[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2017003347A - Object detection device and object detection method - Google Patents

Object detection device and object detection method Download PDF

Info

Publication number
JP2017003347A
JP2017003347A JP2015115674A JP2015115674A JP2017003347A JP 2017003347 A JP2017003347 A JP 2017003347A JP 2015115674 A JP2015115674 A JP 2015115674A JP 2015115674 A JP2015115674 A JP 2015115674A JP 2017003347 A JP2017003347 A JP 2017003347A
Authority
JP
Japan
Prior art keywords
distance
reflected wave
intensity
detection
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015115674A
Other languages
Japanese (ja)
Inventor
雅昭 富田
Masaaki Tomita
雅昭 富田
貴裕 吉田
Takahiro Yoshida
貴裕 吉田
章紘 木村
Akihiro Kimura
章紘 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Signal Co Ltd
Original Assignee
Nippon Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Signal Co Ltd filed Critical Nippon Signal Co Ltd
Priority to JP2015115674A priority Critical patent/JP2017003347A/en
Publication of JP2017003347A publication Critical patent/JP2017003347A/en
Pending legal-status Critical Current

Links

Landscapes

  • Traffic Control Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an object detection device and an object detection method that can detect an object with high precision even when an antenna is small-sized.SOLUTION: An object detection device 100 comprises a radar sensor 4 which irradiates an object 2 with a radio wave and receives a reflected wave thereof, and a controller 5 which acquires a distance from the radar sensor to the object and an intensity of the reflected wave so as to detect whether the object is present. The controller detects whether the object is present over a peak search range wider than a detection and determination range of the object, detects a distance at which the intensity of the reflected wave is maximum when the object is detected, and determines that the object is present when the distance is equal to or shorter than a predetermined distance threshold within the detection and determination range of the object. An antenna which has wide directivity can be used since it is detected within the wide peak search range whether the object is present is detected, and the object can be detected with high precision since it is determined that the object is present when the distance at which the intensity of the reflected wave is maximum is within the detection and determination range.SELECTED DRAWING: Figure 1

Description

本発明は、物体に向けて電波を照射し、その反射波を受信することにより物体の有無を検知する物体検知装置及び物体検知方法に関し、例えば駐車場における車室内の車両の有無を検知する在車検知装置に適用されるものである。   The present invention relates to an object detection device and an object detection method for detecting the presence or absence of an object by irradiating an object with radio waves and receiving the reflected waves. For example, the present invention detects presence or absence of a vehicle in a vehicle compartment in a parking lot. It is applied to a vehicle detection device.

在車検知装置としては、例えば特許文献1に開示されているような、車室にループコイルを埋設して車両の有無を検知するループコイル式センサが知られている。しかし、地中にループコイルを埋設する必要があるため、施工工事に多大な時間と費用を要し、建物物件等の駐車場では設置が難しいこともある。   As a vehicle presence detection device, for example, a loop coil type sensor disclosed in Patent Document 1 that detects the presence or absence of a vehicle by embedding a loop coil in a passenger compartment is known. However, since it is necessary to embed a loop coil in the ground, the construction work requires a lot of time and cost, and it may be difficult to install in a parking lot such as a building property.

一方、例えば特許文献2に開示されている、赤外線センサや超音波センサを用いるものは、車両の無断出庫を阻止するフラップ板取付部等にセンサユニットを設置することができる。よって、施工工事の短縮と費用削減を図れるが、これらのセンサは環境による影響、例えば太陽光、雨、風、雪、屋内多重反射等の影響を受け易い。
そこで、例えば特許文献3には、設置が容易でありながら環境による影響を受け難い、レーダシステム(ミリ波レーダ)を用いるものが提案されている。
On the other hand, what uses an infrared sensor or an ultrasonic sensor disclosed in Patent Document 2, for example, can install a sensor unit on a flap plate mounting portion or the like that prevents unauthorized removal of the vehicle. Therefore, the construction work can be shortened and the cost can be reduced, but these sensors are easily affected by the environment, such as sunlight, rain, wind, snow, indoor multiple reflection, and the like.
Thus, for example, Patent Document 3 proposes a radar system (millimeter wave radar) that is easy to install but hardly affected by the environment.

特開2006−72437号公報JP 2006-72437 A 特開2007−207206号公報JP 2007-207206 A 特開2014−203340号公報JP 2014-203340 A

ところで、レーダを用いる物体検知装置を駐車場における車両の検知等に使用する場合には、隣接する車室内の車両や通路を通過中の車両を誤検知しないように、アンテナの指向性を絞る必要がある。しかしながら、指向性を絞るためにはアンテナサイズを大きくしなければならず、タイヤ止めに内蔵したり天井に設置したりする際に支障をきたす虞がある。   By the way, when an object detection device using a radar is used for detecting a vehicle in a parking lot, it is necessary to reduce the antenna directivity so as not to erroneously detect a vehicle in an adjacent vehicle compartment or a vehicle passing through a passage. There is. However, in order to reduce the directivity, the antenna size must be increased, and there is a risk of hindering when the antenna is built in the tire stopper or installed on the ceiling.

本発明は上記のような事情に鑑みてなされたもので、その目的とするところは、アンテナのサイズが小さくても高精度に物体を検知できる物体検知装置及び物体検知方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an object detection apparatus and an object detection method capable of detecting an object with high accuracy even when the antenna size is small. .

本発明の物体検知装置は、物体に向けて電波を照射し、その反射波を受信するレーダセンサと、このレーダセンサから物体までの距離と反射波の強度を取得して物体の有無を検知する制御装置とを備え、前記制御装置は、物体の検知判定範囲よりも広いピーク探査範囲で物体の有無を検知し、物体を検知した場合に反射波の強度が最大の距離を検出し、この距離が物体の検知判定範囲内の所定の距離閾値以下のときに物体有りと判定する、ことを特徴とする。   The object detection apparatus of the present invention detects the presence or absence of an object by radiating a radio wave toward the object and receiving the reflected wave, and acquiring the distance from the radar sensor to the object and the intensity of the reflected wave. A control device, the control device detects the presence or absence of an object in a peak search range wider than the detection detection range of the object, and detects the distance where the intensity of the reflected wave is maximum when the object is detected, this distance Is determined to be present when it is equal to or smaller than a predetermined distance threshold within the object detection determination range.

また、本発明の物体検知方法は、物体に向けて電波を照射し、その反射波を受信することにより物体の有無を検知する方法であって、物体までの距離と反射波の強度を取得し、物体の検知判定範囲よりも広いピーク探査範囲で物体の有無を検知し、物体を検知した場合に反射波の強度が最大となる距離を検出し、この距離が物体の検知判定範囲内の所定の距離閾値以下のときに物体有りと判定する、ことを特徴とする。   The object detection method of the present invention is a method for detecting the presence or absence of an object by irradiating an object with radio waves and receiving the reflected wave, and acquires the distance to the object and the intensity of the reflected wave. Detects the presence or absence of an object in a peak exploration range wider than the object detection determination range, detects the distance at which the intensity of the reflected wave is maximum when the object is detected, and this distance is a predetermined value within the object detection determination range. It is characterized in that it is determined that there is an object when it is less than or equal to the distance threshold.

本発明によれば、物体の検知判定範囲よりも広いピーク探査範囲で物体の有無を検知するので、指向性が広い小さなアンテナを用いることができる。また、反射波の強度が最大になる距離が、検知判定範囲内の所定の距離閾値以下のときに物体有りと判定するので、検知判定範囲外の物体は検知せず、検知判定範囲内の物体を高精度に検知できる。しかも、ピーク探査範囲に存在する物体により、検知判定範囲内に反射波の二次高調波や三次高調波等が発生しても、反射波の強度が最大になる物体までの距離は所定の距離閾値以上になるので、これらの影響で誤検知あるいは誤判定するのを抑制できる。   According to the present invention, since the presence / absence of an object is detected in a peak search range wider than the object detection determination range, a small antenna with wide directivity can be used. In addition, since the object is determined to be present when the distance at which the intensity of the reflected wave is maximum is equal to or less than a predetermined distance threshold within the detection determination range, an object outside the detection determination range is not detected, and an object within the detection determination range is detected. Can be detected with high accuracy. Moreover, even if a second harmonic or a third harmonic of the reflected wave is generated within the detection judgment range due to an object existing in the peak exploration range, the distance to the object where the intensity of the reflected wave is maximum is a predetermined distance. Since the threshold value is exceeded, it is possible to suppress erroneous detection or erroneous determination due to these effects.

よって、駐車場の在車検知装置に適用する場合に、容易にタイヤ止めに内蔵したり天井に設置したりできる。また、隣接する車室内の車両や通路を通過する車両を誤検知するのを抑制して、車室内の車両を高精度に検知できる。   Therefore, when applied to an on-vehicle detection device in a parking lot, it can be easily built in a tire stopper or installed on a ceiling. In addition, it is possible to detect the vehicle in the vehicle compartment with high accuracy by suppressing erroneous detection of the vehicle in the adjacent vehicle compartment and the vehicle passing through the passage.

本発明の実施形態に係る物体検知装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the object detection apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る物体検知方法のアルゴリズムを示すフローチャートである。It is a flowchart which shows the algorithm of the object detection method which concerns on embodiment of this invention. レーダセンサの送信波と受信波から距離を算出する手法について説明するための波形図である。It is a wave form diagram for demonstrating the method of calculating distance from the transmission wave and reception wave of a radar sensor. 本発明の物体検知装置を駐車場の在車検知に用いる例について説明するための平面図である。It is a top view for demonstrating the example which uses the object detection apparatus of this invention for the presence detection of a parking lot. 図4の側面図である。FIG. 5 is a side view of FIG. 4. 本発明の物体検知方法を駐車場の在車検知に用いる場合のアルゴリズムを示すフローチャートである。It is a flowchart which shows the algorithm in the case of using the object detection method of this invention for the presence detection of a parking lot. 図6の在車検知方法において、反射波の強度閾値と物体検知装置からの距離との関係を示す波形図である。7 is a waveform diagram showing the relationship between the reflected wave intensity threshold and the distance from the object detection device in the vehicle presence detection method of FIG. 反射波の強度と物体検知装置からの距離との関係で決まる在車判定範囲を示す図である。It is a figure which shows the in-vehicle determination range determined by the relationship between the intensity | strength of a reflected wave, and the distance from an object detection apparatus. 本発明の物体検知方法を駐車場の在車検知に用いる場合に、干渉波の影響とその低減について説明するための波形図である。When using the object detection method of this invention for the presence detection of a parking lot, it is a wave form diagram for demonstrating the influence of an interference wave, and its reduction. 本発明の物体検知方法を駐車場の在車検知に用いる場合に、干渉波を低減する具体的な他の方法について説明するための波形図である。When using the object detection method of this invention for the presence detection of a parking lot, it is a wave form diagram for demonstrating the concrete other method of reducing an interference wave. 本発明の物体検知装置を駐車場の在車検知に用いる場合の他の概略構成を示すブロック図である。It is a block diagram which shows the other schematic structure at the time of using the object detection apparatus of this invention for the presence detection of a parking lot. 図11の物体検知装置における筐体内反射の影響について説明するための波形図である。It is a wave form diagram for demonstrating the influence of the reflection in a housing | casing in the object detection apparatus of FIG. 本発明の物体検知方法を駐車場の在車検知に用いる場合に、筐体内反射の影響を低減する方法について説明するための波形図である。It is a wave form diagram for demonstrating the method to reduce the influence of reflection in a housing | casing, when using the object detection method of this invention for the presence detection of a parking lot. 本発明の物体検知方法を駐車場の在車検知に用いる場合の他のアルゴリズムを示すフローチャートである。It is a flowchart which shows the other algorithm at the time of using the object detection method of this invention for the presence detection of a parking lot.

