JP2017015707A - Axial force measuring apparatus, axial force measuring method, ultrasonic inspection apparatus, ultrasonic inspection method and vertical probe fixture used for the same - Google Patents
Axial force measuring apparatus, axial force measuring method, ultrasonic inspection apparatus, ultrasonic inspection method and vertical probe fixture used for the same Download PDFInfo
- Publication number
- JP2017015707A JP2017015707A JP2016131979A JP2016131979A JP2017015707A JP 2017015707 A JP2017015707 A JP 2017015707A JP 2016131979 A JP2016131979 A JP 2016131979A JP 2016131979 A JP2016131979 A JP 2016131979A JP 2017015707 A JP2017015707 A JP 2017015707A
- Authority
- JP
- Japan
- Prior art keywords
- axial force
- vertical probe
- long member
- wave
- interference frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000523 sample Substances 0.000 title claims abstract description 273
- 238000000034 method Methods 0.000 title claims abstract description 62
- 238000007689 inspection Methods 0.000 title claims abstract description 26
- 238000005259 measurement Methods 0.000 claims abstract description 124
- 230000010355 oscillation Effects 0.000 claims abstract description 104
- 238000012545 processing Methods 0.000 claims abstract description 41
- 238000012360 testing method Methods 0.000 claims abstract description 37
- 238000004364 calculation method Methods 0.000 claims description 45
- 230000005540 biological transmission Effects 0.000 claims description 26
- 238000000691 measurement method Methods 0.000 claims description 4
- 230000036544 posture Effects 0.000 description 47
- 238000010586 diagram Methods 0.000 description 12
- 238000005305 interferometry Methods 0.000 description 10
- 238000005070 sampling Methods 0.000 description 10
- 230000001902 propagating effect Effects 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 5
- 230000002452 interceptive effect Effects 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000013480 data collection Methods 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 230000005489 elastic deformation Effects 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000010721 machine oil Substances 0.000 description 1
- 238000001028 reflection method Methods 0.000 description 1
- 238000009774 resonance method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Force Measurement Appropriate To Specific Purposes (AREA)
- Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
Abstract
Description
本発明は、軸力測定装置、軸力測定方法、超音波検査装置、超音波検査方法及びこれに用いる垂直探触子固定治具に関する。さらに詳しくは、長尺部材の一端から超音波を入射すると共に前記長尺部材の他端から反射した反射波を受信する探触子と、前記超音波を発生させる超音波発生器と、受信した反射波の信号を処理し前記長尺部材の軸力を測定する信号処理部とを備える軸力測定装置、軸力測定方法、超音波検査装置、超音波検査方法及びこれに用いる垂直探触子固定治具に関する。 The present invention relates to an axial force measuring device, an axial force measuring method, an ultrasonic inspection device, an ultrasonic inspection method, and a vertical probe fixing jig used therefor. More specifically, a probe that receives ultrasonic waves from one end of the long member and receives reflected waves reflected from the other end of the long member, an ultrasonic generator that generates the ultrasonic waves, and An axial force measuring device, an axial force measuring method, an ultrasonic inspection device, an ultrasonic inspection method, and a vertical probe used therefor, comprising a signal processing unit that processes a reflected wave signal and measures the axial force of the long member It relates to a fixture.
従来、上述の如き超音波を用いた軸力測定方法として、例えば、特許文献1に示す如き方法が知られている。ボルトに軸力が加わるとボルトは伸び、ボルトの伸長等によって超音波の伝播時間も延びる。そこで、特許文献1の方法では、ボルトの頭部から超音波パルスを入射しボルト端部で反射して戻ってくる超音波の伝播時間を測定し、この伝播時間に基づきボルトの軸力を測定する。しかし、ボルトの長さが短い場合、締め付けによるボルトの伸長も短くなり、精度が低下する場合があった。また、振幅や波形のひずみにより時刻を読み違えるおそれもあった。 Conventionally, as an axial force measurement method using ultrasonic waves as described above, for example, a method shown in Patent Document 1 is known. When an axial force is applied to the bolt, the bolt is extended, and the propagation time of the ultrasonic wave is extended due to the extension of the bolt. Therefore, in the method of Patent Document 1, an ultrasonic pulse is incident from the head of the bolt and the propagation time of the ultrasonic wave reflected and returned from the bolt end is measured, and the axial force of the bolt is measured based on this propagation time. To do. However, when the length of the bolt is short, the extension of the bolt by tightening is also shortened, and the accuracy may be lowered. There is also a risk of misreading the time due to amplitude or waveform distortion.
また、他の方法として、ボルト頭部から入射する超音波の発振周波数を掃引してボルトの長さに応じた共振周波数を測定する方法(共振法)も知られている。この方法では、軸力によって生じるボルト長さの変化に応じた共振周波数を検知するために、共振状態を持続させるための振動エネルギーを絶えず供給しなければならない。 As another method, there is also known a method (resonance method) in which the oscillation frequency of ultrasonic waves incident from the bolt head is swept to measure the resonance frequency corresponding to the length of the bolt. In this method, in order to detect the resonance frequency corresponding to the change in the bolt length caused by the axial force, vibration energy for maintaining the resonance state must be continuously supplied.
かかる従来の実情に鑑みて、本発明は、簡素な構成でありながら精度よく干渉周波数を測定し、軸力等の試験体の状態をより正確に測定可能な軸力測定装置、軸力測定方法、超音波検査装置、超音波検査方法及びこれに用いる垂直探触子固定治具を提供することを目的とする。 In view of such a conventional situation, the present invention is an axial force measuring device and an axial force measuring method capable of accurately measuring an interference frequency with a simple configuration and more accurately measuring a state of a test body such as an axial force. An object of the present invention is to provide an ultrasonic inspection apparatus, an ultrasonic inspection method, and a vertical probe fixing jig used therefor.
上記目的を達成するため、本発明に係る軸力測定装置の特徴は、長尺部材の一端から超音波を入射すると共に前記長尺部材の他端から反射した反射波を受信する探触子と、前記超音波を発生させる超音波発生器と、受信した反射波の信号を処理し前記長尺部材の軸力を測定する信号処理部とを備える構成において、前記長尺部材に対する前記垂直探触子の相対位置及び前記垂直探触子の相対姿勢を固定する垂直探触子固定治具を有し、前記超音波発生器は、バースト波を発生させるものであり、前記信号処理部は、発振周波数毎に前記反射波の伝播時間から次の反射波の伝播時間までの測定時間における前記バースト波の信号強度を測定する信号強度測定部を備え、前記垂直探触子固定治具は、前記長尺部材に対する前記垂直探触子の校正データを作成する際の前記バースト波の送受信時又は前記長尺部材の無負荷状態での前記バースト波の送受信時と、前記長尺部材の負荷状態における前記バースト波の送受信時の2回で、前記相対位置及び前記相対姿勢を一致させるものであり、前記信号処理部は、前記バースト波を前記発振周波数を変化させながら入射させて前記信号強度測定部により前記発振周波数毎に前記信号強度を測定し、測定した発振周波数毎の信号強度から所定の干渉周波数範囲内で最大の信号強度となる極大干渉周波数を求め、求めた極大干渉周波数に基づいて前記長尺部材の軸力を測定することにある。 In order to achieve the above object, the axial force measuring device according to the present invention is characterized in that a probe that receives ultrasonic waves from one end of a long member and receives reflected waves reflected from the other end of the long member; And an ultrasonic generator for generating the ultrasonic wave, and a signal processing unit for processing a signal of the received reflected wave and measuring an axial force of the long member. A vertical probe fixing jig for fixing a relative position of the child and a relative posture of the vertical probe, the ultrasonic generator generates a burst wave, and the signal processing unit oscillates A signal intensity measuring unit for measuring the signal intensity of the burst wave in a measurement time from the propagation time of the reflected wave to the propagation time of the next reflected wave for each frequency; Calibration data of the vertical probe with respect to the scale member At the time of transmission and reception of the burst wave in the unloaded state of the long member, and at the time of transmission and reception of the burst wave in the loaded state of the long member, The relative position and the relative attitude are matched, and the signal processing unit makes the burst wave incident while changing the oscillation frequency, and the signal intensity measurement unit measures the signal intensity for each oscillation frequency. Determining the maximum interference frequency that gives the maximum signal intensity within a predetermined interference frequency range from the measured signal intensity for each oscillation frequency, and measuring the axial force of the long member based on the determined maximum interference frequency. is there.
本発明に適用する干渉法は、長尺部材を伝播する超音波が互いに干渉して生じる合成波の干渉周波数の変化を検知する。ここで、発明者らの実験によれば、図16に示すように、干渉周波数の測定において、長尺部材に対する垂直探触子の相対位置及び相対姿勢を一致させた場合、ばらつきを符号d1〜d4で示す程度に抑制できるが、角度(相対姿勢)を一致させない場合、最大で符号Dで示すばらつきが想定される。すなわち、長尺部材に対する垂直探触子の相対位置及び相対姿勢を一致させることで、測定値のばらつきを抑制できることが分かった。
上記構成によれば、長尺部材に対する垂直探触子の相対位置及び垂直探触子の相対姿勢を固定する垂直探触子固定治具を有し、長尺部材に対する探触子の校正データを作成する際のバースト波の送受信時又は長尺部材の無負荷状態でのバースト波の送受信時と、長尺部材の負荷状態におけるバースト波の送受信時の2回で、相対位置及び前記相対姿勢を一致させるので、垂直探触子の相対位置及び相対姿勢の不一致による干渉周波数の測定誤差を抑制することができる。よって、簡素な構成ながらも高精度に軸力を測定することが可能となる。
The interferometry applied to the present invention detects a change in the interference frequency of a synthetic wave that is generated when ultrasonic waves propagating through a long member interfere with each other. Here, according to the experiments by the inventors, as shown in FIG. 16, in the measurement of the interference frequency, when the relative position and the relative posture of the vertical probe with respect to the long member are matched, the variation is denoted by d1 to d1. Although it can be suppressed to the extent indicated by d4, when the angles (relative postures) are not matched, a maximum variation indicated by the symbol D is assumed. That is, it was found that the variation in measured values can be suppressed by matching the relative position and relative posture of the vertical probe with respect to the long member.
According to the above configuration, the vertical probe fixing jig for fixing the relative position of the vertical probe and the relative attitude of the vertical probe with respect to the long member is provided, and calibration data of the probe with respect to the long member is obtained. The relative position and the relative attitude are determined twice, at the time of transmission / reception of a burst wave when creating or transmitting / receiving a burst wave when the long member is unloaded, and at the time of transmission / reception of the burst wave when the long member is loaded. Since they are matched, the measurement error of the interference frequency due to the mismatch between the relative position and the relative posture of the vertical probe can be suppressed. Therefore, it is possible to measure the axial force with high accuracy with a simple configuration.
前記信号処理部は、前記長尺部材の軸力の無負荷状態における信号強度が最大となる無負荷極大干渉周波数と既知の軸力の負荷状態における信号強度が最大となる負荷極大干渉周波数との差分と前記既知の軸力との関係を示す軸力算出式をさらに有し、前記軸力算出式は、前記無負荷状態及び前記負荷状態の全てで前記垂直探触子固定治具により前記相対位置及び前記相対姿勢を一致させた状態で作成されたものであり、前記信号強度測定部は、前記垂直探触子が前記垂直探触子固定治具により締結された長尺部材の一端に前記軸力算出式の作成時における前記相対位置及び前記相対姿勢と一致して取り付けられた状態で、前記発振周波数毎に前記信号強度を測定し、前記信号処理部は、測定した発振周波数毎の信号強度から所定の干渉周波数範囲内で最大の信号強度となる極大干渉周波数を求め、求めた極大干渉周波数と前記軸力算出式により前記長尺部材の軸力を測定するとよい。 The signal processing unit includes an unloaded maximum interference frequency at which the signal strength in the unloaded state of the axial force of the long member is maximized and a loaded maximum interference frequency at which the signal strength in the loaded state of a known axial force is maximized. An axial force calculation formula indicating a relationship between the difference and the known axial force is further included, and the axial force calculation formula is determined by the vertical probe fixing jig in the unloaded state and the loaded state. The signal strength measurement unit is created in a state where the position and the relative posture are matched, and the signal intensity measuring unit is attached to one end of a long member to which the vertical probe is fastened by the vertical probe fixing jig. The signal processing unit measures the signal intensity for each oscillation frequency in a state of being attached in accordance with the relative position and the relative posture at the time of creating the axial force calculation formula, and the signal processing unit measures the signal for each measured oscillation frequency. Interference frequency from intensity Seeking a maximum interference frequency with the maximum signal strength in the range, the maximal interfering frequencies determined the axial force calculation formula may measure the axial force of the long member.
これにより、軸力算出式は、無負荷状態及び負荷状態の全てで垂直探触子固定治具により探触子の相対位置及び相対姿勢を一致させた状態で作成されたものであり、且つ、検査時において垂直探触子が垂直探触子固定治具により締結された長尺部材の一端に軸力算出式の作成時における相対位置及び相対姿勢と一致して取り付けられた状態で発振周波数毎に信号強度を測定するので、垂直探触子の相対位置及び相対姿勢の不一致による干渉周波数の測定誤差を抑制することができる。よって、簡素な構成ながらも高精度に軸力を測定することが可能となる。 Thereby, the axial force calculation formula is created in a state in which the relative position and the relative posture of the probe are matched by the vertical probe fixing jig in all of the unloaded state and the loaded state, and At the time of inspection, the vertical probe is attached to one end of the long member fastened by the vertical probe fixing jig in accordance with the relative position and relative posture at the time of creating the axial force calculation formula for each oscillation frequency. In addition, since the signal intensity is measured, the measurement error of the interference frequency due to the mismatch between the relative position and the relative posture of the vertical probe can be suppressed. Therefore, it is possible to measure the axial force with high accuracy with a simple configuration.
また、前記信号強度測定部は、前記長尺部材の軸力の無負荷状態における前記信号強度を前記発振周波数毎に測定すると共に、前記垂直探触子が前記垂直探触子固定治具により前記無荷重状態の長尺部材に既知の軸力を負荷して負荷状態とした長尺部材の一端に前記無荷重状態の測定時の前記相対位置及び前記相対姿勢と一致して取り付けられた状態で、前記発振周波数毎に前記信号強度を測定し、且つ前記垂直探触子が前記垂直探触子固定治具により締結された長尺部材の一端に前記無荷重状態の測定時の前記相対位置及び前記相対姿勢と一致して取り付けられた状態で、前記信号強度を前記発振周波数毎に測定し、前記信号処理部は、測定した発振周波数毎の信号強度から前記無負荷状態において最大の信号強度となる無負荷極大干渉周波数及び前記負荷状態において最大の信号強度となる負荷極大干渉周波数を求め、求めた無負荷極大干渉周波数と負荷極大干渉周波数との差分と前記既知の軸力との関係を示す軸力算出式を作成し、測定した発振周波数毎の信号強度から所定の干渉周波数範囲内で最大の信号強度となる極大干渉周波数を求め、求めた極大干渉周波数と前記軸力算出式により前記長尺部材の軸力を測定してもよい。 In addition, the signal strength measuring unit measures the signal strength in an unloaded state of the axial force of the long member for each oscillation frequency, and the vertical probe is moved by the vertical probe fixing jig. In a state in which a known axial force is applied to a long member in an unloaded state and attached to one end of the elongated member in a loaded state in accordance with the relative position and the relative posture at the time of measurement in the unloaded state Measuring the signal intensity for each oscillation frequency, and the relative position when the no-load state is measured at one end of a long member to which the vertical probe is fastened by the vertical probe fixing jig; The signal strength is measured for each oscillation frequency in a state of being attached in conformity with the relative posture, and the signal processing unit determines the maximum signal strength in the no-load state from the measured signal strength for each oscillation frequency. No-load maximum interference circumference And an axial force calculation formula indicating the relationship between the difference between the obtained no-load maximum interference frequency and the load maximum interference frequency and the known axial force. The maximum interference frequency that is the maximum signal strength within a predetermined interference frequency range is determined from the signal intensity for each oscillation frequency that has been created and measured, and the axial force of the long member is determined by the calculated maximum interference frequency and the axial force calculation formula. May be measured.
これにより、長尺部材の軸力の無負荷状態及び負荷状態のそれぞれで垂直探触子固定治具により探触子の相対位置及び相対姿勢を一致させ、且つ、検査時において垂直探触子が垂直探触子固定治具により締結された長尺部材の一端に無負荷状態の測定時における相対位置及び相対姿勢と一致して取り付けられた状態で発振周波数毎に信号強度を測定するので、垂直探触子の相対位置及び相対姿勢の不一致による干渉周波数の測定誤差を抑制することができる。よって、簡素な構成ながらも高精度に軸力を測定することが可能となる。 Thus, the relative position and relative position of the probe are matched by the vertical probe fixing jig in the unloaded state and the loaded state of the axial force of the long member, and the vertical probe is The signal strength is measured at each oscillation frequency in a state where it is attached to one end of a long member fastened by a vertical probe fixing jig in accordance with the relative position and relative posture at the time of measurement in the no-load state. The measurement error of the interference frequency due to the mismatch between the relative position and the relative posture of the probe can be suppressed. Therefore, it is possible to measure the axial force with high accuracy with a simple configuration.
また、前記超音波発生器は、前記バースト波と前記バースト波とは異なる超音波の2種の超音波を発生させるものであり、前記信号処理部は、前記異なる超音波の伝播時間を測定する伝播時間測定部と、発振周波数毎に前記反射波の伝播時間から次の反射波の伝播時間までの測定時間における前記バースト波の信号強度を測定する信号強度測定部と、既知の軸力に対する前記伝播時間を求める第一マスターカーブと、前記既知の軸力に対する前記信号強度が最大となる極大干渉周波数を求める第二マスターカーブとを備え、前記第二マスターカーブは、前記既知の軸力の負荷状態の全てで前記垂直探触子固定治具により前記相対位置及び前記相対姿勢を一致させた状態で作成されたものであり、前記伝播時間測定部は、締結された長尺部材に前記異なる超音波を入射させて前記伝播時間を測定し、前記信号強度測定部は、前記垂直探触子が前記垂直探触子固定治具により締結された長尺部材の一端に前記第二マスターカーブの作成時における前記相対位置及び前記相対姿勢と一致して取り付けられた状態で、前記発振周波数毎に前記信号強度を測定し、前記信号処理部は、前記第一マスターカーブから測定した伝播時間における概略軸力を求め、前記第二マスターカーブから前記概略軸力における干渉周波数範囲を求め、測定した発振周波数毎の信号強度から前記干渉周波数範囲内で最大の信号強度となる極大干渉周波数を求め、求めた極大干渉周波数と前記第二マスターカーブにより前記長尺部材の軸力を測定するように構成してもよい。 The ultrasonic generator generates two types of ultrasonic waves, which are different from the burst wave and the burst wave, and the signal processing unit measures the propagation time of the different ultrasonic waves. A propagation time measurement unit, a signal intensity measurement unit for measuring the signal intensity of the burst wave in a measurement time from the propagation time of the reflected wave to the propagation time of the next reflected wave for each oscillation frequency, and the above-described known axial force A first master curve for obtaining a propagation time; and a second master curve for obtaining a maximum interference frequency that maximizes the signal intensity with respect to the known axial force, wherein the second master curve is a load of the known axial force. It was created in a state where the relative position and the relative posture were matched by the vertical probe fixing jig in all the states, and the propagation time measuring unit was attached to the fastened long member The propagation time is measured by injecting different ultrasonic waves, and the signal intensity measuring unit is configured to connect the second master to one end of a long member to which the vertical probe is fastened by the vertical probe fixing jig. The signal strength is measured for each oscillation frequency in a state of being attached in accordance with the relative position and the relative posture at the time of creating the curve, and the signal processing unit measures the propagation time measured from the first master curve. The approximate axial force is obtained, the interference frequency range in the approximate axial force is obtained from the second master curve, and the maximum interference frequency that is the maximum signal strength within the interference frequency range is obtained from the measured signal strength for each oscillation frequency. The axial force of the long member may be measured based on the obtained maximum interference frequency and the second master curve.
