1の構成例)を示した概略図。1 is a schematic diagram showing a configuration example (first configuration example) of a DC power supply system according to an embodiment of the present invention. 本発明の実施形態に係る直流電源給電システムの構成例(第2の構成例)を示した概略図。Schematic which showed the structural example (2nd structural example) of the direct-current power supply system which concerns on embodiment of this invention. 本発明の実施形態に係る直流電源給電システムにおける地絡発生箇所を特定する原理を説明する説明図であり、(A)がN極地絡発生時における直流地絡箇所調査前の状態を示す説明図、(B)が直流地絡箇所調査時の状態を示す説明図。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing explaining the principle which identifies the ground fault generation | occurrence | production location in the DC power supply system which concerns on embodiment of this invention, (A) is explanatory drawing which shows the state before DC ground fault location investigation at the time of N pole ground fault occurrence (B) is explanatory drawing which shows the state at the time of a direct-current ground fault location investigation. 本発明の実施形態に係る直流地絡箇所調査方法において、地絡が発生したフィーダを特定するステップを説明する説明図。Explanatory drawing explaining the step which specifies the feeder in which the ground fault generate | occur | produced in the direct-current ground fault location investigation method which concerns on embodiment of this invention. 本発明の実施形態に係る直流地絡箇所調査方法の地絡が発生した回路を特定するステップを説明する説明図であり、(A)が第1段階を示す概略図、(B)が第2段階を示す概略図、(C)が第3段階を示す概略図。It is explanatory drawing explaining the step which specifies the circuit which the ground fault generate | occur | produced of the direct-current ground fault location investigation method which concerns on embodiment of this invention, (A) is the schematic which shows a 1st step, (B) is 2nd. Schematic which shows a step, (C) is the schematic which shows a 3rd step. 従来の直流電源給電システムの構成例を示した概略図。Schematic which showed the example of a structure of the conventional DC power supply system.

以下、本発明の実施形態に係る直流電源給電システムおよび直流地絡箇所調査方法について、図面を参照して説明する。なお、以下の本実施形態の説明において、図に例示した直流電源系統1の構成要素と実質的に同じ構成要素については、同じ符号を付して重複する説明を省略する。   Hereinafter, a DC power supply system and a DC ground fault investigation method according to embodiments of the present invention will be described with reference to the drawings. In the following description of the present embodiment, constituent elements that are substantially the same as the constituent elements of the DC power supply system 1 illustrated in the figure are given the same reference numerals, and redundant descriptions are omitted.

図1は本発明の実施形態に係る直流電源給電システムの一例である直流電源給電システム10の第1の構成例を示した概略図であり、図2は直流電源給電システム10の第2の構成例を示した概略図である。   FIG. 1 is a schematic diagram illustrating a first configuration example of a DC power supply system 10 that is an example of a DC power supply system according to an embodiment of the present invention. FIG. 2 is a second configuration of the DC power supply system 10. It is the schematic which showed the example.

直流電源給電システム10(図1および図2)は、例えば、直流電源3と、直流電源回路4と、直流地絡検出手段としての直流地絡検出器5と、模擬地絡電流供給手段としての模擬地絡電流供給回路11(11P,11N)とを具備する。また、直流電源3、直流電源回路4、および直流地絡検出器5が接続される母線2(正極側母線2P−負極側母線2N間)には、複数のフィーダ(給電線)6が接続されており、フィーダ6を介して、下流側に接続される機器へ電源を供給している。   The DC power supply system 10 (FIGS. 1 and 2) includes, for example, a DC power supply 3, a DC power supply circuit 4, a DC ground fault detector 5 as a DC ground fault detection means, and a simulated ground fault current supply means. And a simulated ground fault current supply circuit 11 (11P, 11N). A plurality of feeders (feeding lines) 6 are connected to the bus 2 (between the positive side bus 2P and the negative side bus 2N) to which the DC power supply 3, the DC power supply circuit 4, and the DC ground fault detector 5 are connected. Power is supplied to devices connected to the downstream side via the feeder 6.

直流地絡検出器5は、直流電源3の正極側が接続される母線2である正極側母線(Pライン)2Pに直流地絡(P極接地)が生じたか、直流電源3の負極側が接続される母線2である負極側母線(Nライン)2N側に直流地絡(N極接地)が生じたかを検出する。直流地絡検出器5は、例えば、正極側の母線2である正極側母線(Pライン)2Pと大地間に接続される抵抗素子(例えば、抵抗値R)5Pと、負極側の母線2である負極側母線(Nライン)2Nと大地間に接続される抵抗素子(例えば、抵抗値R)5Nとを備えて構成される。 The DC ground fault detector 5 is connected to the positive side bus (P line) 2P, which is the bus 2 to which the positive side of the DC power source 3 is connected, or is connected to the negative side of the DC power source 3. It is detected whether or not a DC ground fault (N-pole grounding) has occurred on the negative-side bus (N line) 2N side that is the bus 2 to be connected. The DC ground fault detector 5 includes, for example, a positive side bus (P line) 2P which is a positive side bus 2 and a resistance element (for example, resistance value R 2 ) 5P connected between the ground and a negative side bus 2 And a resistance element (for example, resistance value R 2 ) 5N connected between the negative electrode bus (N line) 2N and the ground.

模擬地絡電流供給回路11(11P,11N)は、正極側母線(Pライン)2Pを強制的に地絡させる第1の模擬地絡電流供給回路11Pと、負極側母線(Nライン)2Nを強制的に地絡させる第2の模擬地絡電流供給回路11Nとを備える。模擬地絡電流供給回路11Pおよび11Nの両回路は、実質的に同様の回路構成である。   The simulated ground fault current supply circuit 11 (11P, 11N) includes a first simulated ground fault current supply circuit 11P for forcibly grounding the positive side bus (P line) 2P and a negative side bus (N line) 2N. And a second simulated ground fault current supply circuit 11N that forcibly causes a ground fault. Both the simulated ground fault current supply circuits 11P and 11N have substantially the same circuit configuration.

第1の模擬地絡電流供給回路11Pは、例えば、電路を開閉する開閉器21と、開閉器21と直列接続され、当該電路の過電流を遮断するヒューズ22と、ヒューズ22と直列接続され、抵抗値Rを所定範囲(例えば、0.5kΩ〜1.5kΩ)内で変化可能な可変抵抗23とを備えており、開閉器21が正極側母線2Pに、可変抵抗23が大地(接地端子)に接続(接地)されている。 The first simulated ground fault current supply circuit 11P is, for example, connected in series with a switch 21 that opens and closes an electric circuit, a fuse 22 that is connected in series with the switch 21, and that interrupts an overcurrent of the electric circuit, and a fuse 22. the resistance value R 1 predetermined range (e.g., 0.5Keiomega~1.5Keiomega) comprises a variable resistor 23 can be varied within the switch 21 is positive-side bus 2P, the variable resistor 23 is ground (ground terminal ) Connected (grounded).

ここで、ヒューズ22の容量は、母線2を介して接続される系統との関係を考慮して決定されるものであり、模擬地絡電流供給回路11(11P,11N)では、例えば、模擬的な地絡電流の想定値(本実施例では、最大で100mA程度)に対して約5倍を超える電流(本実施例では、500mA)を遮断できるように設定している。この他にも、フィーダ6の電流遮断機能を考慮して決定したりすることができる。   Here, the capacity of the fuse 22 is determined in consideration of the relationship with the system connected via the bus 2, and the simulated ground fault current supply circuit 11 (11P, 11N), for example, is simulated. It is set so that a current (500 mA in this example) exceeding about 5 times the estimated value of the ground fault current (in this example, about 100 mA at the maximum) can be cut off. In addition, it can be determined in consideration of the current interruption function of the feeder 6.

第1の模擬地絡電流供給回路11Pは、開閉器21を閉とすることで、正極側母線(Pライン)2Pを強制的に地絡させ、模擬的な地絡電流(例えば、10mA〜100mA程度)を生じさせる。また、第1の模擬地絡電流供給回路11Pは、可変抵抗23の抵抗値Rを変化させることで、模擬的な地絡電流の大きさを変化させることができる。 The first simulated ground fault current supply circuit 11P closes the switch 21 to forcibly cause the positive bus (P line) 2P to ground, thereby simulating a ground fault current (for example, 10 mA to 100 mA). Degree). The first simulated ground fault current supply circuit 11P, by changing the resistance value R 1 of the variable resistor 23, it is possible to change the size of the simulated ground fault current.