以下、本発明の実施形態について図面を参照して説明する。
図1に示すように、物体検知装置100は、送信アンテナ1から検知対象の物体2に向けて電波を照射し、その反射波を受信アンテナ3で受信するレーダセンサ4と、このレーダセンサ4から出力されたIF(Intermediate Frequency)信号から、物体2までの距離と反射波の強度を取得して物体2の有無を検知する制御装置(CPU)5とを備えている。ここで、アンテナ1,3には、指向性が広い小さなアンテナを用いることができる。
Embodiments of the present invention will be described below with reference to the drawings.
As shown in FIG. 1, an object detection apparatus 100 irradiates a radio wave from a transmission antenna 1 toward an object 2 to be detected and receives a reflected wave by a reception antenna 3. A control device (CPU) 5 that detects the presence or absence of the object 2 by acquiring the distance to the object 2 and the intensity of the reflected wave from the output IF (Intermediate Frequency) signal. Here, as the antennas 1 and 3, small antennas having wide directivity can be used.

制御装置5は、レーダセンサ4から出力されたIF信号をアナログ/デジタルするA/Dコンバータ6と、このA/Dコンバータ6から出力されるデジタル信号を処理すると共に、レーダセンサ4に制御信号を出力して制御する処理部7を含んでいる。この制御装置5は、上位インターフェース回路(上位I/F)8を介して、上位装置や上位機器(図示せず)に接続される。制御装置5と上位装置や上位機器との間は、有線または無線でデータの授受が可能になっている。そして、レーダセンサ4、制御装置5及び上位インターフェース回路8に、商用電源やバッテリ等の電源9から動作電圧が供給される。   The control device 5 performs analog / digital conversion on the IF signal output from the radar sensor 4, processes the digital signal output from the A / D converter 6, and sends a control signal to the radar sensor 4. A processing unit 7 for outputting and controlling is included. The control device 5 is connected to a host device or a host device (not shown) via a host interface circuit (host I / F) 8. Data can be exchanged between the control device 5 and the host device or host device by wire or wireless. Then, an operating voltage is supplied to the radar sensor 4, the control device 5, and the upper interface circuit 8 from a power source 9 such as a commercial power source or a battery.

次に、上記のような構成において、図2のフローチャートにより物体検知方法を説明する。まず、物体2の検知判定範囲よりも広いピーク探査範囲で物体2の有無を検知するために、制御装置5でレーダセンサ4を制御し、送信アンテナ1から物体2に向けて電波を照射する。物体2が存在すると電波は物体2で反射し、その反射波が受信アンテナ3で受信される。この時の遅延時間から反射点の距離と反射波の強度を含むIF信号が得られる。このIF信号を制御装置5内のA/Dコンバータ6でデジタル化し、処理部7に入力して信号処理することで、ピーク探査範囲内の物体2の有無を検知する(ステップS1)。処理部7では、デジタル化したIF信号を高速フーリエ変換(FFT:Fast Fourier Transform)解析する。   Next, the object detection method in the above configuration will be described with reference to the flowchart of FIG. First, in order to detect the presence or absence of the object 2 in a peak search range wider than the detection determination range of the object 2, the control device 5 controls the radar sensor 4 to irradiate the object 2 from the transmission antenna 1 with radio waves. When the object 2 exists, the radio wave is reflected by the object 2 and the reflected wave is received by the receiving antenna 3. An IF signal including the distance of the reflection point and the intensity of the reflected wave is obtained from the delay time at this time. The IF signal is digitized by the A / D converter 6 in the control device 5 and input to the processing unit 7 for signal processing, thereby detecting the presence or absence of the object 2 within the peak search range (step S1). The processing unit 7 performs a fast Fourier transform (FFT) analysis on the digitized IF signal.

レーダセンサ4は、本例ではFM−CW(Frequency Modulated-Continuous Wave)方式であり、図3に実線で示すように時間の経過とともに周波数が変化する電波を送信し、破線で示す受信波を受信したときの送信波との周波数差Δf1,Δf2から距離を算出する。Δf1で示すように送信波と受信波の周波数差が小さい場合は、反射波が到達するまでの時間t1も小さく、Δf2で示すように送信波と受信波の周波数差が大きい場合は、反射波が到達するまでの時間t2も大きい。送信波と受信波の周波数差は、下式で表すことができる。   The radar sensor 4 is an FM-CW (Frequency Modulated-Continuous Wave) system in this example, and transmits a radio wave whose frequency changes with time as shown by a solid line in FIG. 3 and receives a received wave shown by a broken line. The distance is calculated from the frequency difference Δf1, Δf2 with the transmission wave at that time. When the frequency difference between the transmitted wave and the received wave is small as indicated by Δf1, the time t1 until the reflected wave arrives is small, and when the frequency difference between the transmitted wave and the received wave is large as indicated by Δf2, the reflected wave It takes a long time t2 to reach. The frequency difference between the transmitted wave and the received wave can be expressed by the following equation.

送信波−受信波=ビート信号(周波数)
送信アンテナ1から放射された電波が物体2で反射して受信アンテナ3に到達するまでの距離をR、光速をcとしたときに、到達時間τ(秒)は「τ=2R/c」となる。
このように、近い物体2から得られるビート信号の周波数は低く、遠い物体2から得られるビート信号の周波数は高く観測されるため、得られたビート信号をFFT解析等の手法で周波数分析すれば、その距離が求められる。
Transmitted wave-received wave = beat signal (frequency)
The arrival time τ (seconds) is “τ = 2R / c”, where R is the distance until the radio wave radiated from the transmitting antenna 1 is reflected by the object 2 and reaches the receiving antenna 3, and c is the speed of light. Become.
Thus, since the frequency of the beat signal obtained from the near object 2 is low and the frequency of the beat signal obtained from the far object 2 is observed to be high, if the obtained beat signal is subjected to frequency analysis by a technique such as FFT analysis. , That distance is required.

そして、ピーク探査範囲内に物体2が有るか判定し(ステップS2)、有ると判定された場合には処理部7により反射波の強度が最大の距離を検出する(ステップS3)。一方、無いと判定された場合には上位インターフェース回路8を介して上位装置へ通知する(ステップS4)。   Then, it is determined whether or not the object 2 is present within the peak search range (step S2). If it is determined that the object 2 is present, the processing unit 7 detects the distance where the intensity of the reflected wave is maximum (step S3). On the other hand, if it is determined that there is no such information, it is notified to the host device via the host interface circuit 8 (step S4).

次のステップS5では、処理部7で反射波の強度が最大の距離が所定の距離閾値以下か否かを判定する。ここで、所定の距離閾値は、物体2の検知判定範囲内で検出したい所定の距離を設定する。反射波の強度が最大の距離がこの距離閾値以下でなければ、処理部7で物体無しと判定し(ステップS6)、距離閾値以下の場合には、処理部7で所定の強度閾値以上か否かを判定する(ステップS7)。この強度閾値は、検知対象の物体2の反射強度を考慮して設定する。所定の強度閾値以上でなければ、処理部7で物体無しと判定し(ステップS6)、所定の強度閾値以上であれば物体有りと判定する(ステップS8)。そして、これらステップS6,S8の判定結果を上位装置や上位機器に通知する。   In the next step S5, the processing unit 7 determines whether or not the distance at which the intensity of the reflected wave is maximum is equal to or less than a predetermined distance threshold. Here, the predetermined distance threshold is set to a predetermined distance to be detected within the detection determination range of the object 2. If the distance at which the intensity of the reflected wave is the maximum is not less than the distance threshold, the processing unit 7 determines that there is no object (step S6). If the distance is less than the distance threshold, the processing unit 7 determines whether or not the predetermined intensity threshold is exceeded. Is determined (step S7). This intensity threshold is set in consideration of the reflection intensity of the object 2 to be detected. If it is not equal to or greater than the predetermined intensity threshold, the processing unit 7 determines that there is no object (step S6), and if it is equal to or greater than the predetermined intensity threshold, it is determined that there is an object (step S8). And the determination result of these steps S6 and S8 is notified to a high-order apparatus and a high-order apparatus.

このように、反射波の強度が最大となる距離に対して、所定の距離閾値以下か否かを判定することで、広いピーク探査範囲内の反射点を除外して、検知判定範囲内の反射点かどうかを見極めることができる。また、反射波の最大強度に対して、所定の強度閾値以上か否かを判定することで、検知判定範囲内の弱い反射波、例えば二次高調波や三次高調波等の影響を除去して、物体の有無を見極めることができる。   In this way, by determining whether or not the distance at which the intensity of the reflected wave is maximum is equal to or less than a predetermined distance threshold, the reflection point within the wide peak search range is excluded, and the reflection within the detection determination range. You can determine if it is a point. In addition, by determining whether or not the maximum intensity of the reflected wave is greater than or equal to a predetermined intensity threshold, the influence of weak reflected waves within the detection determination range, such as second harmonic and third harmonic, is eliminated. , Can determine the presence or absence of objects.