上記構成によれば、信号処理部は、バースト波とは異なる超音波の伝播時間を測定する伝播時間測定部と、発振周波数毎に反射波の伝播時間から次の反射波の伝播時間までの測定時間におけるバースト波とは異なる超音波の信号強度を測定する信号強度測定部と、既知の軸力に対する伝播時間を求める第一マスターカーブと、既知の軸力に対する信号強度が最大となる極大干渉周波数を求める第二マスターカーブとを備える。そして、例えば図23に示すように、第一マスターカーブM1から測定した第二バースト波の伝播時間Tにおける概略軸力F’を求め、第二マスターカーブM2から求めた概略軸力F’における干渉周波数範囲frを求め、測定した発振周波数毎の信号強度から求めた干渉周波数範囲fr内で最大の信号強度となる極大干渉周波数Qを求める。そして、求めた極大干渉周波数Qと第二マスターカーブM2により長尺部材の軸力を算出する。このように、バースト波とは異なる超音波の伝播時間から概略軸力を求めてその概略軸力から干渉周波数範囲を求めるので、バースト波の極大干渉周波数を予測でき、ピーク値等の読み間違えによる誤測定を防止することができる。しかも、第二マスターカーブは、既知の軸力の負荷状態の全てで垂直探触子固定治具により相対位置及び相対姿勢を一致させた状態で作成されたものであり、検査時において垂直探触子が垂直探触子固定治具により締結された長尺部材の一端に第二マスターカーブの作成時における相対位置及び相対姿勢と一致して取り付けられた状態で発振周波数毎に信号強度を測定するので、垂直探触子の相対位置及び相対姿勢の不一致による干渉周波数の測定誤差を抑制することができる。よって、簡素な構成ながらも高精度に軸力を測定することが可能となる。 According to the above configuration, the signal processing unit measures the propagation time of the ultrasonic wave different from the burst wave and the measurement from the propagation time of the reflected wave to the propagation time of the next reflected wave for each oscillation frequency. A signal strength measurement unit that measures the signal strength of ultrasonic waves different from burst waves in time, a first master curve that determines the propagation time for a known axial force, and a maximum interference frequency that maximizes the signal strength for a known axial force And a second master curve. Then, for example, as shown in FIG. 23, the approximate axial force F ′ at the propagation time T of the second burst wave measured from the first master curve M1 is obtained, and the interference at the approximate axial force F ′ obtained from the second master curve M2 is obtained. The frequency range fr is obtained, and the maximum interference frequency Q that provides the maximum signal strength within the interference frequency range fr obtained from the measured signal strength for each oscillation frequency is obtained. Then, the axial force of the long member is calculated from the obtained maximum interference frequency Q and the second master curve M2. In this way, since the approximate axial force is obtained from the propagation time of ultrasonic waves different from the burst wave and the interference frequency range is obtained from the approximate axial force, the maximum interference frequency of the burst wave can be predicted, and the peak value etc. Incorrect measurement can be prevented. In addition, the second master curve was created in a state where the relative position and relative orientation were matched by the vertical probe fixing jig in all known axial force loading states. The signal strength is measured for each oscillation frequency in a state where the child is attached to one end of the long member fastened by the vertical probe fixing jig in accordance with the relative position and the relative posture at the time of creating the second master curve. Therefore, it is possible to suppress the measurement error of the interference frequency due to the mismatch between the relative position and the relative posture of the vertical probe. Therefore, it is possible to measure the axial force with high accuracy with a simple configuration.
さらに、前記超音波発生器は、前記バースト波と前記バースト波とは異なる超音波の2種の超音波を発生させるものであり、前記信号処理部は、前記異なる超音波の伝播時間を測定する伝播時間測定部と、発振周波数毎に前記反射波の伝播時間から次の反射波の伝播時間までの測定時間における前記バースト波の信号強度を測定する信号強度測定部と、既知の軸力に対する前記伝播時間を求める第一マスターカーブと、前記既知の軸力に対する前記信号強度が最大となる極大干渉周波数を求める第二マスターカーブとを備え、前記第二マスターカーブは、前記既知の軸力の負荷状態の全てで前記垂直探触子固定治具により前記相対位置及び前記相対姿勢を一致させて求められたものであり、前記伝播時間測定部は、締結された長尺部材に前記異なる超音波を入射させて前記伝播時間を測定し、前記信号強度測定部は、前記垂直探触子が前記垂直探触子固定治具により締結された長尺部材の一端に前記第二マスターカーブの作成時における前記相対位置及び前記相対姿勢と一致して取り付けられた状態で、前記信号強度を前記発振周波数毎に測定し、前記信号処理部は、前記極大干渉周波数を求め、前記第二マスターカーブから求めた極大干渉周波数における概略軸力を求め、前記第一マスターカーブから求めた前記概略軸力における前記伝播時間範囲を求め、測定した伝播時間から前記伝播時間範囲内で最大の信号強度となる極大伝播時間を求め、求めた極大伝播時間と前記第一マスターカーブにより前記長尺部材の軸力を測定するように構成してもよい。 Further, the ultrasonic generator generates two types of ultrasonic waves, which are different from the burst wave and the burst wave, and the signal processing unit measures the propagation time of the different ultrasonic waves. A propagation time measurement unit, a signal intensity measurement unit for measuring the signal intensity of the burst wave in a measurement time from the propagation time of the reflected wave to the propagation time of the next reflected wave for each oscillation frequency, and the above-described known axial force A first master curve for obtaining a propagation time; and a second master curve for obtaining a maximum interference frequency that maximizes the signal intensity with respect to the known axial force, wherein the second master curve is a load of the known axial force. In all of the states, the vertical probe fixing jig is used to match the relative position and the relative posture, and the propagation time measurement unit is attached to the fastened long member. The ultrasonic wave is incident to measure the propagation time, and the signal intensity measuring unit is connected to the second master curve at one end of a long member in which the vertical probe is fastened by the vertical probe fixing jig. The signal intensity is measured for each oscillation frequency in a state where the relative position and the relative posture at the time of creation are attached, and the signal processing unit obtains the maximum interference frequency, and the second master The approximate axial force at the maximum interference frequency obtained from the curve is obtained, the propagation time range in the approximate axial force obtained from the first master curve is obtained, and the maximum signal intensity within the propagation time range from the measured propagation time and The maximum propagation time may be obtained, and the axial force of the long member may be measured based on the obtained maximum propagation time and the first master curve.
上記構成によれば、信号処理部は、バースト波とは異なる超音波の伝播時間を測定する伝播時間測定部と、発振周波数毎に反射波の伝播時間から次の反射波の伝播時間までの測定時間におけるバースト波の信号強度を測定する信号強度測定部と、既知の軸力に対する伝播時間を求める第一マスターカーブと、既知の軸力に対する信号強度が最大となる極大干渉周波数を求める第二マスターカーブとを備える。そして、例えば図26に示すように、第二マスターカーブM2から求めたバースト波の極大干渉周波数Qにおける概略軸力F’を求め、第一マスターカーブM1から求めた概略軸力F’における伝播時間範囲trを求め、測定した伝播時間から伝播時間範囲tr内で最大の信号強度となる極大伝播時間T’を求める。そして、求めた極大伝播時間T’と第一マスターカーブM1により長尺部材の軸力を算出する。このように、バースト波の極大干渉周波数から概略軸力を求めてその概略軸力から伝播時間範囲を求めるので、バースト波とは異なる超音波の極大伝播時間を予測でき、ピーク値等の読み間違えによる誤測定を防止することができる。しかも、第二マスターカーブは、既知の軸力の負荷状態の全てで垂直探触子固定治具により相対位置及び相対姿勢を一致させた状態で作成されたものであり、検査時において垂直探触子が垂直探触子固定治具により締結された長尺部材の一端に第二マスターカーブの作成時における相対位置及び相対姿勢と一致して取り付けられた状態で発振周波数毎に信号強度を測定するので、垂直探触子の相対位置及び相対姿勢の不一致による干渉周波数の測定誤差を抑制することができる。よって、簡素な構成ながらも高精度に軸力を測定することが可能となる。 According to the above configuration, the signal processing unit measures the propagation time of the ultrasonic wave different from the burst wave and the measurement from the propagation time of the reflected wave to the propagation time of the next reflected wave for each oscillation frequency. A signal strength measurement unit that measures the signal strength of a burst wave in time, a first master curve that determines the propagation time for a known axial force, and a second master that determines the maximum interference frequency that maximizes the signal strength for a known axial force With curves. For example, as shown in FIG. 26, the approximate axial force F ′ at the maximum interference frequency Q of the burst wave obtained from the second master curve M2 is obtained, and the propagation time at the approximate axial force F ′ obtained from the first master curve M1 is obtained. A range tr is obtained, and a maximum propagation time T ′ having the maximum signal intensity within the propagation time range tr is obtained from the measured propagation time. Then, the axial force of the long member is calculated from the obtained maximum propagation time T ′ and the first master curve M1. In this way, since the approximate axial force is obtained from the maximum interference frequency of the burst wave and the propagation time range is obtained from the approximate axial force, the maximum propagation time of the ultrasonic wave different from the burst wave can be predicted, and the peak value etc. are misread. Can prevent erroneous measurement. In addition, the second master curve was created in a state where the relative position and relative orientation were matched by the vertical probe fixing jig in all known axial force loading states. The signal strength is measured for each oscillation frequency in a state where the child is attached to one end of the long member fastened by the vertical probe fixing jig in accordance with the relative position and the relative posture at the time of creating the second master curve. Therefore, it is possible to suppress the measurement error of the interference frequency due to the mismatch between the relative position and the relative posture of the vertical probe. Therefore, it is possible to measure the axial force with high accuracy with a simple configuration.
上記いずれかの構成において、前記垂直探触子固定治具は、治具の方位を指示する治具方位指示部を有し、前記長尺部材は、長尺部材の方位を指示する長尺部材方位指示部を有し、前記垂直探触子は、垂直探触子の方位を指示する垂直探触子方位指示部を有し、これら指示部を一致させるとよい。これにより、簡素ながら容易に垂直探触子の相対位置及び相対姿勢と一致させることができる。 In any one of the configurations described above, the vertical probe fixing jig has a jig azimuth indicating section that instructs the azimuth of the jig, and the long member is a long member that indicates the azimuth of the long member. It is preferable to have an azimuth indicating unit, and the vertical probe has a vertical probe azimuth indicating unit that indicates the azimuth of the vertical probe, and these indicating units are made to coincide. As a result, the relative position and the relative posture of the vertical probe can be easily made coincident with each other.
係る場合、前記長尺部材はボルトであり、前記垂直探触子固定治具は前記ボルト頭部に嵌合する嵌合部と前記垂直探触子を収容する収容部とを有し、前記嵌合部と前記収容部は連通するとよい。また、前記探触子方位指示部は、前記垂直探触子から水平方向に突出したケーブル基端部であってもよい。また、前記長尺部材はボルトであり、前記垂直探触子固定治具は前記ボルト頭部の上面と一致する底面と、前記垂直探触子を収容する収容部とを有し、前記底面には磁石が設けられていても構わない。 In this case, the long member is a bolt, and the vertical probe fixing jig has a fitting portion that fits into the bolt head portion and a housing portion that accommodates the vertical probe, and the fitting The joint portion and the housing portion are preferably communicated with each other. Further, the probe orientation instruction portion may be a cable base end portion protruding in a horizontal direction from the vertical probe. The elongated member is a bolt, and the vertical probe fixing jig has a bottom surface that coincides with the top surface of the bolt head, and a storage portion that stores the vertical probe. May be provided with a magnet.
また、上記目的を達成するため、本発明に係る軸力測定方法の特徴は、長尺部材の一端の垂直探触子から超音波を入射すると共に前記長尺部材の他端から反射した反射波を受信し、受信した反射波の信号に基づいて前記長尺部材の軸力を測定する方法において、前記超音波は、バースト波であり、前記長尺部材に対する前記垂直探触子の校正データを作成する際の前記バースト波の送受信時又は前記長尺部材の無負荷状態での前記バースト波の送受信時と、前記長尺部材の負荷状態における前記バースト波の送受信時の2回で、前記長尺部材に対する前記垂直探触子の相対位置及び前記垂直探触子の相対姿勢を一致させた状態で、前記バースト波を発振周波数を変化させながら入射させて前記発振周波数毎に前記反射波の伝播時間から次の反射波の伝播時間までの測定時間における前記バースト波の信号強度を測定し、測定した発振周波数毎の信号強度から所定の干渉周波数範囲内で最大の信号強度となる極大干渉周波数を求め、求めた極大干渉周波数に基づいて前記長尺部材の軸力を測定することにある。 In order to achieve the above object, the axial force measuring method according to the present invention is characterized in that an ultrasonic wave is incident from a vertical probe at one end of a long member and a reflected wave is reflected from the other end of the long member. And measuring the axial force of the elongated member based on the received reflected wave signal, the ultrasonic wave is a burst wave, and calibration data of the vertical probe with respect to the elongated member is obtained. When the burst wave is generated or transmitted twice, or when the burst wave is transmitted / received when the long member is unloaded, and when the burst wave is transmitted / received when the long member is loaded, the long wave Propagation of the reflected wave for each oscillation frequency by making the burst wave incident while changing the oscillation frequency in a state where the relative position of the vertical probe with respect to the scale member and the relative posture of the vertical probe are matched. Next anti from time The signal intensity of the burst wave during the measurement time until the wave propagation time is measured, and the maximum interference frequency that gives the maximum signal intensity within a predetermined interference frequency range is determined from the measured signal intensity for each oscillation frequency, and the maximum obtained The axial force of the long member is measured based on the interference frequency.
係る場合、予め、前記長尺部材の軸力の無負荷状態における信号強度が最大となる無負荷極大干渉周波数と既知の軸力の負荷状態における信号強度が最大となる負荷極大干渉周波数との差分と前記既知の軸力との関係を示す軸力算出式を作成する際に、前記無負荷状態及び前記負荷状態の全てで前記垂直探触子固定治具により前記相対位置及び前記相対姿勢を一致させ、前記垂直探触子を前記垂直探触子固定治具により締結された長尺部材の一端に前記軸力算出式の作成時における前記相対位置及び前記相対姿勢と一致させて取り付けた状態で前記信号強度を前記発振周波数毎に測定し、測定した発振周波数毎の信号強度から所定の干渉周波数範囲内で最大の信号強度となる極大干渉周波数を求め、求めた極大干渉周波数と前記軸力算出式により前記長尺部材の軸力を測定するとよい。 In such a case, in advance, the difference between the no-load maximum interference frequency at which the signal strength in the unloaded state of the axial force of the long member is maximum and the load maximum interference frequency at which the signal strength in the loaded state of the known axial force is maximized. The relative position and the relative posture are matched by the vertical probe fixing jig in all of the unloaded state and the loaded state. The vertical probe is attached to one end of a long member fastened by the vertical probe fixing jig so as to match the relative position and the relative posture at the time of creating the axial force calculation formula. The signal intensity is measured for each oscillation frequency, the maximum interference frequency that is the maximum signal intensity within a predetermined interference frequency range is determined from the measured signal intensity for each oscillation frequency, and the calculated maximum interference frequency and the axial force are calculated. In the formula Ri may measure the axial force of the long member.
また、前記長尺部材の軸力の無負荷状態における前記信号強度を前記発振周波数毎に測定すると共に、前記垂直探触子を前記垂直探触子固定治具により前記無荷重状態の長尺部材に既知の軸力を負荷して負荷状態とした長尺部材の一端に前記無荷重状態の測定時の前記相対位置及び前記相対姿勢と一致させて取り付けた状態で前記信号強度を前記発振周波数毎に測定し、測定した発振周波数毎の信号強度から前記無負荷状態において最大の信号強度となる無負荷極大干渉周波数及び前記負荷状態において最大の信号強度となる負荷極大干渉周波数を求め、求めた無負荷極大干渉周波数と負荷極大干渉周波数との差分と前記既知の軸力との関係を示す軸力算出式を作成し、前記垂直探触子を前記垂直探触子固定治具により締結された長尺部材の一端に前記無荷重状態の測定時の前記相対位置及び前記相対姿勢と一致させて取り付けた状態で前記発振周波数毎に前記信号強度を測定し、測定した発振周波数毎の信号強度から所定の干渉周波数範囲内で最大の信号強度となる極大干渉周波数を求め、求めた極大干渉周波数と前記軸力算出式により前記長尺部材の軸力を測定するようにしてもよい。 In addition, the signal strength in the unloaded state of the axial force of the long member is measured for each oscillation frequency, and the long member in the unloaded state is connected to the vertical probe by the vertical probe fixing jig. The signal strength is set for each oscillation frequency in a state in which it is attached to one end of a long member loaded with a known axial force to match the relative position and the relative posture at the time of measurement in the no-load state. The no-load maximum interference frequency at which the maximum signal strength is obtained in the no-load state and the maximum load interference frequency at which the maximum signal strength is obtained in the load state are obtained from the measured signal strength at each oscillation frequency. An axial force calculation formula showing a relationship between a difference between a load maximum interference frequency and a load maximum interference frequency and the known axial force is created, and the vertical probe is fastened by the vertical probe fixing jig. Scale member The signal strength is measured for each oscillation frequency with the relative position and the relative attitude at the time of measurement in the no-load state being attached to an end, and a predetermined interference frequency is determined from the measured signal strength for each oscillation frequency. A maximum interference frequency that gives the maximum signal intensity within the range may be obtained, and the axial force of the long member may be measured by the obtained maximum interference frequency and the axial force calculation formula.
また、前記超音波は、前記バースト波と前記バースト波とは異なる超音波の2種の超音波であり、予め、前記長尺部材の一端から前記異なる超音波を入射させて反射波の伝播時間を測定すると共に前記バースト波を発振周波数を変化させながら入射させて前記反射波の伝播時間から次の反射波の伝播時間までの測定時間における前記バースト波の信号強度を測定して既知の軸力に対する前記伝播時間を求める第一マスターカーブ及び前記既知の軸力に対する前記信号強度が最大となる極大干渉周波数を求める第二マスターカーブを作成する際に、前記長尺部材の前記既知の軸力の負荷状態の全てで前記垂直探触子固定治具により前記相対位置及び前記相対姿勢を一致させ、締結された長尺部材に前記前記異なる超音波を入射させて前記伝播時間を測定すると共に、前記垂直探触子を前記垂直探触子固定治具により締結された長尺部材の一端に前記第二マスターカーブの作成時における前記相対位置及び前記相対姿勢と一致させて取り付けた状態で前記発振周波数毎に信号強度を測定し、前記第一マスターカーブから測定した伝播時間における概略軸力を求め、前記第二マスターカーブから前記概略軸力における干渉周波数範囲を求め、測定した発振周波数毎の信号強度から前記干渉周波数範囲内で最大の信号強度となる極大干渉周波数を求め、求めた極大干渉周波数と前記第二マスターカーブにより前記長尺部材の軸力を測定してもよい。 The ultrasonic waves are two kinds of ultrasonic waves, which are different from the burst wave and the burst wave, and the propagation time of the reflected wave is obtained by causing the different ultrasonic waves to enter from one end of the long member in advance. And measuring the signal intensity of the burst wave in the measurement time from the propagation time of the reflected wave to the propagation time of the next reflected wave by making the burst wave incident while changing the oscillation frequency. When creating the first master curve for obtaining the propagation time with respect to the second master curve for obtaining the maximum interference frequency at which the signal intensity with respect to the known axial force is maximized, the known axial force of the long member The relative position and the relative posture are matched by the vertical probe fixing jig in all of the load conditions of the above, and the different ultrasonic waves are incident on the fastened long member to propagate the signal. And the vertical probe is attached to one end of a long member fastened by the vertical probe fixing jig so as to match the relative position and the relative posture at the time of creating the second master curve. In the state, the signal intensity was measured for each oscillation frequency, the approximate axial force in the propagation time measured from the first master curve was obtained, the interference frequency range in the approximate axial force was obtained from the second master curve, and measured. The maximum interference frequency that is the maximum signal intensity within the interference frequency range is obtained from the signal intensity for each oscillation frequency, and the axial force of the long member may be measured using the obtained maximum interference frequency and the second master curve. .
