[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2017006982A - Electrode for electric resistance welding - Google Patents

Electrode for electric resistance welding Download PDF

Info

Publication number
JP2017006982A
JP2017006982A JP2015139195A JP2015139195A JP2017006982A JP 2017006982 A JP2017006982 A JP 2017006982A JP 2015139195 A JP2015139195 A JP 2015139195A JP 2015139195 A JP2015139195 A JP 2015139195A JP 2017006982 A JP2017006982 A JP 2017006982A
Authority
JP
Japan
Prior art keywords
sliding portion
guide pin
diameter
electrode
sliding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015139195A
Other languages
Japanese (ja)
Other versions
JP6541029B2 (en
Inventor
青山 好高
Yoshitaka Aoyama
好高 青山
青山 省司
Shoji Aoyama
省司 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2015139195A priority Critical patent/JP6541029B2/en
Publication of JP2017006982A publication Critical patent/JP2017006982A/en
Application granted granted Critical
Publication of JP6541029B2 publication Critical patent/JP6541029B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Welding (AREA)

Abstract

【課題】ガイド孔内を進退する摺動部の蓄熱量を低減させ、摺動部外周面の異常摩耗を防止したり、ガイドピンの異常傾斜を防止したりすること。【解決手段】電極本体1から突出したガイドピン12が鋼板部品3の下孔14を貫通し、ガイド孔6内を摺動する合成樹脂製摺動部13にガイドピン12が挿入され、摺動部13の肉厚は、摺動部13の蓄熱量を低減させるように薄肉であるとともに、摺動部13に冷却空気の空気通路26が形成され、摺動部13の端面24とガイド孔6の内端面25が密着したり離れたりして冷却空気の断続を行うように構成した電気抵抗溶接用電極。【選択図】図1An object of the present invention is to reduce the amount of heat stored in a sliding portion that advances and retreats in a guide hole, to prevent abnormal wear of the outer peripheral surface of the sliding portion, and to prevent abnormal inclination of a guide pin. A guide pin 12 protruding from an electrode body 1 passes through a lower hole 14 of a steel plate part 3 and is inserted into a sliding portion 13 made of synthetic resin that slides in the guide hole 6 to slide. The thickness of the portion 13 is thin so as to reduce the amount of heat stored in the sliding portion 13, and an air passage 26 for cooling air is formed in the sliding portion 13, and the end surface 24 of the sliding portion 13 and the guide hole 6 are formed. An electrode for electric resistance welding constructed such that the inner end face 25 of the steel plate contacts or separates and the cooling air is intermittently connected. [Selection] Figure 1

Description

この発明は、金属材料などで作られたガイドピンに合成樹脂製の摺動部が一体化された構造部分に改良がなされた電気抵抗溶接用電極に関している。  The present invention relates to an electrode for electric resistance welding in which a structure portion in which a synthetic resin sliding portion is integrated with a guide pin made of a metal material or the like is improved.

特許第2903149号公報や特開2015−051457号公報には、金属材料などで作られたガイドピンに合成樹脂製の摺動部が一体化された構造が記載されている。  Japanese Patent No. 2903149 and Japanese Patent Application Laid-Open No. 2015-051457 describe a structure in which a sliding portion made of a synthetic resin is integrated with a guide pin made of a metal material or the like.

特許第2903149号公報Japanese Patent No. 2903149 特開2015−051457号公報Japanese Patent Laid-Open No. 2015-051457

上記特許文献1および2に記載されている技術は、金属材料などで作られたガイドピンに合成樹脂製の摺動部が一体化された構造であるが、直径方向で見た摺動部の肉厚が大きいので、摺動部の熱膨張量が過大になり、摺動部外周面の異常摩耗や、ガイドピンの異常傾斜などの問題がある。  The techniques described in Patent Documents 1 and 2 have a structure in which a sliding portion made of a synthetic resin is integrated with a guide pin made of a metal material or the like. Since the wall thickness is large, the amount of thermal expansion of the sliding portion becomes excessive, and there are problems such as abnormal wear on the outer peripheral surface of the sliding portion and abnormal inclination of the guide pin.

本発明は、上記の問題点を解決するために提供されたもので、電気抵抗溶接用電極において、ガイド孔内を進退する摺動部の蓄熱量を低減させて、摺動部外周面の異常摩耗を防止したり、ガイドピンの異常傾斜を防止したりすることを目的としている。  The present invention is provided in order to solve the above-described problems, and in the electrode for electric resistance welding, the amount of heat stored in the sliding portion that advances and retreats in the guide hole is reduced, and the abnormality of the outer peripheral surface of the sliding portion is achieved. The purpose is to prevent wear and to prevent abnormal inclination of the guide pin.

請求項1記載の発明は、
電極本体の端面から突出し鋼板部品の下孔に貫通する断面円形のガイドピンが金属材料またはセラミック材料などの耐熱硬質材料で構成され、
電極本体のガイド孔に摺動できる状態で嵌め込まれ、ガイドピンが挿入された状態でガイドピンと一体化されている断面円形の摺動部が合成樹脂材料で構成され、
摺動部の肉厚は、摺動部における蓄熱量を低減させるように薄肉とされているとともに、摺動部に冷却空気の空気通路が形成され、
摺動部の端面とガイド孔の内端面が密着したり離れたりして冷却空気の断続を行うように構成したことを特徴とする電気抵抗溶接用電極である。
The invention described in claim 1
The guide pin having a circular cross section that protrudes from the end face of the electrode body and penetrates through the pilot hole of the steel plate part is composed of a heat-resistant hard material such as a metal material or a ceramic material,
The sliding portion having a circular cross section that is fitted in the guide hole of the electrode body in a slidable state and is integrated with the guide pin in a state where the guide pin is inserted is made of a synthetic resin material,
The thickness of the sliding portion is thin so as to reduce the amount of heat stored in the sliding portion, and an air passage for cooling air is formed in the sliding portion,
An electrode for electric resistance welding, wherein the end face of the sliding portion and the inner end face of the guide hole are brought into close contact with or separated from each other to interrupt the cooling air.