従って、本実施形態によれば、物体2の検知判定範囲よりも広いピーク探査範囲で物体2の有無を検知するので、指向性が広い小さなアンテナ1,3を用いることができる。また、検知判定範囲外の物体2は検知せず、検知判定範囲内の物体を高精度に検知できる。更に、ピーク探査範囲に存在する物体により、検知判定範囲内に強度の弱い反射波が生成されても、その影響で誤判定するのを抑制できる。   Therefore, according to this embodiment, since the presence or absence of the object 2 is detected in a peak search range wider than the detection determination range of the object 2, it is possible to use the small antennas 1 and 3 having a wide directivity. Further, the object 2 outside the detection determination range is not detected, and the object within the detection determination range can be detected with high accuracy. Furthermore, even if a reflected wave having a low intensity is generated in the detection determination range by an object existing in the peak search range, erroneous determination due to the influence can be suppressed.

[適用例1]
図4及び図5はそれぞれ、上述した物体検知装置を駐車場の在車検知に適用した場合の平面図と側面図である。ここでは、物体検知装置100を車室110内の端部付近の路面に設置されるタイヤ止め120に内蔵した例を示している。タイヤ止め120は、金属製の筐体で形成され、車両130が入庫する面に物体検知装置100から電波を放射するための窓120aを有している。窓120aには樹脂等の板状部材が嵌め込まれ、電波を透過するようになっており、この窓120aに対応する位置に送信アンテナ1と受信アンテナ3を設けている。アンテナ1,3は、指向性が広い小さなアンテナであるので、窓120aは小さくて済み、タイヤ止め120の強度低下も少なくできる。
[Application Example 1]
4 and 5 are a plan view and a side view, respectively, when the above-described object detection device is applied to the presence detection of a parking lot. Here, an example is shown in which the object detection device 100 is built in a tire stopper 120 installed on a road surface near an end in the passenger compartment 110. The tire stopper 120 is formed of a metal casing, and has a window 120a for radiating radio waves from the object detection device 100 on the surface where the vehicle 130 enters. A plate-like member such as resin is fitted into the window 120a so as to transmit radio waves, and the transmitting antenna 1 and the receiving antenna 3 are provided at positions corresponding to the window 120a. Since the antennas 1 and 3 are small antennas with wide directivity, the window 120a can be small, and the strength reduction of the tire stopper 120 can be reduced.

次に、在車検知アルゴリズムについて、図6のフローチャートにより説明する。まず、制御装置5でレーダセンサ4を制御し、送信アンテナ1から車室110内に向けて電波を照射する。電波の照射範囲は、一点鎖線141,142で挟まれた扇状に広がる領域で示しており、通路や隣接車室111、あるいは車室110の両側の車両にも到達する。電波は駐車場の路面や車両130で反射し、その反射波を受信アンテナ3で受信する。この時の遅延時間から反射点の距離と反射波の強度をIF信号として得る。IF信号を制御装置5内のA/Dコンバータ6でデジタル化し、処理部7に入力して処理することで、車両130までの距離と反射波の強度を取得する(ステップS11)。   Next, the presence detection algorithm will be described with reference to the flowchart of FIG. First, the control device 5 controls the radar sensor 4 to radiate radio waves from the transmitting antenna 1 toward the vehicle interior 110. The radio wave irradiation range is indicated by a fan-shaped area sandwiched between alternate long and short dash lines 141 and 142, and reaches the passage, the adjacent passenger compartment 111, or vehicles on both sides of the passenger compartment 110. The radio wave is reflected by the road surface of the parking lot or the vehicle 130, and the reflected wave is received by the receiving antenna 3. From the delay time at this time, the distance of the reflection point and the intensity of the reflected wave are obtained as an IF signal. The IF signal is digitized by the A / D converter 6 in the control device 5 and input to the processing unit 7 for processing, thereby obtaining the distance to the vehicle 130 and the intensity of the reflected wave (step S11).

次のステップS12では、予め設定した回数、ここではN回電波を送信したか否かを処理部7で判定し、N回送信していなければカウント値をプラス1(N=N+1)して(ステップS13)、ステップS11の距離と反射波の強度の取得をN回まで繰り返す。   In the next step S12, the processing unit 7 determines whether or not the radio wave has been transmitted a preset number of times, here N times, and if not transmitted N times, the count value is incremented by 1 (N = N + 1) ( Step S13) and the acquisition of the distance and reflected wave intensity in step S11 are repeated up to N times.

ステップS12でN回電波を送信したと判定されると、処理部7で距離と強度の平均値をそれぞれ算出する(ステップS14)。平均値の算出は、取得した距離と強度をそれぞれ加算した後、Nで割れば良いが、各々の最大値と最小値を削除し、残りの平均値を算出して車両130の有無を判定することで、通路を移動する車両等による影響を抑制して、より高精度な判定が可能となる。
なお、ステップS12〜S14を省略し、車両130までの距離と反射波の強度を1回(N=1)だけ取得するようにしても良いのはもちろんである。
If it is determined in step S12 that the radio wave has been transmitted N times, the processing unit 7 calculates an average value of distance and intensity (step S14). The average value can be calculated by adding the acquired distance and intensity and then dividing by N. However, each maximum value and minimum value are deleted, and the remaining average value is calculated to determine the presence or absence of the vehicle 130. As a result, it is possible to suppress the influence of the vehicle or the like moving in the passage, and to perform more accurate determination.
Of course, steps S12 to S14 may be omitted, and the distance to the vehicle 130 and the intensity of the reflected wave may be acquired only once (N = 1).

次に、上記距離の平均値が第1の距離閾値L1以下か否かを処理部7で判定する(ステップS15)。ここで、第1の距離閾値L1とは、ピーク探査範囲140を設定する距離であり、このピーク探査範囲140内で車両130の有無を検知する。ステップS15で距離の平均値が第1の距離閾値L1以下ではないと判定された場合には、処理部7で空車と判定する(ステップS16)。第1の距離閾値L1以下であると判定された場合には、処理部7で反射波の最大強度の距離を検出する(ステップS17)。   Next, the processing unit 7 determines whether or not the average value of the distances is equal to or less than the first distance threshold L1 (step S15). Here, the first distance threshold L1 is a distance for setting the peak search range 140, and the presence or absence of the vehicle 130 is detected in the peak search range 140. If it is determined in step S15 that the average distance value is not equal to or less than the first distance threshold L1, the processing unit 7 determines that the vehicle is empty (step S16). When it is determined that the distance is equal to or less than the first distance threshold L1, the processing unit 7 detects the distance of the maximum intensity of the reflected wave (step S17).

続いて、反射波の最大強度の距離が第2の距離閾値L2以下か否かを判定する(ステップS18)。ここで、第2の距離閾値L2は、車両130の検知判定範囲である車室110内の検出したい所定の距離である。第2の距離閾値L2は、例えば車両130が車室110に入庫した場合に、これを確実に検知できる扇状の検知判定範囲150を設定できる距離にする。最大強度の距離が第2の距離閾値L2以下でない場合は、処理部7で空車と判定し(ステップS16)、第2の距離閾値L2以下であると判定された場合には、処理部7で所定の強度閾値以上か否かを判定する(ステップS19)。   Subsequently, it is determined whether or not the maximum intensity distance of the reflected wave is equal to or smaller than the second distance threshold L2 (step S18). Here, the second distance threshold L2 is a predetermined distance to be detected in the passenger compartment 110 that is the detection determination range of the vehicle 130. For example, when the vehicle 130 enters the passenger compartment 110, the second distance threshold L2 is set to a distance at which a fan-shaped detection determination range 150 that can reliably detect this is set. If the maximum intensity distance is not less than or equal to the second distance threshold L2, the processing unit 7 determines that the distance is empty (step S16). If it is determined that the distance is the second distance threshold L2 or less, the processing unit 7 It is determined whether or not a predetermined intensity threshold is exceeded (step S19).

この強度閾値は、車室110内の車両130からの反射強度を考慮して設定する。所定の強度閾値以上でない場合は、処理部7で空車と判定し(ステップS16)、所定の強度閾値以上の場合は、処理部7で在車と判定する(ステップS20)。そして、上記ステップS16,S20の判定結果を上位装置である駐車場の管理装置に通知する(ステップS21)。   This intensity threshold is set in consideration of the reflection intensity from the vehicle 130 in the passenger compartment 110. If it is not equal to or greater than the predetermined intensity threshold, the processing unit 7 determines that the vehicle is empty (step S16), and if it is equal to or greater than the predetermined intensity threshold, the processing unit 7 determines that the vehicle is present (step S20). And the determination result of said step S16, S20 is notified to the management apparatus of the parking lot which is a high-order apparatus (step S21).

図7は、図6の在車検知方法において、反射波の強度閾値と物体検知装置100からの距離との関係を示す波形図である。一点鎖線で囲んだ領域はピーク探査範囲140に対応し、二点鎖線で囲んだ領域が検知判定範囲150に対応する。車室110内に車両130が在車している場合には、ピーク探査範囲140から得られた反射波に、物体検知装置100から離れるに従って小さくなる複数のピークが生成される。これらのピークは、車両130による反射波に加えて、例えば路面からの反射波、二次高調波及び三次高調波等が重畳されることで生成される。   FIG. 7 is a waveform diagram showing the relationship between the reflected wave intensity threshold and the distance from the object detection device 100 in the on-vehicle detection method of FIG. A region surrounded by a one-dot chain line corresponds to the peak search range 140, and a region surrounded by a two-dot chain line corresponds to the detection determination range 150. When the vehicle 130 is present in the passenger compartment 110, a plurality of peaks are generated in the reflected wave obtained from the peak exploration range 140 that decreases as the distance from the object detection device 100 increases. These peaks are generated by superimposing, for example, a reflected wave from the road surface, a second harmonic, a third harmonic, and the like in addition to the reflected wave from the vehicle 130.

このようにピーク探査範囲140と検知判定範囲(=在車の判定範囲)150を分けるのは、ピーク探査範囲140にある不要ピーク成分P1,P2で在車と判定しないようにするためである。これらの不要ピーク成分P1,P2は、例えば車室110の前の通路を車両が横切った場合に生成され、これらにより在車と判定しないようにしている。図7では、反射波の強度ピークP3が、検知判定範囲150の第2の距離閾値L2以下に存在する。また、この反射波の強度ピークP3は、所定の強度閾値Pth以上である。よって、在車と判定することになる。   The reason why the peak search range 140 is separated from the detection determination range (= in-vehicle determination range) 150 is to prevent the unnecessary peak components P1 and P2 in the peak search range 140 from determining that the vehicle is in the vehicle. These unnecessary peak components P1 and P2 are generated, for example, when the vehicle crosses the passage in front of the passenger compartment 110, so that it is not determined that the vehicle is in the vehicle. In FIG. 7, the intensity peak P <b> 3 of the reflected wave exists below the second distance threshold L <b> 2 in the detection determination range 150. Further, the intensity peak P3 of the reflected wave is equal to or greater than a predetermined intensity threshold Pth. Therefore, it is determined that the vehicle is present.