また、前記超音波は、前記バースト波と前記バースト波とは異なる超音波の2種の超音波であり、予め、前記長尺部材の一端から前記異なる超音波を入射させて反射波の伝播時間を測定すると共に前記バースト波を発振周波数を変化させながら入射させて前記反射波の伝播時間から次の反射波の伝播時間までの測定時間における前記バースト波の信号強度を測定して既知の軸力に対する前記伝播時間を求める第一マスターカーブ及び前記既知の軸力に対する前記信号強度が最大となる極大干渉周波数を求める第二マスターカーブを作成する際に、前記長尺部材の前記既知の軸力の負荷状態の全てで前記垂直探触子固定治具により前記相対位置及び前記相対姿勢を一致させ、締結された長尺部材に前記前記異なる超音波を入射させて前記伝播時間を測定すると共に、前記垂直探触子を前記垂直探触子固定治具により締結された長尺部材の一端に前記第二マスターカーブの作成時における前記相対位置及び前記相対姿勢と一致させて取り付けた状態で前記発振周波数毎に信号強度を測定し、前記極大干渉周波数を求め、前記第二マスターカーブから求めた極大干渉周波数における概略軸力を求め、前記第一マスターカーブから求めた概略軸力における伝播時間範囲を求め、測定した伝播時間から前記伝播時間範囲内で最大の信号強度となる極大伝播時間を求め、求めた極大伝播時間と前記第一マスターカーブにより前記長尺部材の軸力を測定してもよい。 The ultrasonic waves are two kinds of ultrasonic waves, which are different from the burst wave and the burst wave, and the propagation time of the reflected wave is obtained by causing the different ultrasonic waves to enter from one end of the long member in advance. And measuring the signal intensity of the burst wave in the measurement time from the propagation time of the reflected wave to the propagation time of the next reflected wave by making the burst wave incident while changing the oscillation frequency. When creating the first master curve for obtaining the propagation time with respect to the second master curve for obtaining the maximum interference frequency at which the signal intensity with respect to the known axial force is maximized, the known axial force of the long member The relative position and the relative posture are matched by the vertical probe fixing jig in all of the load conditions of the above, and the different ultrasonic waves are incident on the fastened long member to propagate the signal. And the vertical probe is attached to one end of a long member fastened by the vertical probe fixing jig so as to match the relative position and the relative posture at the time of creating the second master curve. The signal intensity is measured for each oscillation frequency in a state where the maximum interference frequency is obtained, the approximate axial force at the maximum interference frequency obtained from the second master curve is obtained, and the approximate axial force obtained from the first master curve is obtained. The propagation time range is determined from the measured propagation time, the maximum propagation time that is the maximum signal intensity within the propagation time range is obtained, and the axial force of the long member is determined by the obtained maximum propagation time and the first master curve. You may measure.
また、上記目的を達成するため、本発明に係る超音波検査装置の特徴は、試験体の一端から超音波を入射すると共に前記試験体の他端から反射した反射波を受信する垂直探触子と、前記超音波を発生させる超音波発生器と、受信した反射波の信号を処理し前記試験体を検査する信号処理部とを備える構成において、前記試験体に対する前記垂直探触子の相対位置及び前記垂直探触子の相対姿勢を固定する垂直探触子固定治具を有し、前記信号処理部は、発振周波数毎に前記反射波の伝播時間から次の反射波の伝播時間までの測定時間における前記超音波の信号強度を測定する信号強度測定部を備え、前記垂直探触子固定治具は、前記試験体に対する前記垂直探触子の校正データを作成する際の前記超音波の送受信時又は前記試験体の無負荷状態での前記超音波の送受信時と、前記試験体の負荷状態における前記超音波の送受信時の2回で、前記相対位置及び前記相対姿勢を一致させるものであり、前記信号処理部は、前記超音波を前記発振周波数を変化させながら入射させて前記信号強度測定部により前記発振周波数毎に前記信号強度を測定し、測定した発振周波数毎の信号強度から所定の干渉周波数範囲内で最大の信号強度となる極大干渉周波数を求め、求めた極大干渉周波数に基づいて前記試験体を検査することにある。 In order to achieve the above object, the ultrasonic inspection apparatus according to the present invention is characterized in that a vertical probe that receives ultrasonic waves from one end of a test body and receives reflected waves reflected from the other end of the test body. And a relative position of the vertical probe with respect to the test body in a configuration comprising: an ultrasonic generator that generates the ultrasonic waves; and a signal processing unit that processes the received reflected wave signal and inspects the test body And a vertical probe fixing jig that fixes the relative posture of the vertical probe, and the signal processing unit measures from the propagation time of the reflected wave to the propagation time of the next reflected wave for each oscillation frequency. A signal intensity measuring unit for measuring the signal intensity of the ultrasonic wave in time, and the vertical probe fixing jig transmits and receives the ultrasonic wave when creating calibration data of the vertical probe with respect to the test body Or no load on the specimen The relative position and the relative posture are matched in two times, at the time of transmitting / receiving the ultrasonic wave at the time of transmission / reception and at the time of transmitting / receiving the ultrasonic wave in the loaded state of the test body, and the signal processing unit A sound wave is incident while changing the oscillation frequency, the signal intensity measurement unit measures the signal intensity for each oscillation frequency, and the maximum signal intensity within a predetermined interference frequency range from the measured signal intensity for each oscillation frequency. The maximum interference frequency is obtained, and the test body is inspected based on the obtained maximum interference frequency.
さらに、上記目的を達成するため、本発明に係る超音波検査方法の特徴は、試験体の一端の垂直探触子から超音波を入射すると共に前記試験体の他端から反射した反射波を受信し、受信した反射波の信号に基づいて前記試験体を検査する方法において、前記試験体に対する前記垂直探触子の校正データを作成する際の前記超音波の送受信時又は前記試験体の無負荷状態での前記超音波の送受信時と、前記試験体の負荷状態における前記超音波の送受信時の2回で、前記試験体に対する前記垂直探触子の相対位置及び前記垂直探触子の相対姿勢を一致させた状態で、前記超音波を発振周波数を変化させながら入射させて前記発振周波数毎に前記反射波の伝播時間から次の反射波の伝播時間までの測定時間における前記超音波の信号強度を測定し、測定した発振周波数毎の信号強度から所定の干渉周波数範囲内で最大の信号強度となる極大干渉周波数を求め、求めた極大干渉周波数に基づいて前記試験体を検査することにある。 Furthermore, in order to achieve the above object, the ultrasonic inspection method according to the present invention is characterized in that an ultrasonic wave is incident from a vertical probe at one end of a test body and a reflected wave reflected from the other end of the test body is received. In the method of inspecting the specimen based on the received reflected wave signal, when the ultrasonic probe is transmitted / received when the calibration data of the vertical probe with respect to the specimen is created, or the specimen is unloaded The relative position of the vertical probe and the relative attitude of the vertical probe with respect to the test body at the time of transmitting / receiving the ultrasonic wave in the state and at the time of transmitting / receiving the ultrasonic wave in the loaded state of the test body In a state where the ultrasonic wave is made to coincide, the ultrasonic wave is incident while changing the oscillation frequency, and the signal intensity of the ultrasonic wave in the measurement time from the propagation time of the reflected wave to the propagation time of the next reflected wave for each oscillation frequency Measure Seeking a maximum interference frequency with the maximum signal strength within a predetermined interference frequency range from the measured signal strength for each oscillation frequency is to inspect the specimen on the basis of the maximum interference frequency determined.
上記本発明に係る軸力測定装置、軸力測定方法、超音波検査装置、超音波検査方法及びこれに用いる垂直探触子固定治具の特徴によれば、簡素な構成でありながら精度よく干渉周波数を測定し、軸力等の試験体の状態をより正確に測定することが可能となった。 According to the features of the axial force measuring device, the axial force measuring method, the ultrasonic inspection device, the ultrasonic inspection method, and the vertical probe fixing jig used for the axial force measuring device according to the present invention described above, it is a simple structure but accurately interferes It was possible to measure the frequency and more accurately measure the state of the specimen such as axial force.
本発明の他の目的、構成及び効果については、以下の発明の実施の形態の項から明らかになるであろう。 Other objects, configurations, and effects of the present invention will become apparent from the following embodiments of the present invention.
次に、図1〜17を参照しながら、本発明の第一実施形態についてをさらに詳しく説明する。
本発明に係る軸力測定装置1は、図1に示すように、大略、長尺部材(試験体)としてのボルト100の頭部101から超音波を入射すると共に、ボルト100の先端部102で反射した反射波を受信する垂直探触子2(以下、「探触子」と略する。)と、超音波を発生させる超音波発生器30と、受信した反射波の信号を処理しボルト100の軸力を測定する信号処理部3を備える。信号処理部3は、例えばパーソナルコンピュータ(PC)で構成された表示・入出力部4に接続される。探触子2には、例えば、超音波の送受信を兼務する一振動子型探触子を用いる。そして、この探触子2は、後述する探触子固定治具10によりボルト頭部101に取り付けられる。
Next, the first embodiment of the present invention will be described in more detail with reference to FIGS.
As shown in FIG. 1, the axial force measuring device 1 according to the present invention generally receives ultrasonic waves from a head 101 of a bolt 100 as a long member (test body), and at the tip 102 of the bolt 100. A vertical probe 2 that receives the reflected wave (hereinafter abbreviated as “probe”), an ultrasonic generator 30 that generates an ultrasonic wave, and a bolt 100 that processes the received reflected wave signal. The signal processing unit 3 for measuring the axial force is provided. The signal processing unit 3 is connected to a display / input / output unit 4 configured by, for example, a personal computer (PC). For the probe 2, for example, a single-transducer type probe that also performs transmission and reception of ultrasonic waves is used. The probe 2 is attached to the bolt head 101 by a probe fixing jig 10 described later.
図1に示すように、信号処理部3は超音波発生器30を含み、大略、測定部36と、マスターカーブ作成部37と、軸力算出部38を備える。超音波発生器30は、後述のバースト波設定部41の設定条件に従いパワーアンプ31を介して探触子2でバースト波21を発生させる。受信した反射波の信号(受信波形)は、保護回路32、周波数フィルタ33、A/D変換器34、フィルタ35を介して測定部36に送られると共にデータ記憶部39に記憶される。測定部36は、発振周波数毎に反射波の伝播時間から次の反射波の伝播時間までの測定時間におけるバースト波21の信号強度を測定する信号強度測定部36aとを備える。マスターカーブ作成部37は、既知の軸力(荷重)に対する信号強度が最大となる極大干渉周波数Qの変化量Δfの関係を示す軸力算出式Cを作成する軸力算出式作成部37aを備える。そして、軸力算出部38は、測定部36の測定値及び軸力算出式Cから軸力を求める。 As shown in FIG. 1, the signal processing unit 3 includes an ultrasonic generator 30, and generally includes a measurement unit 36, a master curve creation unit 37, and an axial force calculation unit 38. The ultrasonic generator 30 causes the probe 2 to generate the burst wave 21 via the power amplifier 31 in accordance with setting conditions of a burst wave setting unit 41 described later. The received reflected wave signal (received waveform) is sent to the measurement unit 36 via the protection circuit 32, the frequency filter 33, the A / D converter 34, and the filter 35 and is also stored in the data storage unit 39. The measurement unit 36 includes a signal intensity measurement unit 36a that measures the signal intensity of the burst wave 21 in the measurement time from the reflected wave propagation time to the next reflected wave propagation time for each oscillation frequency. The master curve creation unit 37 includes an axial force calculation formula creation unit 37a that creates an axial force calculation formula C indicating the relationship of the change amount Δf of the maximum interference frequency Q that maximizes the signal strength with respect to a known axial force (load). . Then, the axial force calculation unit 38 obtains the axial force from the measurement value of the measurement unit 36 and the axial force calculation formula C.
超音波発生器30は、図2に示す如く、バースト波21を発生させる。バースト波21は、ボルト100内を伝播する超音波が互いに干渉して生じる合成波の干渉周波数を測定するために用いられる(干渉法)。 The ultrasonic generator 30 generates a burst wave 21 as shown in FIG. The burst wave 21 is used to measure the interference frequency of a composite wave generated by ultrasonic waves propagating in the bolt 100 interfering with each other (interference method).
図2(a)に示すように、バースト波21は、ボルト100内を伝播する入射した超音波及び反射波が干渉して合成波20A,20Bとなる。また、バースト波21は、所定の範囲内及びピッチで発振周波数を変化させながら入射される。同図に示すように、発振周波数f1のバースト波P2Aでは、第二反射エコーB2直後の合成波20Aの信号強度(図中破線で囲む部分)は、最初の反射波22Aと2回目の反射波23Aとが干渉して弱くなる。一方、発振周波数f2のバースト波P2Bでは、第二反射エコーB2直後の合成波20Bの信号強度(図中破線で囲む部分)が、最初の反射波22Bと2回目の反射波23Bとが干渉して強くなる。このように、合成波は、ボルト100の長さとバースト波21の半波長の整数倍の長さとが一致すれば、干渉し合う波が同位相となり信号強度が増す。なお、本実施形態では、所定の範囲内及びピッチでの各周波数毎に信号強度のピークとなる干渉周波数を測定すると共に図2(b)に示す如き干渉波形Wを生成し、そのピークを極大干渉周波数Qとする。 As shown in FIG. 2A, the burst wave 21 becomes combined waves 20A and 20B by interference of incident ultrasonic waves and reflected waves propagating in the bolt 100. The burst wave 21 is incident while changing the oscillation frequency within a predetermined range and pitch. As shown in the figure, in the burst wave P2A having the oscillation frequency f1, the signal intensity of the synthesized wave 20A immediately after the second reflected echo B2 (the portion surrounded by the broken line in the figure) is the first reflected wave 22A and the second reflected wave. 23A interferes and weakens. On the other hand, in the burst wave P2B having the oscillation frequency f2, the first reflected wave 22B and the second reflected wave 23B interfere with the signal intensity of the synthesized wave 20B immediately after the second reflected echo B2 (the portion surrounded by the broken line in the figure). And become stronger. Thus, if the length of the volt | bolt 100 and the length of the integral multiple of the half wavelength of the burst wave 21 correspond in a synthetic | combination wave, the wave which interferes will become the same phase and signal strength will increase. In the present embodiment, the interference frequency that is the peak of the signal intensity is measured for each frequency within the predetermined range and pitch, and the interference waveform W as shown in FIG. 2B is generated, and the peak is maximized. Let the interference frequency be Q.
ここで、バースト波21を発生させる時間は、最初の反射波(第一反射エコーB1)の伝播時間以上で且つ2回目の反射波(第二反射エコーB2)の伝播時間未満の長さであるとよい。最初の反射波の伝播時間未満であれば、干渉する波が発生しておらず測定できない。他方、2回目の反射波の伝播時間以上となると、ボルト100内を伝播する3以上の波(入射波及び第一、第二反射波)で干渉が生じることとなり、干渉による信号強度の判別が困難となる。 Here, the time for generating the burst wave 21 is longer than the propagation time of the first reflected wave (first reflected echo B1) and shorter than the propagation time of the second reflected wave (second reflected echo B2). Good. If it is less than the propagation time of the first reflected wave, no interfering wave is generated and measurement is not possible. On the other hand, when the propagation time of the second reflected wave is exceeded, interference occurs in three or more waves (incident wave and first and second reflected waves) propagating in the bolt 100, and the signal intensity is discriminated by the interference. It becomes difficult.
さらに、極大干渉周波数Qを測定する測定時間(ゲート)は、2回目の反射波の伝播時間から3回目の反射波(第三反射エコーB3)の伝播時間までの時間であるとよい。例えば、バースト波21の送信信号が数V〜数百Vであれば、第一反射エコーB1は数mV〜数百V、第二反射エコーB2は第一反射エコーB1の半分程度となる。そのため、送信エコーと第一反射エコーB1では、振幅差が大きすぎるため、送信エコーが支配的となる。従って、1回目の反射波の伝播時間から2回目の反射波の伝播時間までの時間を測定時間とすると、干渉を観察することが困難となる。他方、超音波は反射を繰り返す度に減衰するため、3回目以降の反射波の信号強度は次第に弱くなる。従って、3回目以降の反射波の伝播時間からその次の反射波の伝播時間までの時間を測定時間とすると、信号が微弱であるために干渉を観察することが困難となる。このように、第一反射エコーB1と第二反射エコーB2との干渉領域を利用することで、極大干渉周波数Qを容易且つ正確に検出することができる。 Furthermore, the measurement time (gate) for measuring the maximum interference frequency Q may be the time from the propagation time of the second reflected wave to the propagation time of the third reflected wave (third reflected echo B3). For example, if the transmission signal of the burst wave 21 is several volts to several hundred volts, the first reflected echo B1 is several mV to several hundred volts, and the second reflected echo B2 is about half of the first reflected echo B1. Therefore, the transmission echo becomes dominant because the amplitude difference between the transmission echo and the first reflection echo B1 is too large. Therefore, if the time from the propagation time of the first reflected wave to the propagation time of the second reflected wave is the measurement time, it is difficult to observe the interference. On the other hand, since the ultrasonic wave is attenuated every time it is repeatedly reflected, the signal intensity of the reflected wave after the third time becomes gradually weaker. Therefore, if the time from the propagation time of the reflected wave after the third time to the propagation time of the next reflected wave is the measurement time, it is difficult to observe the interference because the signal is weak. Thus, the maximum interference frequency Q can be easily and accurately detected by using the interference region between the first reflection echo B1 and the second reflection echo B2.
表示・入出力部4は、図1に示すように、大略、バースト波設定部41と、条件設定部42と、表示部43と、記憶部44を備える。バースト波設定部41は、バースト波21の発振周波数、波数(長さ)や発振周波数ピッチ等が入力設定される。条件設定部42は、ボルト100の長さ等が入力設定される。表示部43は、例えば軸力測定中において干渉波形Wを常時表示し、測定結果の軸力等も表示する。記憶部44には、軸力算出式Cが記憶され、軸力算出部38がそれを参照する。 As shown in FIG. 1, the display / input / output unit 4 generally includes a burst wave setting unit 41, a condition setting unit 42, a display unit 43, and a storage unit 44. The burst wave setting unit 41 is input and set with the oscillation frequency, wave number (length), oscillation frequency pitch, and the like of the burst wave 21. The condition setting unit 42 is input and set for the length of the bolt 100 and the like. The display unit 43 always displays the interference waveform W during axial force measurement, for example, and also displays the axial force and the like of the measurement result. The storage unit 44 stores an axial force calculation formula C, and the axial force calculation unit 38 refers to it.
ところで、長尺部材としてのボルト100の長さ(軸長)は、5mm以上300mm以下であるとよい。例えば、図3(a)に示すように、軸力負荷前のボルト100の長さをL、軸力負荷後のボルト100’の長さをL+ΔLとすると、伸び(歪みε)はΔL/Lと定義できる。ここで、一般的な弾性変形範囲として1000μεを想定すると、伸び(歪みε)=0.001となる。ボルト100の長さが5mmであればボルト100’の長さは、5.005mmとなる。 By the way, the length (axial length) of the bolt 100 as the long member is preferably 5 mm or more and 300 mm or less. For example, as shown in FIG. 3A, when the length of the bolt 100 before the axial force load is L and the length of the bolt 100 ′ after the axial force load is L + ΔL, the elongation (strain ε) is ΔL / L. Can be defined. Here, assuming 1000 με as a general elastic deformation range, elongation (strain ε) = 0.001. If the length of the bolt 100 is 5 mm, the length of the bolt 100 ′ is 5.005 mm.