通常、金属材料製の電極本体やガイドピンに比して、合成樹脂製電極部品の熱膨張量は著しく大きいのであるが、上述のように、合成樹脂製の摺動部が薄肉とされて蓄熱量が低減されているので、直径方向における摺動部自体の熱膨張量が小さくなる。連続的な溶接によって加熱サイクルが増大して摺動部の温度が耐えられる最高値に達しても、上記熱膨張量が少ないために、ガイド孔内面に対する加圧力が低減し、摺動部の摺動面における摩耗量が最小化される。このため、最も消耗しやすい摺動部の耐用期間が長期化され、部品メンテナンスの面で有効である。  Normally, the thermal expansion amount of synthetic resin electrode parts is significantly larger than that of electrode bodies and guide pins made of metal material. However, as described above, the sliding portion made of synthetic resin is made thin to store heat. Since the amount is reduced, the amount of thermal expansion of the sliding portion itself in the diameter direction is reduced. Even if the heating cycle increases due to continuous welding and reaches the maximum value at which the temperature of the sliding part can withstand, the amount of thermal expansion is small, so the pressure applied to the inner surface of the guide hole is reduced, and the sliding part slides. Wear on the moving surface is minimized. For this reason, the service life of the sliding part that is most likely to be consumed is prolonged, which is effective in terms of component maintenance.

さらに、上記熱膨張量の低減により、摺動部外周面とガイド孔内周面との間の摺動間隙が小さく保たれて、ガイドピンの傾きが抑制される。このようにガイドピンの傾斜角度を最小化することにより、ガイドピンで支持されているプロジェクションナットやプロジェクションボルトの鋼板部品の下孔に対する位置精度が向上する。すなわち、下孔の中心軸線と上記ナットやボルトの中心軸線のずれを最小化することができ、溶接精度の向上にとって有効である。  Furthermore, by reducing the thermal expansion amount, the sliding gap between the outer peripheral surface of the sliding portion and the inner peripheral surface of the guide hole is kept small, and the inclination of the guide pin is suppressed. Thus, by minimizing the inclination angle of the guide pin, the positional accuracy of the projection nut and the projection bolt supported by the guide pin with respect to the pilot hole of the steel plate part is improved. That is, the deviation between the center axis of the pilot hole and the center axis of the nut or bolt can be minimized, which is effective for improving the welding accuracy.

摺動部の肉厚が大きければ、摺動部材料の膨張量が増大し、その増大分が空気通路の空間の方へ膨張するので、空気通路の流路面積が縮小され、冷却空気の流量が低減し、冷却効果が低減する。しかし、上述のように、摺動部の肉厚を低減することにより、摺動部材料の膨張量を最小化することができ、それに伴って空気通路の流路面積の減少を回避し、正常な冷却作用がなされる。  If the thickness of the sliding part is large, the amount of expansion of the sliding part material increases, and the increased amount expands toward the air passage space, so the flow area of the air passage is reduced, and the flow rate of the cooling air And the cooling effect is reduced. However, as described above, by reducing the thickness of the sliding portion, the amount of expansion of the sliding portion material can be minimized, and accordingly, a reduction in the flow passage area of the air passage is avoided and normal Cooling action is made.

摺動部の薄肉化にともなって摺動部の直径が小さくなるので、電極本体の直径も小さくなって、狭い箇所などでの電極配置が行いやすくなる。  As the sliding portion becomes thinner, the diameter of the sliding portion becomes smaller, so the diameter of the electrode body also becomes smaller, making it easier to arrange electrodes in a narrow area.

上述の薄肉化に加えて、摺動部には、冷却空気の空気通路が形成されているので、体積が小さくされた摺動部の冷却が効果的になされ、上記熱膨張量低減による作用効果の一層の促進が図られる。  In addition to the above-described thinning, an air passage for cooling air is formed in the sliding portion, so that the sliding portion having a reduced volume can be effectively cooled, and the effect of reducing the thermal expansion amount can be achieved. Is further promoted.

以上に述べたように総括的に見ると、摺動部の端面とガイド孔の内端面との密着面積を必要最小限に確保しつつ摺動部の薄肉化を図ることが、冷却空気の断続を確実に行い、摺動部の摩耗量を低減して耐用時間を長期化し、ナットやボルトの鋼板部品の下孔に対するセンタリングが向上し、冷却空気の正常な空気通路面積の確保などを実現することに相関しており、耐久性や溶接精度向上などに寄与する電気抵抗溶接用電極がえられる。  Overall, as described above, it is possible to reduce the thickness of the sliding portion while ensuring the contact area between the end surface of the sliding portion and the inner end surface of the guide hole to the minimum necessary. To reduce the amount of wear on the sliding part, extend the service life, improve the centering of the nut and bolt against the pilot hole of the steel plate part, and ensure a normal air passage area for cooling air, etc. In particular, an electrode for electric resistance welding that contributes to improving durability and welding accuracy is obtained.

請求項2記載の発明は、
摺動部の直径に対するガイドピンの直径の比が1.3〜1.7である請求項1記載の電気抵抗溶接用電極である。
The invention according to claim 2
The electrode for electric resistance welding according to claim 1, wherein the ratio of the diameter of the guide pin to the diameter of the sliding portion is 1.3 to 1.7.

摺動部の直径に対するガイドピンの直径の比を1.3〜1.7とすることにより、摺動部の肉厚を薄肉に設定するとともに、摺動部の端面とガイド孔の内端面との密着面積を摺動部全周にわたって確保することができ、上述のような薄肉化にともなう熱膨張や摩耗量の少量化、軸心合致面の精度向上などの利点確保以外に、冷却空気の断続作用が確実に達成される。さらに、摺動部の適正な肉厚を確保することにより、冷却空気の空気通路が確実に形成され、摺動部の冷却が正常になされる。  By setting the ratio of the diameter of the guide pin to the diameter of the sliding portion to 1.3 to 1.7, the thickness of the sliding portion is set to be thin, and the end surface of the sliding portion and the inner end surface of the guide hole are In addition to securing advantages such as thermal expansion and wear reduction due to thinning as described above, and improved accuracy of the axial center mating surface, the contact area of the cooling air can be secured. Intermittent action is reliably achieved. Further, by ensuring an appropriate thickness of the sliding portion, an air passage for cooling air is reliably formed, and the sliding portion is normally cooled.

上記の比が1.3未満であると、摺動部の肉厚が薄すぎてガイド孔の内端面に対する摺動部端面の着座面積が十分に確保できない、という問題が発生する。つまり、摺動部端面の直径方向で見た着座幅に不足を来たし、節度ある冷却空気の断続が不可能となる。さらに、冷却空気の空気通路が摺動部外周面に空気溝を形成するような形式であると、空気溝の通気断面積を十分に確保することが困難となり、適正な空冷が不可能となる。  If the above ratio is less than 1.3, there is a problem that the thickness of the sliding portion is too thin to sufficiently secure the seating area of the sliding portion end surface with respect to the inner end surface of the guide hole. In other words, the seating width viewed in the diameter direction of the end surface of the sliding portion is insufficient, and moderation of the cooling air becomes impossible. Further, if the air passage of the cooling air is in a form in which an air groove is formed on the outer peripheral surface of the sliding portion, it is difficult to ensure a sufficient air cross-sectional area of the air groove, and proper air cooling becomes impossible. .