図8は、反射強度と物体検知装置100からの距離との関係で決まる在車判定範囲を示している。物体検知装置100からの距離が第2の距離閾値L2よりも近くに反射強度が最大となる距離が存在し、且つ反射強度が所定の強度閾値Pthよりも高い、右上がりのハッチングを付した領域内の場合に在車と判定する。
在車判定範囲は、車両130の停車時には車体の床下の反射を受信するため、車体毎に検出される距離が異なるので、これを考慮して設定すると良い。
FIG. 8 shows the on-vehicle determination range determined by the relationship between the reflection intensity and the distance from the object detection device 100. A region where the distance from the object detection device 100 is near the second distance threshold L2 and the reflection intensity is maximum and the reflection intensity is higher than the predetermined intensity threshold Pth and is hatched to the right It is determined that the vehicle is in the vehicle.
The vehicle presence determination range is set in consideration of the distance detected for each vehicle body because the under-floor reflection of the vehicle body is received when the vehicle 130 stops.

反射波の強度が最大となる距離に対して、第2の距離閾値L2を用いて判定することで、隣接する車室111内、車室110の両側の車室、及び通路の反射点を除外して、車室110内の反射点かどうかを見極めることができる。また、反射波の最大強度に対して、所定の強度閾値を用いて判定することで、自車室110における検知判定範囲150内の弱い反射波のピークの影響を除去して、車両130の有無を見極めることができる。   The distance at which the intensity of the reflected wave is maximum is determined using the second distance threshold L2, and the reflection points of the adjacent passenger compartment 111, the passenger compartments on both sides of the passenger compartment 110, and the passage are excluded. Thus, it is possible to determine whether the reflection point is in the passenger compartment 110 or not. In addition, by determining the maximum intensity of the reflected wave using a predetermined intensity threshold, the influence of the weak reflected wave peak in the detection determination range 150 in the own vehicle compartment 110 is removed, and the presence or absence of the vehicle 130 Can be determined.

上述したように、検知判定範囲150よりも広いピーク探査範囲140で車両130の在車を検知するので、指向性が広い小さなアンテナ1,3を用いることができる。よって、容易にタイヤ止め120に内蔵したり天井に設置したりできる。また、反射波の強度が最大になる距離が、検知判定範囲150内の第2の距離閾値L2以下のときに在車と判定するので、検知判定範囲150外の車両は検知せず、検知判定範囲150内の車両130を高精度に検知できる。しかも、ピーク探査範囲140に存在する車両により、検知判定範囲150内に反射波の二次高調波や三次高調波等が発生しても、反射波の強度が最大になる距離は第2の距離閾値L2以上になるので、これらの影響で誤検知や誤判定するのを抑制できる。   As described above, since the presence of the vehicle 130 is detected in the peak exploration range 140 wider than the detection determination range 150, the small antennas 1 and 3 having a wide directivity can be used. Therefore, it can be easily built in the tire stopper 120 or installed on the ceiling. Further, since the vehicle is determined to be present when the distance at which the intensity of the reflected wave is maximum is equal to or smaller than the second distance threshold L2 in the detection determination range 150, the vehicle outside the detection determination range 150 is not detected, and the detection determination is made. The vehicle 130 within the range 150 can be detected with high accuracy. Moreover, even if a second harmonic or a third harmonic of the reflected wave is generated in the detection determination range 150 by the vehicle existing in the peak exploration range 140, the distance at which the intensity of the reflected wave is maximum is the second distance. Since it becomes more than the threshold value L2, it can suppress misdetection and misjudgment by these influences.

[第2の適用例]
通常、駐車場内には車室毎、あるいは複数の車室毎に1台の物体検知装置(在車検知装置)が設置されている。このような場合、照射する電波の方向が対向する車室の電波が互いに混信(干渉)して誤検知する可能性がある。例えば図4において、車室110内の物体検知装置100から照射された電波を、車室111内の物体検知装置が受信して誤検知する、あるいは車室111内の物体検知装置から照射された電波を、車室110内の物体検知装置100が受信して誤検知する可能性がある。また、車載レーダ等の他のレーダと混信(干渉)する可能性もある。特に、送信波に対して時間のずれが小さい干渉波を受けると、干渉波と受信波との識別ができず誤検出する。
[Second application example]
Usually, one object detection device (a vehicle presence detection device) is installed in each parking lot or for each of a plurality of vehicle compartments in a parking lot. In such a case, there is a possibility that the radio waves in the passenger compartment facing each other in the direction of the radio waves to be radiated may interfere with each other and be erroneously detected. For example, in FIG. 4, the object detection device in the passenger compartment 111 receives and misdetects the radio wave emitted from the object detection device 100 in the passenger compartment 110 or is emitted from the object detection device in the passenger compartment 111. There is a possibility that the object detection device 100 in the passenger compartment 110 receives radio waves and erroneously detects them. There is also a possibility of interference (interference) with other radars such as on-vehicle radars. In particular, when an interference wave having a small time shift with respect to the transmission wave is received, the interference wave and the reception wave cannot be distinguished from each other and erroneously detected.

図9は、本発明の物体検知方法を駐車場の在車検知に用いる場合に、干渉波の影響とその低減について説明するための波形図である。図9(a)は、送信波、受信波及び干渉波の3つの状態を示し、図9(b)は、図9(a)のそれぞれの状態に対応するIF信号を示している。FM−CW方式において、通常は電波の送信期間Δnと非送信期間(待機時間)ΔNを交互に繰り返すようになっており、送信期間Δnには電波の周波数を徐々に高くしていく。   FIG. 9 is a waveform diagram for explaining the influence of an interference wave and its reduction when the object detection method of the present invention is used to detect the presence of a parking lot. FIG. 9A shows three states of a transmission wave, a reception wave, and an interference wave, and FIG. 9B shows an IF signal corresponding to each state of FIG. 9A. In the FM-CW system, a radio wave transmission period Δn and a non-transmission period (standby time) ΔN are normally repeated alternately, and the frequency of the radio wave is gradually increased during the transmission period Δn.

図9(a)の期間Taに示すように、干渉が無く、送信波に対して所定時間の遅延を持って受信波が得られると、図9(b)に示すように反射点に応じたIF信号Saが得られる。これに対し、期間Tbに示すように、送信波に対して時間差を持って干渉波が入力されると(受信波とほぼ同じタイミングの干渉がある場合)、車両が存在しなくても破線で示すようなIF信号Sbが得られる。このため、受信波とほぼ同じタイミングの干渉波は誤検知の要因となる。しかも、電波を送信しない期間ΔNが固定値であるので、干渉するタイミングが維持され、繰り返し干渉することになる。   As shown in the period Ta of FIG. 9A, when there is no interference and a received wave is obtained with a delay of a predetermined time with respect to the transmitted wave, it corresponds to the reflection point as shown in FIG. 9B. An IF signal Sa is obtained. On the other hand, as shown in the period Tb, when an interference wave is input with a time difference with respect to the transmission wave (when there is interference with almost the same timing as the reception wave), even if there is no vehicle, a broken line An IF signal Sb as shown is obtained. For this reason, an interference wave having substantially the same timing as the received wave causes erroneous detection. Moreover, since the period ΔN during which no radio wave is transmitted is a fixed value, the interference timing is maintained and interference occurs repeatedly.

期間Tcに示すように、送信波に対して大きな時間差を持って干渉波が入力されると、干渉によるIF信号Scは周波数が大きくずれる。この場合には、IF信号の周波数はFFT解析の際に距離に変換されるので、在車検知アルゴリズムの対象距離でなければ無視できる。   As shown in the period Tc, when an interference wave is input with a large time difference with respect to the transmission wave, the frequency of the IF signal Sc due to the interference is greatly shifted. In this case, since the frequency of the IF signal is converted into a distance in the FFT analysis, it can be ignored unless it is the target distance of the presence detection algorithm.

なお、一定周波数の干渉波を受けた場合、周波数の変化が逆方向の干渉波を受けた場合、及び周波数変化の傾きが異なる干渉波を受けた場合には、干渉波のビート信号は一瞬しか干渉しないため、FFT解析では問題にならない。   If an interference wave with a constant frequency is received, an interference wave with a reverse frequency change, or an interference wave with a different frequency change slope, the beat signal of the interference wave is only momentarily. Since there is no interference, there is no problem in the FFT analysis.

図9(c)は、本発明の物体検知方法を駐車場の在車検知に用いる場合に、FM−CW干渉波を低減する方法について説明するための波形図である。本第2の適用例では、混信が発生しないように、電波の非送信期間(待機時間)ΔNをランダムに可変(ΔN+α)する。ここで、αは任意の時間である。このように、対向する車室の物体検知装置から照射される電波と干渉するタイミングを意図的にずらすことで、干渉によるIF信号の周波数を大きくずらしている。これによって、期間Tb,Tcの干渉波が大きくずれ、在車検知アルゴリズムの対象距離でなければ無視できる。   FIG.9 (c) is a wave form diagram for demonstrating the method to reduce an FM-CW interference wave, when using the object detection method of this invention for the presence detection of a parking lot. In the second application example, the radio wave non-transmission period (standby time) ΔN is randomly varied (ΔN + α) so that interference does not occur. Here, α is an arbitrary time. Thus, the frequency of the IF signal due to the interference is greatly shifted by intentionally shifting the timing of interference with the radio wave emitted from the object detection device in the opposite passenger compartment. As a result, the interference waves in the periods Tb and Tc are greatly shifted and can be ignored unless they are the target distance of the on-vehicle detection algorithm.