伝播速度が5.9mm/μsの超音波がボルト100を往復する伝播時間tは、t=5mm×2(往復経路)÷5.9mm/μs=1.6949msとなる。他方、ボルト100’での伝播時間t’は、t’=5.005mm×2(往復経路)÷5.9mm/μs=1.6966msとなる。その差Δtは、Δt=t’−t=0.0017μs=1.7nsとなる(図3(b))。ボルトの長さが短くなる程、この時間差Δtも短くなる。 The propagation time t during which the ultrasonic wave having a propagation speed of 5.9 mm / μs reciprocates through the bolt 100 is t = 5 mm × 2 (reciprocal path) ÷ 5.9 mm / μs = 1.6949 ms. On the other hand, the propagation time t ′ in the bolt 100 ′ is t ′ = 5.005 mm × 2 (reciprocating path) ÷ 5.9 mm / μs = 1.6966 ms. The difference Δt is Δt = t′−t = 0.717 μs = 1.7 ns (FIG. 3B). The shorter the bolt length, the shorter the time difference Δt.
このような受信信号(波形)に対しデジタル処理を行う場合、音圧を一定間隔(サンプリング周波数)でデジタルデータに変換される。図3(c)に示すように、高速サンプリングのA/D変換器はサンプリング周期が短く、微細な時間差を識別可能であるが、装置が高価となる。一方、同図(d)に示すように、低速サンプリングのA/D変換器はサンプリング周期が長く、微細な時間差を識別することが困難であるが、装置は安価となる。すなわち、ボルトの長さが短くなる程、時間差Δtを検出するためにサンプリング周期の短いものが必要となる。他方、ボルトの長さが長くなれば時間差Δtも大きくなる。 When digital processing is performed on such a received signal (waveform), the sound pressure is converted into digital data at regular intervals (sampling frequency). As shown in FIG. 3C, the high-speed sampling A / D converter has a short sampling period and can identify a minute time difference, but the apparatus becomes expensive. On the other hand, as shown in FIG. 4D, the low-speed sampling A / D converter has a long sampling period and it is difficult to identify a minute time difference, but the apparatus is inexpensive. In other words, the shorter the bolt length, the shorter the sampling period is required to detect the time difference Δt. On the other hand, the time difference Δt increases as the length of the bolt increases.
一方、干渉法において、一般的な弾性変形範囲として1000μεとし、ボルト100の長さLを300mmとすると、L+ΔLは、300.3mmとなる。ここで、伝播速度が5.9mm/μsの超音波において、図4(a)に示す如く半波長がボルト長さとなれば、ボルト100では、干渉波長λ=300mm×2=600mm、干渉周波数f=5.9mm/μs÷600mm=9.833kHzとなる。他方、ボルト100’では、干渉波長λ’=300.3mm×2=600.6mm、干渉周波数f’=5.9mm/μs÷600.6mm=9.824kHzとなる。そして、同図(b)に示すように、ボルト長さが1波長となると、干渉波長は半減し干渉周波数は倍増する。さらに、同図(c)に示すように、ボルト長さが1.5波長となると、干渉波長は半波長時の1/3となり干渉周波数は3倍となる。 On the other hand, in the interferometry, if the general elastic deformation range is 1000 με and the length L of the bolt 100 is 300 mm, L + ΔL is 300.3 mm. Here, in the ultrasonic wave having a propagation velocity of 5.9 mm / μs, if the half wavelength is a bolt length as shown in FIG. 4A, the bolt 100 has an interference wavelength λ = 300 mm × 2 = 600 mm, an interference frequency f = 5.9 mm / μs ÷ 600 mm = 9.833 kHz. On the other hand, in the bolt 100 ′, the interference wavelength λ ′ = 300.3 mm × 2 = 600.6 mm and the interference frequency f ′ = 5.9 mm / μs ÷ 600.6 mm = 9.824 kHz. As shown in FIG. 5B, when the bolt length becomes one wavelength, the interference wavelength is reduced by half and the interference frequency is doubled. Furthermore, as shown in FIG. 5C, when the bolt length is 1.5 wavelengths, the interference wavelength is 1/3 of the half wavelength, and the interference frequency is tripled.
従って、図4(d)に示すように、干渉強度のピークは干渉周波数毎に出現する。また、干渉周波数の差は9Hzとなる。よって、干渉次数(半波長の数)が多い程、干渉周波数が大きくなりその差も大きくなる。例えば干渉次数が510程度となる超音波をボルトに入射した場合、干渉周波数の差は5.01kHzとなり、1kHz程度の周波数分解能があれば、干渉周波数の差を検出できる。一方、ボルトの長さが長くなる程(300mm超)、干渉波長が長くなり干渉周波数は小さくなるので、周波数分解能を向上させなければならず、装置が高価となる。他方、ボルトの長さが短くなれば干渉周波数の差も大きくなる。 Therefore, as shown in FIG. 4D, the peak of the interference intensity appears for each interference frequency. The difference in interference frequency is 9 Hz. Therefore, as the interference order (the number of half wavelengths) increases, the interference frequency increases and the difference also increases. For example, when an ultrasonic wave having an interference order of about 510 is incident on the bolt, the difference in interference frequency is 5.01 kHz, and if there is a frequency resolution of about 1 kHz, the difference in interference frequency can be detected. On the other hand, as the length of the bolt becomes longer (over 300 mm), the interference wavelength becomes longer and the interference frequency becomes smaller, so that the frequency resolution has to be improved and the apparatus becomes expensive. On the other hand, if the length of the bolt is shortened, the difference in interference frequency is also increased.
このように、特に、ボルト100の長さが5mm以上300mm以下の場合、サンプリング周期の短いオシロスコープやA/D変換器又は周波数分解能の高い装置を用いることなく、安価な装置で高精度に軸力を測定することが可能となる。 In this way, particularly when the length of the bolt 100 is 5 mm or more and 300 mm or less, an axial force can be obtained with high accuracy using an inexpensive device without using an oscilloscope, an A / D converter having a short sampling period, or a device with high frequency resolution. Can be measured.
ここで、さらに干渉法について詳述する。
垂直超音波探触子から送信される超音波ビームBには指向性があり、その超音波ビームBの中心Baは音圧(信号強度)が最大となる。図5に示すように、理想的な探触子200は、ビームの中心Baが試験体Nに対して垂直となる。しかしながら、現実では、探触子201、202の如く、超音波ビームBに傾斜G(最短経路V(垂線)に対する中心Baの傾斜)が存在すると思われる。
Here, the interference method will be further described in detail.
The ultrasonic beam B transmitted from the vertical ultrasonic probe has directivity, and the sound pressure (signal intensity) is maximized at the center Ba of the ultrasonic beam B. As shown in FIG. 5, the ideal probe 200 has the beam center Ba perpendicular to the specimen N. However, in reality, like the probes 201 and 202, the ultrasonic beam B seems to have an inclination G (an inclination of the center Ba with respect to the shortest path V (perpendicular)).
ここで、所謂、時間差法(パルス反射式)は、試験体Nを伝播した超音波信号(底面信号)Rの伝播時間Tの変化を検知する。図6(a)に示す理想的な探触子200では、ビームの中心Baと最短経路Vとが一致する。他方、同図(b)(c)に示す探触子201,202では、ビームBの傾斜Gにより中心Baと最短経路Vとは一致しない。しかし、ビームBは拡がりをもって伝播するので、中心Baが最短経路Vからずれて強度は弱くなるものの、常に最短経路Vを伝播した信号R’は受信される。また、最短経路V及び音速は変化しないので、伝播時間Tも変わらない。すなわち、時間差法において、超音波ビームBの傾斜や探触子位置の変化が検査精度に与える影響は、極めて小さいと考えられる。 Here, the so-called time difference method (pulse reflection method) detects a change in the propagation time T of the ultrasonic signal (bottom surface signal) R propagated through the test body N. In the ideal probe 200 shown in FIG. 6A, the beam center Ba coincides with the shortest path V. On the other hand, in the probes 201 and 202 shown in FIGS. 5B and 5C, the center Ba and the shortest path V do not coincide with each other due to the inclination G of the beam B. However, since the beam B propagates with spread, the signal R ′ propagated through the shortest path V is always received, although the center Ba shifts from the shortest path V and the intensity becomes weak. Further, since the shortest path V and the sound speed do not change, the propagation time T does not change. That is, in the time difference method, the influence of the inclination of the ultrasonic beam B and the change in the probe position on the inspection accuracy is considered to be extremely small.
一方、所謂、干渉法は、試験体Nを伝播する超音波が互いに干渉して生じる合成波の干渉周波数の変化を検知する。音圧が最大となるビームの中心Baを伝播する超音波が、干渉に最も影響を与える。図7(a)に示す理想的な探触子200では、ビームの中心Baと最短経路Vとが一致し、その経路の信号が最大となる。他方、同図(b)に示す探触子203では、ビームの中心Baと最短経路Vとが一致せず、傾斜Gを有する中心Baの経路の信号が最大となる。そのため、干渉波形W1,W2は一致しない。 On the other hand, the so-called interferometry detects a change in the interference frequency of a composite wave generated by ultrasonic waves propagating through the specimen N interfering with each other. The ultrasonic wave propagating through the center Ba of the beam having the maximum sound pressure has the most influence on the interference. In the ideal probe 200 shown in FIG. 7A, the beam center Ba coincides with the shortest path V, and the signal of the path becomes maximum. On the other hand, in the probe 203 shown in FIG. 5B, the beam center Ba and the shortest path V do not coincide with each other, and the signal of the path of the center Ba having the inclination G becomes maximum. Therefore, the interference waveforms W1 and W2 do not match.
そして、受信される信号(干渉波形)は、各経路の超音波が合わさったものである。図8(a)に示す傾斜Gのない探触子200では、経路P1が最短経路Vであり且つ中心Baとなる。よって、干渉波形W3は、経路P1の超音波の影響を最も受ける。一方、同図(b)に示す傾斜Gを有する探触子201では、経路P2が中心Baとなり、経路P1は最短経路Vとなる。よって、干渉波形W4は、経路P2の超音波の影響を最も受ける。さらに、同図(c)に示す試験体N端部に位置する探触子202では、経路P1、経路P2は同図(b)と同じであるが、経路P3の信号は直接端部に到達しない。そのため、干渉波形W5は、受信される信号が異なるので先の波形W3,W4と異なる。すなわち、干渉法においては、ビームの傾斜Gや位置が極大干渉周波数Qに影響を与えるため、検査精度が低下するおそれがある。言い換えると、ビームの傾斜Gや位置によるばらつきを抑制することで、検査精度の向上が図られる。 The received signal (interference waveform) is a combination of the ultrasonic waves of each path. In the probe 200 having no inclination G shown in FIG. 8A, the path P1 is the shortest path V and the center Ba. Therefore, the interference waveform W3 is most affected by the ultrasonic wave of the path P1. On the other hand, in the probe 201 having the inclination G shown in FIG. 5B, the path P2 is the center Ba and the path P1 is the shortest path V. Therefore, the interference waveform W4 is most affected by the ultrasonic wave of the path P2. Furthermore, in the probe 202 located at the end of the test body N shown in FIG. 5C, the path P1 and the path P2 are the same as in FIG. 5B, but the signal of the path P3 reaches the end directly. do not do. Therefore, the interference waveform W5 is different from the previous waveforms W3 and W4 because the received signals are different. That is, in the interferometry, since the beam inclination G and position affect the maximum interference frequency Q, the inspection accuracy may be lowered. In other words, the inspection accuracy can be improved by suppressing variations due to the inclination G and position of the beam.
そこで、本発明では、探触子2を長尺部材としてのボルト100の頭部101に載置する際に、探触子2の校正データを作成する際の超音波の送受信時又は長尺部材100の無負荷状態での超音波の送受信時と、長尺部材100の負荷状態における超音波の送受信時の2回で、長尺部材100に対する探触子2の相対位置及び探触子2の相対姿勢を一致させる。ここで、相対位置とは、長尺部材100の探触子載置面(例えば頭部101)における探触子の位置をいう。また、相対姿勢とは、長尺部材100の軸方向に対する探触子2の超音波ビームの傾斜と回転角(方位)を含むものである。 Therefore, in the present invention, when placing the probe 2 on the head 101 of the bolt 100 as a long member, when transmitting / receiving ultrasonic waves when creating calibration data of the probe 2 or a long member The relative position of the probe 2 with respect to the long member 100 and the position of the probe 2 are two times, at the time of transmission / reception of ultrasonic waves in the unloaded state of 100 and at the time of transmission / reception of ultrasonic waves in the loaded state of the long member 100. Match the relative posture. Here, the relative position refers to the position of the probe on the probe placement surface (for example, the head 101) of the long member 100. The relative posture includes the inclination and rotation angle (azimuth) of the ultrasonic beam of the probe 2 with respect to the axial direction of the long member 100.
本実施形態においては、図9に示す如き、垂直探触子固定治具10を用いる。この治具10は、略円柱形の本体部11に探触子2を収容し保持する貫通孔12とボルト101の六角形状に合致(嵌合)する凹部13を有し、貫通孔12と凹部13は連通する。本体部11表面の貫通孔12近傍には、治具10の方位を示す治具方位指示部M1が設けられている。治具方位指示部M1としては、例えばペン等で記載されたマーク又は刻印である。一方、探触子2の上面にも、同様に構成された探触子方位指示部M2が設けられ、ボルト頭部101の上面にも同様に構成された試験体方位指示部M3が設けられている。これら方位指示部M1〜M3を一致させることで、探触子2のボルト100に対する相対位置及び相対姿勢が保持される。 In this embodiment, a vertical probe fixing jig 10 as shown in FIG. 9 is used. This jig 10 has a through-hole 12 that accommodates and holds the probe 2 in a substantially cylindrical main body 11 and a recess 13 that matches (fits) the hexagonal shape of the bolt 101. 13 communicates. In the vicinity of the through hole 12 on the surface of the main body 11, a jig orientation instructing section M <b> 1 that indicates the orientation of the jig 10 is provided. The jig orientation instruction unit M1 is, for example, a mark or inscription written with a pen or the like. On the other hand, a probe orientation indicating unit M2 configured similarly is also provided on the upper surface of the probe 2, and a test specimen orientation indicating unit M3 similarly configured is also provided on the upper surface of the bolt head 101. Yes. By matching these azimuth directions M1 to M3, the relative position and the relative posture of the probe 2 with respect to the bolt 100 are maintained.
ここで、本実施形態における干渉法による軸力測定手順について説明する。
まず、検査対象となるボルト頭部101表面の試験体方位指示部M3と治具本体11表面の治具方位指示部M1を合わせて、治具10の凹部13とボルト頭部101を嵌合させて取り付ける。さらに、治具方位指示部M1と探触子方位指示部M2を合わせる。治具10を介して各方位指示部M1〜3を一致させることで、反射波測定時のボルト100に対する探触子2の相対位置及び相対姿勢が固定される。なお、探触子2とボルト100の接触面には、マシンオイル等の接触媒質を塗布する。
Here, the axial force measurement procedure by the interferometry in this embodiment will be described.
First, the test body orientation instructing part M3 on the surface of the bolt head 101 to be inspected and the jig orientation instructing part M1 on the surface of the jig body 11 are combined, and the recess 13 of the jig 10 and the bolt head 101 are fitted. And attach. Further, the jig orientation instruction section M1 and the probe orientation instruction section M2 are aligned. By matching the azimuth indicating units M1 to M3 through the jig 10, the relative position and relative posture of the probe 2 with respect to the bolt 100 at the time of reflected wave measurement are fixed. A contact medium such as machine oil is applied to the contact surface between the probe 2 and the bolt 100.
次に、無負荷を含む複数の負荷条件(例えば、無負荷、15kN負荷、45kN負荷及び60kN負荷)をボルト100に与え、その際に校正データの採取を行い、例えば図10に示す如き軸力算出式C(検量線)を作成する。データ採取に際し、超音波発生器30がバースト波設定部41に設定された条件に従って探触子2に周波数を変化させながらバースト波21を発生させ、反射信号を受信する。信号強度測定部36aが設定したゲート(測定時間)において信号強度を採取すると共に周波数と採取した信号強度の関係を干渉波形Wとして生成し、その干渉波形Wにおいて信号強度が最大となる極大干渉周波数Qを求める。そして、軸力算出式作成部37aは、図11に示すように、既知の負荷状態における極大干渉周波数と無負荷状態における極大干渉周波数との差分(変化量Δf)を計算し、図10に例示する軸力算出式Cを求める。同図に示すように、軸力(負荷)と変化量Δfは、線形に近い関係となる。作成された軸力算出式Cは、表示・入出力部4の記憶部44に記憶される。 Next, a plurality of load conditions including no load (for example, no load, 15 kN load, 45 kN load and 60 kN load) are applied to the bolt 100, and calibration data is collected at that time, for example, an axial force as shown in FIG. A calculation formula C (calibration curve) is created. At the time of data collection, the ultrasonic generator 30 generates the burst wave 21 while changing the frequency in the probe 2 in accordance with the conditions set in the burst wave setting unit 41, and receives the reflected signal. The signal intensity is collected at the gate (measurement time) set by the signal intensity measuring unit 36a, and the relationship between the frequency and the collected signal intensity is generated as an interference waveform W, and the maximum interference frequency at which the signal intensity is maximum in the interference waveform W. Q is calculated. Then, as shown in FIG. 11, the axial force calculation formula creation unit 37a calculates the difference (change amount Δf) between the maximum interference frequency in the known load state and the maximum interference frequency in the no-load state, and is illustrated in FIG. An axial force calculation formula C is obtained. As shown in the figure, the axial force (load) and the change amount Δf have a relationship close to linear. The created axial force calculation formula C is stored in the storage unit 44 of the display / input / output unit 4.
上記校正が完了後、検定時のボルトで軸力測定を行う場合、校正に用いたボルト100を測定箇所にて締結するが、軸力測定前(又は軸力測定後)に無負荷の条件で、上記と同様に試験体方位表記部M3、治具方位表記部M1及び探触子方位表記部M2の方位が一致するように、治具10によりボルト頭部101に探触子2を取り付け、無負荷の軸力データを採取する。 When the axial force measurement is performed with the bolt at the time of calibration after the calibration is completed, the bolt 100 used for the calibration is fastened at the measurement location, but under the no-load condition before the axial force measurement (or after the axial force measurement). In the same manner as above, the probe 2 is attached to the bolt head 101 with the jig 10 so that the orientations of the specimen orientation notation M3, the jig orientation notation M1, and the probe orientation notation M2 match. Collect unloaded axial force data.
ボルト締結時には、治具10等が締結の障害となるため、一時的に治具10等を取り外し、トルクレンチなどの締結具を使用して締結する。軸力を測定すべき所定の締結条件になった際に、締結具を外し、上記と同様に各方位指示部M1〜3の方位が一致するように、治具10により再びボルト100に探触子2を取り付け、軸力データを採取する。これにより、校正データとしての軸力算出式を作成する際の超音波の送受信時と、負荷状態における超音波の送受信時の2回で、ボルト100に対する探触子2の相対位置及び相対姿勢を一致させることができる。なお、必要に応じて、締結具による締め付けを繰り返して、都度、測定を行ってもよい。そして、測定した極大干渉周波数の変化量Δfを先に求めた軸力算出式Cに導入し、軸力を算出する。 When the bolts are fastened, the jig 10 or the like becomes an obstacle to fastening. Therefore, the jig 10 or the like is temporarily removed and fastened using a fastener such as a torque wrench. When the predetermined fastening condition for measuring the axial force is reached, the fastener is removed, and the bolt 10 is again probed by the jig 10 so that the orientations of the orientation indicating parts M1 to M3 coincide with each other in the same manner as described above. A child 2 is attached and axial force data is collected. As a result, the relative position and the relative posture of the probe 2 with respect to the bolt 100 are measured twice, at the time of transmission / reception of ultrasonic waves when creating an axial force calculation formula as calibration data and at the time of transmission / reception of ultrasonic waves in a loaded state. Can be matched. In addition, as needed, you may repeat a clamp | tightening by a fastener and may measure each time. Then, the measured amount of change Δf in the maximum interference frequency is introduced into the axial force calculation formula C obtained earlier to calculate the axial force.