模擬的な地絡電流の大きさは、二つの条件からその範囲が規定される。上限を規定する第1の条件としては、フィーダ6が電流を遮断しない程度の大きさであることである。また、模擬的な地絡電流の下限を規定する第2の条件としては、直流クランプメータ30(図4,5)等の電流計測装置で模擬的な地絡電流を捉えることができることである。   The range of the magnitude of the simulated ground fault current is defined by two conditions. The first condition for defining the upper limit is that the feeder 6 is of a size that does not cut off the current. A second condition for defining the lower limit of the simulated ground fault current is that the simulated ground fault current can be captured by a current measuring device such as the DC clamp meter 30 (FIGS. 4 and 5).

多くの電力プラントに配設される直流電源給電システムでは、フィーダ6が電流を遮断する電流値は100mA超であり、模擬的な地絡電流の大きさを100mA程度以下とすれば、第1の条件はクリアすることができる。   In DC power supply systems installed in many power plants, the current value at which the feeder 6 cuts off the current is over 100 mA, and if the magnitude of the simulated ground fault current is about 100 mA or less, the first The condition can be cleared.

また、模擬的な地絡電流を供給することで、地絡箇所から流入する電流がフィーダ6を通電する際に10mA程度の大きさ(模擬的な地絡電流の供給前後における電流の変化)があれば、模擬的な地絡電流を十分に捕捉できるので、例えば、計測範囲が0mA〜100mA程度、分解能(デジタルの場合は表示最小単位、アナログの場合には最小目盛の1/10)が1mA程度であれば、模擬的な地絡電流を十分に捕捉できる。   Further, by supplying a simulated ground fault current, when the current flowing from the ground fault location energizes the feeder 6, the magnitude is about 10 mA (change in current before and after the supply of the simulated ground fault current). If so, the simulation ground fault current can be sufficiently captured. For example, the measurement range is about 0 mA to 100 mA, and the resolution (minimum display unit for digital, 1/10 of the minimum scale for analog) is 1 mA. If so, a simulated ground fault current can be sufficiently captured.

第2の模擬地絡電流供給回路11Nは、例えば、開閉器21と、ヒューズ22と、可変抵抗23とを備えており、開閉器21が負極側母線2Nに、可変抵抗23が大地(接地端子)に接続(接地)されている。第2の模擬地絡電流供給回路11Nは、開閉器21を閉とすることで、負極側母線(Nライン)2Nを強制的に地絡させ、模擬的な地絡電流を生じさせる。また、可変抵抗23の抵抗値Rを変化させることで、模擬的な地絡電流の大きさを変化させることができる。 The second simulated ground fault current supply circuit 11N includes, for example, a switch 21, a fuse 22, and a variable resistor 23. The switch 21 is connected to the negative bus 2N, and the variable resistor 23 is connected to the ground (grounding terminal). ) Connected (grounded). The second simulated ground fault current supply circuit 11N closes the switch 21, thereby forcibly grounding the negative side bus (N line) 2N and generating a simulated ground fault current. Further, by changing the resistance value R 1 of the variable resistor 23, it is possible to change the size of the simulated ground fault current.

なお、上述した直流電源給電システム10において、模擬地絡電流供給回路11は、接続される母線2や大地に対して着脱自在に構成されていても良い。模擬地絡電流供給回路11は、少なくとも、地絡発生箇所を調査する場合に、各母線2P,2Nと大地との間に接続されていれば良く、その他の場合には必ずしも接続されていることを要しない。   In the DC power supply system 10 described above, the simulated ground fault current supply circuit 11 may be configured to be detachable from the connected bus 2 or the ground. The simulated ground fault current supply circuit 11 is only required to be connected between the buses 2P and 2N and the ground at least when investigating the place where the ground fault occurs, and is not necessarily connected in other cases. Is not required.

また、上述した直流電源給電システム10は、第1の模擬地絡電流供給回路11Pと第2の模擬地絡電流供給回路11Nとを備える模擬地絡電流供給回路11が設けられている例であるが、模擬地絡電流供給回路11を着脱自在に構成する場合には、例えば、図2に示される直流電源給電システム10のように、図1に例示される直流電源給電システム10に対して、第1の模擬地絡電流供給回路11Pおよび第2の模擬地絡電流供給回路11Nの何れか一方を省略した模擬地絡電流供給回路11を備える構成としても良い。   Moreover, the DC power supply system 10 described above is an example in which a simulated ground fault current supply circuit 11 including a first simulated ground fault current supply circuit 11P and a second simulated ground fault current supply circuit 11N is provided. However, when the simulated ground fault current supply circuit 11 is configured to be detachable, for example, the DC power supply system 10 illustrated in FIG. 1 as in the DC power supply system 10 illustrated in FIG. It is good also as a structure provided with the simulated ground fault current supply circuit 11 which abbreviate | omitted any one of the 1st simulated ground fault current supply circuit 11P and the 2nd simulated ground fault current supply circuit 11N.

さらに、上述した模擬地絡電流供給回路11は、一例として、開閉器21と、ヒューズ22と、可変抵抗23とを備えているが、技術上の観点からは、ヒューズ22を必ずしも備えている必要はなく、省略されていても良い。   Further, the above-described simulated ground fault current supply circuit 11 includes, as an example, a switch 21, a fuse 22, and a variable resistor 23. However, from the technical viewpoint, the fuse 22 is not necessarily provided. It may be omitted.

また、模擬地絡電流供給回路11において、可変抵抗23の代わりに、抵抗値を可変できない通常の抵抗を採用しても良い。この場合においても、模擬地絡電流供給回路11は、模擬的な地絡電流を(変化させることはできないが)発生させることができる。   Further, in the simulated ground fault current supply circuit 11, instead of the variable resistor 23, a normal resistor whose resistance value cannot be varied may be employed. Even in this case, the simulated ground fault current supply circuit 11 can generate a simulated ground fault current (although it cannot be changed).

次に、本発明の実施形態に係る直流地絡箇所調査方法の一例として、上述のように構成される直流電源給電システム10における地絡発生箇所調査方法について説明する。   Next, as an example of the DC ground fault location investigation method according to the embodiment of the present invention, a ground fault occurrence location survey method in the DC power supply system 10 configured as described above will be described.

図3は、直流電源給電システム10における地絡発生箇所を特定する原理を説明する説明図であり、図3(A)がN極地絡発生時における直流地絡箇所調査前(開閉器21が開)の状態を示す説明図、図3(B)が直流地絡箇所調査時(開閉器21が閉)の状態を示す説明図である。   FIG. 3 is an explanatory diagram for explaining the principle of identifying a ground fault occurrence location in the DC power supply system 10. FIG. 3 (A) shows a state before the DC ground fault location investigation when the N pole ground fault occurs (the switch 21 is opened). ), And FIG. 3B is an explanatory diagram showing a state when the DC ground fault location is investigated (the switch 21 is closed).

直流電源給電システム10において、直流地絡が発生していない場合、図3(A)および図3(B)に示される地絡電流Iは生じていないため、正極(P極)側の電流Iと負極(N極)側の電流Iの値は同じとなる。すなわち、地絡電流I=0であり、正極(P極)側の電流I=負極(N極)側の電流I、となる。なお、直流地絡が発生していない場合等の通常のシステム運用時(直流地絡箇所の調査時以外)では、開閉器21は開いている。 In the DC power supply system 10, when no DC ground fault occurs, the ground fault current I 3 shown in FIGS. 3A and 3B does not occur, so the current on the positive electrode (P pole) side The value of the current I 2 on the negative electrode (N pole) side is the same as I 1 . That is, the ground fault current I 3 = 0, and the current I 1 on the positive electrode (P pole) side = the current I 2 on the negative electrode (N pole) side. Note that the switch 21 is open during normal system operation, such as when a DC ground fault has not occurred (except when investigating the DC ground fault location).