図10(a)は、干渉波を低減する具体的な他の方法を示しており、複数回(ここでは4回)の待機時間ΔNをずらした測定を組み合わせることで対向する車室の物体検知装置からの干渉波、あるいは車載レーダ等の他のレーダとの干渉の影響を除去する。すなわち、制御装置5は、レーダセンサ4を制御して、車両130に向けて複数回電波を照射し、車両130までの距離と反射波の強度をそれぞれ取得する。この際、駐車場内の電波が干渉する可能性のある物体検出装置は、電波を送信してから次に送信するまでの待機時間ΔNが異なるようにする。そして、取得した距離と反射波の強度のそれぞれの最大値と最小値を削除し、残りの平均値を算出して車両130の有無を判定する。   FIG. 10 (a) shows another specific method for reducing the interference wave, and the object detection in the opposite passenger compartment is performed by combining the measurements with different waiting times ΔN multiple times (here, four times). The influence of interference with other radars such as on-vehicle radars or interference waves from the apparatus is removed. That is, the control device 5 controls the radar sensor 4 to irradiate the vehicle 130 with radio waves a plurality of times, and acquires the distance to the vehicle 130 and the intensity of the reflected wave. At this time, the object detection device that may interfere with the radio wave in the parking lot makes the waiting time ΔN from the transmission of the radio wave to the next transmission different. Then, the maximum value and minimum value of the acquired distance and reflected wave intensity are deleted, and the remaining average value is calculated to determine the presence or absence of the vehicle 130.

図10(a)では、実線で示す送信波と破線で示す受信波に対して、一点鎖線で示すような干渉波が重畳されている。しかし、電波を送信してから次に送信するまでの待機時間ΔT1,ΔT2,ΔT3のタイミングが徐々に大きくなっている。この場合、検出されるピークは、図10(b)に示すように、干渉波の近距離ピーク、車両の反射ピーク、車両の反射ピーク、及び干渉波の遠距離ピークとなる。よって、最大値と最小値を削除した値の平均をピークの距離とすることで、干渉波の影響を除去できる。また、待機時間ΔNを可変することで、たとえ一時的に干渉しても繰り返し干渉することはなく、一時的な干渉は最大値と最小値を削除することで除去できる。   In FIG. 10A, an interference wave as indicated by a one-dot chain line is superimposed on a transmission wave indicated by a solid line and a reception wave indicated by a broken line. However, the timings of the waiting times ΔT1, ΔT2, and ΔT3 from when a radio wave is transmitted until the next transmission are gradually increased. In this case, as shown in FIG. 10B, the detected peaks are the short distance peak of the interference wave, the reflection peak of the vehicle, the reflection peak of the vehicle, and the long distance peak of the interference wave. Therefore, the influence of the interference wave can be removed by setting the average of the values obtained by deleting the maximum value and the minimum value as the peak distance. Further, by changing the waiting time ΔN, even if there is a temporary interference, there is no repeated interference, and the temporary interference can be eliminated by deleting the maximum value and the minimum value.

[第3の適用例]
図11は、本発明の物体検知装置を駐車場の在車検知に用いる場合の他の概略構成を示すブロック図である。本物体検知装置100の構成は、基本的には図1と同様であるので、同一部分に同じ符号を付してその詳細な説明は省略する。この物体検知装置100は、筐体(金属筐体)10、例えばタイヤ止め120に内蔵している。この筐体10には電波を放射するための窓10aが設けられ、この窓10aを介して電波を放射し、車両からの反射波を受信するようになっている。窓10aには樹脂等の板状部材が嵌め込まれ、電波を透過するようになっている。
[Third application example]
FIG. 11 is a block diagram showing another schematic configuration when the object detection device of the present invention is used for detection of the presence of a parking lot. Since the configuration of the object detection apparatus 100 is basically the same as that in FIG. 1, the same reference numerals are given to the same portions, and detailed descriptions thereof are omitted. This object detection device 100 is built in a housing (metal housing) 10, for example, a tire stopper 120. The casing 10 is provided with a window 10a for radiating radio waves, and radiates radio waves through the window 10a to receive reflected waves from the vehicle. A plate-like member such as resin is fitted into the window 10a so as to transmit radio waves.

上記構成において、レーダセンサ4は、受信アンテナ3から車両の反射と路面の反射波RF1だけでなく、筐体10の内面反射によって生ずる反射波RF2を受け、これらの反射波RF1,RF2が重畳されたIF信号を出力する。このため、反射波RF2の影響で検知精度の低下を生ずる可能性がある。   In the above configuration, the radar sensor 4 receives not only the vehicle reflection and the road surface reflected wave RF1 from the receiving antenna 3, but also the reflected wave RF2 generated by the inner surface reflection of the housing 10, and these reflected waves RF1 and RF2 are superimposed. Output an IF signal. For this reason, there is a possibility that the detection accuracy is lowered due to the influence of the reflected wave RF2.

図12(a)は、図11の物体検知装置100において車室が空車状態のIF信号の波形図である。物体検知装置100は、筐体内反射で生じる反射波RF2、すなわち送信アンテナ1から放射された電波が金属筐体10、あるいは窓10aに嵌め込まれた板状部材により反射し、これを受信アンテナ3で受信した状態を示している。このように、車室が空車状態でも筐体内反射で生じる反射波RF2を受信するので、在車状態のIF信号は車両と路面からの反射波RF1に加えて、筐体内反射で生じる反射波RF2が重畳された波形となる。   FIG. 12A is a waveform diagram of an IF signal when the passenger compartment is empty in the object detection device 100 of FIG. The object detection apparatus 100 reflects a reflected wave RF2 generated by reflection in the casing, that is, a radio wave radiated from the transmission antenna 1, by the metal casing 10 or a plate-like member fitted in the window 10a, and this is reflected by the reception antenna 3. The received state is shown. Thus, since the reflected wave RF2 generated by reflection in the casing is received even when the passenger compartment is empty, the in-vehicle IF signal is reflected wave RF2 generated by reflection in the casing in addition to the reflected wave RF1 from the vehicle and the road surface. Is a superimposed waveform.

図12(b)は、筐体内反射と在車判定の反射強度との関係を示している。筐体内反射の影響による誤検知や誤判定を抑制するためには、反射強度の強度閾値Pthを筐体内反射による反射波RF2のピークよりも大きく設定しなければならない。このようにすると、車両からの反射が強度閾値Pthより小さいときには誤検知あるいは誤判定する虞がある。また、量産品の個体差により、筐体内反射の強度にはばらつきがあるため、正確な検知を行うためには強度閾値を個々に調整しなければならず、調整作業に時間と費用がかかる。   FIG. 12B shows the relationship between the in-casing reflection and the reflection intensity in the presence determination. In order to suppress erroneous detection and misjudgment due to the influence of reflection within the casing, the intensity threshold Pth of the reflection intensity must be set larger than the peak of the reflected wave RF2 due to reflection within the casing. In this way, when the reflection from the vehicle is smaller than the intensity threshold Pth, there is a risk of erroneous detection or erroneous determination. In addition, since the intensity of reflection in the housing varies due to individual differences in mass-produced products, the intensity threshold must be individually adjusted for accurate detection, and adjustment work takes time and money.

そこで、本第3の適用例では、制御装置5で車両が無いと判定したときの反射波(筐体内反射で生じる反射波RF2)の強度を基準値として記憶し、車両の有無を判定する際に、取得した反射波RF1の強度から、記憶した基準値を減算するようにしている。すなわち、図13(a)に示すような筐体内反射の波形を基準値として制御装置5に記憶し、図13(b)に示す受信したIF信号との差分を取ることで、図13(c)に示すように筐体内反射の影響を打ち消して低減することができる。   Therefore, in the third application example, when the control device 5 determines that there is no vehicle, the intensity of the reflected wave (reflected wave RF2 generated by reflection in the housing) is stored as a reference value, and the presence / absence of the vehicle is determined. In addition, the stored reference value is subtracted from the intensity of the acquired reflected wave RF1. That is, the internal reflection waveform as shown in FIG. 13A is stored in the control device 5 as a reference value, and the difference from the received IF signal shown in FIG. ), The influence of reflection within the housing can be canceled and reduced.

これによって、図13(d)に示すように筐体内反射の強度が低くなり、強度閾値Pthを下げて設定できる。この結果、筐体内反射の影響を抑制し、右上がりのハッチングを付した在車と判定する領域を広くできる。
従って、上記のような構成によれば、筐体内反射の影響による誤検知を抑制できるだけでなく、図13(a)に示した筐体内反射の基準波形は個々の装置で生成するので、量産品の個体差の影響を小さくすることができ、強度閾値Pthを固定化できる。
As a result, as shown in FIG. 13D, the intensity of reflection within the housing is lowered, and the intensity threshold Pth can be set lower. As a result, it is possible to suppress the influence of the reflection in the housing and to widen the area for determining that the vehicle is present with hatching that is rising to the right.
Therefore, according to the configuration as described above, not only can erroneous detection due to the influence of reflection in the housing be suppressed, but also the reference waveform of reflection in the housing shown in FIG. The influence of individual differences can be reduced, and the strength threshold value Pth can be fixed.

[第4の適用例]
図14は、本発明の物体検知方法を駐車場の在車検知に用いる場合の他のアルゴリズムを示すフローチャートである。本第4の適用例は、上述した第1乃至第3の適用例を組み合わせている。まず、制御装置5でレーダセンサ4を制御し、送信アンテナ1から車室110内に向けて電波を照射する。電波の照射範囲は、通路や隣接車室、あるいは車室の両側の車両にも到達するピーク探査範囲である。電波は駐車場の路面や車両130で反射し、その反射波を受信アンテナ3で受信する。この時の遅延時間から反射点の距離と反射波の強度をIF信号として得る。IF信号を制御装置5内のA/Dコンバータ6でデジタル化し、処理部7に入力して処理することで、車両130までの距離と反射波の強度を取得する(ステップS31)。
[Fourth application example]
FIG. 14 is a flowchart showing another algorithm when the object detection method of the present invention is used for detecting the presence of a parking lot. The fourth application example is a combination of the first to third application examples described above. First, the control device 5 controls the radar sensor 4 to radiate radio waves from the transmitting antenna 1 toward the vehicle interior 110. The radio wave irradiation range is a peak search range that reaches a passage, an adjacent passenger compartment, or vehicles on both sides of the passenger compartment. The radio wave is reflected by the road surface of the parking lot or the vehicle 130, and the reflected wave is received by the receiving antenna 3. From the delay time at this time, the distance of the reflection point and the intensity of the reflected wave are obtained as an IF signal. The IF signal is digitized by the A / D converter 6 in the control device 5 and input to the processing unit 7 for processing, thereby obtaining the distance to the vehicle 130 and the intensity of the reflected wave (step S31).