ここで、検定時のボルトと異なるボルトで軸力測定を行う場合でも、測定の方法は上記と同じである。検定時に用いた試験体方位指示部M3とは、ボルトの個体が異なるため異なるが、当該ボルトで試験体方位指示部M3を一意に決め、ボルト100、治具10、探触子2の相対位置及び回転角度が変わらないようにして上記の測定を行う。これにより、無負荷状態での超音波の送受信時と、負荷状態における超音波の送受信時の2回で、ボルト100に対する探触子2の相対位置及び相対姿勢を一致させることができる。 Here, even when the axial force measurement is performed with a bolt different from the bolt at the time of verification, the measurement method is the same as described above. The specimen orientation indicator M3 used at the time of verification is different because the bolts are different, but the specimen orientation indicator M3 is uniquely determined by the bolt, and the relative position of the bolt 100, the jig 10, and the probe 2 is determined. In addition, the above measurement is performed so that the rotation angle does not change. As a result, the relative position and the relative posture of the probe 2 with respect to the bolt 100 can be made to coincide with each other two times at the time of transmission / reception of the ultrasonic wave in the unloaded state and at the time of transmission / reception of the ultrasonic wave in the loaded state.
ここで、発明者らは、本発明に係る軸力測定方法及び軸力測定装置の有用性を検証するために以下の手順にて実験を行った。
(1)校正データ採取
規定のボルト100の頭部101に探触子2を設置し、底面反射信号強度が最大になる探触子位置を探した。その位置で、探触子2を固定し、無負荷状態及び既定の負荷条件での干渉周波数ピーク(極大干渉周波数)を測定した(無負荷、15kN負荷、45kN負荷及び60kN負荷で測定)。そして、無負荷状態における干渉周波数ピークとの差分周波数(変化量Δf)対荷重のグラフを作成し、評価線図とした(軸力算出式C)。
Here, the inventors conducted an experiment according to the following procedure in order to verify the usefulness of the axial force measuring method and the axial force measuring device according to the present invention.
(1) Collection of calibration data The probe 2 was installed on the head 101 of the specified bolt 100, and the probe position where the bottom surface reflected signal intensity was maximum was searched. At that position, the probe 2 was fixed, and the interference frequency peak (maximum interference frequency) was measured under no load conditions and predetermined load conditions (measured at no load, 15 kN load, 45 kN load, and 60 kN load). Then, a graph of differential frequency (change amount Δf) versus load with respect to the interference frequency peak in the no-load state was created and used as an evaluation diagram (axial force calculation formula C).
(2)探触子を固定したままの測定
校正データ採取時の探触子位置及び探触子回転角度で、無負荷→15kN負荷→45kN負荷→60kN負荷とボルト100に荷重を加え、都度、干渉周波数ピークを取得した(図12凡例A1)。また、探触子2を固定したまま無負荷状態に戻した後に、探触子2を固定したまま同様に負荷を加えながら、干渉周波数ピークを繰り返し取得した(図12凡例A2及びA3)。
探触子2を固定したままの場合、何度繰り返し測定を行っても、干渉周波数ピークの再現性は著しく高い。これは、未知の荷重を負荷されたボルト100の干渉周波数ピークを測定することにより、軸力を精度よく測定できることを示す。
(2) Measurement with the probe fixed. At the probe position and probe rotation angle at the time of calibration data collection, load was applied to the bolt 100 with no load → 15 kN load → 45 kN load → 60 kN load. Interference frequency peaks were acquired (Figure 12 legend A1). Further, after returning the probe 2 to the no-load state with the probe 2 fixed, the interference frequency peak was repeatedly acquired while applying the load in the same manner with the probe 2 fixed (FIG. 12 legends A2 and A3).
When the probe 2 is fixed, the reproducibility of the interference frequency peak is remarkably high even if the measurement is repeated many times. This indicates that the axial force can be accurately measured by measuring the interference frequency peak of the bolt 100 loaded with an unknown load.
(3)探触子を付け外しした場合の測定
ボルト100が無負荷の状態で、探触子2を一度ボルト100から付け外しし、底面反射信号強度が最大になる探触子位置を探す。その後、探触子2の位置は固定のままで無負荷→15kN負荷→45kN負荷→60kN負荷とボルト100に荷重を加え、都度、干渉周波数ピークを取得した(図13凡例A)。また、無負荷状態に戻した後に都度、探触子2を一度ボルト100から付け外しし、底面反射信号強度が最大になる探触子位置を探した上で、同様に負荷を加えながら、干渉周波数ピークを繰り返し取得した(図13凡例B,C,D及びE)。
この結果、探触子2を付け外しすることで、荷重−干渉周波数ピークの直線がシフトすることが認められた。これは、未知の負荷荷重を与えられたボルト100の軸力を測定する際に、探触子2を付け外しした条件では、軸力測定値がばらつくことを意味する。また、無負荷の状態においても、探触子2を付け外しすることで軸力測定値にばらつきが生じる。
(3) Measurement when the probe is attached / detached With the bolt 100 unloaded, the probe 2 is once attached / detached from the bolt 100 to find a probe position where the bottom surface reflected signal intensity is maximum. Thereafter, while the position of the probe 2 was fixed, no load → 15 kN load → 45 kN load → 60 kN load and a load was applied to the bolt 100, and an interference frequency peak was obtained each time (FIG. 13 legend A). In addition, each time after returning to the no-load state, the probe 2 is once removed from the bolt 100, and after searching for the probe position where the bottom surface reflected signal intensity is maximum, the load is applied in the same way, Frequency peaks were repeatedly acquired (Figure 13 legend B, C, D and E).
As a result, it was confirmed that the load-interference frequency peak straight line shifted when the probe 2 was removed. This means that when the axial force of the bolt 100 to which an unknown load is applied is measured, the measured axial force varies under the condition that the probe 2 is removed. Even in a no-load state, variations in the axial force measurement values occur when the probe 2 is removed.
(4)探触子回転角度の無負荷のボルトにおける影響確認
ここで、図14に示す如きシリコン製印象剤よりなる探触子固定治具10’を製作し、ボルト100に対する探触子位置を固定すると共に、探触子2、治具10’、ボルト100のそれぞれに方位を明確にするマークM1〜3を記載し、ボルト100、治具10’及び探触子2の相対位置及び角度を制御できるようにした。この状況下で、図15に示すように、探触子2を基準方位(センサ回転角0°)から90°、180°及び270°回転させ、回転角0°及び各回転角度での干渉周波数ピーク測定を実施した。また、更に探触子2を一度ボルト100から付け外しし、ボルト100と治具10’と探触子2のマークを基に、探触子2を基準方位から90°、180°及び270°回転させ、回転角0°及び各回転角度での干渉周波数ピークを測定するルーチンを3回繰り返し実施した。
ここで、図16に、回転角毎に測定した無負荷状態での干渉周波数ピークfをプロットしたグラフを示す。本測定は無負荷条件で実施しているので、元来ボルトの長さ変化は起こらず、理想的には干渉周波数ピークの変化は起こらないはずであるが、各角度においてばらつきd1〜4が生じている。同一角度内であれば、このばらつきd1〜d4は比較的小さく抑えられる。しかし、全ての角度での測定結果で考えると、270°での最小値から180°での最大値の間でばらつきDが生じる可能性がある。すなわち、探触子2の回転角度(方位)が変化すること(特定の方位で一致させない)で、無負荷においても軸力の出力にばらつきが生じることを示しており、逆に言うと、探触子位置と角度を固定することで、軸力の出力のばらつきを低減できる。
(4) Confirmation of Influence of Probe Rotation Angle on Unloaded Bolt Here, a probe fixing jig 10 ′ made of a silicone impression agent as shown in FIG. 14 is manufactured, and the position of the probe relative to the bolt 100 is determined. Marks M1 to M3 for clarifying the orientation are described on the probe 2, the jig 10 ′, and the bolt 100, and the relative positions and angles of the bolt 100, the jig 10 ′, and the probe 2 are set. I was able to control it. Under this condition, as shown in FIG. 15, the probe 2 is rotated 90 °, 180 ° and 270 ° from the reference orientation (sensor rotation angle 0 °), and the interference frequency at the rotation angle 0 ° and each rotation angle is rotated. Peak measurement was performed. Further, the probe 2 is once removed from the bolt 100, and the probe 2 is moved 90 °, 180 ° and 270 ° from the reference direction based on the bolt 100, the jig 10 ′ and the mark of the probe 2. The routine of rotating and measuring the interference frequency peak at a rotation angle of 0 ° and at each rotation angle was repeated three times.
Here, FIG. 16 shows a graph in which the interference frequency peak f in a no-load state measured for each rotation angle is plotted. Since this measurement is carried out under no-load conditions, the bolt length originally does not change, and ideally the interference frequency peak should not change, but variations d1 to 4 occur at each angle. ing. If the angle is within the same angle, the variations d1 to d4 can be kept relatively small. However, when considering the measurement results at all angles, there may be a variation D between the minimum value at 270 ° and the maximum value at 180 °. In other words, the change in the rotation angle (azimuth) of the probe 2 (not matched with a specific orientation) indicates that the output of the axial force varies even when there is no load. By fixing the position and angle of the touch element, it is possible to reduce variations in the output of the axial force.
(5)探触子回転角度の負荷ボルトにおける影響確認
ボルト100が無負荷の状態で、探触子2を一度ボルト100から付け外しするが、治具10’を使用して探触子位置及び回転角度を同一条件に設定した。その後、探触子2は固定したままで無負荷→15kN負荷→45kN負荷→60kN負荷とボルト100に荷重を加え、都度、干渉周波数ピークを取得した(図17凡例A)。無負荷状態に戻した後に都度、探触子2を一度ボルト100から付け外しするが、治具10’を使用して探触子位置及び回転角度を同一条件に設定した上で、同様に負荷を加えながら、干渉周波数ピークを繰り返し取得した(図16凡例B,C,D及びE)。
この結果、信号強度のみを指針として探触子2をセットした図13と異なり、著しく干渉周波数ピークのばらつきが減少することが確認できた。このことは、未知の負荷荷重を与えられたボルト100の軸力を測定する際に、探触子2を付け外ししても、探触子位置及び回転角度を同一に出来るようにしておけば、軸力測定値のばらつきを低減できることを意味し、無負荷状態においても軸力測定値にばらつきが低減できることとなる。このように、校正時又は無負荷状態での測定時と、負荷状態での測定時の2回で、長尺部材に対する探触子の相対位置及び探触子の相対姿勢を一致させることで、測定データのばらつきを抑えることができる。
(5) Confirmation of the influence of the probe rotation angle on the load bolt With the bolt 100 unloaded, the probe 2 is once attached to and detached from the bolt 100, but the probe position and The rotation angle was set to the same condition. Thereafter, with the probe 2 fixed, no load → 15 kN load → 45 kN load → 60 kN load and a load was applied to the bolt 100, and an interference frequency peak was obtained each time (FIG. 17 legend A). Each time after returning to the no-load state, the probe 2 is once attached / detached from the bolt 100, but the load is similarly applied after setting the probe position and the rotation angle to the same conditions using the jig 10 ′. The interference frequency peak was repeatedly acquired while adding (Fig. 16 legend B, C, D and E).
As a result, unlike FIG. 13 in which the probe 2 was set using only the signal intensity as a guideline, it was confirmed that the variation in interference frequency peak was significantly reduced. This means that when the axial force of the bolt 100 to which an unknown load is applied is measured, the probe position and the rotation angle can be made the same even if the probe 2 is removed. This means that variations in measured axial force values can be reduced, and variations in measured axial force values can be reduced even in a no-load state. In this way, by matching the relative position of the probe and the relative posture of the probe with respect to the long member by two times at the time of calibration or measurement in the unloaded state and at the time of measurement in the loaded state, Variations in measurement data can be suppressed.
なお、実験では、シリコン製印象剤により治具10’を作成したが、上述の治具10を用いることも可能である。また、上記実験では、底面反射信号強度が最大になる探触子位置を探し出し、その位置を不変とした。しかし、探触子2の相対位置は、上記2回の送受信時において探触子2の位置が一致していればよく、例えばボルト100の中心を探触子位置として一致させるようにしてもよい。 In the experiment, the jig 10 ′ was made of a silicon impression agent, but the above-described jig 10 can also be used. Further, in the above experiment, the probe position where the bottom surface reflected signal intensity is maximized was found, and the position was not changed. However, the relative position of the probe only needs to match the position of the probe 2 at the time of the above two transmissions / receptions. For example, the center of the bolt 100 may be matched as the probe position. .
また、材料内部の傷の検査等の従来の垂直探傷においては、同一の大きさの反射源からのレスポンス(反射信号振幅)を同一になるように、探傷前に装置の調整(キャリブレーション)を行うので、実質的に超音波ビームの傾きが問題になることはない。このため、従来の使用方法においては、「探触子の相対姿勢(ビーム傾斜及び回転角(方位))の変化」が問題とされることは通常なく、この「相対姿勢を固定すること」も行われていない。したがって、「相対姿勢を固定すること」は、従来の垂直探触子の利用方法において想定し得ない事項である。 In addition, in conventional vertical inspection such as inspection of internal flaws, adjustment (calibration) of the device is performed before flaw detection so that the response (reflection signal amplitude) from the reflection source of the same size is the same. As a result, the tilt of the ultrasonic beam does not become a problem. For this reason, in the conventional method of use, “change in the relative attitude of the probe (beam tilt and rotation angle (orientation))” is not normally considered as a problem. Not done. Therefore, “fixing the relative posture” is a matter that cannot be assumed in the conventional method of using the vertical probe.
干渉法では、ボルト長さに応じた超音波の干渉周波数ピークから、ボルト100の長さ変化を測定することが可能で、軸力に換算することが出来る。この測定は、細長いボルトの場合に測定データのばらつきが小さく、太く短いボルトの場合に測定データがばらつく傾向が認められた。今回の実験で、ボルト100と探触子2の相対位置及び探触子2の相対角度(回転角度)を固定することで、太く短いボルトにおいても測定データのばらつきを低減できることが分かった。また、探触子固有の超音波ビームの傾きに起因する可能性も少なからずあるので、探触子2の姿勢を一致させることで、さらにデータのばらつきを抑制できる。 In the interference method, it is possible to measure a change in the length of the bolt 100 from the peak of the interference frequency of the ultrasonic wave according to the bolt length, and it can be converted into an axial force. In this measurement, the variation in the measurement data was small in the case of a long and narrow bolt, and the measurement data tended to vary in the case of a thick and short bolt. In this experiment, it was found that by fixing the relative position of the bolt 100 and the probe 2 and the relative angle (rotation angle) of the probe 2, variation in measurement data can be reduced even with a thick and short bolt. In addition, since there is not a small possibility that it is caused by the inclination of the ultrasonic beam unique to the probe, it is possible to further suppress variation in data by matching the posture of the probe 2.
次に、本発明の第二実施形態について説明する。なお、以下の実施形態において、上記実施形態と同様の部材には同一の符号を附してある。
第二実施形態では、図18に示すように、測定部36は、信号強度測定部36aと、先のバースト波21と異なる第二バースト波60の伝播時間を測定する伝播時間測定部36bを備える。また、マスターカーブ作成部37は、既知の軸力(荷重)に対する伝播時間を求める第一マスターカーブM1を作成する第一マスターカーブ作成部37bと、既知の軸力(荷重)に対する信号強度が最大となる極大干渉周波数を求める第二マスターカーブM2を作成する第二マスターカーブ作成部37cを備える。そして、軸力算出部38は、測定部36の測定値及び予め作成された第一、第二マスターカーブM1、M2から軸力を求める。
Next, a second embodiment of the present invention will be described. In the following embodiments, members similar to those in the above embodiment are denoted by the same reference numerals.
In the second embodiment, as shown in FIG. 18, the measurement unit 36 includes a signal intensity measurement unit 36 a and a propagation time measurement unit 36 b that measures the propagation time of the second burst wave 60 different from the previous burst wave 21. . The master curve creation unit 37 has a first master curve creation unit 37b for creating a first master curve M1 for obtaining a propagation time for a known axial force (load), and a signal strength for the known axial force (load) is the maximum. A second master curve creation unit 37c for creating a second master curve M2 for obtaining a maximum interference frequency. Then, the axial force calculation unit 38 obtains the axial force from the measurement value of the measurement unit 36 and the first and second master curves M1 and M2 created in advance.
超音波発生器30は、先のバースト波21とこのバースト波21とは異なる超音波としての第二バースト波60の2種のバースト波を発生させる。第二バースト波60は、ボルト100を伝播する超音波の伝播時間を測定するために用いられる(時間差法)。すなわち、本実施形態では、1つの超音波発生器30で2種類のバースト波を発生させることで2種類の手法を使用し、それら手法により求めた値を用いることで精度よく軸力を測定する。 The ultrasonic generator 30 generates two types of burst waves, the first burst wave 21 and a second burst wave 60 as an ultrasonic wave different from the burst wave 21. The second burst wave 60 is used to measure the propagation time of the ultrasonic wave propagating through the bolt 100 (time difference method). That is, in the present embodiment, two types of burst waves are generated by one ultrasonic generator 30 and two types of methods are used, and the axial force is accurately measured by using values obtained by these methods. .
図19(a)に示すように、第二バースト波60は、その波数が0.5波以上最初の反射波(B1:第一反射エコー)の到達時間より短い波数であるとよい。波数が0.5波よりも少ない場合、バースト波(超音波)の発生効率が低下する。他方、波数が最初の反射波の到達時間よりも長くなる波数であれば、第一反射エコーB1が第二バースト波60(入射波)と重なり伝播時間の測定が困難となる。なお、本実施形態では、図19(a)に示す第二バースト波60の送信エコー60’(S)と第一反射エコー61’(B1)の時間差Tを伝播時間Tとして求め、図19(b)に示す如き時間波形W’を生成する。 As shown in FIG. 19A, the second burst wave 60 may have a wave number shorter than the arrival time of the first reflected wave (B1: first reflected echo) by 0.5 wave or more. When the wave number is less than 0.5 waves, the generation efficiency of burst waves (ultrasonic waves) decreases. On the other hand, if the wave number is longer than the arrival time of the first reflected wave, the first reflected echo B1 overlaps with the second burst wave 60 (incident wave), making it difficult to measure the propagation time. In the present embodiment, the time difference T between the transmission echo 60 ′ (S) of the second burst wave 60 and the first reflection echo 61 ′ (B1) shown in FIG. A time waveform W ′ as shown in b) is generated.
次に、図20〜24を参照しながら軸力測定手順について説明する。
図20に示すように、軸力測定の前に、対象となるボルトと同一構成よりなる試験ボルトを用いて第一、第二マスターカーブM1,M2を作成する。始めに、試験ボルトを引張試験機や油圧ジャッキ等にセットすると共に、試験ボルトを引っ張ることで所定の軸力を発生させる。また、バースト波設定部41に入射するバースト波21、第二バースト波60の発振周波数、波数、発振周波数間隔を入力すると共に条件設定部42に試験ボルトの長さや設定した軸力を入力する(S1)。次に、超音波発生器30がバースト波設定部41に設定された条件に従って探触子2に第二バースト波60を発生させ、反射信号を受信する(S2)。そして、伝播時間測定部36bにて波形データの作成が完了すれば(S3)、超音波発生器30がバースト波設定部41に設定された条件に従って探触子2にバースト波21を発生させ、反射信号を受信し信号強度測定部36aにて波形データが生成される(S4)。このバースト波21の送受信時において、上述の治具10により、各方位指示部M1〜3を一致させることで、測定時のボルト100に対する探触子2の相対位置及び相対姿勢を固定する。これにより、測定値のばらつきを抑制する。
Next, an axial force measurement procedure will be described with reference to FIGS.