負極(N極)で地絡、すなわち、N極地絡が発生している場合(図3(A))、地絡発生箇所から大地へ洩れる地絡電流I(>0)が生じ、大地から直流地絡検出器5の抵抗素子5Pに地絡電流I(>0)が流れる。直流地絡検出器5は、地絡電流Iが抵抗素子5Pに流れたことを検出することで、N極地絡発生を検出する。N極地絡が発生している場合、N極側の電流Iは、地絡電流Iの分、P極側の電流Iよりも大きくなる。 When a ground fault occurs at the negative electrode (N pole), that is, when an N pole ground fault occurs (FIG. 3A), a ground fault current I 3 (> 0) leaks from the ground fault occurrence point to the ground. A ground fault current I 3 (> 0) flows through the resistance element 5P of the DC ground fault detector 5. The DC ground fault detector 5 detects the occurrence of the N-pole ground fault by detecting that the ground fault current I 3 has flowed through the resistance element 5P. When the N pole ground fault occurs, the current I 2 on the N pole side is larger than the current I 1 on the P pole side by the amount of the ground fault current I 3 .

直流電源給電システム10において、直流地絡箇所の調査は、まず、直流地絡検出器5が地絡を検出した極とは異なる極に模擬地絡電流供給回路11が接続されているか否かを確認し、直流地絡検出器5が地絡を検出した極とは異なる極に接続される模擬地絡電流供給回路11を動作させて模擬的な地絡電流(模擬地絡電流I)を大地に供給する。 In the DC power supply system 10, the investigation of the DC ground fault location is performed first by checking whether the simulated ground fault current supply circuit 11 is connected to a pole different from the pole where the DC ground fault detector 5 detects the ground fault. The simulated ground fault current (simulated ground fault current I 4 ) is operated by operating the simulated ground fault current supply circuit 11 connected to the pole different from the pole where the DC ground fault detector 5 detects the ground fault. Supply to the ground.

ここで、図2に例示される場合等、模擬地絡電流供給回路11が着脱式であり、直流地絡検出器5が地絡を検出した極とは異なる極に模擬地絡電流供給回路11が接続されていない場合には、直流地絡検出器5が地絡を検出した極とは異なる極に模擬地絡電流供給回路11を接続し、その後、模擬地絡電流供給回路11を動作させて模擬地絡電流Iを大地に供給する。 Here, in the case illustrated in FIG. 2, the simulated ground fault current supply circuit 11 is detachable, and the simulated ground fault current supply circuit 11 is connected to a pole different from the pole where the DC ground fault detector 5 has detected the ground fault. Is not connected, the simulated ground fault current supply circuit 11 is connected to a pole different from the pole where the DC ground fault detector 5 detects the ground fault, and then the simulated ground fault current supply circuit 11 is operated. supplying a simulated ground fault current I 4 to ground Te.

直流電源給電システム10において、例えば、直流地絡検出器5がN極地絡を検出している場合、正極側母線(Pライン)2Pに接続される模擬地絡電流供給回路11(11P)に備えられる開閉器21を閉じ、正極側母線(Pライン)2Pと大地とを短絡(地絡)させることで、模擬地絡電流Iを正極側母線(Pライン)2Pから大地へ向けて流す(図3(B))。 In the DC power supply system 10, for example, when the DC ground fault detector 5 detects an N-pole ground fault, it is provided for the simulated ground fault current supply circuit 11 (11P) connected to the positive-side bus (P line) 2P. The closed switch 21 is closed and the positive side bus (P line) 2P and the ground are short-circuited (ground fault), so that the simulated ground fault current I 4 flows from the positive side bus (P line) 2P toward the ground ( FIG. 3 (B)).

正極側母線(Pライン)2Pを地絡させると、大地へ流れる模擬地絡電流Iは、大部分が大地から地絡している回路内に進入し、負極側母線(Nライン)2Nに流入する。従って、模擬地絡電流Iを地絡発生箇所に供給する(通電させる)後のN極側の電流Iは、模擬地絡電流Iの少なくとも一部が流入するため、模擬地絡電流Iの供給前よりも増加する。 When the positive side bus (P line) 2P is grounded, the simulated ground fault current I 4 flowing to the ground enters the circuit that is mostly grounded from the ground and enters the negative side bus (N line) 2N. Inflow. Accordingly, the current I 2 on the N pole side after supplying (energizing) the simulated ground fault current I 4 to the ground fault occurrence location flows in at least a part of the simulated ground fault current I 4. to increase than the previous supply of I 4.

直流電源給電システム10では、模擬地絡電流Iを大地へ向けて流すことができ、模擬地絡電流Iを大地へ向けて流すことによって、当該模擬地絡電流Iの大部分が地絡発生箇所から母線2(2P,2N)に接続される系統内に流入するため、模擬地絡電流Iが流入する直流電源3の供給先を特定すれば、地絡発生箇所を特定することができる。 In the DC power supply system 10, the simulated ground fault current I 4 can flow toward the ground. By flowing the simulated ground fault current I 4 toward the ground, most of the simulated ground fault current I 4 is grounded. to flowing from絡発production point bus 2 (2P, 2N) in a system that is connected to, if identified the destination of the DC power supply 3 which is simulated ground fault current I 4 flows, identifying the land絡発production locations Can do.

なお、地絡箇所が1箇所であれば、当該箇所から進入する模擬地絡電流Iは、大地へ流れる模擬地絡電流Iとほぼ同じ電流値になるが、地絡箇所が同時に複数箇所で生じた場合、大地へ流れる模擬地絡電流Iの大部分は各地絡箇所に分流してしまうため、地絡箇所1箇所当たりに流入する模擬地絡電流の量は小さくなり、模擬地絡電流Iの供給前後における電流値の変化がわかりにくい場合が起こり得る。 If there is only one ground fault location, the simulated ground fault current I 4 entering from the location has almost the same current value as the simulated ground fault current I 4 flowing to the ground. In this case, since most of the simulated ground fault current I 4 flowing to the ground is shunted to the various fault locations, the amount of the simulated ground fault current flowing into each fault location becomes small, and the simulated ground fault is generated. There may be a case where the change in the current value before and after the supply of the current I 4 is difficult to understand.

このような場合には、可変抵抗23の抵抗値を調整することによって、大地へ流す模擬地絡電流Iの量を大きくし、模擬地絡電流Iの供給前後における電流値の変化を大きくすることができる。従って、直流電源給電システム10では、可変抵抗23の抵抗値を調整することによって、地絡箇所が同時に複数箇所で生じたとしても、模擬地絡電流Iの供給前後における電流値の変化を捉えることができ、各地絡箇所を特定することができる。 In such a case, by adjusting the resistance value of the variable resistor 23, increasing the amount of simulated ground fault current I 4 flowing into the ground, a large change in the current value before and after the supply of the simulated ground fault current I 4 can do. Therefore, the DC power supply power supply system 10, by adjusting the resistance value of the variable resistor 23, as the earth絡箇plant occurs in a plurality of locations at the same time, capturing the change in the current value before and after the supply of the simulated ground fault current I 4 It is possible to identify the locations related to each place.

上述したように、直流電源給電システム10における地絡発生箇所調査方法では、まず、直流地絡検出器5が正極(P極)側および負極(N極)側の何れかの極で地絡を検出した場合に模擬地絡電流供給手段としての模擬地絡電流供給回路11を直流地絡検出器5が地絡を検出した極と異なる極側の母線2と大地との間に接続されていることを確認し、模擬地絡電流供給回路11が接続されていれば、続いて、模擬地絡電流供給回路11に備えられる開閉器21を閉じ、直流地絡検出器5が地絡を検出した極と異なる極側の母線2を強制的に地絡する。   As described above, in the ground fault occurrence location investigation method in the DC power supply system 10, first, the DC ground fault detector 5 detects a ground fault at either the positive electrode (P pole) side or the negative electrode (N pole) side. When detected, a simulated ground fault current supply circuit 11 as a simulated ground fault current supply means is connected between the bus 2 on the pole side different from the pole where the DC ground fault detector 5 detects the ground fault and the ground. If the simulated ground fault current supply circuit 11 is connected, the switch 21 provided in the simulated ground fault current supply circuit 11 is closed, and the DC ground fault detector 5 detects the ground fault. Forcibly grounding the bus 2 on the pole side different from the pole.

強制的な地絡により、大地へ向けて流れる模擬地絡電流Iを地絡が生じた箇所に通電させる。直流クランプメータ30(図4,5)等の電流計測装置(例えば、最小計測単位が10mA程度)を用いて、フィーダ6のP極およびN極の両方をクランプした(挟んだ)後、地絡が生じた箇所に模擬地絡電流Iを通電させ、模擬地絡電流Iを通電させる前後での電流の変化を確認することで模擬地絡電流Iを捉える。模擬地絡電流Iが通電する回路(供給先)が、地絡の生じた箇所となる。 Due to the forced ground fault, a simulated ground fault current I 4 flowing toward the ground is energized to the location where the ground fault occurs. After clamping (pinch) both the P and N poles of the feeder 6 using a current measuring device (for example, the minimum measurement unit is about 10 mA) such as the DC clamp meter 30 (FIGS. 4 and 5), the ground fault The simulated ground fault current I 4 is energized at the location where the fault occurs, and the change in current before and after the simulated ground fault current I 4 is energized is confirmed to capture the simulated ground fault current I 4 . Circuit simulated ground fault current I 4 is energized (supply destination) is a portion generated ground fault.

直流電源給電システム10における地絡発生箇所調査方法では、模擬地絡電流Iが通電する回路(供給先)、すなわち、地絡が発生した回路(供給先)を特定するために、まず、模擬地絡電流Iが通電するフィーダ6を特定することで、地絡が発生したフィーダ6を特定し、その後、模擬地絡電流Iが通電する、当該フィーダ6から枝分かれする枝線8を特定することで、地絡が発生した回路(供給先)を特定する。 The land絡発production location searching method in the DC power supply power supply system 10, the circuit simulation ground fault current I 4 is energized (supply destination), i.e., to identify the circuit ground fault has occurred (supply destination), first, the simulated By identifying the feeder 6 through which the ground fault current I 4 is energized, the feeder 6 in which the ground fault has occurred is identified, and then the branch line 8 branched from the feeder 6 through which the simulated ground fault current I 4 is energized is identified. By doing so, the circuit (supply destination) in which the ground fault has occurred is specified.

図4は、本発明の実施形態に係る直流地絡箇所調査方法において、地絡が発生したフィーダを特定するステップを説明する説明図である。   FIG. 4 is an explanatory diagram for explaining a step of identifying a feeder in which a ground fault has occurred in the DC ground fault investigation method according to the embodiment of the present invention.

例えば、直流地絡検出器5が、負極(N極)での地絡発生を検出した場合、直流電源給電システム10では、まず、地絡が発生していない極である正極(P極)と大地間を地絡させ、模擬地絡電流供給回路11(11P)から模擬地絡電流Iを供給する。供給する模擬地絡電流Iの大きさは、フィーダ6や模擬地絡電流Iを捉える際に使用する直流クランプメータ30等の電流計測装置の設計仕様により異なるが、例えば、50〜100mAとし、フィーダ6に遮断されず、模擬地絡電流Iを捕捉しやすい電流値とする。 For example, when the DC ground fault detector 5 detects the occurrence of a ground fault at the negative electrode (N pole), in the DC power supply system 10, first, a positive pole (P pole) that is a pole where no ground fault has occurred. A ground fault is caused between the grounds, and a simulated ground fault current I 4 is supplied from the simulated ground fault current supply circuit 11 (11P). The size of the supplied simulated ground fault current I 4 is different by the design specifications of the current measurement device of the DC clamp meter 30 or the like for use in capturing the feeder 6 and mock ground fault current I 4, for example, a 50~100mA The simulated ground fault current I 4 is not interrupted by the feeder 6 and is set to a current value that is easy to capture.

模擬地絡電流供給回路11(11P)から模擬地絡電流Iを供給し、電流計測装置の一例である直流クランプメータ30(図4,5)の測定値変化(増加)の有無を調べることにより、模擬地絡電流Iが流入しているフィーダ6を特定する。 A simulated ground fault current I 4 is supplied from the simulated ground fault current supply circuit 11 (11P), and the presence or absence of a change (increase) in the measured value of the DC clamp meter 30 (FIGS. 4 and 5), which is an example of a current measuring device, is checked. Accordingly, identifying the feeder 6 which is simulated ground fault current I 4 is flowed.

模擬地絡電流Iが流入しているフィーダ6であるか否かは、直流電源給電システム10に配設される複数個のフィーダ6に対して、地絡が発生した側のフィーダ6の電流値を計測し、模擬地絡電流Iを供給する前後において変化しているか否かに基づいて判定することができる。電流の計測は、例えば、直流クランプメータ30等の電流計測装置を用いて行う。 Whether the simulated ground fault current I 4 is in the feeder 6 or not is determined based on the current of the feeder 6 on the side where the ground fault occurs with respect to the plurality of feeders 6 arranged in the DC power supply system 10. measured value, the simulated ground fault current I 4 may be determined based on whether or not changes before and after feeding. The current is measured using a current measuring device such as a DC clamp meter 30, for example.

模擬地絡電流Iは、地絡が発生していないフィーダ6には流れない一方、地絡が発生しているフィーダ6では、フィーダ6の負極側母線(Nライン)2Nと接続される負極側の電線(Nライン)を流れることになり、フィーダ6の正極側の電線(Pライン)と負極側の電線(Nライン)の電流値にアンバランスが生じる。従って、模擬地絡電流Iを供給した後に模擬地絡電流Iに相当する電流値の増加が確認されたフィーダ6は、地絡の生じている回路(供給先)が接続されているフィーダ6として特定することができる。 The simulated ground fault current I 4 does not flow through the feeder 6 where no ground fault has occurred, while the feeder 6 where the ground fault has occurred is connected to the negative side bus (N line) 2N of the feeder 6. The electric wire (N line) on the side flows and the current value of the positive electrode side electric wire (P line) and the negative electrode side electric wire (N line) of the feeder 6 is unbalanced. Accordingly, the feeder 6 the increase in current value were confirmed to be equivalent to the simulated ground fault current I 4 after supplying the simulated ground fault current I 4 is circuit occurring ground fault (supply destination) is connected to a feeder 6 can be specified.

なお、直流電源給電システム10において、地絡をフィーダ6単位で検出する直流漏電装置7が設置されている場合には、直流漏電装置7を用いて地絡の生じている回路(供給先)が接続されているフィーダ6を特定しても良い。   In the DC power supply system 10, when a DC leakage device 7 that detects a ground fault in units of the feeder 6 is installed, a circuit (supply destination) in which a ground fault occurs using the DC leakage device 7 is provided. The connected feeder 6 may be specified.

地絡の生じている回路(供給先)が接続されているフィーダ6を特定したら、続いて、当該フィーダ6の下流側に接続される各接続先で地絡が生じているか否かを判定する。   After identifying the feeder 6 to which the circuit (supply destination) in which the ground fault occurs is connected, it is subsequently determined whether or not a ground fault has occurred in each connection destination connected to the downstream side of the feeder 6. .

図5は、本発明の実施形態に係る直流地絡箇所調査方法の地絡が発生した回路を特定するステップを説明する説明図であり、図5(A)が地絡発生回路の特定の第1段階を示す概略図、図5(B)が当該特定の第2段階を示す概略図、図5(C)が当該特定の第3段階を示す概略図である。   FIG. 5 is an explanatory diagram for explaining a step of identifying a circuit in which a ground fault has occurred in the DC ground fault investigation method according to the embodiment of the present invention. FIG. FIG. 5B is a schematic diagram illustrating the specific third stage, FIG. 5B is a schematic diagram illustrating the specific second stage, and FIG. 5C is a schematic diagram illustrating the specific third stage.

なお、図の明瞭性および簡潔性の観点から、図5(図5(A)〜図5(C))では、フィーダ6から下流側の枝線8を中心に図示し、図4に示される母線2および直流電源3等のフィーダ6から上流側の構成要素については図示を省略している。また、図5(B)および図5(C)では、直流クランプメータ30について、本体部を省略した状態(クランプ部31が枝線8の一部をクランプした状態)を示している。   5 (FIG. 5 (A) to FIG. 5 (C)), the branch line 8 on the downstream side from the feeder 6 is mainly shown in FIG. 5 and shown in FIG. The upstream components from the feeder 6 such as the bus 2 and the DC power source 3 are not shown. 5B and 5C show the DC clamp meter 30 in a state where the main body portion is omitted (a state where the clamp portion 31 clamps a part of the branch line 8).

地絡が発生しているか否かの判定は、直流クランプメータ30等の電流計測装置を用いて、例えば、k(kは2以上の自然数)個の供給先へ枝分かれする枝線8(8P1,8N1;…;8Pk,8Nk)に対して、母線2および供給先と接続される正極側枝線8P(8P1,…,8Pk)と負極側枝線8N(8N1,…,8Nk)とを対(以下、「枝線対」とする。)8P,8Nとする枝線対8P(8P1,…,8Pk),8N(8N1,…,8Nk)を流れる電流を計測することにより行う。   Whether or not a ground fault has occurred is determined using, for example, a current measuring device such as a DC clamp meter 30, for example, branch line 8 (8P1, branching to k (k is a natural number of 2 or more)) supply destinations. 8N1; ...; 8Pk, 8Nk), a pair of positive side branch 8P (8P1, ..., 8Pk) and negative side branch 8N (8N1, ..., 8Nk) connected to the bus 2 and the supply destination (hereinafter, This is done by measuring the current flowing through the branch line pairs 8P (8P1,..., 8Pk), 8N (8N1,..., 8Nk).

枝線対8P,8Nと接続される、直流電源の供給先で地絡を生じている場合、当該枝線対8P(8P1,…,8Pk),8N(8N1,…,8Nk)を流れる電流は、模擬的な地絡電流を供給する(通電させる)前後で変化する。従って、電流値が変化している枝線対8P,8Nを特定することで、地絡を生じている直流電源3の供給先を特定することができる。   When a ground fault occurs at the DC power supply destination connected to the branch pair 8P, 8N, the current flowing through the branch pair 8P (8P1,..., 8Pk), 8N (8N1,..., 8Nk) is It changes before and after supplying a simulated ground fault current (energizing). Therefore, the supply destination of the DC power supply 3 causing the ground fault can be specified by specifying the branch line pairs 8P and 8N whose current values are changing.

電流値が変化している枝線対8P,8Nを特定する手法としては、例えば、全ての枝線対8P,8Nから電流値が変化していない枝線対8P,8Nを段階的に排除し、電流値が変化している枝線対8P,8Nを絞り込んでいく手法(以下、「第1の手法」とする。)や、個々の枝線対8P,8Nを調査する手法等、幾つかのやり方が考えられる。   As a method for specifying the branch line pairs 8P and 8N whose current values are changing, for example, the branch line pairs 8P and 8N whose current values are not changing are stepwise excluded from all the branch line pairs 8P and 8N. There are several methods such as a method of narrowing down the branch line pairs 8P and 8N whose current values are changed (hereinafter referred to as “first method”) and a method of investigating the individual branch line pairs 8P and 8N. Can be considered.

第1の手法は、例えば、図5(A)〜図5(C)に示されるように、3段階等の複数段階にわたって、電流値の変化が生じていない枝線対8P,8Nを被計測対象から除外していき、最終的に電流値が変化している枝線対8P,8Nを特定する。第1の手法では、例えば、1グループ当たりの被測定対象の枝線対8P,8Nの数を多めにしておき、段階が進むにつれて数を減らして枝線対8P,8Nを絞り込んでいく。   In the first method, for example, as shown in FIGS. 5A to 5C, branch line pairs 8P and 8N in which no change in current value occurs over a plurality of stages such as three stages are measured. The branch line pair 8P, 8N whose current value is changed finally is specified by excluding the target. In the first method, for example, the number of branch line pairs 8P and 8N to be measured per group is increased, and the number of branch line pairs 8P and 8N is narrowed down as the stage proceeds.

第1の手法の第1段階(1回目の電流計測)としては、まず、k個の供給先となる枝線対8P(8P1,…,8Pk),8N(8N1,…,8Nk)を、例えば、2グループ等の複数グループに分け、グループ分けした各グループに対して、模擬地絡電流Iを供給する(通電させる)前後で電流値の変化が生じているか否かを計測する(図5(A))。 As the first stage (first current measurement) of the first technique, first, k pairs of branch lines 8P (8P1,..., 8Pk), 8N (8N1,..., 8Nk) are, for example, , divided into a plurality of groups, such as two groups for each group grouped, and supplies the simulated ground fault current I 4 (energizing) to measure whether a change in the current value occurs before and after (FIG. 5 (A)).

第1段階の電流計測の結果、通常は、電流の変化「有」のグループと電流の変化「無」のグループとに分かれるので、電流の変化「有」のグループを次回(第2段階)の計測時の被測定対象として残す一方、電流の変化「無」のグループを次回(第2段階)の計測時の被測定対象から除外する。   As a result of the current measurement at the first stage, it is usually divided into a group with current change “Yes” and a group with current change “No”. While remaining as a measurement target at the time of measurement, the group of current change “none” is excluded from the measurement target at the time of the next measurement (second stage).

第2段階では、前回(第1段階)の計測時の電流計測の結果で電流の変化「有」となったグループに対して第1段階と同様の電流計測を行う。   In the second stage, the same current measurement as in the first stage is performed on the group whose current change is “present” as a result of the current measurement at the previous (first stage) measurement.

すなわち、第1段階の電流計測の結果で電流の変化「有」となったグループに属する枝線対8P,8Nを抽出し、抽出した枝線対8P,8Nをさらに複数のグループに分け、グループ分けした各グループに対して、模擬地絡電流Iを供給する(通電させる)前後で電流値の変化が生じているか否かを計測する(図5(B))。そして、電流の変化「有」のグループを次回(第3段階)の計測時の被測定対象として残す一方、電流の変化「無」のグループを次回(第3段階)の計測時の被測定対象から除外する。 That is, branch line pairs 8P and 8N belonging to the group in which the current change is “present” as a result of the first-stage current measurement are extracted, and the extracted branch line pairs 8P and 8N are further divided into a plurality of groups. For each divided group, it is measured whether or not a change in the current value occurs before and after the simulated ground fault current I 4 is supplied (energized) (FIG. 5B). Then, the group with the current change “Yes” is left as the measurement target at the next (third stage) measurement, while the group with the current change “None” is the measurement target at the next (third stage) measurement. Exclude from

このように、第2段階以降では、前回計測時の電流計測の結果で電流の変化「有」となったグループに対して第1段階と同様の電流計測を行い、電流の変化「有」のグループを次回計測時の被測定対象として残す一方、電流の変化「無」のグループを次回計測時の被測定対象から除外する。   In this way, in the second and subsequent stages, the same current measurement as in the first stage is performed for the group whose current change is “present” as a result of the current measurement at the previous measurement, and the current change “present” is determined. While the group is left as the measurement target at the next measurement, the group with the current change “none” is excluded from the measurement target at the next measurement.

このような電流の変化「無」の枝線対8P,8Nを段階的に排除する工程を繰り返していくと、地絡箇所が1箇所である場合、電流の変化「有」の枝線対8P,8Nが1対に特定される(図5(C))。   When the process of eliminating the branch pairs 8P and 8N with the current change “none” stepwise is repeated, if there is only one ground fault location, the branch pair 8P with the current change “present” is obtained. , 8N are identified as a pair (FIG. 5C).

なお、地絡箇所が複数箇所存在する場合も起こり得るが、この場合、第1段階以降の何れかの段階において、全てのグループが電流の変化「有」のグループとなる場合が起こり得る。全てのグループが電流の変化「有」のグループとなった場合には、全ての枝線対8P,8Nを次回計測時の被測定対象とし、各グループをさらに小さなグループに分けて計測する。   Although there may be a case where there are a plurality of ground fault locations, in this case, in any stage after the first stage, there may occur a case where all the groups become a group having a current change “present”. When all the groups become the groups having the current change “present”, all the branch line pairs 8P and 8N are set as measurement targets at the next measurement, and each group is divided into smaller groups and measured.

被測定対象を複数のグループに分け、電流計測を行い、電流の変化「有」のグループを次回計測時の被測定対象として残す一方、電流の変化「無」のグループを次回計測時の被測定対象から除外することを繰り返すことで、最終的には、地絡が生じていない供給先が接続される(電流の変化「無」のグループに属する)枝線対8P,8Nが全て除外され、地絡が発生している供給先が接続される(電流の変化「有」のグループに属する)枝線対8P,8Nの各々が特定できる。   Divide the measurement target into multiple groups, measure the current, leave the group with current change “Yes” as the measurement target at the next measurement, and measure the current change “None” group at the next measurement By repeating the exclusion from the target, finally, all the branch line pairs 8P and 8N to which the supply destination that does not cause the ground fault is connected (belonging to the group of “no change in current”) are excluded, Each of the branch line pairs 8P and 8N to which the supply destination in which the ground fault has occurred is connected (belonging to the group of “current change” “present”) can be specified.

このように、本発明の実施形態に係る直流地絡箇所調査方法は、地絡の生じた極を検出できれば、例えば、地絡の生じた極とは異なる極に模擬的な地絡電流を発生させて当該地絡箇所に模擬的な地絡電流を通電させる模擬地絡電流供給回路11と、直流クランプメータ30等の電流計測装置とを用いることで、フィーダ6から枝分かれする回路(枝線対8P,8N)単位で地絡箇所を特定することができる。   Thus, the DC ground fault location investigation method according to the embodiment of the present invention generates a simulated ground fault current on a pole different from the pole on which the ground fault occurs, for example, if the pole on which the ground fault occurs can be detected. By using the simulated ground fault current supply circuit 11 for supplying a simulated ground fault current to the ground fault location and a current measuring device such as the DC clamp meter 30, a circuit branching from the feeder 6 (a pair of branch lines) The ground fault location can be specified in units of 8P, 8N).

また、本発明の実施形態に係る直流地絡箇所調査方法は、模擬地絡電流供給回路11を地絡の生じた極を検出した後に追設しても差し支えないため、模擬地絡電流供給回路11を具備する直流電源給電システム10のみならず、直流電源給電システム1(図6)等の従前の直流電源給電システムにも適用できる。従って、本発明の実施形態に係る直流地絡箇所調査方法は、様々な構成の直流電源給電システムに対して幅広く適用することができる。   Further, in the DC ground fault investigation method according to the embodiment of the present invention, the simulated ground fault current supply circuit 11 may be additionally provided after detecting the pole where the ground fault has occurred. 11 can be applied to a conventional DC power supply system such as the DC power supply system 1 (FIG. 6). Therefore, the DC ground fault investigation method according to the embodiment of the present invention can be widely applied to DC power supply systems having various configurations.

さらに、本発明の実施形態に係る直流地絡箇所調査方法では、模擬地絡電流供給回路11が抵抗値Rを変化可能な可変抵抗23を備える場合、この抵抗値Rを変化させることで、模擬地絡電流I(図3,4)の大きさを調整でき、複数箇所に地絡が生じた場合においても、模擬地絡電流Iを供給する前後の変化を検出するのに十分な大きさの模擬地絡電流Iを供給することができる。 Furthermore, in the DC ground絡箇plants searching method according to an embodiment of the present invention, if the simulated grounding current supply circuit 11 comprises a variable resistor 23 capable of changing the resistance value R 1, by changing the resistance value R 1 The magnitude of the simulated ground fault current I 4 (FIGS. 3 and 4) can be adjusted, and even when a ground fault occurs at a plurality of locations, it is sufficient to detect changes before and after the simulated ground fault current I 4 is supplied. A large-scale simulated ground fault current I 4 can be supplied.

なお、本発明の実施形態に係る直流地絡箇所調査方法において、発生させる模擬地絡電流I(図3,4)は、約10〜100mAであり、最大でも100mA程度に抑えられているので、通常、フィーダ6が通電を許容する範囲内(電流を遮断する電流値未満)での電流変化であり、模擬地絡電流Iが遮断されることはない。また、模擬地絡電流Iの大きさは、フィーダ6が通電を許容する範囲内と小さな値であり、模擬地絡電流Iが直流電源3を含む直流電源系統に流入したとしても悪影響を及ぼすこともない。すなわち、本発明の実施形態に係る直流地絡箇所調査方法は、直流電源3を含む直流電源系統に損傷を与えない安全な方法である。 In the DC ground fault investigation method according to the embodiment of the present invention, the simulated ground fault current I 4 (FIGS. 3 and 4) to be generated is about 10 to 100 mA, and is suppressed to about 100 mA at the maximum. , usually a change in current within a range in which the feeder 6 to allow a current (less than the current value interrupting the current), does not simulated ground fault current I 4 is cut off. Further, the magnitude of the simulated ground fault current I 4 is as small as the feeder 6 allows energization, and even if the simulated ground fault current I 4 flows into the DC power supply system including the DC power supply 3, there is an adverse effect. There is no effect. That is, the DC ground fault investigation method according to the embodiment of the present invention is a safe method that does not damage the DC power supply system including the DC power supply 3.

以上、直流電源給電システム10および直流地絡箇所調査方法によれば、直流地絡検出器5が地絡の生じた極を検出した場合、地絡の生じた極とは異なる極を強制的に地絡させることによって、模擬地絡電流I(図3,4)を生じさせ、模擬地絡電流Iが通電する、フィーダ6下流側の回路(枝線対8P,8N)を検出することで、地絡発生箇所を特定することができる。 As described above, according to the DC power supply system 10 and the DC ground fault investigation method, when the DC ground fault detector 5 detects a pole having a ground fault, a pole different from the pole having the ground fault is forcibly set. By detecting a circuit (branch line pair 8P, 8N) on the downstream side of the feeder 6 where a simulated ground fault current I 4 (FIGS. 3 and 4) is generated by causing a ground fault and the simulated ground fault current I 4 is energized. Thus, the location where the ground fault occurs can be specified.

また、地絡発生箇所に模擬的な地絡電流(模擬地絡電流I)を通電させるにあたり、給電路を冗長化する等の複雑な電路を配設する必要はなく、例えば、模擬地絡電流供給回路11等の簡潔な構成の回路を、地絡の生じた極とは異なる極の母線2(2Pまたは2N)と大地間に取り付けて、開閉器21を閉じれば良いので、給電路が冗長化されているか否かに関わらず、直流電源給電システム1(図6)等の従前の直流電源給電システムに広く適用することができる。 Further, in order to supply a simulated ground fault current (simulated ground fault current I 4 ) to the location where the ground fault occurs, it is not necessary to provide a complicated electric circuit such as a redundant power supply path. A circuit having a simple configuration such as the current supply circuit 11 may be attached between the bus 2 (2P or 2N) of the pole different from the pole where the ground fault occurs and the ground, and the switch 21 may be closed. Regardless of whether it is redundant or not, it can be widely applied to conventional DC power supply systems such as the DC power supply system 1 (FIG. 6).

さらに、地絡発生箇所に模擬的な地絡電流を通電させるにあたり、発生させる模擬地絡電流I(図3,4)は、約10〜100mAと最大でも100mA程度の、直流クランプメータ30等の電流計測装置で捉えることができ、かつ模擬地絡電流Iをフィーダ6が遮断する電流値未満となる程度の小量に抑えられているので、模擬地絡電流Iが直流電源3を含む直流電源系統に流入したとしても悪影響を及ぼすこともない。 Further, when a simulated ground fault current is passed through the ground fault occurrence location, the generated ground fault current I 4 (FIGS. 3 and 4) is about 10 to 100 mA, which is about 100 mA at the maximum, such as the DC clamp meter 30. Since the simulated ground fault current I 4 is suppressed to a small amount that is less than the current value that the feeder 6 cuts off, the simulated ground fault current I 4 Even if it flows into the DC power supply system that includes it, there is no adverse effect.

また、直流電源給電システム10および直流地絡箇所調査方法によれば、直流電源の供給を停止(停電)させることなく、直流地絡箇所の絞り込みができるので、プラントの運用を継続したまま、直流地絡箇所を特定することができる。従って、直流電源給電システム10および直流地絡箇所調査方法によれば、機器の地絡の影響が電力施設の稼働停止等の深刻な事態を招来するのを確実に防止することができる。   Further, according to the DC power supply system 10 and the DC ground fault investigation method, the DC ground fault can be narrowed down without stopping (power failure) the supply of DC power. A ground fault location can be specified. Therefore, according to the DC power supply system 10 and the DC ground fault investigation method, it is possible to reliably prevent the influence of the ground fault of the equipment from causing a serious situation such as the suspension of operation of the power facility.

さらに、直流電源給電システム10および直流地絡箇所調査方法によれば、模擬地絡電流供給回路11が可変抵抗23を備えているため、模擬的な地絡電流の量を変化させることができ、地絡が複数箇所で生じていたとしても、模擬的な地絡電流の量を変化させて電流値を計測することで各地絡箇所を特定することができる。   Further, according to the DC power supply system 10 and the DC ground fault investigation method, since the simulated ground fault current supply circuit 11 includes the variable resistor 23, the amount of the simulated ground fault current can be changed. Even if a ground fault occurs at a plurality of locations, it is possible to identify each location fault by changing the amount of simulated ground fault current and measuring the current value.

なお、本発明は上述した実施形態そのままに限定されるものではなく、実施段階では、上述した実施例以外にも様々な形態で実施することが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、追加、置き換え、変更を行なうことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Note that the present invention is not limited to the above-described embodiments as they are, and can be implemented in various forms other than the above-described examples in the implementation stage, and within the scope not departing from the gist of the invention. Various omissions, additions, replacements, and changes can be made. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1 直流電源系統
2 母線
2P 正極側母線(Pライン)
2N 負極側母線(Nライン)
3 直流電源
4 直流電源回路
5 直流地絡検出器
6 フィーダ
7 直流漏電装置
10 直流電源給電システム
11 模擬地絡電流供給回路
11P 第1の模擬地絡電流供給回路
11N 第2の模擬地絡電流供給回路
21 開閉器
22 ヒューズ
23 可変抵抗
24 接続部
1 DC power system 2 Bus 2P Positive side bus (P line)
2N Negative side bus (N line)
3 DC Power Supply 4 DC Power Supply Circuit 5 DC Ground Fault Detector 6 Feeder 7 DC Leakage Device 10 DC Power Supply System 11 Simulated Ground Fault Current Supply Circuit 11P First Simulated Ground Fault Current Supply Circuit 11N Second Simulated Ground Fault Current Supply Circuit 21 Switch 22 Fuse 23 Variable resistor 24 Connection part

Claims (11)

直流電源と、
前記直流電源が接続される正極側の母線および負極側の母線の間に接続され、前記直流電源を分配して供給する直流電源回路と、
前記直流電源の供給先で生じた地絡を検出する直流地絡検出手段と、
前記直流電源が接続される正極側および負極側の各母線と大地との間に接続され、地絡が生じた箇所に模擬的な地絡電流を通電させる模擬地絡電流供給手段とを具備することを特徴とする直流電源給電システム。
DC power supply,
A DC power supply circuit connected between the positive-side bus and the negative-side bus to which the DC power is connected, and distributing and supplying the DC power;
DC ground fault detecting means for detecting a ground fault occurring at a supply destination of the DC power source;
Simulated ground fault current supply means connected between each of the positive and negative buses to which the DC power source is connected and the ground, and for supplying a simulated ground fault current to a place where a ground fault has occurred. DC power supply system characterized by that.
前記模擬地絡電流供給手段は、一端が前記正極側の母線に接続され、他端が接地されている第1の模擬地絡電流供給回路と、
一端が前記負極側の母線に接続され、他端が接地されている第2の模擬地絡電流供給回路と、を備えることを特徴とする請求項1記載の直流電源給電システム。
The simulated ground fault current supply means includes a first simulated ground fault current supply circuit having one end connected to the positive-side bus and the other end grounded;
The DC power supply system according to claim 1, further comprising: a second simulated ground fault current supply circuit having one end connected to the negative-side bus and the other end grounded.
前記第1の模擬地絡電流供給回路および前記第2の模擬地絡電流供給回路の少なくとも一方は、接続される前記母線に対して、着脱自在に構成されることを特徴とする請求項2記載の直流電源給電システム。 The at least one of the first simulated ground fault current supply circuit and the second simulated ground fault current supply circuit is configured to be detachable from the connected bus. DC power supply system. 前記第1の模擬地絡電流供給回路および前記第2の模擬地絡電流供給回路は、それぞれ、
一端が前記母線と接続される、電路を開閉する開閉器と、
一端が前記開閉器側に接続され、他端が接地される、抵抗素子とを備えることを特徴とする請求項2または3に記載の直流電源給電システム。
The first simulated ground fault current supply circuit and the second simulated ground fault current supply circuit are respectively
A switch that opens and closes an electrical circuit, one end of which is connected to the bus;
The DC power supply system according to claim 2, further comprising: a resistance element having one end connected to the switch side and the other end grounded.
前記模擬地絡電流供給手段は、
前記正極側の母線および前記負極側の母線の両母線に対して着脱自在な接続部と、
前記接続部と一端が接続され、電路の開閉を行う開閉器と、
一端が前記開閉器の前記接続部側とは異なる側に接続され、他端が接地される抵抗素子とを備えることを特徴とする請求項1記載の直流電源給電システム。
The simulated ground fault current supply means includes
A detachable connection for both the positive side bus and the negative side bus,
A switch that is connected at one end to the connection part and opens and closes an electric circuit;
The DC power supply system according to claim 1, further comprising: a resistance element having one end connected to a side different from the connection portion side of the switch and the other end grounded.
前記抵抗素子は可変抵抗であることを特徴とする請求項4または5に記載の直流電源給電システム。 6. The DC power supply system according to claim 4, wherein the resistance element is a variable resistance. 直流電源が接続される正極側の母線および負極側の母線の間に接続され、前記直流電源を分配して供給する直流電源回路と、前記直流電源の供給先で生じた地絡を検出する直流地絡検出手段とを具備する直流電源給電システムの前記直流電源の供給先で生じた地絡の発生箇所を特定する方法であり、
前記直流地絡検出手段が前記正極側および前記負極側の何れかの極で地絡を検出した場合に、前記地絡が生じた箇所に模擬的な地絡電流を通電させる模擬地絡電流供給手段を前記直流地絡検出手段が地絡を検出した極と異なる極側の母線と大地との間に接続するステップと、
前記直流地絡検出手段が地絡を検出した極と異なる極側の母線を地絡することで、前記地絡が生じた箇所に模擬的な地絡電流を通電させるステップと、
前記直流電源の供給先を通電する電流を計測し、通電させた前記模擬的な地絡電流が流れる前記直流電源の供給先を特定するステップと、を備えることを特徴とする直流地絡箇所調査方法。
A DC power supply circuit that is connected between a positive bus and a negative bus connected to a DC power supply, distributes and supplies the DC power, and a DC that detects a ground fault occurring at the DC power supply destination. It is a method of identifying the occurrence location of a ground fault occurring at the supply destination of the DC power supply of the DC power supply system comprising a ground fault detection means,
When the DC ground fault detection means detects a ground fault at one of the positive electrode side and the negative electrode side, a simulated ground fault current supply for supplying a simulated ground fault current to the location where the ground fault occurs Connecting a means between the ground and the bus on the pole side different from the pole where the DC ground fault detection means has detected a ground fault;
The DC ground fault detection means energizes a simulated ground fault current at the location where the ground fault has occurred by grounding a bus on the pole side different from the pole where the ground fault is detected;
Measuring a current flowing through the supply destination of the DC power supply, and specifying the supply destination of the DC power supply through which the simulated ground fault current flows through the DC power supply fault investigation, Method.
前記模擬的な地絡電流が流れる前記直流電源の供給先を特定するステップは、
前記正極側の母線および前記負極側の母線の各々に接続される複数のフィーダのうち、通電させた前記模擬的な地絡電流が流れるフィーダを特定するステップと、
電流計測装置を用いて、特定されたフィーダから前記直流電源の供給先へ枝分かれする枝線を、前記正極側と前記負極側とで1対とし、対単位で前記枝線を流れる電流を計測し、前記模擬的な地絡電流を通電させる前後で電流値が変化している前記枝線の対を特定するステップと、
前記模擬的な地絡電流を通電させる前後で電流値が変化している前記枝線の対と接続される前記直流電源の供給先を、前記模擬的な地絡電流が流れる前記直流電源の供給先として特定するステップとを備えることを特徴とする請求項7記載の直流地絡箇所調査方法。
The step of specifying the supply destination of the DC power source through which the simulated ground fault current flows is,
Identifying a feeder through which the simulated ground fault current flows among a plurality of feeders connected to each of the positive electrode side bus and the negative electrode side bus;
Using a current measuring device, branch lines branching from the identified feeder to the supply destination of the DC power source are paired on the positive electrode side and the negative electrode side, and the current flowing through the branch line is measured in pairs. Identifying the pair of branch lines whose current value has changed before and after applying the simulated ground fault current;
Supply destination of the DC power source through which the simulated ground fault current flows is defined as a supply destination of the DC power source connected to the pair of branch lines whose current value is changed before and after the simulation ground fault current is passed. The DC ground fault investigation method according to claim 7, further comprising a step of specifying as a destination.
前記模擬的な地絡電流が流れるフィーダの特定は、
前記正極側の母線および前記負極側の母線の各々に接続される複数のフィーダの各々に漏電検出手段が取り付けられる場合には、前記漏電検出手段の漏電検出の結果、および電流計測装置を用いて、前記複数のフィーダのうち、前記直流地絡検出手段が地絡を検出したフィーダの電流を計測し、前記模擬的な地絡電流を通電させる前後で電流値が変化しているフィーダを特定した結果の少なくとも一方の結果に基づいて行われ、
前記正極側の母線および前記負極側の母線の各々に接続される複数のフィーダの各々に漏電検出手段が取り付けられていない場合には、電流計測装置を用いて、前記複数のフィーダのうち、前記直流地絡検出手段が地絡を検出したフィーダの電流を計測し、前記模擬的な地絡電流を通電させる前後で電流値が変化しているフィーダを特定した結果に基づいて行われることを特徴とする請求項8記載の直流地絡箇所調査方法。
The feeder through which the simulated ground fault current flows is specified as follows:
When a leakage detection means is attached to each of the plurality of feeders connected to each of the positive-side bus and the negative-side bus, the result of the leakage detection by the leakage detection means and a current measuring device are used. Among the plurality of feeders, the current of the feeder in which the DC ground fault detection means detects the ground fault is measured, and the feeder whose current value is changed before and after the simulated ground fault current is energized is identified. Based on at least one of the results,
In the case where a leakage detecting means is not attached to each of the plurality of feeders connected to each of the positive side bus and the negative side bus, using the current measuring device, among the plurality of feeders, The DC ground fault detection means measures the current of the feeder that has detected the ground fault, and is performed based on the result of specifying the feeder whose current value has changed before and after applying the simulated ground fault current. The method for investigating a DC ground fault according to claim 8.
前記枝線の対の特定は、
前記電流を計測する対数を変化させて計測を複数回行うことにより、前記模擬的な地絡電流を通電させる前後で電流値が変化している前記枝線の対を絞り込むことにより行われることを特徴とする請求項8記載の直流地絡箇所調査方法。
The branch line pair is identified as follows:
It is performed by narrowing down the pairs of branch lines whose current values are changing before and after applying the simulated ground fault current by changing the logarithm for measuring the current a plurality of times. The method for investigating a DC ground fault according to claim 8, wherein:
前記枝線の対の絞り込みは、
電流計測時に、被計測対象となる前記枝線の対の全てを複数グループに分割し、各グループに対して前記枝線を流れる電流を計測し、前記模擬的な地絡電流を通電させる前後で電流値が変化していないグループを次回電流計測の被計測対象から除外することによって行なわれることを特徴とする請求項10記載の直流地絡箇所調査方法。
The narrowing of the pair of branch lines is as follows:
At the time of current measurement, all of the branch line pairs to be measured are divided into a plurality of groups, the current flowing through the branch line is measured for each group, and before and after the simulated ground fault current is applied. The method for investigating a DC ground fault according to claim 10, wherein the DC ground fault investigation method is performed by excluding a group whose current value has not changed from a measurement target for next current measurement.
JP2015134362A 2015-07-03 2015-07-03 Dc power supply system, and dc ground fault point examination method Pending JP2017017922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015134362A JP2017017922A (en) 2015-07-03 2015-07-03 Dc power supply system, and dc ground fault point examination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015134362A JP2017017922A (en) 2015-07-03 2015-07-03 Dc power supply system, and dc ground fault point examination method

Publications (1)

Publication Number Publication Date
JP2017017922A true JP2017017922A (en) 2017-01-19

Family

ID=57829393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015134362A Pending JP2017017922A (en) 2015-07-03 2015-07-03 Dc power supply system, and dc ground fault point examination method

Country Status (1)

Country Link
JP (1) JP2017017922A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108549044A (en) * 2018-03-27 2018-09-18 广东电网有限责任公司中山供电局 A kind of transformer station direct current system insulation route selection tester
CN108663602A (en) * 2018-05-14 2018-10-16 山东大学 Flexible direct current power distribution network monopole failure line selection and Section Location and system
JP2019060726A (en) * 2017-09-27 2019-04-18 東京電力ホールディングス株式会社 Forcible grounding device and ground fault surveying device
CN111736091A (en) * 2020-05-27 2020-10-02 湖南省湘电试验研究院有限公司 Unstable high-resistance ground fault simulation circuit based on RTDS platform and application method thereof
CN112285492A (en) * 2020-12-31 2021-01-29 中国电力科学研究院有限公司 Power distribution network ground fault test system and method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019060726A (en) * 2017-09-27 2019-04-18 東京電力ホールディングス株式会社 Forcible grounding device and ground fault surveying device
JP7013770B2 (en) 2017-09-27 2022-02-01 東京電力ホールディングス株式会社 Forced grounding device and ground fault search device
CN108549044A (en) * 2018-03-27 2018-09-18 广东电网有限责任公司中山供电局 A kind of transformer station direct current system insulation route selection tester
CN108549044B (en) * 2018-03-27 2023-08-25 广东电网有限责任公司中山供电局 Insulation line selection tester for direct current system of transformer substation
CN108663602A (en) * 2018-05-14 2018-10-16 山东大学 Flexible direct current power distribution network monopole failure line selection and Section Location and system
CN111736091A (en) * 2020-05-27 2020-10-02 湖南省湘电试验研究院有限公司 Unstable high-resistance ground fault simulation circuit based on RTDS platform and application method thereof
CN112285492A (en) * 2020-12-31 2021-01-29 中国电力科学研究院有限公司 Power distribution network ground fault test system and method
CN112285492B (en) * 2020-12-31 2021-04-13 中国电力科学研究院有限公司 Power distribution network ground fault test system and method

Similar Documents

Publication Publication Date Title
JP2017017922A (en) Dc power supply system, and dc ground fault point examination method
CN108776284B (en) Single-phase earth fault protection method for small-resistance earth system
US10120012B2 (en) Method and apparatus for detecting fault in a mixed configuration power transmission line
EP1939638A1 (en) System and method for determining location of phase-to-earth fault
US20130088240A1 (en) Method and apparatus for determining an insulation resistance in grounded it systems
JP2007116893A (en) Device and method for detecting fault section by comparison of phase difference, and magnitude of zero-phase current in non-grounded distribution system
CN109901024A (en) A kind of Fault Locating Method of aerial-cable hybrid line
EP2533060B1 (en) Directional detection of resistive earth fault and medium-voltage conductor breakage
EP3369150B1 (en) Method and system for protection in a mixed line
US20200103452A1 (en) Fault-type identification in an electric power delivery system using composite signals
US9819196B2 (en) Power distribution system capable of automatic fault detection in a distributed manner and method thereof
CN105116290B (en) The localization method of single-phase grounded malfunction in grounded system of low current section
CN103872679A (en) Identification method for power grid Thevenin equivalent model parameter under condition of weak signals
CN109541369A (en) A kind of power grid one-way earth fault detection system and its detection method
DE102010036847B4 (en) Method and device for external current detection
CN108051699A (en) A kind of secondary loop of mutual inductor of transformer substation exception live detection method and system
CN105067960A (en) Distribution network fault location system based on big data and method thereof
CN110879332B (en) Single-phase earth fault phase selection method suitable for small current grounding system
CN108493909A (en) The detection method of Distribution Network Failure based on Voltage Drop
CN108051693A (en) A kind of method of the raising earth fault judgment accuracy based on TAS devices
EP3232207A1 (en) Method and system for measuring imbalances in an electrical grid
Vianna et al. A method to detect and locate faulted area in distribution systems using the existing measurements structure
CN205015427U (en) Neutral point multipoint earthing detection device based on high accuracy testing electric current
JP2014142230A (en) High voltage insulation monitoring method and high voltage insulation monitoring device
EP2390980B1 (en) Method and device for detecting an intermittent earth fault in a multiple feeder system