次のステップS32では、電波の待機時間ΔNをランダムに可変(ΔN+α)することで、干渉対策を行う。そして、予め設定した回数、ここではN回電波を送信したか否かを処理部7で判定し(ステップS33)、N回送信していなければカウント値をプラス1(N=N+1)して(ステップS34)、ステップS31の距離と反射波の強度の取得をN回まで繰り返す。   In the next step S32, interference countermeasures are taken by randomly changing the waiting time ΔN of radio waves (ΔN + α). Then, the processing unit 7 determines whether or not the radio wave has been transmitted a preset number of times, here N times (step S33). If not transmitted N times, the count value is incremented by 1 (N = N + 1) ( Step S34) and the acquisition of the distance and reflected wave intensity in step S31 are repeated up to N times.

ステップS33でN回電波を送信したと判定されると、処理部7で距離と強度の平均値をそれぞれ算出する(ステップS35)。各々の最大値と最小値を削除し、残りの平均値を算出することで、通路を移動する車両等による影響を抑制する。   If it is determined in step S33 that the radio wave has been transmitted N times, the processing unit 7 calculates average values of distance and intensity, respectively (step S35). Each maximum value and minimum value are deleted, and the remaining average value is calculated, thereby suppressing the influence of the vehicle moving along the passage.

続くステップS36では、車両が無いと判定したときの反射波の強度を基準値として記憶しておき、車両の有無を判定する際に、取得した反射波の強度から、記憶した基準値を減算することで、筐体内反射を除去する。そして、干渉対策と筐体内反射の影響を除去した状態で在車の有無を判定する(ステップS37)。在車の有無の判定は、例えば図6のフローチャートにおけるステップS15〜S20を実行すれば良い。   In the subsequent step S36, the intensity of the reflected wave when it is determined that there is no vehicle is stored as a reference value, and the stored reference value is subtracted from the intensity of the acquired reflected wave when determining the presence or absence of the vehicle. In this way, the internal reflection is removed. And the presence or absence of a vehicle is determined in the state which removed the influence of interference countermeasures and reflection in a housing | casing (step S37). The determination of the presence or absence of the vehicle may be performed, for example, by executing steps S15 to S20 in the flowchart of FIG.

ステップS37で在車と判定されると、在車検知動作が終了か否か判定され(ステップS38)、終了と判定されるまで上述した動作を繰り返す。
一方、ステップS37で空車と判定されると、一定時間が経過したか否かが判定され(ステップS39)、経過していなければステップS38に移動し、終了と判定されるまで上述した動作を繰り返す。そして、一定時間経過したと判定されると、筐体内環境を更新し(ステップS40)、終了と判定されるまで上述した動作を繰り返す。
If it is determined in step S37 that the vehicle is present, it is determined whether or not the vehicle presence detection operation is completed (step S38), and the above-described operation is repeated until it is determined that the vehicle is present.
On the other hand, if it is determined in step S37 that the vehicle is empty, it is determined whether or not a predetermined time has elapsed (step S39). . When it is determined that a certain time has elapsed, the internal environment is updated (step S40), and the above-described operation is repeated until it is determined that the process has ended.

上記のような構成によれば、干渉対策と筐体内反射による影響抑制の両方を組み合わせることで、より高精度に車両を検知できる。また、一定時間経過したときに筐体内環境を更新するので、経時変化や車両の乗り上げによるタイヤ止め(金属筐体)の歪みに起因する筐体内反射の変化にも対応できる。加えて、量産品の個体差により強度閾値を個々に調整する必要もないので、調整作業に要する時間と費用を削減できる。   According to the configuration as described above, the vehicle can be detected with higher accuracy by combining both interference countermeasures and suppression of influence by reflection within the housing. Further, since the environment in the housing is updated when a certain time elapses, it is possible to cope with a change in reflection within the housing caused by a change with time or distortion of a tire stop (metal housing) due to riding on the vehicle. In addition, since it is not necessary to individually adjust the intensity threshold due to individual differences in mass-produced products, the time and cost required for the adjustment work can be reduced.

なお、上記第4の適用例では、物体検知装置の第1乃至第3の適用例を全て組み合わせた場合について説明したが、駐車場の周辺環境などで要求される特性や費用等に応じて幾つかの適用例を適宜組み合わせても良い。
また、上記各適用例では、タイヤ止めに内蔵する例を示したが、車室内や車室周辺に設けても良く、天井等に設置することもできる。
更に、物体検知装置として、駐車場の在車検知に適用する例を示したが、列車の在線検知等、他の様々な物体の検知にも適用できるのはもちろんである。距離情報と強度情報に加えて速度情報を取得し、速度情報も考慮した判定を行っても良い。
In the fourth application example, the case where the first to third application examples of the object detection device are all combined has been described. However, depending on the characteristics and costs required in the surrounding environment of the parking lot, etc. Such application examples may be appropriately combined.
Further, in each of the application examples described above, an example in which the tire is built into the tire stop is shown, but it may be provided in the vehicle interior or the periphery of the vehicle interior, or may be installed on the ceiling or the like.
Furthermore, although the example applied to the presence detection of a parking lot was shown as an object detection apparatus, it is needless to say that it can be applied to detection of various other objects such as the presence detection of a train. In addition to distance information and intensity information, speed information may be acquired, and determination may be made in consideration of speed information.

以上の実施形態で説明された構成や動作手順等については、本発明が理解・実施できる程度に概略的に示したものに過ぎない。従って本発明は、説明された実施形態に限定されるものではなく、特許請求の範囲に示される技術的思想の範囲を逸脱しない限り様々な形態に変更することができる。   The configurations, operation procedures, and the like described in the above embodiments are merely schematically shown to the extent that the present invention can be understood and implemented. Therefore, the present invention is not limited to the described embodiments, and can be variously modified without departing from the scope of the technical idea shown in the claims.

1…送信アンテナ、2…物体、3…受信アンテナ、4…レーダセンサ、5…制御装置、6…A/Dコンバータ、7…処理部、8…上位インターフェース回路、9…電源、10…筐体、10a…窓、100…物体検知装置、110…車室、111…隣接車室、120…タイヤ止め、130…車両、140…ピーク探査範囲、150…検知判定範囲   DESCRIPTION OF SYMBOLS 1 ... Transmission antenna, 2 ... Object, 3 ... Reception antenna, 4 ... Radar sensor, 5 ... Control apparatus, 6 ... A / D converter, 7 ... Processing part, 8 ... High-order interface circuit, 9 ... Power supply, 10 ... Housing DESCRIPTION OF SYMBOLS 10a ... Window, 100 ... Object detection apparatus, 110 ... Vehicle compartment, 111 ... Adjacent vehicle compartment, 120 ... Tire stop, 130 ... Vehicle, 140 ... Peak search range, 150 ... Detection judgment range

Claims (8)

物体に向けて電波を照射し、その反射波を受信するレーダセンサと、このレーダセンサから物体までの距離と反射波の強度を取得して物体の有無を検知する制御装置とを備え、
前記制御装置は、物体の検知判定範囲よりも広いピーク探査範囲で物体の有無を検知し、物体を検知した場合に反射波の強度が最大の距離を検出し、この距離が物体の検知判定範囲内の所定の距離閾値以下のときに物体有りと判定する、ことを特徴とする物体検知装置。
A radar sensor that radiates radio waves toward an object and receives the reflected wave, and a control device that detects the presence of an object by acquiring the distance from the radar sensor to the object and the intensity of the reflected wave,
The control device detects the presence or absence of an object in a peak exploration range wider than the detection detection range of the object, detects a distance where the intensity of the reflected wave is maximum when the object is detected, and this distance is the detection detection range of the object An object detection device that determines that there is an object when the distance is equal to or less than a predetermined distance threshold.
前記制御装置は、前記反射波の強度が最大の距離が、前記物体の検知判定範囲内の所定の距離閾値以下で、且つ反射波が所定の強度閾値以上のときに物体有りと判定する、請求項1に記載の物体検知装置。   The control device determines that there is an object when the distance at which the intensity of the reflected wave is maximum is equal to or less than a predetermined distance threshold within the detection determination range of the object and the reflected wave is equal to or greater than a predetermined intensity threshold. Item 10. The object detection device according to Item 1. 前記制御装置は、前記レーダセンサを制御して、検知する物体に向けて複数回電波を照射させ、物体までの距離と反射波の強度をそれぞれ取得し、最大値と最小値を削除し、残りの平均値を算出して物体の有無を判定する、請求項1または2に記載の物体検知装置。   The control device controls the radar sensor to irradiate the object to be detected a plurality of times, obtains the distance to the object and the intensity of the reflected wave, deletes the maximum value and the minimum value, The object detection apparatus according to claim 1, wherein the average value of the two is calculated to determine the presence or absence of an object. 前記制御装置は、前記レーダセンサを制御して、検知する物体に向けて異なる時間間隔で複数回電波を照射させ、物体までの距離と反射波の強度をそれぞれ取得し、最大値と最小値を削除し、残りの平均値を算出して物体の有無を判定する、請求項1または2に記載の物体検知装置。   The control device controls the radar sensor to irradiate the object to be detected a plurality of times at different time intervals, obtains the distance to the object and the intensity of the reflected wave, and sets the maximum value and the minimum value. The object detection apparatus according to claim 1, wherein the object detection device is deleted and the remaining average value is calculated to determine the presence or absence of an object. 前記制御装置は、物体が無いと判定したときの反射波の強度を基準値として記憶し、物体の有無を判定する際に、取得した反射波の強度から、記憶した基準値を減算する、請求項1乃至4いずれか1項に記載の物体検知装置。   The control device stores the intensity of the reflected wave when it is determined that there is no object as a reference value, and subtracts the stored reference value from the acquired intensity of the reflected wave when determining the presence or absence of the object. Item 5. The object detection device according to any one of Items 1 to 4. 前記検知する物体は車両であり、前記物体の検知判定範囲は駐車場の車室であり、前記ピーク探査範囲は通路及び隣接車室内の車両による反射波を受信可能な範囲であり、前記制御装置は、駐車場における車室内の車両の有無を検知する、請求項1乃至5いずれか1項に記載の物体検知装置。   The object to be detected is a vehicle, the detection detection range of the object is a cabin of a parking lot, the peak search range is a range in which a reflected wave from a vehicle in a passage and an adjacent vehicle compartment can be received, and the control device The object detection device according to any one of claims 1 to 5, which detects the presence or absence of a vehicle in a vehicle compartment in a parking lot. 物体に向けて電波を照射し、その反射波を受信することにより物体の有無を検知する方法であって、
物体までの距離と反射波の強度を取得し、
物体の検知判定範囲よりも広いピーク探査範囲で物体の有無を検知し、
物体を検知した場合に反射波の強度が最大となる距離を検出し、
この距離が物体の検知判定範囲内の所定の距離閾値以下のときに物体有りと判定する、ことを特徴とする物体検知方法。
A method of detecting the presence or absence of an object by irradiating an object with radio waves and receiving the reflected wave,
Get the distance to the object and the intensity of the reflected wave,
Detect the presence or absence of an object in the peak search range wider than the object detection judgment range,
When the object is detected, the distance where the intensity of the reflected wave is maximum is detected.
An object detection method characterized by determining that an object is present when this distance is equal to or less than a predetermined distance threshold within an object detection determination range.
前記反射波の強度が最大となる距離が、前記物体の検知判定範囲内の所定の距離閾値以下で、且つ反射波が所定の強度閾値以上のときに物体有りと判定する、請求項7に記載の物体検知方法。   The distance at which the intensity of the reflected wave is maximum is equal to or smaller than a predetermined distance threshold within the object detection determination range, and the presence of an object is determined when the reflected wave is equal to or greater than a predetermined intensity threshold. Object detection method.
JP2015115674A 2015-06-08 2015-06-08 Object detection device and object detection method Pending JP2017003347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015115674A JP2017003347A (en) 2015-06-08 2015-06-08 Object detection device and object detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015115674A JP2017003347A (en) 2015-06-08 2015-06-08 Object detection device and object detection method

Publications (1)

Publication Number Publication Date
JP2017003347A true JP2017003347A (en) 2017-01-05

Family

ID=57753892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015115674A Pending JP2017003347A (en) 2015-06-08 2015-06-08 Object detection device and object detection method

Country Status (1)

Country Link
JP (1) JP2017003347A (en)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019039686A (en) * 2017-08-22 2019-03-14 株式会社デンソーテン Radar device and target detection method
WO2019165130A1 (en) * 2018-02-21 2019-08-29 Innovusion Ireland Limited Lidar detection systems and methods with high repetition rate to observe far objects
JP2019144083A (en) * 2018-02-20 2019-08-29 国立大学法人茨城大学 Fmcw radar device,and method for multiple connection of fmcw radar device
WO2019208565A1 (en) * 2018-04-27 2019-10-31 ミツミ電機株式会社 Short-distance sensor
US11289873B2 (en) 2018-04-09 2022-03-29 Innovusion Ireland Limited LiDAR systems and methods for exercising precise control of a fiber laser
US11422234B2 (en) 2018-02-23 2022-08-23 Innovusion, Inc. Distributed lidar systems
US11422267B1 (en) 2021-02-18 2022-08-23 Innovusion, Inc. Dual shaft axial flux motor for optical scanners
US11460554B2 (en) 2017-10-19 2022-10-04 Innovusion, Inc. LiDAR with large dynamic range
US11493601B2 (en) 2017-12-22 2022-11-08 Innovusion, Inc. High density LIDAR scanning
US11555895B2 (en) 2021-04-20 2023-01-17 Innovusion, Inc. Dynamic compensation to polygon and motor tolerance using galvo control profile
US11567182B2 (en) 2018-03-09 2023-01-31 Innovusion, Inc. LiDAR safety systems and methods
US11579300B1 (en) 2018-08-21 2023-02-14 Innovusion, Inc. Dual lens receive path for LiDAR system
US11579258B1 (en) 2018-08-30 2023-02-14 Innovusion, Inc. Solid state pulse steering in lidar systems
US11604279B2 (en) 2017-01-05 2023-03-14 Innovusion, Inc. MEMS beam steering and fisheye receiving lens for LiDAR system
US11609336B1 (en) 2018-08-21 2023-03-21 Innovusion, Inc. Refraction compensation for use in LiDAR systems
US11614521B2 (en) 2021-04-21 2023-03-28 Innovusion, Inc. LiDAR scanner with pivot prism and mirror
US11614526B1 (en) 2018-08-24 2023-03-28 Innovusion, Inc. Virtual windows for LIDAR safety systems and methods
US11624806B2 (en) 2021-05-12 2023-04-11 Innovusion, Inc. Systems and apparatuses for mitigating LiDAR noise, vibration, and harshness
JP2023518403A (en) * 2020-03-17 2023-05-01 華為技術有限公司 SIGNAL PROCESSING METHOD AND APPARATUS AND STORAGE MEDIUM
US11644543B2 (en) 2018-11-14 2023-05-09 Innovusion, Inc. LiDAR systems and methods that use a multi-facet mirror
US11662440B2 (en) 2021-05-21 2023-05-30 Innovusion, Inc. Movement profiles for smart scanning using galvonometer mirror inside LiDAR scanner
US11662439B2 (en) 2021-04-22 2023-05-30 Innovusion, Inc. Compact LiDAR design with high resolution and ultra-wide field of view
US11675053B2 (en) 2018-06-15 2023-06-13 Innovusion, Inc. LiDAR systems and methods for focusing on ranges of interest
US11675055B2 (en) 2019-01-10 2023-06-13 Innovusion, Inc. LiDAR systems and methods with beam steering and wide angle signal detection
US11675050B2 (en) 2018-01-09 2023-06-13 Innovusion, Inc. LiDAR detection systems and methods
US11762065B2 (en) 2019-02-11 2023-09-19 Innovusion, Inc. Multiple beam generation from a single source beam for use with a lidar system
US11768294B2 (en) 2021-07-09 2023-09-26 Innovusion, Inc. Compact lidar systems for vehicle contour fitting
US11782131B2 (en) 2016-12-31 2023-10-10 Innovusion, Inc. 2D scanning high precision LiDAR using combination of rotating concave mirror and beam steering devices
US11789132B2 (en) 2018-04-09 2023-10-17 Innovusion, Inc. Compensation circuitry for lidar receiver systems and method of use thereof
US11789128B2 (en) 2021-03-01 2023-10-17 Innovusion, Inc. Fiber-based transmitter and receiver channels of light detection and ranging systems
US11796645B1 (en) 2018-08-24 2023-10-24 Innovusion, Inc. Systems and methods for tuning filters for use in lidar systems
US11808888B2 (en) 2018-02-23 2023-11-07 Innovusion, Inc. Multi-wavelength pulse steering in LiDAR systems
US11860316B1 (en) 2018-08-21 2024-01-02 Innovusion, Inc. Systems and method for debris and water obfuscation compensation for use in LiDAR systems
US11871130B2 (en) 2022-03-25 2024-01-09 Innovusion, Inc. Compact perception device
US11927696B2 (en) 2018-02-21 2024-03-12 Innovusion, Inc. LiDAR systems with fiber optic coupling
US11947047B2 (en) 2017-01-05 2024-04-02 Seyond, Inc. Method and system for encoding and decoding LiDAR
US11953601B2 (en) 2016-12-30 2024-04-09 Seyond, Inc. Multiwavelength lidar design
US11965980B2 (en) 2018-01-09 2024-04-23 Innovusion, Inc. Lidar detection systems and methods that use multi-plane mirrors
US11977185B1 (en) 2019-04-04 2024-05-07 Seyond, Inc. Variable angle polygon for use with a LiDAR system
US11988773B2 (en) 2018-02-23 2024-05-21 Innovusion, Inc. 2-dimensional steering system for lidar systems
US12038534B2 (en) 2021-11-24 2024-07-16 Innovusion (suzhou) Co., Ltd. Motor for on-vehicle lidar, on-vehicle lidar, and vehicle
US12050288B2 (en) 2017-01-05 2024-07-30 Seyond, Inc. High resolution LiDAR using high frequency pulse firing
US12061289B2 (en) 2021-02-16 2024-08-13 Innovusion, Inc. Attaching a glass mirror to a rotating metal motor frame
US12072447B2 (en) 2021-04-22 2024-08-27 Seyond, Inc. Compact LiDAR design with high resolution and ultra-wide field of view
US12146988B2 (en) 2022-11-28 2024-11-19 Innovusion, Inc. Dynamic compensation to polygon and motor tolerance using galvo control profile

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5979175A (en) * 1982-10-27 1984-05-08 Fujitsu Ten Ltd Fm-cw radar
JPH0853038A (en) * 1994-08-11 1996-02-27 Kansei Corp Collision preventing device
JP2000193746A (en) * 1998-12-28 2000-07-14 Meisei Electric Co Ltd Method for detecting obstacle
JP2001155291A (en) * 1999-11-30 2001-06-08 Omron Corp Information processor, information processing method, recording medium and object detecting device
JP2010038704A (en) * 2008-08-05 2010-02-18 Fujitsu Ten Ltd Signal processing apparatus, radar device, and signal processing method
EP2418634A1 (en) * 2010-08-10 2012-02-15 Circontrol S.A. Device and method for detecting the presence of a vehicle in a parking space
WO2014061300A1 (en) * 2012-10-19 2014-04-24 株式会社Ihi Laser monitoring method and laser monitoring device
US20140210646A1 (en) * 2012-12-28 2014-07-31 Balu Subramanya Advanced parking and intersection management system
JP2015064245A (en) * 2013-09-24 2015-04-09 Necネットワーク・センサ株式会社 Missile guidance system and missile guidance method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5979175A (en) * 1982-10-27 1984-05-08 Fujitsu Ten Ltd Fm-cw radar
JPH0853038A (en) * 1994-08-11 1996-02-27 Kansei Corp Collision preventing device
JP2000193746A (en) * 1998-12-28 2000-07-14 Meisei Electric Co Ltd Method for detecting obstacle
JP2001155291A (en) * 1999-11-30 2001-06-08 Omron Corp Information processor, information processing method, recording medium and object detecting device
JP2010038704A (en) * 2008-08-05 2010-02-18 Fujitsu Ten Ltd Signal processing apparatus, radar device, and signal processing method
EP2418634A1 (en) * 2010-08-10 2012-02-15 Circontrol S.A. Device and method for detecting the presence of a vehicle in a parking space
WO2014061300A1 (en) * 2012-10-19 2014-04-24 株式会社Ihi Laser monitoring method and laser monitoring device
US20140210646A1 (en) * 2012-12-28 2014-07-31 Balu Subramanya Advanced parking and intersection management system
JP2015064245A (en) * 2013-09-24 2015-04-09 Necネットワーク・センサ株式会社 Missile guidance system and missile guidance method

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11953601B2 (en) 2016-12-30 2024-04-09 Seyond, Inc. Multiwavelength lidar design
US11782132B2 (en) 2016-12-31 2023-10-10 Innovusion, Inc. 2D scanning high precision LiDAR using combination of rotating concave mirror and beam steering devices
US11899134B2 (en) 2016-12-31 2024-02-13 Innovusion, Inc. 2D scanning high precision lidar using combination of rotating concave mirror and beam steering devices
US11977183B2 (en) 2016-12-31 2024-05-07 Seyond, Inc. 2D scanning high precision LiDAR using combination of rotating concave mirror and beam steering devices
US11782131B2 (en) 2016-12-31 2023-10-10 Innovusion, Inc. 2D scanning high precision LiDAR using combination of rotating concave mirror and beam steering devices
US12050288B2 (en) 2017-01-05 2024-07-30 Seyond, Inc. High resolution LiDAR using high frequency pulse firing
US11947047B2 (en) 2017-01-05 2024-04-02 Seyond, Inc. Method and system for encoding and decoding LiDAR
US11604279B2 (en) 2017-01-05 2023-03-14 Innovusion, Inc. MEMS beam steering and fisheye receiving lens for LiDAR system
JP2019039686A (en) * 2017-08-22 2019-03-14 株式会社デンソーテン Radar device and target detection method
JP7103767B2 (en) 2017-08-22 2022-07-20 株式会社デンソーテン Radar device and target detection method
US11460554B2 (en) 2017-10-19 2022-10-04 Innovusion, Inc. LiDAR with large dynamic range
US11493601B2 (en) 2017-12-22 2022-11-08 Innovusion, Inc. High density LIDAR scanning
US12078755B2 (en) 2018-01-09 2024-09-03 Seyond, Inc. LiDAR detection systems and methods that use multi-plane mirrors
US11675050B2 (en) 2018-01-09 2023-06-13 Innovusion, Inc. LiDAR detection systems and methods
US11965980B2 (en) 2018-01-09 2024-04-23 Innovusion, Inc. Lidar detection systems and methods that use multi-plane mirrors
US11977184B2 (en) 2018-01-09 2024-05-07 Seyond, Inc. LiDAR detection systems and methods that use multi-plane mirrors
JP2019144083A (en) * 2018-02-20 2019-08-29 国立大学法人茨城大学 Fmcw radar device,and method for multiple connection of fmcw radar device
JP7104935B2 (en) 2018-02-20 2022-07-22 国立大学法人茨城大学 FMCW radar system, multiple access method for FMCW radar system
US11927696B2 (en) 2018-02-21 2024-03-12 Innovusion, Inc. LiDAR systems with fiber optic coupling
WO2019165130A1 (en) * 2018-02-21 2019-08-29 Innovusion Ireland Limited Lidar detection systems and methods with high repetition rate to observe far objects
US11782138B2 (en) 2018-02-21 2023-10-10 Innovusion, Inc. LiDAR detection systems and methods with high repetition rate to observe far objects
US11391823B2 (en) 2018-02-21 2022-07-19 Innovusion, Inc. LiDAR detection systems and methods with high repetition rate to observe far objects
US11422234B2 (en) 2018-02-23 2022-08-23 Innovusion, Inc. Distributed lidar systems
US11988773B2 (en) 2018-02-23 2024-05-21 Innovusion, Inc. 2-dimensional steering system for lidar systems
US12085673B2 (en) 2018-02-23 2024-09-10 Seyond, Inc. Distributed LiDAR systems
US11808888B2 (en) 2018-02-23 2023-11-07 Innovusion, Inc. Multi-wavelength pulse steering in LiDAR systems
US12032100B2 (en) 2018-03-09 2024-07-09 Seyond, Inc. Lidar safety systems and methods
US11567182B2 (en) 2018-03-09 2023-01-31 Innovusion, Inc. LiDAR safety systems and methods
US11569632B2 (en) 2018-04-09 2023-01-31 Innovusion, Inc. Lidar systems and methods for exercising precise control of a fiber laser
US11789132B2 (en) 2018-04-09 2023-10-17 Innovusion, Inc. Compensation circuitry for lidar receiver systems and method of use thereof
US11289873B2 (en) 2018-04-09 2022-03-29 Innovusion Ireland Limited LiDAR systems and methods for exercising precise control of a fiber laser
WO2019208565A1 (en) * 2018-04-27 2019-10-31 ミツミ電機株式会社 Short-distance sensor
US11860313B2 (en) 2018-06-15 2024-01-02 Innovusion, Inc. LiDAR systems and methods for focusing on ranges of interest
US11675053B2 (en) 2018-06-15 2023-06-13 Innovusion, Inc. LiDAR systems and methods for focusing on ranges of interest
US11579300B1 (en) 2018-08-21 2023-02-14 Innovusion, Inc. Dual lens receive path for LiDAR system
US11860316B1 (en) 2018-08-21 2024-01-02 Innovusion, Inc. Systems and method for debris and water obfuscation compensation for use in LiDAR systems
US12050269B2 (en) 2018-08-21 2024-07-30 Seyond, Inc. Dual lens receive path for LiDAR system
US11609336B1 (en) 2018-08-21 2023-03-21 Innovusion, Inc. Refraction compensation for use in LiDAR systems
US11940570B2 (en) 2018-08-24 2024-03-26 Seyond, Inc. Virtual windows for LiDAR safety systems and methods
US11614526B1 (en) 2018-08-24 2023-03-28 Innovusion, Inc. Virtual windows for LIDAR safety systems and methods
US11796645B1 (en) 2018-08-24 2023-10-24 Innovusion, Inc. Systems and methods for tuning filters for use in lidar systems
US11914076B2 (en) 2018-08-30 2024-02-27 Innovusion, Inc. Solid state pulse steering in LiDAR systems
US11579258B1 (en) 2018-08-30 2023-02-14 Innovusion, Inc. Solid state pulse steering in lidar systems
US11644543B2 (en) 2018-11-14 2023-05-09 Innovusion, Inc. LiDAR systems and methods that use a multi-facet mirror
US11686824B2 (en) 2018-11-14 2023-06-27 Innovusion, Inc. LiDAR systems that use a multi-facet mirror
US11675055B2 (en) 2019-01-10 2023-06-13 Innovusion, Inc. LiDAR systems and methods with beam steering and wide angle signal detection
US11762065B2 (en) 2019-02-11 2023-09-19 Innovusion, Inc. Multiple beam generation from a single source beam for use with a lidar system
US11977185B1 (en) 2019-04-04 2024-05-07 Seyond, Inc. Variable angle polygon for use with a LiDAR system
JP7412588B2 (en) 2020-03-17 2024-01-12 華為技術有限公司 Signal processing method and device and storage medium
JP2023518403A (en) * 2020-03-17 2023-05-01 華為技術有限公司 SIGNAL PROCESSING METHOD AND APPARATUS AND STORAGE MEDIUM
US12061289B2 (en) 2021-02-16 2024-08-13 Innovusion, Inc. Attaching a glass mirror to a rotating metal motor frame
US11567213B2 (en) 2021-02-18 2023-01-31 Innovusion, Inc. Dual shaft axial flux motor for optical scanners
US11422267B1 (en) 2021-02-18 2022-08-23 Innovusion, Inc. Dual shaft axial flux motor for optical scanners
US11789128B2 (en) 2021-03-01 2023-10-17 Innovusion, Inc. Fiber-based transmitter and receiver channels of light detection and ranging systems
US11555895B2 (en) 2021-04-20 2023-01-17 Innovusion, Inc. Dynamic compensation to polygon and motor tolerance using galvo control profile
US11614521B2 (en) 2021-04-21 2023-03-28 Innovusion, Inc. LiDAR scanner with pivot prism and mirror
US11662439B2 (en) 2021-04-22 2023-05-30 Innovusion, Inc. Compact LiDAR design with high resolution and ultra-wide field of view
US12072447B2 (en) 2021-04-22 2024-08-27 Seyond, Inc. Compact LiDAR design with high resolution and ultra-wide field of view
US11624806B2 (en) 2021-05-12 2023-04-11 Innovusion, Inc. Systems and apparatuses for mitigating LiDAR noise, vibration, and harshness
US11662440B2 (en) 2021-05-21 2023-05-30 Innovusion, Inc. Movement profiles for smart scanning using galvonometer mirror inside LiDAR scanner
US11768294B2 (en) 2021-07-09 2023-09-26 Innovusion, Inc. Compact lidar systems for vehicle contour fitting
US12038534B2 (en) 2021-11-24 2024-07-16 Innovusion (suzhou) Co., Ltd. Motor for on-vehicle lidar, on-vehicle lidar, and vehicle
US11871130B2 (en) 2022-03-25 2024-01-09 Innovusion, Inc. Compact perception device
US12146988B2 (en) 2022-11-28 2024-11-19 Innovusion, Inc. Dynamic compensation to polygon and motor tolerance using galvo control profile

Similar Documents

Publication Publication Date Title
JP2017003347A (en) Object detection device and object detection method
US10386458B2 (en) Radar signal processing device and method
US20210341598A1 (en) Electronic device, control method of electronic device, and control program of electronic device
KR20110139765A (en) Radar system having arrangements and method for decoupling transmission and reception signals and suppression of interference radiation
US8896482B2 (en) Object detection method
JP5992574B1 (en) Object detection device
WO2017209292A1 (en) Object detection apparatus
CN112654888A (en) Electronic device, control method for electronic device, and control program for electronic device
US20220146625A1 (en) Electronic device, and method and program for controlling the same
US20230333234A1 (en) Electronic device, method for controlling electronic device, and program
KR102172071B1 (en) Method of capturing the surrounding area of a car by object classification, control device, driver assistance system, and car
JP7161076B2 (en) ELECTRONIC DEVICE, ELECTRONIC DEVICE CONTROL METHOD, AND PROGRAM
US20220003858A1 (en) Electronic apparatus, control method for electronic apparatus, and control program for electronic apparatus
JP2013053946A (en) Rader device
JP2013221893A (en) Radar control device
JP2009018680A (en) Relative relationship measuring system and on-vehicle relative relationship measuring device
US12025695B2 (en) Electronic device, method for controlling electronic device, and electronic device control program
WO2020241233A1 (en) Electronic device, method for controlling electronic device, and program
JP7307244B2 (en) ELECTRONIC DEVICE, ELECTRONIC DEVICE CONTROL METHOD, AND PROGRAM
US11977142B2 (en) Electronic device, control method of electronic device, and control program of electronic device
JP2006010570A (en) Vehicular circumference monitor
KR102618759B1 (en) Apparatus for detercting movement of an object, method for detercting movement of an object and apparatus for detecting an object included therein
JP2021032847A (en) On-vehicle passive radar device
JP5709966B1 (en) Vehicle forward monitoring device
JP2007003290A (en) On-vehicle radar device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200114