As shown in FIG. 20, first and second master curves M1 and M2 are created using a test bolt having the same configuration as that of the target bolt before the axial force measurement. First, a test bolt is set on a tensile tester or a hydraulic jack, and a predetermined axial force is generated by pulling the test bolt. Further, the oscillation frequency, wave number, and oscillation frequency interval of the burst wave 21 and the second burst wave 60 incident on the burst wave setting unit 41 are input, and the length of the test bolt and the set axial force are input to the condition setting unit 42 ( S1). Next, the ultrasonic generator 30 generates the second burst wave 60 in the probe 2 according to the conditions set in the burst wave setting unit 41, and receives the reflected signal (S2). When the creation of the waveform data is completed in the propagation time measurement unit 36b (S3), the ultrasonic generator 30 causes the probe 2 to generate the burst wave 21 according to the conditions set in the burst wave setting unit 41, The reflected signal is received, and the waveform data is generated by the signal intensity measuring unit 36a (S4). At the time of transmission / reception of the burst wave 21, the relative position and the relative posture of the probe 2 with respect to the bolt 100 at the time of measurement are fixed by matching the azimuth indicating units M1 to M3 with the jig 10 described above. Thereby, the dispersion | variation in a measured value is suppressed.
全測定が完了していなければ(S5)、軸力を変更して(S7)上記工程を繰り返す。各軸力にて測定が完了すれば(S5)、第一マスターカーブ作成部37aは、伝播時間測定部36bが測定した第二バースト波60の伝播時間と設定した軸力から図21(a)の如き第一マスターカーブM1を作成する(S6)。また、第二マスターカーブ作成部37bは、信号強度測定部36aが測定したバースト波21の極大干渉周波数と設定した軸力から図21(b)の如き第二マスターカーブM2を作成する(S6)。作成された第一、第二マスターカーブM1,M2は、表示・入出力部4の記憶部44に記憶される。そして、第一、第二マスターカーブM1,M2の作成後に、軸力測定が行われる。 If all measurements are not completed (S5), the axial force is changed (S7) and the above steps are repeated. If the measurement is completed with each axial force (S5), the first master curve creating unit 37a determines the propagation time of the second burst wave 60 measured by the propagation time measuring unit 36b and the set axial force from FIG. A first master curve M1 is created (S6). The second master curve creation unit 37b creates a second master curve M2 as shown in FIG. 21B from the maximum interference frequency of the burst wave 21 measured by the signal intensity measurement unit 36a and the set axial force (S6). . The created first and second master curves M 1 and M 2 are stored in the storage unit 44 of the display / input / output unit 4. Then, after the first and second master curves M1 and M2 are created, axial force measurement is performed.
ここで、例えば図22に示すように、ボルト100が比較的長い場合、時間波形(第二バースト波)では、ピーク信号から伝播時間を特定しやすい。一方、干渉波形(バースト波)ではピーク信号が複数存在するため、極大干渉周波数となる周波数を特定しにくい。 Here, for example, as shown in FIG. 22, when the bolt 100 is relatively long, it is easy to specify the propagation time from the peak signal in the time waveform (second burst wave). On the other hand, since there are a plurality of peak signals in the interference waveform (burst wave), it is difficult to specify the frequency that becomes the maximum interference frequency.
そこで、図23に示すように、まず、上述と同様にバースト波設定部41に入射するバースト波21、第二バースト波60の発振周波数、波数、発振周波数間隔を入力すると共に条件設定部42にボルト100の長さを入力する(S10)。例えば、発振周波数5MHz(例えば可変範囲5.0MHz〜5.1MHz)、第二バースト波60の波数1、バースト波21の波数600、発振周波数間隔1kHz、ボルト100の長さ160mmと入力する。次に、超音波発生器30が第二バースト波60を発生させ、反射信号を受信する(S11)。そして、伝播時間測定部36bが時間波形W’を生成すると共にそのピーク時刻を伝播時間Tとして測定する(S12、図24(a))。 Therefore, as shown in FIG. 23, first, the oscillation frequency, the wave number, and the oscillation frequency interval of the burst wave 21 and the second burst wave 60 incident on the burst wave setting unit 41 are input and the condition setting unit 42 is input as described above. The length of the bolt 100 is input (S10). For example, an oscillation frequency of 5 MHz (for example, a variable range of 5.0 MHz to 5.1 MHz), a wave number 1 of the second burst wave 60, a wave number 600 of the burst wave 21, an oscillation frequency interval of 1 kHz, and a length of the bolt 100 of 160 mm are input. Next, the ultrasonic generator 30 generates the second burst wave 60 and receives the reflected signal (S11). Then, the propagation time measuring unit 36b generates a time waveform W ′ and measures the peak time as the propagation time T (S12, FIG. 24A).
伝播時間Tを測定後、軸力算出部38は、第一マスターカーブM1から測定した伝播時間Tにおける概略軸力F’を求め、条件設定部42に記憶させる。また、軸力算出部38は、第二マスターカーブM2から先の概略軸力F’における干渉周波数範囲frを求める(S13、図24(b)(c))。なお、本実施形態において、干渉周波数範囲frは10kHz程度に設定しているが、一例に過ぎず、適宜の数値範囲で設定される。 After measuring the propagation time T, the axial force calculation unit 38 obtains the approximate axial force F ′ at the propagation time T measured from the first master curve M1, and stores it in the condition setting unit 42. Further, the axial force calculation unit 38 obtains the interference frequency range fr in the approximate axial force F ′ from the second master curve M2 (S13, FIGS. 24B and 24C). In the present embodiment, the interference frequency range fr is set to about 10 kHz. However, the interference frequency range fr is only an example, and is set in an appropriate numerical range.
そして、概略軸力F’及び干渉周波数範囲frを算出できれば(S14)、超音波発生器30が設定した発振周波数範囲内において設定した周波数間隔で周波数を変化させながらバースト波21を発生させ、反射信号を受信する(S15)。この際、上述の治具10により探触子2を第二マスターカーブM2の作成時における探触子の相対位置及び相対姿勢と一致させて取り付けた状態で反射波を受信する。そして、信号強度測定部36aは、干渉波形Wを生成すると共にその干渉波形Wにおいて先に求めた干渉周波数範囲frから極大干渉周波数Qを求める(S16、図24(d))。そして、軸力算出部38は、求めた極大干渉周波数Qを第二マスターカーブM2に代入して軸力Fを算出する(S17、図24(e))。このように、先に第二バースト波60を用いてバースト波21の極大干渉周波数Qが出現し得る周波数範囲frを予測することで、極大干渉周波数Qを見誤ることなく正確に算出できるので、上述の如き周波数分解能が高い高価な装置を用いなくとも、安価な装置で高精度に軸力を測定することができる。しかも、第二マスターカーブ作成時と検査時(軸力算出時)の探触子の相対位置及び相対姿勢を一致させるので、垂直探触子の相対位置及び相対姿勢の不一致による干渉周波数の測定誤差を抑制することができる。 If the approximate axial force F ′ and the interference frequency range fr can be calculated (S14), the burst wave 21 is generated while changing the frequency at the frequency interval set within the oscillation frequency range set by the ultrasonic generator 30, and reflected. A signal is received (S15). At this time, the reflected wave is received by the above-described jig 10 in a state where the probe 2 is attached in accordance with the relative position and the relative posture of the probe when the second master curve M2 is created. Then, the signal intensity measuring unit 36a generates the interference waveform W and obtains the maximum interference frequency Q from the interference frequency range fr obtained previously in the interference waveform W (S16, FIG. 24 (d)). Then, the axial force calculator 38 calculates the axial force F by substituting the obtained maximum interference frequency Q into the second master curve M2 (S17, FIG. 24 (e)). Thus, by predicting the frequency range fr in which the maximum interference frequency Q of the burst wave 21 can appear first using the second burst wave 60, the maximum interference frequency Q can be accurately calculated without misunderstanding. Without using an expensive apparatus with high frequency resolution as described above, the axial force can be measured with high accuracy using an inexpensive apparatus. Moreover, since the relative position and relative orientation of the probe are the same when creating the second master curve and when inspecting (when calculating the axial force), the measurement error of the interference frequency due to the mismatch of the relative position and relative orientation of the vertical probe Can be suppressed.
次に、本発明の第三実施形態について説明する。
上記第二実施形態においては、先に第二バースト波60の伝播時間Tから概算軸力F’を算出し、概算軸力F’に基づき第二マスターカーブM2から干渉周波数範囲frを求めた。しかし、先にバースト波21を適用し極大干渉周波数Qから概算軸力F’を算出し、概算軸力F’に基づき第一マスターカーブM1から伝播時間範囲trを求めて、軸力Fを求めることも可能である。
Next, a third embodiment of the present invention will be described.
In the second embodiment, the approximate axial force F ′ is first calculated from the propagation time T of the second burst wave 60, and the interference frequency range fr is obtained from the second master curve M2 based on the approximate axial force F ′. However, the burst force 21 is first applied, the approximate axial force F ′ is calculated from the maximum interference frequency Q, the propagation time range tr is obtained from the first master curve M1 based on the approximate axial force F ′, and the axial force F is obtained. It is also possible.
例えば、図25に示すように、ボルト100が比較的短い場合、干渉波形(バースト波)では、ピーク信号から極大干渉周波数を特定しやすい。一方、時間波形(第二バースト波)ではピーク信号が複数存在するため、伝播時間を特定しにくい。 For example, as shown in FIG. 25, when the bolt 100 is relatively short, it is easy to specify the maximum interference frequency from the peak signal in the interference waveform (burst wave). On the other hand, since there are a plurality of peak signals in the time waveform (second burst wave), it is difficult to specify the propagation time.
そこで、図26に示すように、まず、上述と同様にバースト波設定部41に入射するバースト波21、第二バースト波60の発振周波数、波数、発振周波数間隔を入力すると共に条件設定部42にボルト100の長さを入力する(S20)。次に、超音波発生器30がバースト波21を発生させ、反射信号を受信する(S21)。この際、上述の治具10により、各方位指示部M1〜3を一致させて、第二マスターカーブM2の作成時における探触子の相対位置及び相対姿勢と一致して探触子2を取り付けられた状態で受信する。そして、信号強度測定部36aが干渉波形Wを生成すると共に極大干渉周波数Qを求める(S22、図27(a))。 Therefore, as shown in FIG. 26, first, the oscillation frequency, wave number, and oscillation frequency interval of the burst wave 21 and the second burst wave 60 incident on the burst wave setting unit 41 are input and the condition setting unit 42 is input in the same manner as described above. The length of the bolt 100 is input (S20). Next, the ultrasonic generator 30 generates a burst wave 21 and receives a reflected signal (S21). At this time, the azimuth indicating units M1 to M3 are matched by the jig 10 described above, and the probe 2 is attached so as to match the relative position and relative attitude of the probe when the second master curve M2 is created. Received in the received state. Then, the signal intensity measuring unit 36a generates the interference waveform W and obtains the maximum interference frequency Q (S22, FIG. 27 (a)).
極大干渉周波数Qを求めた後、軸力算出部38は、第二マスターカーブM2から求めた極大干渉周波数Qにおける概略軸力F’を求め、条件設定部42に記憶させる。また、軸力算出部38は、第一マスターカーブM1から先の概略軸力F’における伝播時間範囲trを求める(S23、図27(b)(c))。 After obtaining the maximum interference frequency Q, the axial force calculation unit 38 obtains the approximate axial force F ′ at the maximum interference frequency Q obtained from the second master curve M2, and stores it in the condition setting unit 42. Moreover, the axial force calculation part 38 calculates | requires the propagation time range tr in the general axial force F 'ahead from the 1st master curve M1 (S23, FIG.27 (b) (c)).
そして、概略軸力F’及び伝播時間範囲trを算出できれば(S24)、超音波発生器30が第二バースト波60を発生させ、反射信号を受信する(S25)。そして、伝播時間測定部36bは時間波形W’を生成すると共に時間波形W’において先に求めた伝播時間範囲trから極大伝播時間T’を求める(S26、図27(d))。なお、本実施形態において、伝播時間範囲trは0.01μs程度に設定しているが、一例に過ぎず、適宜の数値範囲で設定される。 If the approximate axial force F 'and the propagation time range tr can be calculated (S24), the ultrasonic generator 30 generates the second burst wave 60 and receives the reflected signal (S25). Then, the propagation time measuring unit 36b generates a time waveform W ′ and obtains a maximum propagation time T ′ from the propagation time range tr previously obtained in the time waveform W ′ (S26, FIG. 27 (d)). In the present embodiment, the propagation time range tr is set to about 0.01 μs, but is merely an example, and is set within an appropriate numerical range.
そして、軸力算出部38は、求めた極大伝播時間T’を第一マスターカーブM1に代入して軸力を算出する(S27、図27(e))。このように、先に第二バースト波を用いて第二バースト波60の極大伝播時間T’が出現し得る伝播時間範囲trを予測することで、極大伝播時間T’を見誤ることなく正確に算出できるので、上述の如きサンプリング周期の短いA/D変換器等を用いることなく、安価な装置で高精度に軸力を測定することができる。 Then, the axial force calculator 38 calculates the axial force by substituting the obtained maximum propagation time T ′ into the first master curve M1 (S27, FIG. 27 (e)). In this way, by predicting the propagation time range tr in which the maximum propagation time T ′ of the second burst wave 60 can appear using the second burst wave, the maximum propagation time T ′ can be accurately detected without mistaking it. Since it can be calculated, the axial force can be measured with high accuracy by an inexpensive apparatus without using an A / D converter having a short sampling period as described above.
最後に、本発明のさらに他の実施形態の可能性について説明する。
上記実施形態において、探触子固定治具10は、略円柱形の本体部11に探触子2を保持する貫通孔12とボルト頭部101と嵌合する凹部13を設けた。しかし、治具10の構造はこれに限られるものではない。例えば、図28(a)に示すように、本体部11’をボルト頭部101と同形状として頭部101に載置するようにし、探触子2を押さえるイモネジ等を取り付ける取付孔14を設けてもよい。また、形状も六角柱に限られず、同図(b)(c)の如き頭部101と3辺で一致する三角柱形状でも構わない。
Finally, the possibilities of yet another embodiment of the present invention will be described.
In the embodiment described above, the probe fixing jig 10 is provided with a through hole 12 for holding the probe 2 and a recess 13 for fitting with the bolt head 101 in a substantially cylindrical main body 11. However, the structure of the jig 10 is not limited to this. For example, as shown in FIG. 28 (a), the main body portion 11 'has the same shape as the bolt head portion 101 and is placed on the head portion 101, and a mounting hole 14 is provided for attaching a grub screw or the like for holding the probe 2. May be. Further, the shape is not limited to the hexagonal column, and may be a triangular prism shape that coincides with the head 101 on three sides as shown in FIGS.
さらに、各方位指示部は、マークや刻印等に限られるものではなく、例えば図29に示す如く、ケーブル接続部2aが水平方向に突設された探触子2’を用い、その接続部2aを探触子方位指示部M2としてもよい。同様に、試験体方位指示部M3もボルト等の試験体の特徴形状(例えばメーカーの刻印やねじ溝の開始、終了箇所)を指示部とすることもできる。また、図30に示すように、例えば探触子2”のハウジング2b自体をボルト頭部101と同一形状とし、その底部2cにフェライト磁石等を設ける。これにより、位置合わせを六角形の角部で行えばよく、相対位置を容易に一致させることができる。しかも、磁石により位置ずれを防止し且つ相対姿勢も安定する。 Furthermore, each azimuth indicating unit is not limited to a mark, a stamp, or the like. For example, as shown in FIG. 29, a probe 2 ′ in which a cable connecting unit 2a is provided in a horizontal direction is used to connect the connecting unit 2a. May be used as the probe orientation instruction unit M2. Similarly, the test body orientation instructing section M3 can also use the characteristic shape of the test body such as a bolt (for example, the manufacturer's marking or the start and end of the thread groove) as the indicating section. Further, as shown in FIG. 30, for example, the housing 2b of the probe 2 "has the same shape as the bolt head 101, and a ferrite magnet or the like is provided on the bottom 2c. The relative positions can be easily matched, and the magnets can prevent displacement and stabilize the relative posture.
なお、これらは一例に過ぎず、探触子の相対位置及び相対姿勢を一致させることが可能な態様であれば、これに限定されない。例えば、ボルト頭部101を加工し非対称形状とし、治具10にそれに嵌合する凹部13を形成することで、相対位置及び相対姿勢(方位)を容易に一致させることができる。また、治具10にスリットや孔を設け、他の方位指示部を識別容易としてもよい。さらに、試験体は長尺部材(ボルト)に限られるものではなく、例えば板状体でも適用可能である。 Note that these are merely examples, and the present invention is not limited to this as long as the relative positions and relative postures of the probes can be matched. For example, the relative position and the relative posture (azimuth) can be easily matched by processing the bolt head 101 to form an asymmetric shape and forming the recess 13 fitted to the jig 10. Moreover, it is good also as providing a slit and a hole in the jig | tool 10 and making another orientation instruction | indication part easy to identify. Furthermore, a test body is not restricted to a long member (bolt), For example, a plate-shaped body is applicable.
上記第二、第三実施形態において、伝播時間Tを第二バースト波60の送信エコー60’(S)と第一反射エコー61’(B1)の時間差とした。しかし、これに限られず、例えば第一反射エコー61’(B1)と第二反射エコー62’(B2)との時間差であってもよい。また、図19(b)に示す如く伝播時間Tとしてピーク時間を計測した。しかし、伝播時間はピーク時間に限定されるものではなく、例えば、ゼロクロス時刻、閾値クロス時刻、相互相関法等の他の手法により求まる時間を伝播時間とすることも可能である。なお、極大伝播時間T’においても同様である。 In the second and third embodiments, the propagation time T is the time difference between the transmission echo 60 '(S) of the second burst wave 60 and the first reflection echo 61' (B1). However, the present invention is not limited to this, and may be a time difference between the first reflected echo 61 '(B1) and the second reflected echo 62' (B2), for example. Further, the peak time was measured as the propagation time T as shown in FIG. However, the propagation time is not limited to the peak time, and for example, the time obtained by another method such as zero cross time, threshold cross time, or cross-correlation method can be used as the propagation time. The same applies to the maximum propagation time T ′.
上記各実施形態において、図3(b)に示す如く、バースト波の合成波(反射信号)の信号強度として振幅値を用いた。しかし、信号強度は振幅値に限定されるものではなく、振幅の積分値(面積)やエネルギーを用いることも可能である。これにより、高周波ノイズの影響を低減できる。 In each of the above embodiments, as shown in FIG. 3B, the amplitude value is used as the signal intensity of the combined wave (reflected signal) of the burst wave. However, the signal intensity is not limited to the amplitude value, and an integral value (area) of amplitude or energy can also be used. Thereby, the influence of high frequency noise can be reduced.
上記第二、第三実施形態において、バースト波の周波数、周波数ピッチや波数等は適宜設定、入力するものであり、上記数値に限られるものではない。また、上記第二、第三実施形態では、信号処理部3にマスターカーブ作成部37を設けた。しかし、必ずしも信号処理部3にマスターカーブ作成部37を設ける必要はなく、軸力測定時に少なくとも予め作成された第一、第二マスターカーブM1,M2を参照可能に構成すればよい。 In the second and third embodiments, the frequency, frequency pitch, wave number, etc. of the burst wave are set and input as appropriate, and are not limited to the above numerical values. In the second and third embodiments, the signal processing unit 3 is provided with the master curve creation unit 37. However, it is not always necessary to provide the master curve creation unit 37 in the signal processing unit 3, and it may be configured to be able to refer to at least the first and second master curves M1 and M2 created in advance when measuring the axial force.
上記各実施形態において、探触子2に超音波の送受信を兼務する一振動子型探触子を用いたが、二振動子型探触子を用いても構わない。但し、二振動子型探触子は、その構造上、超音波ビームBに傾斜Gが生じやすいため、一振動子型探触子の方が干渉への影響を抑制できる。 In each of the above-described embodiments, the single-transducer type probe that also transmits and receives ultrasonic waves is used as the probe 2. However, a dual-transducer type probe may be used. However, since the two-element probe has a structure in which the ultrasonic beam B is likely to be inclined G, the one-element probe can suppress the influence on interference.