一方、上記の比が1.7を超えると、摺動部の肉厚が過大になり、摺動部の蓄熱量も過大になり、上述のような薄肉化にともなう熱膨張や摩耗量の少量化、軸心合致面の精度向上などの利点が追求できないこととなる。したがって、摺動部の直径に対するガイドピンの直径の比を1.3〜1.7とすることにより、優れた信頼性の高い電気抵抗溶接用電極がえられる。  On the other hand, if the ratio exceeds 1.7, the thickness of the sliding portion becomes excessive, the amount of heat stored in the sliding portion also becomes excessive, and the thermal expansion and wear caused by the above-described thinning are small. Advantages such as the improvement of the accuracy of the surface and the axis coincidence cannot be pursued. Therefore, by setting the ratio of the diameter of the guide pin to the diameter of the sliding portion to 1.3 to 1.7, an excellent and highly reliable electrode for electric resistance welding can be obtained.

電極の各部の断面図である。It is sectional drawing of each part of an electrode. 他の電極の断面図である。It is sectional drawing of another electrode.

つぎに、本発明に係る電気抵抗溶接用電極を実施するための形態を説明する。  Next, a mode for carrying out the electrode for electric resistance welding according to the present invention will be described.

図1は、本発明の実施例1を示す。  FIG. 1 shows a first embodiment of the present invention.

最初に、電極本体について説明する。  First, the electrode body will be described.

銅合金製の電極本体1は、円筒状の形状であり、静止部材11に差し込まれる固定部2と、鋼板部品3が載置されるキャップ部4がねじ部5において結合されている。電極本体1には断面円形のガイド孔6が形成され、このガイド孔6は少なくとも大径孔7とキャップ部4の中央部に開口する小径孔8によって構成されている。  The electrode body 1 made of copper alloy has a cylindrical shape, and a fixing portion 2 to be inserted into the stationary member 11 and a cap portion 4 on which the steel plate component 3 is placed are coupled at a screw portion 5. A guide hole 6 having a circular cross section is formed in the electrode body 1, and the guide hole 6 is constituted by at least a large diameter hole 7 and a small diameter hole 8 opened at the center of the cap portion 4.

固定部2の下部にテーパ部9が形成され、このテーパ部9が静止部材11に設けたテーパ孔に嵌入されるようになっている。固定部2の側部に圧縮空気をガイド孔6に導入する通気口10が設けてある。  A tapered portion 9 is formed at the lower portion of the fixed portion 2, and the tapered portion 9 is fitted into a tapered hole provided in the stationary member 11. A vent 10 for introducing compressed air into the guide hole 6 is provided on the side of the fixed part 2.

つぎに、摺動部について説明する。  Next, the sliding part will be described.

ガイドピン12は、ステンレス鋼のような金属材料またはセラミック材料等の耐熱硬質材料で構成されている。摺動部13は、耐熱性に優れた絶縁性合成樹脂、例えば、ポリテトラフルオロエチレン(商品名:テフロン)によって構成されている。ガイドピン12は、摺動部13に挿入された状態で一体化されている。ガイドピン12と摺動部13は、いずれも断面円形であり、ガイドピン12は鋼板部品3の下孔14を相対的に貫通して鋼板部品3の位置決め機能を果たし、その先端部に嵌め合わされた鉄製のプロジェクションナット15を支持している。そのために、プロジェクションナット15のねじ孔に合致する小径部16が形成されている。  The guide pin 12 is made of a heat-resistant hard material such as a metal material such as stainless steel or a ceramic material. The sliding portion 13 is made of an insulating synthetic resin excellent in heat resistance, for example, polytetrafluoroethylene (trade name: Teflon). The guide pin 12 is integrated in a state of being inserted into the sliding portion 13. The guide pin 12 and the sliding portion 13 are both circular in cross section, and the guide pin 12 relatively passes through the pilot hole 14 of the steel plate component 3 to perform the positioning function of the steel plate component 3 and is fitted to the tip portion thereof. An iron projection nut 15 is supported. For this purpose, a small-diameter portion 16 that matches the screw hole of the projection nut 15 is formed.

以下の説明において、プロジェクションナットを単にナットと表現する場合もある。ナット15は、四角い本体の中央部にねじ孔が形成されたもので、本体の四隅に溶着用突起21が形成されている。電極本体1は、固定電極であり、それと同軸状態で可動電極23が配置してある。  In the following description, the projection nut may be simply expressed as a nut. The nut 15 is formed with a screw hole at the center of a square main body, and welding projections 21 are formed at the four corners of the main body. The electrode body 1 is a fixed electrode, and a movable electrode 23 is arranged coaxially therewith.

なお、図1(B)のC−C断面が同図の(C)図であり、B−B断面が同図の(D)図である。  In addition, the CC cross section of FIG. 1 (B) is the (C) figure of the same figure, and the BB cross section is the (D) figure of the same figure.

摺動部13は、大径孔7内に実質的に隙間がなくて摺動できる状態で嵌め込んである。摺動部13に挿入孔17が開けられ、そこにガイドピン12が圧入されている。ガイドピン12の端部にこれと一体的にボルト31が形成され、摺動部13の底部材18にボルト31を貫通し、ワッシャ19を組み付けてロックナット20で締め付けてある。なお、摺動部13は、可動電極23が動作して溶接電流が通電されたときに、電流はナット15の溶着用突起21から鋼板部品3にのみ流れるように、絶縁機能を果たしている。  The sliding portion 13 is fitted in a state in which there is substantially no gap in the large-diameter hole 7 and can slide. An insertion hole 17 is opened in the sliding portion 13, and the guide pin 12 is press-fitted therein. A bolt 31 is integrally formed with the end of the guide pin 12, the bolt 31 is passed through the bottom member 18 of the sliding portion 13, a washer 19 is assembled, and the lock nut 20 is tightened. The sliding portion 13 performs an insulating function so that when the movable electrode 23 is operated and a welding current is applied, the current flows only from the welding projection 21 of the nut 15 to the steel plate part 3.

摺動部13の端部に端面24が形成され、この端面24が大径孔7の内端面25に密着するようになっている。端面24と内端面25は、ガイドピン12の軸線(電極本体1の中心軸線)に直交する平面の状態で、しかもガイドピン12の軸心を環状に包囲する環状面とされている。端面24と内端面25が密着したり、離れたりして冷却空気の断続を行うもので、この密着箇所が開閉弁の役割を果たしている。  An end face 24 is formed at the end of the sliding portion 13, and the end face 24 is in close contact with the inner end face 25 of the large-diameter hole 7. The end surface 24 and the inner end surface 25 are planar surfaces that are orthogonal to the axis of the guide pin 12 (the central axis of the electrode body 1) and that surround the axis of the guide pin 12 in an annular shape. The end surface 24 and the inner end surface 25 are in close contact with each other and are separated from each other to interrupt the cooling air, and this close contact portion serves as an on-off valve.

ガイドピン12と小径孔8との間に圧縮空気が通過する隙間22が形成してある。可動電極23の進出によってガイドピン12が押し下げられると、端面24が内端面25から離れ、空気流通の空隙が形成される。上記のように、端面24と内端面25の密着部分が開閉弁の機能を果たしている。通気口10から入った圧縮空気は、空気通路26、端面24と内端面25の間、隙間22などを通ってナット15の溶着部の冷却や、スパッタの進入防止がなされる。  A gap 22 through which compressed air passes is formed between the guide pin 12 and the small diameter hole 8. When the guide pin 12 is pushed down by the advancement of the movable electrode 23, the end face 24 is separated from the inner end face 25, and an air circulation gap is formed. As described above, the close contact portion between the end surface 24 and the inner end surface 25 functions as an on-off valve. The compressed air that has entered through the vent 10 cools the welded portion of the nut 15 and prevents the ingress of spatter through the air passage 26, between the end face 24 and the inner end face 25, through the gap 22 and the like.

摺動部13の外周面に、冷却空気の空気通路26が電極本体1の中心軸線方向に形成してある。空気通路26としては種々なものが採用できる。ここでは、図1(A)や(D)に示すように、摺動部13の外周面に平面部27を2つ対向させて形成して空気通路26が構成してある。これに換えて、図1(E)に示すように、摺動部13の外周面に複数の凹溝28を電極本体1の中心軸線方向に形成して、空気通路26を構成してもよい。  An air passage 26 for cooling air is formed on the outer peripheral surface of the sliding portion 13 in the direction of the central axis of the electrode body 1. Various air passages 26 can be used. Here, as shown in FIGS. 1A and 1D, the air passage 26 is formed by forming two flat portions 27 on the outer peripheral surface of the sliding portion 13 so as to face each other. Instead, as shown in FIG. 1 (E), the air passage 26 may be configured by forming a plurality of concave grooves 28 on the outer peripheral surface of the sliding portion 13 in the direction of the central axis of the electrode body 1. .

ワッシャ19とガイド孔6の内底面の間に圧縮コイルスプリング29が嵌め込まれており、その張力が摺動部13に作用して端面24が内端面25に密着している。通気口10から供給された冷却空気は、空気通路26に達しているが、上記密着によって通気が禁止されている。なお、符号30は、ガイド孔6の内底面に嵌め込んだ絶縁シートである。  A compression coil spring 29 is fitted between the washer 19 and the inner bottom surface of the guide hole 6, and the tension acts on the sliding portion 13 so that the end surface 24 is in close contact with the inner end surface 25. Although the cooling air supplied from the vent 10 reaches the air passage 26, ventilation is prohibited by the close contact. Reference numeral 30 denotes an insulating sheet fitted into the inner bottom surface of the guide hole 6.

つぎに、摺動部とガイドピンの組み合わせ関係について説明する。  Next, the combination relationship between the sliding portion and the guide pin will be described.

摺動部13は筒型であり、そこにガイドピン12が差し込んである。上述のように、挿入孔17にガイドピン12を圧入することによって、ガイドピン12と摺動部13の一体性が向上する。ガイドピン12の小径部16を除いた部分の長さがL1であり、また、ガイドピン12が摺動部13(挿入孔17)に差し込まれている長さがL2である。L1の1/2以上が差し込まれているので、L2/L1は1/2以上となっている。以下、L2に対するL1の比を「挿入比」と表現する。  The sliding portion 13 has a cylindrical shape, and a guide pin 12 is inserted therein. As described above, by inserting the guide pin 12 into the insertion hole 17, the integrity of the guide pin 12 and the sliding portion 13 is improved. The length of the portion excluding the small diameter portion 16 of the guide pin 12 is L1, and the length in which the guide pin 12 is inserted into the sliding portion 13 (insertion hole 17) is L2. Since 1/2 or more of L1 is inserted, L2 / L1 is 1/2 or more. Hereinafter, the ratio of L1 to L2 is expressed as “insertion ratio”.

摺動部13の直径に対するガイドピン12の直径の比を、以下、「直径比」と表現する。ガイドピン12の直径を一定値に設定し、摺動部13の直径を順次変えて行くことにより、熱的影響の状況を観察した。  The ratio of the diameter of the guide pin 12 to the diameter of the sliding portion 13 is hereinafter expressed as “diameter ratio”. By setting the diameter of the guide pin 12 to a constant value and sequentially changing the diameter of the sliding portion 13, the state of thermal influence was observed.

ガイドピン12の直径は、10.1mmである。これに対し、摺動部13の直径は15.5mmである。このときの直径比は1.53である。そして、摺動部13の肉厚は2.7mmである。  The diameter of the guide pin 12 is 10.1 mm. On the other hand, the diameter of the sliding part 13 is 15.5 mm. The diameter ratio at this time is 1.53. And the thickness of the sliding part 13 is 2.7 mm.

このような各部寸法に設定することにより、端面24と内端面25の適正な密着、摺動部13の薄肉化による蓄熱量の低減、摺動部13の摺動面の摩耗量の低減、ガイドピン12の傾き低減と溶接精度の向上、空気通路26の流路面積を適正に確保、電極本体1のスリム化などがえられる。  By setting the dimensions of each part as described above, proper contact between the end face 24 and the inner end face 25, reduction of heat storage amount due to thinning of the sliding part 13, reduction of wear amount of the sliding face of the sliding part 13, guide It is possible to reduce the inclination of the pin 12 and improve the welding accuracy, to appropriately secure the flow passage area of the air passage 26, and to make the electrode body 1 slim.

ガイドピン12の直径は、10.1mmである。これに対し、摺動部13の直径を13mmにすると、直径比は1.29となる。そして、摺動部13の肉厚は1.45mmとなる。  The diameter of the guide pin 12 is 10.1 mm. On the other hand, when the diameter of the sliding portion 13 is 13 mm, the diameter ratio is 1.29. And the thickness of the sliding part 13 will be 1.45 mm.

このようにガイドピン12の直径寸法に対して、摺動部13の直径寸法を変えると、端面24と内端面25の適正な密着、摺動部13の薄肉化による蓄熱量の低減、摺動部13の摺動面の摩耗量の低減、ガイドピン12の傾き低減と溶接精度の向上、空気通路26の流路面積を適正に確保、電極本体1のスリム化などがえられる。  Thus, if the diameter dimension of the sliding part 13 is changed with respect to the diameter dimension of the guide pin 12, the close contact between the end face 24 and the inner end face 25, the reduction of the heat storage amount due to the thinning of the sliding part 13, and the sliding The amount of wear on the sliding surface of the portion 13 can be reduced, the inclination of the guide pin 12 can be reduced and the welding accuracy can be improved, the flow passage area of the air passage 26 can be properly secured, and the electrode body 1 can be slimmed.

しかし、直径比が1.3未満であると、摺動部13の肉厚が薄すぎて内端面25に対する端面24の着座面積が十分に確保できない、という問題が発生する。つまり、摺動部端面24の直径方向で見た着座幅に不足を来たし、節度ある冷却空気の断続が不可能となる。さらに、冷却空気の空気通路26が摺動部外周面に凹溝28を形成するような形式であると、凹溝28の通気断面積を十分に確保することが困難となり、適正な空冷が不可能となる。したがって、直径比は1.3以上に設定することが適正であると判定される。また、空気通路26が平面部27によって形成されている場合も、通気断面積の問題が同様に発生する。  However, if the diameter ratio is less than 1.3, there is a problem that the thickness of the sliding portion 13 is too thin and a sufficient seating area of the end surface 24 with respect to the inner end surface 25 cannot be secured. That is, the seating width as viewed in the diameter direction of the sliding portion end face 24 is insufficient, and moderation of the cooling air is impossible. Further, if the cooling air passage 26 is formed in the outer peripheral surface of the sliding portion to form a concave groove 28, it is difficult to ensure a sufficient ventilation cross-sectional area of the concave groove 28, and proper air cooling is not possible. It becomes possible. Therefore, it is determined that it is appropriate to set the diameter ratio to 1.3 or more. Further, when the air passage 26 is formed by the flat portion 27, the problem of the ventilation cross-sectional area similarly occurs.

ガイドピン12の直径は、10.1mmである。これに対し、摺動部13の直径を17.3mmにすると、直径比は1.72となる。そして、摺動部13の肉厚は3.6mmとなる。  The diameter of the guide pin 12 is 10.1 mm. On the other hand, when the diameter of the sliding portion 13 is 17.3 mm, the diameter ratio is 1.72. And the thickness of the sliding part 13 will be 3.6 mm.

このようにガイドピン12の直径寸法に対して、摺動部13の直径寸法を変えると、端面24と内端面25の適正な密着、摺動部13の薄肉化による蓄熱量の低減、摺動部13の摺動面の摩耗量の低減、ガイドピン12の傾き低減と溶接精度の向上、空気通路26の流路面積を適正に確保、電極本体1のスリム化などがえられる。  Thus, if the diameter dimension of the sliding part 13 is changed with respect to the diameter dimension of the guide pin 12, the close contact between the end face 24 and the inner end face 25, the reduction of the heat storage amount due to the thinning of the sliding part 13, and the sliding The amount of wear on the sliding surface of the portion 13 can be reduced, the inclination of the guide pin 12 can be reduced and the welding accuracy can be improved, the flow passage area of the air passage 26 can be properly secured, and the electrode body 1 can be slimmed.

しかし、直径比が1.7を超えると、摺動部13の肉厚が過大になり、摺動部13の蓄熱量も過大になり、上述のような薄肉化にともなう熱膨張減少や摩耗量の少量化、軸心合致面の精度向上などの利点が追求できないこととなる。  However, when the diameter ratio exceeds 1.7, the thickness of the sliding portion 13 becomes excessive, the heat storage amount of the sliding portion 13 also becomes excessive, and the thermal expansion decreases and the wear amount due to the thinning as described above. Advantages such as reducing the amount of the material and improving the accuracy of the axial centering surface cannot be pursued.

比較例として、上記特許文献1および2に図示されているガイドピンや摺動部の寸法から算出した直径比は、2.0〜2.6であり、このような直径比の電極の使用結果を観察すると、摺動部の肉厚が過大であるために、摺動部外周面の摩耗量が著しく大きくなり、ガイドピンの傾き方向のがたつきも過大であることが認められた。  As a comparative example, the diameter ratio calculated from the dimensions of the guide pins and sliding portions illustrated in Patent Documents 1 and 2 is 2.0 to 2.6, and the results of using the electrodes having such a diameter ratio are as follows. When the thickness of the sliding part was excessive, the amount of wear on the outer peripheral surface of the sliding part was remarkably increased, and the rattling of the guide pin was found to be excessive.

上述のような考察から総合的に判定すると、直径比は1.3〜1.7とすることが適正であり、これにより優れた信頼性の高い電気抵抗溶接電極がえられる。  Judging comprehensively from the above considerations, it is appropriate that the diameter ratio is 1.3 to 1.7, whereby an excellent and highly reliable electric resistance welding electrode can be obtained.

一方、「直径比」と前記「挿入比」との相関性を考察すると、挿入比を1/2以上とすることにより、摺動部13が薄肉であっても、差し込み長さが長いので、摺動部13とガイドピン12の強固な一体性が確保できる。つまり、摺動部13が薄肉であると、ガイドピン12に対する直径方向の摺動部13の緊迫力が低下し、ガイドピン12との一体性が低下するのであるが、挿入比を1/2以上とすることにより、薄肉化による弱点を補うことができる。  On the other hand, considering the correlation between the “diameter ratio” and the “insertion ratio”, the insertion ratio is set to 1/2 or more, so that even if the sliding portion 13 is thin, the insertion length is long. A strong unity between the sliding portion 13 and the guide pin 12 can be ensured. That is, if the sliding portion 13 is thin, the urging force of the sliding portion 13 in the diametrical direction with respect to the guide pin 12 is reduced, and the integrity with the guide pin 12 is reduced. By setting it as the above, the weak point by thickness reduction can be compensated.

以上に説明した実施例1の作用効果は、つぎのとおりである。  The operational effects of the first embodiment described above are as follows.

通常、金属材料製の電極本体1やガイドピン12に比して、合成樹脂製電極部品、すなわち摺動部13の熱膨張量は著しく大きいのであるが、上述のように、合成樹脂製の摺動部13が薄肉とされて蓄熱量が低減されているので、直径方向における摺動部13自体の熱膨張量が小さくなる。連続的な溶接によって加熱サイクルが増大して摺動部13の温度が耐えられる最高値に達しても、上記熱膨張量が少ないために、ガイド孔6の内面に対する加圧力が低減し、摺動部13の摺動面における摩耗量が最小化される。このため、最も消耗しやすい摺動部13の耐用期間が長期化され、部品メンテナンスの面で有効である。  Usually, the amount of thermal expansion of the electrode part 1 made of a synthetic resin, that is, the sliding portion 13 is significantly larger than that of the electrode body 1 and the guide pin 12 made of a metal material. Since the moving part 13 is thin and the heat storage amount is reduced, the amount of thermal expansion of the sliding part 13 itself in the diameter direction is reduced. Even if the heating cycle is increased by continuous welding and the temperature of the sliding portion 13 reaches the maximum value that can be endured, the amount of thermal expansion is small, so that the pressure applied to the inner surface of the guide hole 6 is reduced and sliding is performed. The amount of wear on the sliding surface of the portion 13 is minimized. For this reason, the service life of the sliding portion 13 that is most likely to be consumed is prolonged, which is effective in terms of component maintenance.

さらに、上記熱膨張量の低減により、摺動部外周面とガイド孔内周面との間の摺動間隙が小さく保たれて、ガイドピン12の傾きが抑制される。このようにガイドピン12の傾斜角度を最小化することにより、ガイドピン12で支持されているプロジェクションナット15の鋼板部品3の下孔14に対する位置精度が向上する。すなわち、下孔14の中心軸線と上記ナット15の中心軸線のずれを最小化することができ、溶接精度の向上にとって有効である。  Furthermore, by reducing the thermal expansion amount, the sliding gap between the outer peripheral surface of the sliding portion and the inner peripheral surface of the guide hole is kept small, and the inclination of the guide pin 12 is suppressed. By minimizing the inclination angle of the guide pin 12 in this way, the positional accuracy of the projection nut 15 supported by the guide pin 12 with respect to the pilot hole 14 of the steel plate part 3 is improved. That is, the deviation between the center axis of the lower hole 14 and the center axis of the nut 15 can be minimized, which is effective for improving the welding accuracy.

摺動部13の肉厚が大きければ、摺動部材料の膨張量が増大し、その増大分が空気通路26の空間の方へ膨張するので、空気通路26の流路面積が縮小され、冷却空気の流量が低減し、冷却効果が低減する。しかし、上述のように、摺動部13の肉厚を低減することにより、摺動部材料の膨張量を最小化することができ、それに伴って空気通路26の流路面積の減少を回避し、正常な冷却作用がなされる。  If the thickness of the sliding portion 13 is large, the amount of expansion of the sliding portion material increases, and the increased amount expands toward the space of the air passage 26, so that the flow area of the air passage 26 is reduced and cooling is performed. The flow rate of air is reduced, and the cooling effect is reduced. However, as described above, by reducing the thickness of the sliding portion 13, the amount of expansion of the sliding portion material can be minimized, and accordingly, a reduction in the flow area of the air passage 26 is avoided. Normal cooling action is performed.

摺動部13の薄肉化にともなって摺動部13の直径が小さくなるので、電極本体1の直径も小さくなって、狭い箇所などでの電極配置が行いやすくなる。  As the sliding portion 13 becomes thinner, the diameter of the sliding portion 13 becomes smaller. Therefore, the diameter of the electrode body 1 also becomes smaller, and it becomes easier to arrange electrodes in narrow places.

上述の薄肉化に加えて、摺動部13には、冷却空気の空気通路が形成されているので、体積が小さくされた摺動部13の冷却が効果的になされ、上記熱膨張量低減による作用効果の一層の促進が図られる。  In addition to the above-described thinning, the sliding portion 13 is formed with an air passage for cooling air, so that the sliding portion 13 having a reduced volume is effectively cooled, and the amount of thermal expansion is reduced. Further promotion of the effect is achieved.

以上に述べたように総括的に見ると、摺動部13の端面24とガイド孔6の内端面25との密着面積を必要最小限に確保しつつ摺動部13の薄肉化を図ることが、冷却空気の断続を確実に行い、摺動部13の摩耗量を低減して耐用時間を長期化し、ナット15の鋼板部品3の下孔14に対するセンタリングが向上し、冷却空気の正常な空気通路面積の確保などを実現することに相関しており、耐久性や溶接精度向上などに寄与する電気抵抗溶接用電極がえられる。  As described above, when viewed comprehensively, it is possible to reduce the thickness of the sliding portion 13 while ensuring a tight contact area between the end surface 24 of the sliding portion 13 and the inner end surface 25 of the guide hole 6. The cooling air is reliably interrupted, the wear amount of the sliding portion 13 is reduced, the service life is prolonged, the centering of the nut 15 with respect to the pilot hole 14 of the steel plate part 3 is improved, and the normal air passage of the cooling air It correlates with the realization of the area and the like, and an electrode for electric resistance welding that contributes to the improvement of durability and welding accuracy can be obtained.

摺動部13の直径に対するガイドピン12の直径の比(「直径比」)が1.3〜1.7である。  The ratio of the diameter of the guide pin 12 to the diameter of the sliding portion 13 (“diameter ratio”) is 1.3 to 1.7.

直径比を1.3〜1.7とすることにより、摺動部13の肉厚を薄肉に設定するとともに、摺動部13の端面24とガイド孔6の内端面25との密着面積を摺動部全周にわたって確保することができ、上述のような薄肉化にともなう熱膨張や摩耗量の少量化、軸心合致面の精度向上などの利点確保以外に、冷却空気の断続作用が確実に達成される。さらに、摺動部13の適正な肉厚を確保することにより、冷却空気の空気通路26が確実に形成され、摺動部13の冷却が正常になされる。  By setting the diameter ratio to 1.3 to 1.7, the thickness of the sliding portion 13 is set to be thin, and the contact area between the end surface 24 of the sliding portion 13 and the inner end surface 25 of the guide hole 6 is slid. It can be ensured over the entire circumference of the moving part, and in addition to ensuring advantages such as thermal expansion and wear reduction due to thinning as described above, and improved accuracy of the axis centering surface, the intermittent action of cooling air is ensured Achieved. Furthermore, by ensuring an appropriate thickness of the sliding portion 13, the air passage 26 for cooling air is reliably formed, and the sliding portion 13 is normally cooled.

直径比が1.3未満であると、摺動部13の肉厚が薄すぎてガイド孔6の内端面25に対する摺動部端面24の着座面積が十分に確保できない、という問題が発生する。つまり、摺動部端面24の直径方向で見た着座幅に不足を来たし、節度ある冷却空気の断続が不可能となる。さらに、冷却空気の空気通路26が摺動部外周面に空気溝を形成するような形式であると、空気溝の通気断面積を十分に確保することが困難となり、適正な空冷が不可能となる。  If the diameter ratio is less than 1.3, the thickness of the sliding portion 13 is too thin, and there is a problem that a sufficient seating area of the sliding portion end surface 24 with respect to the inner end surface 25 of the guide hole 6 cannot be secured. That is, the seating width as viewed in the diameter direction of the sliding portion end face 24 is insufficient, and moderation of the cooling air is impossible. Furthermore, if the air passage 26 of the cooling air is in a form in which an air groove is formed on the outer peripheral surface of the sliding portion, it is difficult to ensure a sufficient air cross-sectional area of the air groove, and proper air cooling is impossible. Become.

一方、直径比が1.7を超えると、摺動部13の肉厚が過大になり、摺動部13の蓄熱量も過大になり、上述のような薄肉化にともなう熱膨張や摩耗量の少量化、軸心合致面の精度向上などの利点が追求できないこととなる。したがって、直径比を1.3〜1.7とすることにより、優れた信頼性の高い電気抵抗溶接用電極がえられる。  On the other hand, if the diameter ratio exceeds 1.7, the thickness of the sliding portion 13 becomes excessive, the heat storage amount of the sliding portion 13 also becomes excessive, and the thermal expansion and wear amount due to the thinning as described above are increased. Advantages such as a small amount and improved accuracy of the axial centering surface cannot be pursued. Therefore, by setting the diameter ratio to 1.3 to 1.7, an excellent and highly reliable electrode for electric resistance welding can be obtained.

図2は、本発明の実施例2を示す。  FIG. 2 shows a second embodiment of the present invention.

この実施例2は、実施例1のプロジェクションナットに換えてプロジェクションボルトであることと、ガイドピンと摺動部の一体化の仕方が異なったものである。  The second embodiment is different from the projection nut of the first embodiment in that it is a projection bolt and a method of integrating the guide pin and the sliding portion.

鉄製のプロジェクションボルト32は、雄ねじが形成された軸部33に円形のフランジ34が一体化されたもので、フランジ34の下面に溶着用突起35が120度間隔で3個設けてある。  The iron projection bolt 32 is obtained by integrating a circular flange 34 with a shaft portion 33 on which a male screw is formed, and three welding projections 35 are provided on the lower surface of the flange 34 at intervals of 120 degrees.

摺動部13は、ガイドピン12をインジェクション成型機の金型にセットし、合成樹脂を射出して成型したもので、ガイドピン12に抜け止め用の小径部36が形成してある。ガイドピン12は中空ピンの形状で、その中に軸部33が挿入されている。それ以外の構成は、図示されていない部分も含めて先の実施例と同じであり、同様な機能の部材には同一の符号が記載してある。  The sliding portion 13 is formed by setting the guide pin 12 in a mold of an injection molding machine and injecting synthetic resin, and the guide pin 12 is formed with a small-diameter portion 36 for retaining. The guide pin 12 has a hollow pin shape, and a shaft portion 33 is inserted therein. The other configuration is the same as that of the previous embodiment, including a portion not shown, and the same reference numerals are given to members having similar functions.

また、実施例2の作用効果も先の実施例と同じである。  The operational effects of the second embodiment are the same as those of the previous embodiment.

上述のように、本発明の電極によれば、ガイド孔内を進退する摺動部の蓄熱量を低減させて、摺動部外周面の異常摩耗を防止したり、ガイドピンの異常傾斜を防止したりする。したがって、自動車の車体溶接工程や、家庭電化製品の板金溶接工程などの広い産業分野で利用できる。  As described above, according to the electrode of the present invention, the amount of heat stored in the sliding portion that advances and retreats in the guide hole is reduced to prevent abnormal wear on the outer peripheral surface of the sliding portion and to prevent abnormal inclination of the guide pin. To do. Therefore, it can be used in a wide range of industrial fields such as automobile body welding processes and home appliance sheet metal welding processes.

1 電極本体
3 鋼板部品
6 ガイド孔
12 ガイドピン
13 摺動部
14 下孔
15 プロジェクションナット
24 端面
25 内端面
26 空気通路
32 プロジェクションボルト
DESCRIPTION OF SYMBOLS 1 Electrode main body 3 Steel plate components 6 Guide hole 12 Guide pin 13 Sliding part 14 Lower hole 15 Projection nut 24 End surface 25 Inner end surface 26 Air passage 32 Projection bolt

Claims (2)

電極本体の端面から突出し鋼板部品の下孔に貫通する断面円形のガイドピンが金属材料またはセラミック材料などの耐熱硬質材料で構成され、
電極本体のガイド孔に摺動できる状態で嵌め込まれ、ガイドピンが挿入された状態でガイドピンと一体化されている断面円形の摺動部が合成樹脂材料で構成され、
摺動部の肉厚は、摺動部における蓄熱量を低減させるように薄肉とされているとともに、摺動部に冷却空気の空気通路が形成され、
摺動部の端面とガイド孔の内端面が密着したり離れたりして冷却空気の断続を行うように構成したことを特徴とする電気抵抗溶接用電極。
The guide pin having a circular cross section that protrudes from the end face of the electrode body and penetrates through the pilot hole of the steel plate part is composed of a heat-resistant hard material such as a metal material or a ceramic material,
The sliding portion having a circular cross section that is fitted in the guide hole of the electrode body in a slidable state and is integrated with the guide pin in a state where the guide pin is inserted is made of a synthetic resin material,
The thickness of the sliding portion is thin so as to reduce the amount of heat stored in the sliding portion, and an air passage for cooling air is formed in the sliding portion,
An electrode for electric resistance welding, wherein the end face of the sliding portion and the inner end face of the guide hole are brought into close contact with each other and the cooling air is intermittently connected.
摺動部の直径に対するガイドピンの直径の比が1.3〜1.7である請求項1記載の電気抵抗溶接用電極。  The electrode for electric resistance welding according to claim 1, wherein a ratio of the diameter of the guide pin to the diameter of the sliding portion is 1.3 to 1.7.
JP2015139195A 2015-06-23 2015-06-23 Electric resistance welding electrode Active JP6541029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015139195A JP6541029B2 (en) 2015-06-23 2015-06-23 Electric resistance welding electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015139195A JP6541029B2 (en) 2015-06-23 2015-06-23 Electric resistance welding electrode

Publications (2)

Publication Number Publication Date
JP2017006982A true JP2017006982A (en) 2017-01-12
JP6541029B2 JP6541029B2 (en) 2019-07-10

Family

ID=57760435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015139195A Active JP6541029B2 (en) 2015-06-23 2015-06-23 Electric resistance welding electrode

Country Status (1)

Country Link
JP (1) JP6541029B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107962286A (en) * 2017-12-31 2018-04-27 重庆海国科技有限公司 A kind of discontinuous mash welder
CN108927596A (en) * 2017-05-29 2018-12-04 杜塞拉姆有限公司 Electrode for resistance welding
WO2019035423A1 (en) 2017-08-17 2019-02-21 青山 省司 Electric resistance welding electrode and method for maintaining airtightness
CN110860764A (en) * 2019-11-27 2020-03-06 安徽江淮汽车集团股份有限公司 Plant and weld device
WO2020111533A1 (en) * 2018-11-27 2020-06-04 주식회사 엘지화학 Electric resistance welding apparatus and battery manufacturing method using same
JP2020127967A (en) * 2019-02-07 2020-08-27 青山 省司 Electric resistance welding electrode and cooling method thereof
WO2021171864A1 (en) * 2020-02-25 2021-09-02 青山 省司 Electrical resistance welding electrode
JP7506360B2 (en) 2021-11-24 2024-06-26 省司 青山 Electric resistance welding electrodes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017012205B4 (en) 2017-05-29 2021-10-14 Doceram Gmbh Resistance welding electrode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5086447A (en) * 1973-12-07 1975-07-11
JPH106033A (en) * 1996-06-22 1998-01-13 Yoshitaka Aoyama Guide pin of welding electrode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5086447A (en) * 1973-12-07 1975-07-11
JPH106033A (en) * 1996-06-22 1998-01-13 Yoshitaka Aoyama Guide pin of welding electrode

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108927596A (en) * 2017-05-29 2018-12-04 杜塞拉姆有限公司 Electrode for resistance welding
EP3412398A1 (en) * 2017-05-29 2018-12-12 Doceram GmbH Electrode for use in resistance welding with a valvebody
CN108927596B (en) * 2017-05-29 2021-02-02 杜塞拉姆有限公司 Electrode for resistance welding
US10940558B2 (en) 2017-05-29 2021-03-09 Doceram Gmbh Electrode for resistance welding
DE102017111633B4 (en) 2017-05-29 2021-11-04 Doceram Gmbh Resistance welding electrode
WO2019035423A1 (en) 2017-08-17 2019-02-21 青山 省司 Electric resistance welding electrode and method for maintaining airtightness
US11453082B2 (en) 2017-08-17 2022-09-27 Shoji Aoyama Electric resistance welding electrode and method for maintaining airtightness
CN107962286B (en) * 2017-12-31 2023-12-22 青岛雷悦重工股份有限公司 Intermittent spot welder
CN107962286A (en) * 2017-12-31 2018-04-27 重庆海国科技有限公司 A kind of discontinuous mash welder
WO2020111533A1 (en) * 2018-11-27 2020-06-04 주식회사 엘지화학 Electric resistance welding apparatus and battery manufacturing method using same
US11945040B2 (en) 2018-11-27 2024-04-02 Lg Energy Solution, Ltd. Electric resistance welder and method manufacturing battery using the same
JP2020127967A (en) * 2019-02-07 2020-08-27 青山 省司 Electric resistance welding electrode and cooling method thereof
CN110860764A (en) * 2019-11-27 2020-03-06 安徽江淮汽车集团股份有限公司 Plant and weld device
CN115210028A (en) * 2020-02-25 2022-10-18 青山省司 Resistance welding electrode
EP4070905A4 (en) * 2020-02-25 2024-01-10 Shoji Aoyama ELECTRICAL RESISTANCE WELDING ELECTRODE
WO2021171864A1 (en) * 2020-02-25 2021-09-02 青山 省司 Electrical resistance welding electrode
CN115210028B (en) * 2020-02-25 2024-05-24 青山省司 Resistance welding electrode
JP7506360B2 (en) 2021-11-24 2024-06-26 省司 青山 Electric resistance welding electrodes

Also Published As

Publication number Publication date
JP6541029B2 (en) 2019-07-10

Similar Documents

Publication Publication Date Title
JP2017006982A (en) Electrode for electric resistance welding
CN107695501B (en) Electrodes for Resistance Welding
JP6624365B2 (en) Cooling method of guide pin in electric resistance welding electrode
JP6481826B2 (en) Electric resistance welding electrode
JP5967443B2 (en) Electric resistance welding electrode
US20150121987A1 (en) Lift pin and die
JP6548116B2 (en) Electric resistance welding electrode
JP2019217548A (en) Guide pin for electric resistance welded electrode
JP2017136639A (en) Electric resistance welding electrode
JP6720458B2 (en) Guide member for electric resistance welding electrode
JP7176450B2 (en) spark plug
WO2024147305A1 (en) Electric resistance welding electrode
JP6929508B2 (en) Electrode for electric resistance welding
JP2017074616A (en) Electric resistance-welding electrode
JP2019042798A (en) Electrode for electrical resistance welding
JP7017716B2 (en) Electrode for electric resistance welding
JP2023069974A (en) Electrode for electric resistance welding
JP5967444B2 (en) Method for manufacturing guide pin for electric resistance welding electrode
EP4070905A1 (en) Electrical resistance welding electrode
JP2023016653A (en) Electrode for electric resistance welding
JP2019126843A (en) Welding electrode and welding method for holed component
JP2017202520A (en) Electrode for electrical resistance welding
JP7108251B2 (en) Electric resistance welding electrodes for cap nuts
JP5210789B2 (en) Vacuum valve
JP2020006432A (en) Electric resistance welding method of projection bolt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190530

R150 Certificate of patent or registration of utility model

Ref document number: 6541029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150