上記第二実施形態において、第二バースト波60により伝播時間Tを測定し概略軸力F’を介して干渉周波数範囲frを求め、設定したバースト波21の発振周波数範囲内で且つ干渉周波数範囲fr内で極大干渉周波数Qを求めた。しかし、例えば、干渉周波数範囲frを求めた後、その干渉周波数範囲frをバースト波21の発振周波数範囲として設定することも可能である。これにより、バースト波21の発振周波数範囲が極大干渉周波数Qが出現するであろう範囲に限定できるので、測定時間を短縮でき効率よく軸力を測定できる。 In the second embodiment, the propagation time T is measured by the second burst wave 60 to determine the interference frequency range fr via the approximate axial force F ′, and within the set oscillation frequency range of the burst wave 21 and the interference frequency range fr. The maximum interference frequency Q was determined. However, for example, after obtaining the interference frequency range fr, the interference frequency range fr can be set as the oscillation frequency range of the burst wave 21. Thereby, since the oscillation frequency range of the burst wave 21 can be limited to a range where the maximum interference frequency Q will appear, the measurement time can be shortened and the axial force can be measured efficiently.
上記第二、第三実施形態において、1つの超音波発生器30から異なる2種のバースト波を発生させることで軸力測定を行った。しかし、第二バースト波をパルス波に替えて、パルス波とバースト波とを用いることも可能である。 In the second and third embodiments, axial force measurement was performed by generating two different types of burst waves from one ultrasonic generator 30. However, it is also possible to use a pulse wave and a burst wave instead of the second burst wave.
本発明は、例えば、自動車部品、機械装置、その他産業用装置、機器、プラント等に用いられる長尺部材としてのボルトやねじ等による締結物における軸力測定装置及び測定方法として利用することができる。また、医療用ボルト等の他の長尺部材の軸力測定装置及び測定方法としても利用することができる。 INDUSTRIAL APPLICABILITY The present invention can be used as an axial force measuring device and measuring method for a fastening object such as a bolt or a screw as a long member used in, for example, automobile parts, mechanical devices, other industrial devices, equipment, plants, and the like. . It can also be used as an axial force measuring device and measuring method for other long members such as medical bolts.
さらに、本発明は、干渉法を用いた超音波検査手法に適用できるものであり、軸力測定に限られるものではない。干渉法は、超音波の伝播時間の微小な変化を干渉周波数の変化として検出するものであるので、伝播時間に関連付けられる材料の状態を測定対象にできる。例えば、試験体のひずみ測定、音速測定、温度測定、材質測定、残留応力測定等が可能である。また、長尺部材(ボルト100)に限らず、例えば板材の肉厚測定に適用することも可能である。 Furthermore, the present invention can be applied to an ultrasonic inspection method using an interferometry, and is not limited to axial force measurement. In the interferometry, a minute change in the propagation time of the ultrasonic wave is detected as a change in the interference frequency. Therefore, the state of the material associated with the propagation time can be measured. For example, it is possible to perform strain measurement, sound speed measurement, temperature measurement, material measurement, residual stress measurement, and the like of the specimen. Further, the present invention is not limited to the long member (bolt 100), and can be applied to, for example, thickness measurement of a plate material.
1:軸力測定装置、2,2’,2”:探触子、2a:ケーブル接続部、2b:ハウジング、2c:底面(磁石)、2d:振動子、3:信号処理部(装置本体)、4:表示・入出力部(PC)、10,10’10A,10B:探触子固定治具、11:本体部、12:貫通孔、13:凹部、14:取付孔、20A,20B:合成波、21:バースト波、22:最初の反射波(B1)、23:2回目の反射波(B2)、30:超音波発生器、31:パワーアンプ、32:保護回路、33:周波数フィルタ、34:A/D変換器、35:フィルタ、36:測定部、36a:信号強度測定部、36b:伝播時間測定部、37:マスターカーブ作成部、37a:軸力算出式作成部、37b:第一マスターカーブ作成部、37c:第二マスターカーブ作成部、38:軸力算出部、39:データ記憶部、41:バースト波設定部、42:条件設定部、43:表示部、44:記憶部、60:第二バースト波(異なる超音波)、61,61’:最初の反射波(B1)、62,62’:2回目の反射波(B2)100:ボルト(長尺部材)、101:頭部(一端)、102:先端部(他端)、200:理想的な垂直探触子、201〜203:現実の垂直探触子、B:超音波ビーム、Ba:中心、C:軸力算出式、F:軸力、F’:概略軸力、fr:干渉周波数範囲、G:傾斜、M1:治具方位指示部、M2:探触子方位指示部、M3:試験体方位指示部、N:試験体、P1〜3:経路、Q:極大干渉周波数、R,R’:反射信号、T:伝播時間、T’:極大伝播時間、tr:伝播時間範囲、V:最短経路(垂線)、W:干渉波形、W’:時間波形、 1: axial force measuring device, 2, 2 ′, 2 ″: probe, 2a: cable connection portion, 2b: housing, 2c: bottom surface (magnet), 2d: vibrator, 3: signal processing portion (device main body) 4: Display / input / output part (PC) 10, 10'10A, 10B: Probe fixing jig, 11: Main body part, 12: Through hole, 13: Recessed part, 14: Mounting hole, 20A, 20B: Synthetic wave, 21: burst wave, 22: first reflected wave (B1), 23: second reflected wave (B2), 30: ultrasonic generator, 31: power amplifier, 32: protection circuit, 33: frequency filter , 34: A / D converter, 35: filter, 36: measurement unit, 36a: signal intensity measurement unit, 36b: propagation time measurement unit, 37: master curve creation unit, 37a: axial force calculation formula creation unit, 37b: First master curve creation unit, 37c: second master curve creation unit 38: axial force calculation unit, 39: data storage unit, 41: burst wave setting unit, 42: condition setting unit, 43: display unit, 44: storage unit, 60: second burst wave (different ultrasonic waves), 61, 61 ′: first reflected wave (B1), 62, 62 ′: second reflected wave (B2) 100: bolt (long member), 101: head (one end), 102: tip (other end), 200: ideal vertical probe, 201-203: real vertical probe, B: ultrasonic beam, Ba: center, C: axial force calculation formula, F: axial force, F ′: approximate axial force, fr: interference frequency range, G: tilt, M1: jig orientation instruction section, M2: probe orientation instruction section, M3: specimen orientation instruction section, N: specimen, P1-3: path, Q: maximum interference Frequency, R, R ′: reflected signal, T: propagation time, T ′: maximum propagation time, tr: propagation time range, V: shortest path ( Line), W: interference waveform, W ': time waveform,
Claims (17)
前記長尺部材に対する前記垂直探触子の相対位置及び前記垂直探触子の相対姿勢を固定する垂直探触子固定治具を有し、
前記超音波発生器は、バースト波を発生させるものであり、
前記信号処理部は、発振周波数毎に前記反射波の伝播時間から次の反射波の伝播時間までの測定時間における前記バースト波の信号強度を測定する信号強度測定部を備え、
前記垂直探触子固定治具は、前記長尺部材に対する前記垂直探触子の校正データを作成する際の前記バースト波の送受信時又は前記長尺部材の無負荷状態での前記バースト波の送受信時と、前記長尺部材の負荷状態における前記バースト波の送受信時の2回で、前記相対位置及び前記相対姿勢を一致させるものであり、
前記信号処理部は、前記バースト波を前記発振周波数を変化させながら入射させて前記信号強度測定部により前記発振周波数毎に前記信号強度を測定し、
測定した発振周波数毎の信号強度から所定の干渉周波数範囲内で最大の信号強度となる極大干渉周波数を求め、
求めた極大干渉周波数に基づいて前記長尺部材の軸力を測定する軸力測定装置。 A vertical probe that receives an ultrasonic wave from one end of the long member and receives a reflected wave reflected from the other end of the long member, an ultrasonic generator that generates the ultrasonic wave, and a received reflected wave An axial force measuring device comprising a signal processing unit that processes a signal and measures an axial force of the elongated member,
A vertical probe fixing jig for fixing the relative position of the vertical probe and the relative posture of the vertical probe with respect to the long member;
The ultrasonic generator generates a burst wave,
The signal processing unit includes a signal intensity measurement unit that measures the signal intensity of the burst wave in a measurement time from the propagation time of the reflected wave to the propagation time of the next reflected wave for each oscillation frequency,
The vertical probe fixing jig transmits / receives the burst wave when transmitting / receiving the burst wave when creating calibration data of the vertical probe with respect to the long member or when the long member is unloaded. Two times at the time of transmission and reception of the burst wave in the load state of the long member, the relative position and the relative attitude are matched,
The signal processing unit makes the burst wave incident while changing the oscillation frequency, and measures the signal intensity for each oscillation frequency by the signal intensity measurement unit,
Find the maximum interference frequency that gives the maximum signal strength within the specified interference frequency range from the measured signal strength for each oscillation frequency,
An axial force measuring device that measures the axial force of the long member based on the obtained maximum interference frequency.
前記軸力算出式は、前記無負荷状態及び前記負荷状態の全てで前記垂直探触子固定治具により前記相対位置及び前記相対姿勢を一致させた状態で作成されたものであり、
前記信号強度測定部は、前記垂直探触子が前記垂直探触子固定治具により締結された長尺部材の一端に前記軸力算出式の作成時における前記相対位置及び前記相対姿勢と一致して取り付けられた状態で、前記発振周波数毎に前記信号強度を測定し、
前記信号処理部は、測定した発振周波数毎の信号強度から所定の干渉周波数範囲内で最大の信号強度となる極大干渉周波数を求め、
求めた極大干渉周波数と前記軸力算出式により前記長尺部材の軸力を測定する請求項1記載の軸力測定装置。 The signal processing unit includes an unloaded maximum interference frequency at which the signal strength in the unloaded state of the axial force of the long member is maximized and a loaded maximum interference frequency at which the signal strength in the loaded state of a known axial force is maximized. An axial force calculation formula showing a relationship between the difference and the known axial force;
The axial force calculation formula is created in a state where the relative position and the relative posture are matched by the vertical probe fixing jig in all of the unloaded state and the loaded state,
The signal intensity measurement unit matches the relative position and the relative posture when the axial force calculation formula is created at one end of a long member to which the vertical probe is fastened by the vertical probe fixing jig. In the attached state, measure the signal strength for each oscillation frequency,
The signal processing unit obtains a maximum interference frequency that is the maximum signal strength within a predetermined interference frequency range from the measured signal strength for each oscillation frequency,
The axial force measuring device according to claim 1, wherein the axial force of the long member is measured based on the obtained maximum interference frequency and the axial force calculation formula.
前記垂直探触子が前記垂直探触子固定治具により締結された長尺部材の一端に前記無荷重状態の測定時の前記相対位置及び前記相対姿勢と一致して取り付けられた状態で、前記信号強度を前記発振周波数毎に測定し、
前記信号処理部は、測定した発振周波数毎の信号強度から前記無負荷状態において最大の信号強度となる無負荷極大干渉周波数及び前記負荷状態において最大の信号強度となる負荷極大干渉周波数を求め、
求めた無負荷極大干渉周波数と負荷極大干渉周波数との差分と前記既知の軸力との関係を示す軸力算出式を作成し、
測定した発振周波数毎の信号強度から所定の干渉周波数範囲内で最大の信号強度となる極大干渉周波数を求め、
求めた極大干渉周波数と前記軸力算出式により前記長尺部材の軸力を測定する請求項1記載の軸力測定装置。 The signal strength measuring unit measures the signal strength in the state of no load of the axial force of the long member for each oscillation frequency, and the vertical probe is loaded with the no load by the vertical probe fixing jig. In a state of being attached to one end of a long member that is loaded by applying a known axial force to the long member in the state in conformity with the relative position and the relative posture at the time of measurement in the no-load state, The signal intensity is measured for each oscillation frequency, and the relative position and the relative position at the time of measurement in the no-load state are measured at one end of a long member in which the vertical probe is fastened by the vertical probe fixing jig. In the state of being attached in conformity with the posture, the signal intensity is measured for each oscillation frequency,
The signal processing unit obtains a no-load maximum interference frequency at which the maximum signal strength is obtained in the no-load state and a load maximum interference frequency at which the maximum signal strength is obtained in the load state from the measured signal strength for each oscillation frequency,
Create an axial force calculation formula showing the relationship between the difference between the obtained no-load maximum interference frequency and the load maximum interference frequency and the known axial force,
Find the maximum interference frequency that gives the maximum signal strength within the specified interference frequency range from the measured signal strength for each oscillation frequency,
The axial force measuring device according to claim 1, wherein the axial force of the long member is measured based on the obtained maximum interference frequency and the axial force calculation formula.
前記信号処理部は、前記異なる超音波の伝播時間を測定する伝播時間測定部と、
発振周波数毎に前記反射波の伝播時間から次の反射波の伝播時間までの測定時間における前記バースト波の信号強度を測定する信号強度測定部と、
既知の軸力に対する前記伝播時間を求める第一マスターカーブと、
前記既知の軸力に対する前記信号強度が最大となる極大干渉周波数を求める第二マスターカーブとを備え、
前記第二マスターカーブは、前記既知の軸力の負荷状態の全てで前記垂直探触子固定治具により前記相対位置及び前記相対姿勢を一致させた状態で作成されたものであり、
前記伝播時間測定部は、締結された長尺部材に前記異なる超音波を入射させて前記伝播時間を測定し、
前記信号強度測定部は、前記垂直探触子が前記垂直探触子固定治具により締結された長尺部材の一端に前記第二マスターカーブの作成時における前記相対位置及び前記相対姿勢と一致して取り付けられた状態で、前記発振周波数毎に前記信号強度を測定し、
前記信号処理部は、前記第一マスターカーブから測定した伝播時間における概略軸力を求め、
前記第二マスターカーブから前記概略軸力における干渉周波数範囲を求め、
測定した発振周波数毎の信号強度から前記干渉周波数範囲内で最大の信号強度となる極大干渉周波数を求め、
求めた極大干渉周波数と前記第二マスターカーブにより前記長尺部材の軸力を測定する請求項1記載の軸力測定装置。 The ultrasonic generator generates two types of ultrasonic waves, ultrasonic waves different from the burst wave and the burst wave,
The signal processing unit is a propagation time measurement unit that measures the propagation time of the different ultrasonic waves,
A signal intensity measuring unit that measures the signal intensity of the burst wave in the measurement time from the propagation time of the reflected wave to the propagation time of the next reflected wave for each oscillation frequency;
A first master curve for determining the propagation time for a known axial force;
A second master curve for obtaining a maximum interference frequency at which the signal intensity with respect to the known axial force is maximized,
The second master curve is created in a state where the relative position and the relative posture are matched by the vertical probe fixing jig in all of the known axial force load states,
The propagation time measuring unit measures the propagation time by causing the different ultrasonic waves to enter the fastened long member,
The signal intensity measuring unit matches the relative position and the relative posture when the second master curve is created at one end of a long member to which the vertical probe is fastened by the vertical probe fixing jig. In the attached state, measure the signal strength for each oscillation frequency,
The signal processing unit obtains an approximate axial force at a propagation time measured from the first master curve,
Obtain the interference frequency range in the approximate axial force from the second master curve,
From the measured signal strength for each oscillation frequency, find the maximum interference frequency that is the maximum signal strength within the interference frequency range,
The axial force measuring device according to claim 1, wherein the axial force of the long member is measured by the obtained maximum interference frequency and the second master curve.
前記信号処理部は、前記異なる超音波の伝播時間を測定する伝播時間測定部と、
発振周波数毎に前記反射波の伝播時間から次の反射波の伝播時間までの測定時間における前記バースト波の信号強度を測定する信号強度測定部と、
既知の軸力に対する前記伝播時間を求める第一マスターカーブと、
前記既知の軸力に対する前記信号強度が最大となる極大干渉周波数を求める第二マスターカーブとを備え、
前記第二マスターカーブは、前記既知の軸力の負荷状態の全てで前記垂直探触子固定治具により前記相対位置及び前記相対姿勢を一致させて求められたものであり、
前記伝播時間測定部は、締結された長尺部材に前記異なる超音波を入射させて前記伝播時間を測定し、
前記信号強度測定部は、前記垂直探触子が前記垂直探触子固定治具により締結された長尺部材の一端に前記第二マスターカーブの作成時における前記相対位置及び前記相対姿勢と一致して取り付けられた状態で、前記信号強度を前記発振周波数毎に測定し、
前記信号処理部は、前記極大干渉周波数を求め、
前記第二マスターカーブから求めた極大干渉周波数における概略軸力を求め、
前記第一マスターカーブから求めた前記概略軸力における伝播時間範囲を求め、
測定した伝播時間から前記伝播時間範囲内で最大の信号強度となる極大伝播時間を求め、
求めた極大伝播時間と前記第一マスターカーブにより前記長尺部材の軸力を測定する請求項1記載の軸力測定装置。 The ultrasonic generator generates two types of ultrasonic waves, ultrasonic waves different from the burst wave and the burst wave,
The signal processing unit is a propagation time measurement unit that measures the propagation time of the different ultrasonic waves,
A signal intensity measuring unit that measures the signal intensity of the burst wave in the measurement time from the propagation time of the reflected wave to the propagation time of the next reflected wave for each oscillation frequency;
A first master curve for determining the propagation time for a known axial force;
A second master curve for obtaining a maximum interference frequency at which the signal intensity with respect to the known axial force is maximized,
The second master curve is obtained by matching the relative position and the relative posture by the vertical probe fixing jig in all the load states of the known axial force.
The propagation time measuring unit measures the propagation time by causing the different ultrasonic waves to enter the fastened long member,
The signal intensity measuring unit matches the relative position and the relative posture when the second master curve is created at one end of a long member to which the vertical probe is fastened by the vertical probe fixing jig. In the attached state, measure the signal strength for each oscillation frequency,
The signal processing unit obtains the maximum interference frequency,
Obtain the approximate axial force at the maximum interference frequency obtained from the second master curve,
Obtain the propagation time range in the approximate axial force obtained from the first master curve,
From the measured propagation time, find the maximum propagation time that is the maximum signal strength within the propagation time range,
The axial force measuring device according to claim 1, wherein the axial force of the long member is measured based on the obtained maximum propagation time and the first master curve.
前記超音波は、バースト波であり、
前記長尺部材に対する前記垂直探触子の校正データを作成する際の前記バースト波の送受信時又は前記長尺部材の無負荷状態での前記バースト波の送受信時と、前記長尺部材の負荷状態における前記バースト波の送受信時の2回で、前記長尺部材に対する前記垂直探触子の相対位置及び前記垂直探触子の相対姿勢を一致させた状態で、前記バースト波を発振周波数を変化させながら入射させて前記発振周波数毎に前記反射波の伝播時間から次の反射波の伝播時間までの測定時間における前記バースト波の信号強度を測定し、
測定した発振周波数毎の信号強度から所定の干渉周波数範囲内で最大の信号強度となる極大干渉周波数を求め、
求めた極大干渉周波数に基づいて前記長尺部材の軸力を測定する軸力測定方法。 An ultrasonic wave is incident from a vertical probe at one end of the long member, a reflected wave reflected from the other end of the long member is received, and the axial force of the long member is determined based on the received reflected wave signal. An axial force measurement method for measuring,
The ultrasonic wave is a burst wave,
At the time of transmission / reception of the burst wave when creating calibration data of the vertical probe for the long member or at the time of transmission / reception of the burst wave when the long member is unloaded, and the load state of the long member The oscillation frequency of the burst wave is changed in the state in which the relative position of the vertical probe and the relative attitude of the vertical probe with respect to the elongated member are matched twice at the time of transmission / reception of the burst wave in While measuring the signal intensity of the burst wave in the measurement time from the propagation time of the reflected wave to the propagation time of the next reflected wave for each oscillation frequency.
Find the maximum interference frequency that gives the maximum signal strength within the specified interference frequency range from the measured signal strength for each oscillation frequency,
An axial force measurement method for measuring an axial force of the long member based on the obtained maximum interference frequency.
前記垂直探触子を前記垂直探触子固定治具により締結された長尺部材の一端に前記軸力算出式の作成時における前記相対位置及び前記相対姿勢と一致させて取り付けた状態で前記信号強度を前記発振周波数毎に測定し、
測定した発振周波数毎の信号強度から所定の干渉周波数範囲内で最大の信号強度となる極大干渉周波数を求め、
求めた極大干渉周波数と前記軸力算出式により前記長尺部材の軸力を測定する請求項10記載の軸力測定方法。 The difference between the no-load maximum interference frequency that maximizes the signal strength in the unloaded state of the axial force of the long member and the known maximum interference frequency that maximizes the signal strength in the loaded state of the known axial force When creating an axial force calculation formula showing the relationship with the axial force of the above, the relative position and the relative posture are matched by the vertical probe fixing jig in all of the no-load state and the load state,
The signal in a state in which the vertical probe is attached to one end of a long member fastened by the vertical probe fixing jig so as to coincide with the relative position and the relative posture when the axial force calculation formula is created. Measure the intensity for each oscillation frequency,
Find the maximum interference frequency that gives the maximum signal strength within the specified interference frequency range from the measured signal strength for each oscillation frequency,
The axial force measuring method according to claim 10, wherein the axial force of the long member is measured based on the obtained maximum interference frequency and the axial force calculation formula.
測定した発振周波数毎の信号強度から前記無負荷状態において最大の信号強度となる無負荷極大干渉周波数及び前記負荷状態において最大の信号強度となる負荷極大干渉周波数を求め、
求めた無負荷極大干渉周波数と負荷極大干渉周波数との差分と前記既知の軸力との関係を示す軸力算出式を作成し、
前記垂直探触子を前記垂直探触子固定治具により締結された長尺部材の一端に前記無荷重状態の測定時の前記相対位置及び前記相対姿勢と一致させて取り付けた状態で前記発振周波数毎に前記信号強度を測定し、
測定した発振周波数毎の信号強度から所定の干渉周波数範囲内で最大の信号強度となる極大干渉周波数を求め、
求めた極大干渉周波数と前記軸力算出式により前記長尺部材の軸力を測定する請求項10記載の軸力測定方法。 The signal strength in the unloaded state of the axial force of the long member is measured for each oscillation frequency, and the vertical probe is known to the unloaded long member by the vertical probe fixing jig. The signal strength is measured for each oscillation frequency in a state in which it is attached to one end of a long member that is loaded by applying an axial force of the same to match the relative position and the relative posture at the time of measurement in the no-load state. And
From the measured signal intensity for each oscillation frequency, obtain the no-load maximum interference frequency that becomes the maximum signal strength in the no-load state and the maximum load interference frequency that gives the maximum signal strength in the load state,
Create an axial force calculation formula showing the relationship between the difference between the obtained no-load maximum interference frequency and the load maximum interference frequency and the known axial force,
The oscillation frequency in a state where the vertical probe is attached to one end of a long member fastened by the vertical probe fixing jig so as to coincide with the relative position and the relative posture at the time of measurement in the no-load state. Measure the signal strength every time,
Find the maximum interference frequency that gives the maximum signal strength within the specified interference frequency range from the measured signal strength for each oscillation frequency,
The axial force measuring method according to claim 10, wherein the axial force of the long member is measured based on the obtained maximum interference frequency and the axial force calculation formula.
予め、前記長尺部材の一端から前記異なる超音波を入射させて反射波の伝播時間を測定すると共に前記バースト波を発振周波数を変化させながら入射させて前記反射波の伝播時間から次の反射波の伝播時間までの測定時間における前記バースト波の信号強度を測定して既知の軸力に対する前記伝播時間を求める第一マスターカーブ及び前記既知の軸力に対する前記信号強度が最大となる極大干渉周波数を求める第二マスターカーブを作成する際に、前記長尺部材の前記既知の軸力の負荷状態の全てで前記垂直探触子固定治具により前記相対位置及び前記相対姿勢を一致させ、
締結された長尺部材に前記異なる超音波を入射させて前記伝播時間を測定すると共に、前記垂直探触子を前記垂直探触子固定治具により締結された長尺部材の一端に前記第二マスターカーブの作成時における前記相対位置及び前記相対姿勢と一致させて取り付けた状態で前記発振周波数毎に前記信号強度を測定し、
前記第一マスターカーブから測定した伝播時間における概略軸力を求め、
前記第二マスターカーブから前記概略軸力における干渉周波数範囲を求め、
測定した発振周波数毎の信号強度から前記干渉周波数範囲内で最大の信号強度となる極大干渉周波数を求め、
求めた極大干渉周波数と前記第二マスターカーブにより前記長尺部材の軸力を測定する請求項10記載の軸力測定方法。 The ultrasonic waves are two types of ultrasonic waves, which are different from the burst wave and the burst wave,
In advance, the different ultrasonic waves are incident from one end of the long member to measure the propagation time of the reflected wave, and the burst wave is incident while changing the oscillation frequency, and the reflected wave is transmitted from the reflected wave to the next reflected wave. A first master curve for determining the propagation time with respect to a known axial force by measuring the signal intensity of the burst wave in the measurement time up to the propagation time of the maximum interference frequency at which the signal strength with respect to the known axial force is maximized When creating the second master curve to determine the relative position and the relative posture by the vertical probe fixing jig in all of the load state of the known axial force of the long member,
The different ultrasonic waves are made to enter the fastened long member to measure the propagation time, and the vertical probe is attached to one end of the long member fastened by the vertical probe fixing jig. Measure the signal intensity for each oscillation frequency with the relative position and the relative attitude at the time of creation of the master curve in a state of being attached,
Obtain the approximate axial force at the propagation time measured from the first master curve,
Obtain the interference frequency range in the approximate axial force from the second master curve,
From the measured signal strength for each oscillation frequency, find the maximum interference frequency that is the maximum signal strength within the interference frequency range,
The axial force measuring method according to claim 10, wherein the axial force of the long member is measured based on the obtained maximum interference frequency and the second master curve.
予め、前記長尺部材の一端から前記異なる超音波を入射させて反射波の伝播時間を測定すると共に前記バースト波を発振周波数を変化させながら入射させて前記反射波の伝播時間から次の反射波の伝播時間までの測定時間における前記バースト波の信号強度を測定して既知の軸力に対する前記伝播時間を求める第一マスターカーブ及び前記既知の軸力に対する前記信号強度が最大となる極大干渉周波数を求める第二マスターカーブを作成する際に、前記長尺部材の前記既知の軸力の負荷状態の全てで前記垂直探触子固定治具により前記相対位置及び前記相対姿勢を一致させ、
締結された長尺部材に前記第二バースト波を入射させて前記伝播時間を測定すると共に、前記垂直探触子を前記垂直探触子固定治具により締結された長尺部材の一端に前記第二マスターカーブの作成時における前記相対位置及び前記相対姿勢と一致させて取り付けた状態で前記発振周波数毎に前記信号強度を測定し、
前記極大干渉周波数を求め、
前記第二マスターカーブから求めた極大干渉周波数における概略軸力を求め、
前記第一マスターカーブから求めた概略軸力における伝播時間範囲を求め、
測定した伝播時間から前記伝播時間範囲内で最大の信号強度となる極大伝播時間を求め、
求めた極大伝播時間と前記第一マスターカーブにより前記長尺部材の軸力を測定する請求項10記載の軸力測定方法。 The ultrasonic waves are two types of ultrasonic waves, which are different from the burst wave and the burst wave,
In advance, the different ultrasonic waves are incident from one end of the long member to measure the propagation time of the reflected wave, and the burst wave is incident while changing the oscillation frequency, and the reflected wave is transmitted from the reflected wave to the next reflected wave. A first master curve for determining the propagation time with respect to a known axial force by measuring the signal intensity of the burst wave in the measurement time up to the propagation time of the maximum interference frequency at which the signal strength with respect to the known axial force is maximized When creating the second master curve to determine the relative position and the relative posture by the vertical probe fixing jig in all of the load state of the known axial force of the long member,
The second burst wave is incident on the fastened long member to measure the propagation time, and the vertical probe is connected to one end of the long member fastened by the vertical probe fixing jig. Measure the signal intensity for each oscillation frequency in a state of being attached to match the relative position and the relative posture at the time of creating the two master curve,
Determining the maximum interference frequency;
Obtain the approximate axial force at the maximum interference frequency obtained from the second master curve,
Obtain the propagation time range in the approximate axial force obtained from the first master curve,
From the measured propagation time, find the maximum propagation time that is the maximum signal strength within the propagation time range,
The axial force measuring method according to claim 10, wherein the axial force of the long member is measured based on the obtained maximum propagation time and the first master curve.
前記試験体に対する前記垂直探触子の相対位置及び前記垂直探触子の相対姿勢を固定する垂直探触子固定治具を有し、
前記信号処理部は、発振周波数毎に前記反射波の伝播時間から次の反射波の伝播時間までの測定時間における前記超音波の信号強度を測定する信号強度測定部を備え、
前記垂直探触子固定治具は、前記試験体に対する前記垂直探触子の校正データを作成する際の前記超音波の送受信時又は前記試験体の無負荷状態での前記超音波の送受信時と、前記試験体の負荷状態における前記超音波の送受信時の2回で、前記相対位置及び前記相対姿勢を一致させるものであり、
前記信号処理部は、前記超音波を前記発振周波数を変化させながら入射させて前記信号強度測定部により前記発振周波数毎に前記信号強度を測定し、
測定した発振周波数毎の信号強度から所定の干渉周波数範囲内で最大の信号強度となる極大干渉周波数を求め、
求めた極大干渉周波数に基づいて前記試験体を検査する超音波検査装置。 A vertical probe that receives ultrasonic waves from one end of the test body and receives reflected waves reflected from the other end of the test body, an ultrasonic generator that generates the ultrasonic waves, and a signal of the received reflected waves An ultrasonic inspection apparatus comprising a signal processing unit for processing and inspecting the specimen,
A vertical probe fixing jig for fixing the relative position of the vertical probe and the relative posture of the vertical probe with respect to the test body;
The signal processing unit includes a signal intensity measurement unit that measures the signal intensity of the ultrasonic wave in a measurement time from the propagation time of the reflected wave to the propagation time of the next reflected wave for each oscillation frequency,
The vertical probe fixing jig is configured to transmit and receive the ultrasonic wave when generating calibration data of the vertical probe with respect to the test body or when transmitting and receiving the ultrasonic wave in an unloaded state of the test body. The relative position and the relative posture are matched in two times at the time of transmission / reception of the ultrasonic wave in the load state of the test body,
The signal processing unit makes the ultrasonic wave incident while changing the oscillation frequency, and measures the signal intensity for each oscillation frequency by the signal intensity measurement unit,
Find the maximum interference frequency that gives the maximum signal strength within the specified interference frequency range from the measured signal strength for each oscillation frequency,
An ultrasonic inspection apparatus for inspecting the specimen based on the obtained maximum interference frequency.
前記試験体に対する前記垂直探触子の校正データを作成する際の前記超音波の送受信時又は前記試験体の無負荷状態での前記超音波の送受信時と、前記試験体の負荷状態における前記超音波の送受信時の2回で、前記試験体に対する前記垂直探触子の相対位置及び前記垂直探触子の相対姿勢を一致させた状態で、前記超音波を発振周波数を変化させながら入射させて前記発振周波数毎に前記反射波の伝播時間から次の反射波の伝播時間までの測定時間における前記超音波の信号強度を測定し、
測定した発振周波数毎の信号強度から所定の干渉周波数範囲内で最大の信号強度となる極大干渉周波数を求め、
求めた極大干渉周波数に基づいて前記試験体を検査する超音波検査方法。 An ultrasonic inspection method for receiving ultrasonic waves from a vertical probe at one end of a test body, receiving a reflected wave reflected from the other end of the test body, and inspecting the test body based on a signal of the received reflected wave Because
At the time of transmission / reception of the ultrasonic wave when creating calibration data of the vertical probe for the test body, or at the time of transmission / reception of the ultrasonic wave in the no-load state of the test body, and the ultrasonic wave in the load state of the test body The ultrasonic wave is incident while changing the oscillation frequency in a state in which the relative position of the vertical probe and the relative posture of the vertical probe with respect to the specimen are matched in two times at the time of transmitting and receiving the sound wave. For each oscillation frequency, measure the signal intensity of the ultrasonic wave in the measurement time from the propagation time of the reflected wave to the propagation time of the next reflected wave,
Find the maximum interference frequency that gives the maximum signal strength within the specified interference frequency range from the measured signal strength for each oscillation frequency,
An ultrasonic inspection method for inspecting the specimen based on the obtained maximum interference frequency.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015135241 | 2015-07-06 | ||
JP2015135241 | 2015-07-06 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017015707A true JP2017015707A (en) | 2017-01-19 |
JP6764271B2 JP6764271B2 (en) | 2020-09-30 |
Family
ID=57830218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016131979A Active JP6764271B2 (en) | 2015-07-06 | 2016-07-01 | Axial force measuring device, axial force measuring method, ultrasonic inspection device, ultrasonic inspection method and vertical probe fixing jig used for this |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6764271B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018179920A (en) * | 2017-04-21 | 2018-11-15 | パルステック工業株式会社 | Axial force evaluation method using x-ray diffraction measurement device |
CN111272316A (en) * | 2020-02-11 | 2020-06-12 | 河海大学 | Embedded prestressed anchor cable anchoring force detection device and detection method |
CN113490896A (en) * | 2019-02-22 | 2021-10-08 | 杰富意钢铁株式会社 | Self-propelled inspection device and inspection method for metal plate, and method for manufacturing metal plate |
CN114459588A (en) * | 2022-01-17 | 2022-05-10 | 烟台新天地试验技术有限公司 | Identification method of column axial force based on sound signal |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4939035B1 (en) * | 1970-11-24 | 1974-10-22 | ||
JPS527790A (en) * | 1975-07-09 | 1977-01-21 | Tokyo Keiki Co Ltd | Stress measuring equipment |
JPH0647834U (en) * | 1992-12-14 | 1994-06-28 | 株式会社東日製作所 | Ultrasonic probe holder |
JP2005077298A (en) * | 2003-09-02 | 2005-03-24 | Ebara Corp | Electromagnetic ultrasonic probe, damage progression degree evaluation method and damage progression degree evaluation device of conductive material, and axial force measuring method and axial force measuring device of fastening bolt or rivet |
KR20070111845A (en) * | 2006-05-19 | 2007-11-22 | 전북대학교산학협력단 | Damage Measurement Device and Method of Structure Using Piezoelectric Element |
JP2010197273A (en) * | 2009-02-26 | 2010-09-09 | Akita Univ | Fastening state evaluation system of bolt using ultrasonic wave |
JP2012522213A (en) * | 2009-03-27 | 2012-09-20 | アトラス・コプコ・ツールス・アクチボラグ | Ultrasonic measurement method and apparatus |
JP2013185910A (en) * | 2012-03-07 | 2013-09-19 | Nippon Sharyo Seizo Kaisha Ltd | Positioning structure of ultrasonic probe |
WO2015018559A1 (en) * | 2013-08-07 | 2015-02-12 | Atlas Copco Industrial Technique Ab | A method of calibrating ultrasonic bi-wave fastener elongation measurements |
-
2016
- 2016-07-01 JP JP2016131979A patent/JP6764271B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4939035B1 (en) * | 1970-11-24 | 1974-10-22 | ||
JPS527790A (en) * | 1975-07-09 | 1977-01-21 | Tokyo Keiki Co Ltd | Stress measuring equipment |
JPH0647834U (en) * | 1992-12-14 | 1994-06-28 | 株式会社東日製作所 | Ultrasonic probe holder |
JP2005077298A (en) * | 2003-09-02 | 2005-03-24 | Ebara Corp | Electromagnetic ultrasonic probe, damage progression degree evaluation method and damage progression degree evaluation device of conductive material, and axial force measuring method and axial force measuring device of fastening bolt or rivet |
KR20070111845A (en) * | 2006-05-19 | 2007-11-22 | 전북대학교산학협력단 | Damage Measurement Device and Method of Structure Using Piezoelectric Element |
JP2010197273A (en) * | 2009-02-26 | 2010-09-09 | Akita Univ | Fastening state evaluation system of bolt using ultrasonic wave |
JP2012522213A (en) * | 2009-03-27 | 2012-09-20 | アトラス・コプコ・ツールス・アクチボラグ | Ultrasonic measurement method and apparatus |
JP2013185910A (en) * | 2012-03-07 | 2013-09-19 | Nippon Sharyo Seizo Kaisha Ltd | Positioning structure of ultrasonic probe |
WO2015018559A1 (en) * | 2013-08-07 | 2015-02-12 | Atlas Copco Industrial Technique Ab | A method of calibrating ultrasonic bi-wave fastener elongation measurements |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018179920A (en) * | 2017-04-21 | 2018-11-15 | パルステック工業株式会社 | Axial force evaluation method using x-ray diffraction measurement device |
CN113490896A (en) * | 2019-02-22 | 2021-10-08 | 杰富意钢铁株式会社 | Self-propelled inspection device and inspection method for metal plate, and method for manufacturing metal plate |
CN111272316A (en) * | 2020-02-11 | 2020-06-12 | 河海大学 | Embedded prestressed anchor cable anchoring force detection device and detection method |
CN111272316B (en) * | 2020-02-11 | 2021-04-06 | 河海大学 | Embedded prestressed anchor cable anchoring force detection device and detection method |
CN114459588A (en) * | 2022-01-17 | 2022-05-10 | 烟台新天地试验技术有限公司 | Identification method of column axial force based on sound signal |
Also Published As
Publication number | Publication date |
---|---|
JP6764271B2 (en) | 2020-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3069132B1 (en) | Structural bond inspection | |
US8192075B2 (en) | Method for performing ultrasonic testing | |
He et al. | Absolute stress field measurement in structural steel members using the Lcr wave method | |
JP6764271B2 (en) | Axial force measuring device, axial force measuring method, ultrasonic inspection device, ultrasonic inspection method and vertical probe fixing jig used for this | |
JP5403976B2 (en) | Concrete structure quality inspection method | |
JP6248183B2 (en) | Ultrasonic inspection apparatus and ultrasonic inspection method | |
Khalil et al. | Accuracy and noise analyses of 3D vibration measurements using laser Doppler vibrometer | |
US12117416B2 (en) | Signal processing | |
KR100832839B1 (en) | Thickness measuring device and method using ultrasonic wave and transverse wave | |
Knapp et al. | Measurement of shock events by means of strain gauges and accelerometers | |
US20110126628A1 (en) | Non-destructive ultrasound inspection with coupling check | |
JP4795925B2 (en) | Ultrasonic thickness measurement method and apparatus | |
US8473246B1 (en) | Cable measurement device | |
CN110333295B (en) | Rock-soil core sample wave speed testing system and method | |
JP4117366B2 (en) | Electromagnetic ultrasonic flaw detection / measurement method and apparatus | |
US11467057B2 (en) | Magneto-optical system for guided wave inspection and monitoring | |
Chuang et al. | Multidimensional dynamic displacement and strain measurement using an intensity demodulation-based fiber Bragg grating sensing system | |
JP2018091685A (en) | Inspection apparatus and inspection method | |
Minardo et al. | Experimental modal analysis of an aluminum rectangular plate by use of the slope-assisted BOTDA method | |
JP6581462B2 (en) | Ultrasonic inspection equipment | |
RU114373U1 (en) | SAMPLE FOR THE CONTROL OF TWO-BEAM PIEZOELECTRIC CONVERTERS | |
JP2009139188A (en) | Ultrasonic apparatus for measuring surface roughness and method therefor | |
JP5964882B2 (en) | Axial force measuring device and axial force measuring method | |
JP4761147B2 (en) | Ultrasonic flaw detection method and apparatus | |
JP2021156760A (en) | Internal defect probe method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190422 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200303 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200228 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200430 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200616 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200818 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200911 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6764271 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |