JP2017001000A - Method for forming water-repellent surface and water-repellent article with water-repellent surface formed using the same method - Google Patents
Method for forming water-repellent surface and water-repellent article with water-repellent surface formed using the same method Download PDFInfo
- Publication number
- JP2017001000A JP2017001000A JP2015120667A JP2015120667A JP2017001000A JP 2017001000 A JP2017001000 A JP 2017001000A JP 2015120667 A JP2015120667 A JP 2015120667A JP 2015120667 A JP2015120667 A JP 2015120667A JP 2017001000 A JP2017001000 A JP 2017001000A
- Authority
- JP
- Japan
- Prior art keywords
- water
- repellent
- forming
- repellent surface
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Application Of Or Painting With Fluid Materials (AREA)
- Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
- Paints Or Removers (AREA)
Abstract
Description
本発明は、撥水性面形成方法及びその方法を用いて形成された撥水性面を備えた撥水性物品に関し、特に、エッチング法を用いた撥水性面形成方法及びその方法を用いて形成された撥水性面を備えた撥水性物品に関する。 The present invention relates to a water-repellent surface forming method and a water-repellent article having a water-repellent surface formed using the method, and in particular, formed using the water-repellent surface forming method using the etching method and the method. The present invention relates to a water-repellent article having a water-repellent surface.
従来より、自動車等の輸送用機器の外装や窓ガラス、住宅等の建物の屋根、鏡や眼鏡レンズ、電化製品や産業機器等において、水が付着することに起因する問題が生じぬよう、基材表面にフッ素材料等を用いた撥水性膜を塗布して水滴の付着を防ぐことが行われている。ところが、基材表面に撥水性膜を塗布しただけでは、撥水性を十分に高めることが出来ない。そのため、従来より、基材表面に微細な凸凹を形成し、ロータス効果により撥水性の向上を図る試みがなされている。予め基材表面に微細な凸凹を形成しておき、この微細な凸凹の上に更に基材表面に撥水性膜を塗布することで、より高い撥水性を実現することが出来ると共に、当該撥水性膜を基材表面にアンカー効果によりしっかりと密着させることができ、耐久性にも優れたものとなる。 Conventionally, in order to prevent problems caused by water adhesion on the exterior of automobiles and other transportation equipment, window glass, roofs of buildings such as houses, mirrors and spectacle lenses, electrical appliances and industrial equipment, etc. A water-repellent film using a fluorine material or the like is applied to the material surface to prevent water droplets from adhering. However, the water repellency cannot be sufficiently increased only by applying the water repellent film on the surface of the substrate. Therefore, conventionally, attempts have been made to improve the water repellency by forming fine irregularities on the surface of the base material and the lotus effect. By forming fine irregularities on the surface of the substrate in advance and applying a water-repellent film on the surface of the substrate further on the fine irregularities, higher water repellency can be realized and the water repellency The film can be firmly adhered to the surface of the substrate by the anchor effect, and the durability is excellent.
例えば、特許文献1には、撥水性に優れ、安定した撥水性能を有する超撥水性表面を有する成形物およびその製造方法を提供するという目的を達成するための超撥水性表面を有する成形物およびその製造方法について開示がされている。具体的には、特許文献1の超撥水性表面を有する成形物の製造方法は、撥水性樹脂からなる基材または最上層に撥水性樹脂を有する基材の表面にプラズマエッチングを行うことにより、当該基材表面に所定の形状の凹部が所定ピッチで周期的に形成された微細凹凸面を形成することを特徴としたものである(特許文献1の請求項3、段落0009等参照のこと。)。
For example,
しかしながら、特許文献1に開示の超撥水性表面を有する成形物の製造方法では、基材表面に微細な凹凸面を設けることが出来るものの、高い撥水性を安定して実現することが出来なかった。
However, in the method for producing a molded product having a super-water-repellent surface disclosed in
そこで本件発明では、上述した問題に鑑み、高い撥水性を安定して実現することの出来る撥水性面の形成方法及びその方法を用いて形成された撥水性面を備えた撥水性物品を提供することを目的とする。 In view of the above-described problems, the present invention provides a method of forming a water-repellent surface capable of stably realizing high water repellency, and a water-repellent article having a water-repellent surface formed by using the method. For the purpose.
本件発明に係る撥水性面形成方法: 本件発明に係る撥水性面形成方法は、基材にエッチング処理を施して撥水性面を形成する方法であって、当該基材表面に、十点平均粗さ(Rzjis)が0.2μm〜120μm、粗さ曲線の凹凸の平均間隔(Sm)が0.5μm〜35μm、最大高さ粗さ(Rz)が0.1μm〜40μmである凸凹形状を形成することを特徴とする。 Water-repellent surface forming method according to the present invention: The water-repellent surface forming method according to the present invention is a method of forming a water-repellent surface by subjecting a base material to an etching treatment. An uneven shape having a roughness (Rzjis) of 0.2 μm to 120 μm, an average interval (Sm) of irregularities of the roughness curve of 0.5 μm to 35 μm, and a maximum height roughness (Rz) of 0.1 μm to 40 μm is formed. It is characterized by that.
また、本件発明に係る撥水性面形成方法において、前記凸凹形状は、うねりの最大高低差(Wmax)が8μm〜95μmであり、且つ、当該うねりの最大高低差(Wmax)と凸凹の最大高低差(PV)との比[Wmax/PV]が10以上となるように形成されることが好ましい。 In the method for forming a water-repellent surface according to the present invention, the uneven shape has a maximum height difference (Wmax) of waviness of 8 μm to 95 μm, and a maximum height difference (Wmax) of the waviness and a maximum height difference of unevenness. It is preferable that the ratio [Wmax / PV] to (PV) is 10 or more.
また、本件発明に係る撥水性面形成方法において、前記基材は、ガラス、ポリカーボネート、アクリルのいずれかからなることが好ましい。 In the method for forming a water-repellent surface according to the present invention, the base material is preferably made of glass, polycarbonate, or acrylic.
また、本件発明に係る撥水性面形成方法において、前記基材表面の前記凸凹形状の上に、2種類以上のカップリング剤と、フロロシラン化物及び/又はメタロハイドロジェン変成シリコンとからなるコーティング層形成剤を用いてコーティング層を形成することが好ましい。 Further, in the method for forming a water-repellent surface according to the present invention, a coating layer formed of two or more coupling agents, a fluorosilanized product and / or a metallohydrogen-modified silicon is formed on the uneven shape of the substrate surface. It is preferable to form a coating layer using an agent.
また、本件発明に係る撥水性面形成方法において、前記カップリング剤は、少なくとも1種類がフッ素系シランカップリング剤であることが好ましい。 Moreover, in the water-repellent surface forming method according to the present invention, it is preferable that at least one of the coupling agents is a fluorine-based silane coupling agent.
本件発明に係る撥水性物品: 本件発明に係る撥水性物品は、前記撥水性面形成方法を用いて形成された撥水性面を備えたことを特徴とする。 Water-repellent article according to the present invention: The water-repellent article according to the present invention includes a water-repellent surface formed using the water-repellent surface forming method.
本件発明に係る撥水性面形成方法は、簡易でありながらも、高い撥水性を安定して実現することが出来る。また、撥水コートを被撥水処理面にアンカー効果によりしっかりと密着させることが出来るため、耐久性にも優れたも撥水性面を得ることが出来る。従って、本件発明に係る撥水性物品は、光学レンズの防滴や自動車等の輸送機器に備えられる窓ガラス等の撥水性が要求される様々な物品に好適に用いることが出来る。 The water-repellent surface forming method according to the present invention is simple but can stably achieve high water-repellency. Further, since the water repellent coat can be firmly adhered to the water repellent treated surface by the anchor effect, a water repellent surface having excellent durability can be obtained. Therefore, the water-repellent article according to the present invention can be suitably used for various articles that require water repellency such as drip-proofing of optical lenses and window glass provided in transportation equipment such as automobiles.
以下、本件発明に係る撥水性面形成方法及びその方法を用いて形成された撥水性面を備えた撥水性物品の一実施形態について説明する。 Hereinafter, a water repellent surface forming method according to the present invention and a water repellent article including a water repellent surface formed using the method will be described.
本件発明に係る撥水性面形成方法: 本件発明に係る撥水性面形成方法は、基材にエッチング処理を施して撥水性面を形成する方法であって、当該基材表面に、十点平均粗さ(Rzjis)が0.2μm〜120μm、粗さ曲線の凹凸の平均間隔(Sm)が0.5μm〜35μm、最大高さ粗さ(Rz)が0.1μm〜40μmである凸凹形状を形成することを特徴とするものである。 Water-repellent surface forming method according to the present invention: The water-repellent surface forming method according to the present invention is a method of forming a water-repellent surface by subjecting a base material to an etching treatment. An uneven shape having a roughness (Rzjis) of 0.2 μm to 120 μm, an average interval (Sm) of irregularities of the roughness curve of 0.5 μm to 35 μm, and a maximum height roughness (Rz) of 0.1 μm to 40 μm is formed. It is characterized by this.
本件発明に係る撥水性面形成方法は、基材表面に凸凹形状を形成するに際し、エッチング法を用いる。ここで、エッチング法には、大きく分けてドライエッチング法とウェットエッチング法があるが、本件発明はこれら両方のエッチング法を適宜採用することが出来る。基材表面に、これらエッチング法を用いて凸凹形状を形成することで、当該基材表面の濡れ性を調整することが出来る。以下に、これらドライエッチング法とウェットエッチング法とについて簡単に説明しておく。 In the method for forming a water repellent surface according to the present invention, an etching method is used when forming an uneven shape on the surface of a substrate. Here, the etching method is roughly classified into a dry etching method and a wet etching method, but the present invention can appropriately adopt both of these etching methods. By forming an uneven shape on the surface of the base material using these etching methods, the wettability of the surface of the base material can be adjusted. Below, these dry etching methods and wet etching methods will be briefly described.
ドライエッチング法は、反応性の気体(エッチングガス)やイオン、ラジカル等の活性種により基材をエッチングする方法であり、イオンビームを基材表面に照射して原子をはじき出すことで当該基材表面をエッチングするスパッタエッチングや、基材表面をプラズマに曝してエッチングするプラズマエッチング等がある。ドライエッチング法は、後述するウェットエッチング法と比較して、アンダーカットが小さく、微細加工に優れるという利点がある。 The dry etching method is a method of etching a substrate with a reactive gas (etching gas), active species such as ions, radicals, etc., and irradiating the surface of the substrate with an ion beam to eject atoms to the surface of the substrate. There are sputter etching for etching the substrate, plasma etching for etching the substrate surface by exposing it to plasma, and the like. The dry etching method has an advantage that the undercut is small and excellent in microfabrication as compared with the wet etching method described later.
ウェットエッチング法は、所謂エッチング液を用いてエッチングする方法である。このときに使用するエッチング液は、基材表面の材質によって適宜選択することができ、エッチング速度が速い場合にはエッチング液の入った槽に浸積させずに、基材表面にエッチング液をスプレーにより吹き掛けることも出来る。ウェットエッチング法は、上述のドライエッチング法と比較して、大面積の処理が可能であり、量産性が高く、処理コストが低いという利点がある。 The wet etching method is a method of etching using a so-called etching solution. The etching solution used at this time can be appropriately selected according to the material of the substrate surface. When the etching rate is high, the etching solution is sprayed on the substrate surface without being immersed in a tank containing the etching solution. Can also be sprayed. The wet etching method has an advantage that a large area can be processed, mass productivity is high, and processing cost is low as compared with the dry etching method described above.
なお、エッチング法を用いて基材表面に凸凹形状を形成するに際し、予め基材表面にマスク層を形成しておくことで、より起伏に富んだ凸凹形状を精密に基材表面に形成することが出来る。また、エッチング法を用いて基材表面に凸凹形状を形成するに際し、予め基材表面にマスク層を形成しない場合には、エッチング条件の違い等により複雑な形状を当該基材表面に形成することができ、当該基材表面に大きな凸凹と、この大きな凸凹に微細な凸凹が形成されたフラクタル構造を簡便に形成することが出来る。ちなみに、本件発明に係る撥水性面形成方法では、基材表面の撥水性を向上させるにあたって、基材表面にマスク層が形成された状態でエッチングを施した後に、基材表面からマスク層を取り除いた状態でエッチングを施すことも可能である。 In addition, when forming an uneven shape on the surface of the substrate using the etching method, by forming a mask layer on the surface of the substrate in advance, it is possible to precisely form an uneven shape rich in undulations on the surface of the substrate. I can do it. Also, when forming an uneven shape on the substrate surface using the etching method, if a mask layer is not formed on the substrate surface in advance, a complicated shape may be formed on the substrate surface due to differences in etching conditions, etc. It is possible to easily form a large unevenness on the surface of the substrate and a fractal structure in which fine unevenness is formed on the large unevenness. Incidentally, in the water repellent surface forming method according to the present invention, in order to improve the water repellency of the base material surface, the mask layer is removed from the base material surface after etching with the mask layer formed on the base material surface. It is also possible to carry out etching in the state.
このように、本件発明に係る撥水性面形成方法によれば、基材の材質に応じてエッチング処理条件を適宜設定することで、撥水性向上に適したフラクタル構造を簡便に形成することが出来る(図1を参照のこと。)。一般的に知られるWenzelの理論によれば、このような凸凹構造は、基材表面の実質的な表面積が増大して濡れに伴う表面エネルギーの変化が強調され、撥水性の更なる向上を図ることが出来る(図1中の基材2の表面に形成された凸凹構造、及び基材撥水性面1の形状を参照のこと。)。また、一般的に知られるCassieの理論によれば、このような凸凹構造は、毛管現象により微細凹部に水が侵入出来ないことで、隣接する微細凸部の間隙の空気が閉じ込められた空隙の面積割合が大きくなり、撥水性の更なる向上を図ることが出来る(図1中の水滴10と基材2との間の空隙11を参照のこと。)。
Thus, according to the water repellent surface forming method according to the present invention, a fractal structure suitable for improving water repellency can be easily formed by appropriately setting the etching treatment conditions according to the material of the substrate. (See FIG. 1). According to the generally known Wenzel theory, such an uneven structure increases the substantial surface area of the substrate surface, highlights changes in surface energy associated with wetting, and further improves water repellency. (Refer to the uneven structure formed on the surface of the
また、本件発明に係る撥水性面形成方法では、エッチング処理を施して、当該基材表面において十点平均粗さ(Rzjis)、粗さ曲線の凹凸の平均間隔(Sm)、最大高さ粗さ(Rz)の全てを上述した範囲内となるように形成することで、安定的に撥水性の向上を図ることが出来る。以下に、これらの粗さパラメータに関して、簡単に説明しておく。 Further, in the method for forming a water-repellent surface according to the present invention, an etching process is performed, and the ten-point average roughness (Rzjis), the average interval of roughness unevenness (Sm), and the maximum height roughness on the surface of the substrate. By forming all of (Rz) to be within the above-described range, it is possible to stably improve water repellency. Hereinafter, these roughness parameters will be briefly described.
十点平均粗さ(Rzjis)とは、粗さ曲線から、その平均線の方向に基準長さだけ抜き取り、この抜き取り部分の平均線から、最も高い山頂から5番目までの山頂の標高の絶対値の平均値と、最も低い谷底から5番目までの谷底の標高の絶対値の平均値との和をいう(JIS B 0601:2001参照のこと。)。本件発明に係る撥水性面形成方法では、十点平均粗さ(Rzjis)が0.2μm未満の場合には、撥水性向上のために適した凸凹形状を形成出来ず、十分に撥水性を向上させることが出来ない。また、十点平均粗さ(Rzjis)が120μmを超える場合には、基材表面の凸凹が大きくなり過ぎて、十分に撥水性を向上させることが出来ない。 The ten-point average roughness (Rzjis) is the absolute value of the altitude of the highest peak from the highest peak to the fifth peak from the average line of the extracted part. And the average value of the absolute values of the elevations of the bottom valley from the lowest valley bottom to the fifth (refer to JIS B 0601: 2001). In the method for forming a water-repellent surface according to the present invention, when the ten-point average roughness (Rzjis) is less than 0.2 μm, the uneven shape suitable for improving the water repellency cannot be formed, and the water repellency is sufficiently improved. I can't let you. On the other hand, when the ten-point average roughness (Rzjis) exceeds 120 μm, the unevenness on the surface of the substrate becomes too large, and the water repellency cannot be sufficiently improved.
粗さ曲線の凹凸の平均間隔(Sm)とは、粗さ曲線が平均線と交差する交点から求めた山谷周期の間隔の平均値を表す(JIS B 0601:2001参照のこと。)。本件発明に係る撥水性面形成方法では、粗さ曲線の凹凸の平均間隔(Sm)が0.5μm未満の場合には、撥水性向上に適した凸凹形状を形成することが出来ない。また、粗さ曲線の凹凸の平均間隔(Sm)が35μmを超える場合には、形成される凸部及び凹部の数が少なく、撥水性の向上を十分に図ることが困難となる。撥水性を向上させるためには、凸部の数や凸部間のピッチが重要であり、凸部が密に並び存在密度を大きくしなければ撥水性能に大きく寄与することが出来ない。 The average interval (Sm) of the unevenness of the roughness curve represents the average value of the interval of the mountain-valley cycle determined from the intersection where the roughness curve intersects the average line (see JIS B 0601: 2001). In the method for forming a water repellent surface according to the present invention, when the average interval (Sm) of the unevenness of the roughness curve is less than 0.5 μm, it is not possible to form an uneven shape suitable for improving water repellency. Moreover, when the average interval (Sm) of the unevenness | corrugation of a roughness curve exceeds 35 micrometers, there are few convex parts and recessed parts formed, and it becomes difficult to aim at sufficient improvement in water repellency. In order to improve the water repellency, the number of convex portions and the pitch between the convex portions are important. If the convex portions are arranged closely and the density of existence is not increased, the water repellency cannot be greatly contributed.
最大高さ粗さ(Rz)とは、基準長さにおいて、輪郭曲線の山高さの最大値と谷深さの最大値の和を表す(JIS B 0601:2001参照のこと。)。本件発明に係る撥水性面形成方法では、最大高さ粗さ(Rz)が0.1μm未満の場合には、撥水性向上のために適した凸凹形状を形成出来ず、十分に撥水性を向上させることが出来ない。また、最大高さ粗さ(Rz)が40μmを超える場合には、基材表面の凸凹が大きくなり過ぎて、表面が粗くなり、基材としてガラス材を用いた場合に透過率の低下を招くため好ましくない。 The maximum height roughness (Rz) represents the sum of the maximum value of the peak height of the contour curve and the maximum value of the valley depth in the reference length (see JIS B 0601: 2001). In the method for forming a water-repellent surface according to the present invention, when the maximum height roughness (Rz) is less than 0.1 μm, it is not possible to form an uneven shape suitable for improving water repellency, and the water repellency is sufficiently improved. I can't let you. In addition, when the maximum height roughness (Rz) exceeds 40 μm, the unevenness of the surface of the base material becomes too large, the surface becomes rough, and the transmittance decreases when a glass material is used as the base material. Therefore, it is not preferable.
なお、固体表面の濡れ性の指標としては、測定の簡便性を理由から、主に水滴の接触角で判断がされる。一般的に、撥水性は、固体表面に対する水滴の接触角が90°以上を言い、110°〜150°が高撥水、それ以上が超撥水とされる。固体表面が平坦な場合に、フッ素材料等を用いた撥水性膜を塗布することによって得られる接触角は、100°程度であるが、本件発明に係る撥水性面形成方法により形成される撥水性面は、このような撥水処理膜を設けなくとも固体表面に対する水滴の接触角を100°以上にすることが出来る。 Note that, as an indicator of the wettability of the solid surface, the determination is mainly based on the contact angle of water droplets for the sake of simplicity of measurement. In general, the water repellency means that the contact angle of water droplets with respect to a solid surface is 90 ° or more, 110 ° to 150 ° is high water repellency, and more is super water repellency. When the solid surface is flat, the contact angle obtained by applying a water repellent film using a fluorine material or the like is about 100 °, but the water repellency formed by the water repellent surface forming method according to the present invention. The surface can make the contact angle of water droplets with respect to the solid surface 100 ° or more without providing such a water repellent film.
また、本件発明に係る撥水性面形成方法において、上述したエッチング処理後の基材表面は、うねりの最大高低差(Wmax)が8μm〜95μmであり、且つ、当該うねりの最大高低差(Wmax)と凸凹の最大高低差(PV)との比[Wmax/PV]が10以上であることが好ましい。本件発明に係る撥水性物品は、これらの条件を満たすことで、撥水性を向上させるのにより適した凸凹形状を基材表面に形成することが出来る。 In the method for forming a water-repellent surface according to the present invention, the substrate surface after the above-described etching treatment has a maximum waviness difference (Wmax) of 8 μm to 95 μm, and the maximum waviness difference (Wmax) of the waviness. It is preferable that the ratio [Wmax / PV] of the height difference between the height and the unevenness (PV) is 10 or more. By satisfying these conditions, the water-repellent article according to the present invention can form an uneven shape more suitable for improving water repellency on the surface of the substrate.
ここで、うねりの最大高低差(Wmax)とは、三次元表面構造解析顕微鏡を用いて得られる試料表面の凹凸に係る情報から、うねりに係る波形データをフィルタを用いて抽出したときの波形データの高低差の最大値(波形の最大ピーク高さと最大バレー深さの和)をいう。本件発明に係る撥水性面形成方法では、うねりの最大高低差(Wmax)が8μm未満の場合には、撥水性の向上が十分に図られず好ましくない。また、うねりの最大高低差(Wmax)が95μmを超える場合には、基材表面の粗さが大きくなり過ぎて美観を損ねてしまう。ちなみに、うねりの最大高低差(Wmax)は、測定機器としてオリンパス社製レーザー顕微鏡(OLS4100)を用いて測定した。 Here, the maximum height difference (Wmax) of the waviness is the waveform data obtained when the waveform data relating to the waviness is extracted using the filter from the information relating to the unevenness of the sample surface obtained using the three-dimensional surface structure analysis microscope. The maximum value of the height difference (the sum of the maximum peak height and the maximum valley depth of the waveform). In the method for forming a water-repellent surface according to the present invention, when the maximum height difference (Wmax) of waviness is less than 8 μm, the water repellency cannot be sufficiently improved, which is not preferable. Moreover, when the maximum height difference (Wmax) of the undulation exceeds 95 μm, the roughness of the surface of the substrate becomes too large and the aesthetic appearance is impaired. Incidentally, the maximum height difference (Wmax) of the swell was measured using an Olympus laser microscope (OLS4100) as a measuring instrument.
また、凸凹の最大高低差(PV)とは、凸凹の最大高低差をうねりを有する表面に存在する粗さを含んだ状態で計測したものである。従って、うねりの最大高低差(Wmax)と上述した凸凹の最大高低差(PV)との比[(Wmax)/(PV)]が1に近い値を示すことは、波形の表面に存在する凸凹は[(PV)−(Wmax)]とみなすことが出来るため、当該凸凹が微細であることを表している。 Moreover, the maximum height difference (PV) of unevenness | corrugation is measured in the state including the roughness which exists in the surface which has a wave | undulation in the maximum height difference of unevenness | corrugation. Therefore, the ratio [(Wmax) / (PV)] between the maximum height difference (Wmax) of the undulation and the maximum height difference (PV) of the unevenness described above indicates a value close to 1, indicating that the unevenness existing on the surface of the waveform. Can be regarded as [(PV) − (Wmax)], and thus represents that the unevenness is fine.
また、本件発明に係る撥水性面形成方法において、上述した基材は、ガラス、ポリカーボネート、アクリルのいずれかからなることが好ましい。当該基材の材質をガラス、ポリカーボネート、アクリルのいずれかとすることで、優れた視認性及び耐久性を得ることができ、これらの特性が要求される自動車灯体のカバーレンズ等に好適に用いることが出来る。特に、ポリカーボネートはガラスやアクリルに比べて表面粗さが大きいため、基材表面に、より撥水性に適したフラクタル構造を形成することが出来る。 Moreover, in the water-repellent surface forming method according to the present invention, the substrate described above is preferably made of any one of glass, polycarbonate, and acrylic. By using any one of glass, polycarbonate, and acrylic as the material of the base material, excellent visibility and durability can be obtained, and the base material is suitably used for a cover lens of an automobile lamp body that requires these characteristics. I can do it. In particular, since polycarbonate has a larger surface roughness than glass or acrylic, a fractal structure more suitable for water repellency can be formed on the substrate surface.
また、本件発明に係る撥水性面形成方法は、基材表面に形成された凸凹形状の上に2種類以上のカップリング剤と、フロロシラン化物及び/又はメタロハイドロジェン変成シリコンとからなるコーティング層形成剤を用いてコーティング層を形成することが好ましい。 Further, the water repellent surface forming method according to the present invention is a method for forming a coating layer comprising two or more types of coupling agents and fluorosilanized and / or metallohydrogen-modified silicon on an uneven shape formed on a substrate surface. It is preferable to form a coating layer using an agent.
本件発明に係る撥水性面形成方法では、少なくとも2種類のカップリング剤を塗布することで、撥水性面の耐久性を飛躍的に向上させると共に、基材への3次元密着性を高めることが出来る。また、本件発明に係る撥水性面形成方法では、上述したコーティング層形成剤を用いてコーティング層を形成することで、完全フラクタル形状を形成し、凸凹形状を備えた撥水性面を超撥水性面にすることが出来る。 In the method for forming a water-repellent surface according to the present invention, by applying at least two types of coupling agents, the durability of the water-repellent surface can be dramatically improved and the three-dimensional adhesion to the substrate can be improved. I can do it. Further, in the water repellent surface forming method according to the present invention, a coating layer is formed using the coating layer forming agent described above to form a complete fractal shape, and the water repellent surface having an uneven shape is formed as a super water repellent surface. Can be made.
なお、図1には、コーティング層5が、カップリング剤からなる層3と、フロロシラン化合物及び/又はメタロハイドロジェン変性シリコンからなる層4との2層構造により示されているが、本件発明に係る撥水性面形成方法では、上述したコーティング層形成剤を塗布する方法に関してこれに限定されない。例えば、本件発明のコーティング層5は、各コーティング層形成剤を全て混合した状態で凸凹形状が形成された基材表面に塗布しても良く、各コーティング層形成剤を順次塗布して複数層からなるコーティング層を形成しても良い。このとき、一部のコーティング層形成剤のみを混合して用いて層を形成する場合も含む。また、当該コーティング層形成剤を塗布する順番は、何ら限定しない。
In FIG. 1, the
本件発明で用いるコーティング層形成剤には、1官能〜4官能のフロロアルキルシラン化合物、又はNリッチ状態にした2官能以上のシラザン材を主体とするシラノール化合物からなるものを用いることが出来る。本件発明のカップリング剤は、分子量で30から280までのもののうち、少分子量と大分子量のものを適宜混入させることで密着性を上げることが出来る。また、この中にジフロロ又はフルオロシラン系のフッ素含有物及び/又はメタロハイドロジェン変成シリコンを塗料として混入させることで、更に撥水性を向上させることが出来る。本件発明のコーティング層形成剤は、撥水性の向上を図る上で、上述したカップリング剤を1重量%〜3重量%含有することが望ましい。また、かかるコーティング剤の希釈剤としてテトラエトキシシラン、テトラメトキシシラン等のシラノール化合物で希釈しても良い。 As the coating layer forming agent used in the present invention, a monofunctional to tetrafunctional fluoroalkylsilane compound or a silanol compound mainly composed of an N-rich bifunctional or higher functional silazane material can be used. The coupling agent of the present invention can improve adhesion by appropriately mixing low molecular weight and large molecular weight among those having a molecular weight of 30 to 280. In addition, water repellency can be further improved by mixing difluoro or fluorosilane-based fluorine-containing materials and / or metallohydrogen-modified silicon as a coating material. The coating layer forming agent of the present invention preferably contains 1% to 3% by weight of the above-described coupling agent in order to improve water repellency. Moreover, you may dilute with silanol compounds, such as tetraethoxysilane and tetramethoxysilane, as a diluent of this coating agent.
本件発明で用いるカップリング剤は、少なくとも1種類がフッ素系シランカップリング剤であることが好ましい。本件発明に係る撥水性面形成方法では、コーティング層にフッ素系シランカップリング剤を含めることで、粉塵や雪等の付着を効果的に防ぐことが可能となる。また、本件発明の凸凹形状が形成された基材表面にフッ素系シランカップリング剤を含むコーティング層を形成することで、凹部に当該フッ素系シランカップリング剤が入り込み、雨風等に長期間曝されたとしても基材表面から撥水性塗料が完全に消失することはない。そのため、本件発明に係る撥水性面形成方法によれば、長期間に亘って優れた撥水効果を発揮する撥水性面を形成することが可能となる。 At least one of the coupling agents used in the present invention is preferably a fluorinated silane coupling agent. In the method for forming a water-repellent surface according to the present invention, it is possible to effectively prevent adhesion of dust, snow, etc. by including a fluorinated silane coupling agent in the coating layer. Further, by forming a coating layer containing a fluorine-based silane coupling agent on the surface of the substrate on which the uneven shape of the present invention is formed, the fluorine-based silane coupling agent enters the recess and is exposed to rain and wind for a long time. Even if this is the case, the water-repellent paint does not completely disappear from the substrate surface. Therefore, according to the water repellent surface forming method of the present invention, it is possible to form a water repellent surface that exhibits an excellent water repellent effect over a long period of time.
ちなみに、本件発明に係る撥水性面形成方法では、コーティング層を形成する方法として、一般的に用いられる種々のコーティング方法を適用することが出来る。但し、形成後のコーティング層の膜厚は、0.1μm以下にすることが望ましい。コーティング層の膜厚が0.1μmを超えると、予め基材表面に形成された微小な凹凸構造が埋没してしまい、撥水性が低下してしまう。なお、本件発明に係る撥水性面形成方法では、コーティング層を形成する前に予め基材表面に微小な凸凹を形成するが、そうすることで、狙った粗さの表面形状を得ることができ、制御性良く撥水性を発揮することが出来る。 Incidentally, in the water-repellent surface forming method according to the present invention, various commonly used coating methods can be applied as a method for forming the coating layer. However, the film thickness of the coating layer after formation is desirably 0.1 μm or less. When the film thickness of the coating layer exceeds 0.1 μm, the minute uneven structure formed in advance on the surface of the base material is buried and the water repellency is lowered. In the water-repellent surface forming method according to the present invention, fine irregularities are formed on the substrate surface in advance before forming the coating layer. By doing so, it is possible to obtain a surface shape with a targeted roughness. The water repellency can be exhibited with good controllability.
本件発明に係る撥水性物品: 本件発明に係る撥水性物品は、上述した本件発明の撥水性面形成方法を用いて形成された撥水性面を備えたことを特徴とする。本件発明に係る撥水性物品は、エッチング法により製造されるため、安定した生産計画が検討でき、量産化された場合には安価で提供することが可能である。よって、本件発明に係る撥水性物品は、自動車灯体のカバーレンズ、ヘルメットシールド、眼鏡レンズ等に幅広く用いることが出来る。 Water-repellent article according to the present invention: The water-repellent article according to the present invention includes a water-repellent surface formed by using the above-described water-repellent surface forming method of the present invention. Since the water-repellent article according to the present invention is manufactured by an etching method, a stable production plan can be examined, and when it is mass-produced, it can be provided at a low cost. Therefore, the water-repellent article according to the present invention can be widely used for automobile lamp cover lenses, helmet shields, spectacle lenses, and the like.
以上に、本件発明に係る撥水性面を備えた撥水性物品及びその形成方法について説明したが、以下に本件発明の実施例を示し、本件発明をより詳細に説明する。なお、本件発明はこれらの例により何ら限定されるものではない。 The water-repellent article having a water-repellent surface and the method for forming the water-repellent surface according to the present invention have been described above, but the present invention will be described in more detail below by showing examples of the present invention. In addition, this invention is not limited at all by these examples.
実施例1では、基材表面にスパッタエッチング処理を施し、その後の当該基材表面に対する水滴の接触角の確認を行った。また、実施例1における基材表面に施すスパッタエッチング処理条件は、当該基材表面に形成される凸凹形状が本件発明の条件を満たすように設定した。実施例1では、まず、基材である90mm×90mm×2(t)mmのソーダーガラス板を、アークイオンプレーティング装置に投入し、この装置中を排気して0.1torrの真空とし、温度200℃で1分間予熱した。次いで、当該装置内にアルゴンガスを導入して0.3torrとし、120秒間ボンバードによるエッチング処理を行った。 In Example 1, the surface of the base material was subjected to a sputter etching process, and the contact angle of water droplets with respect to the surface of the base material thereafter was confirmed. Moreover, the sputter etching process conditions performed on the base material surface in Example 1 were set so that the uneven shape formed on the base material surface satisfies the conditions of the present invention. In Example 1, first, a soda glass plate of 90 mm × 90 mm × 2 (t) mm as a base material was put into an arc ion plating apparatus, and the inside of the apparatus was evacuated to a vacuum of 0.1 torr. Preheated at 200 ° C. for 1 minute. Next, argon gas was introduced into the apparatus to 0.3 torr, and etching was performed by bombardment for 120 seconds.
上述したスパッタエッチング処理条件で基材表面に凸凹形状を形成したところ、実施例1の基材表面に形成された凸凹形状は、十点平均粗さ(Rzjis)が5μm、粗さ曲線の凹凸の平均間隔(Sm)が20μm、最大高さ粗さ(Rz)が20μm、うねりの最大高低差(Wmax)が40μm、うねりの最大高低差(Wmax)と凸凹の最大高低差(PV)との比[Wmax/PV]が40となった。 When the uneven surface was formed on the substrate surface under the above-described sputter etching conditions, the uneven shape formed on the substrate surface in Example 1 had a 10-point average roughness (Rzjis) of 5 μm and an uneven surface roughness. The average spacing (Sm) is 20 μm, the maximum height roughness (Rz) is 20 μm, the maximum difference in waviness (Wmax) is 40 μm, and the ratio between the maximum difference in waviness (Wmax) and the maximum height difference (PV) in unevenness [Wmax / PV] was 40.
更に、実施例1では、基材表面に凸凹形状を形成した後に、以下の条件で当該基材表面の上にコーティング層形成剤を塗布した。具体的には、多官能シラノールとブチルヒドロシラザンとを同じ割合で含むカップリング剤5%と、1−フロロシラン10%と、3−フロロシラン10%と、残りが溶剤からなるコーティング層形成剤を120cc/m2で噴霧した。そして、基材表面に塗布したコーティング層形成剤の硬化条件は、室温にて1時間放置した後に90℃の環境で1時間放置した。このときの実施例1の基材表面に形成された凸凹形状は、十点平均粗さ(Rzjis)が4μm、粗さ曲線の凹凸の平均間隔(Sm)が0.1μm、最大高さ粗さ(Rz)が40μm、うねりの最大高低差(Wmax)が30μmとなった。 Furthermore, in Example 1, after forming an uneven shape on the substrate surface, a coating layer forming agent was applied on the substrate surface under the following conditions. Specifically, 5% of a coupling agent containing polyfunctional silanol and butyl hydrosilazane in the same proportion, 10% of 1-fluorosilane, 10% of 3-fluorosilane, and the remaining coating layer forming agent consisting of a solvent is 120 cc. Sprayed at / m 2 . The curing condition of the coating layer forming agent applied to the substrate surface was left at room temperature for 1 hour and then left at 90 ° C. for 1 hour. At this time, the uneven shape formed on the substrate surface of Example 1 has a 10-point average roughness (Rzjis) of 4 μm, an average interval (Sm) of unevenness of the roughness curve of 0.1 μm, and a maximum height roughness. (Rz) was 40 μm, and the maximum difference in waviness (Wmax) was 30 μm.
なお、基材表面に対する水滴の接触角の測定には、サーフェス・エレクトロ・オプティクス株式会社製の自動接触計「型式:アルファ」を用い、温度25℃、相対湿度55%RHの条件下で測定した。この自動接触計に蒸留水の水滴を基材となるガラス材料表面に滴下して撮像し、その画像より接触角を計測した。 The contact angle of water droplets on the surface of the substrate was measured using an automatic contact meter “Model: Alpha” manufactured by Surface Electro Optics Co., Ltd. under conditions of a temperature of 25 ° C. and a relative humidity of 55% RH. . A water drop of distilled water was dropped onto the surface of the glass material serving as a base material on this automatic contact meter, and the contact angle was measured from the image.
実施例2では、実施例1と同様にスパッタエッチング処理を施し、その後の当該基材表面に対する水滴の接触角の確認を行った。また、実施例2における基材表面に施すスパッタエッチング処理条件は、当該基材表面に形成される凸凹形状が本件発明の条件を満たすように設定した。実施例2では、まず、基材である90mm×90mm×2(t)mmのソーダーガラス板を、アークイオンプレーティング装置に投入し、この装置中を排気して1×10−4torrの真空とし、温度200℃で1分間予熱した。次いで、当該装置内にアルゴンガスを導入して6×10−3torrとし、20秒間ボンバードによるエッチング処理を行った。 In Example 2, the sputter etching process was performed in the same manner as in Example 1, and then the contact angle of water droplets on the substrate surface was confirmed. Moreover, the sputter etching process conditions performed on the base material surface in Example 2 were set so that the uneven shape formed on the base material surface satisfies the conditions of the present invention. In Example 2, first, a 90 mm × 90 mm × 2 (t) mm soda glass plate as a base material was put into an arc ion plating apparatus, and this apparatus was evacuated to a vacuum of 1 × 10 −4 torr. And preheating at 200 ° C. for 1 minute. Next, argon gas was introduced into the apparatus to 6 × 10 −3 torr, and etching treatment was performed by bombardment for 20 seconds.
そして、実施例2では、実施例1と同じ条件で基材表面の上にコーティング層形成剤を塗布した。このときの実施例2の基材表面に形成された凸凹形状は、十点平均粗さ(Rzjis)が12μm、粗さ曲線の凹凸の平均間隔(Sm)が0.1μm、うねりの最大高低差(Wmax)が20μmとなった。 And in Example 2, the coating layer forming agent was apply | coated on the base-material surface on the same conditions as Example 1. FIG. At this time, the uneven shape formed on the surface of the base material of Example 2 has a 10-point average roughness (Rzjis) of 12 μm, an average interval (Sm) of unevenness of the roughness curve of 0.1 μm, and a maximum height difference of waviness. (Wmax) was 20 μm.
なお、実施例2において、基材表面に対する水滴の接触角の測定には、実施例1と同じ装置を用いた。 In Example 2, the same apparatus as in Example 1 was used to measure the contact angle of water droplets on the substrate surface.
実施例3では、基材表面にスプレーエッチング処理を施し、その後の当該基材表面に対する水滴の接触角の確認を行った。また、実施例3における基材表面に施すスプレーエッチング処理条件は、当該基材表面に形成される凸凹形状が本件発明の条件を満たすように設定した。実施例3では、まず、基材である90mm×90mm×2(t)mmのソーダーガラス板の表面温度を200℃とし、フッ化アンモニウムとフッ化水素酸と水酸化アルミニウムを配合したエッチング液を2分間スプレー照射するという条件でエッチング処理を行った。 In Example 3, the substrate surface was spray-etched, and the contact angle of water droplets on the substrate surface was confirmed. Moreover, the spray etching process conditions performed on the base material surface in Example 3 were set so that the uneven shape formed on the base material surface satisfies the conditions of the present invention. In Example 3, first, an etching solution in which the surface temperature of a soda glass plate of 90 mm × 90 mm × 2 (t) mm as a base material is set to 200 ° C. and ammonium fluoride, hydrofluoric acid, and aluminum hydroxide are blended is used. Etching was performed under the condition of spray irradiation for 2 minutes.
そして、実施例3では、実施例1と同じ条件で基材表面の上にコーティング層形成剤を塗布した。このときの実施例3の基材表面に形成された凸凹形状は、十点平均粗さ(Rzjis)が0.8μm、粗さ曲線の凹凸の平均間隔(Sm)が5μm、最大高さ粗さ(Rz)が30μm、うねりの最大高低差(Wmax)が60μm、うねりの最大高低差(Wmax)と凸凹の最大高低差(PV)との比[Wmax/PV]が40となった。 And in Example 3, the coating layer forming agent was apply | coated on the base-material surface on the same conditions as Example 1. FIG. At this time, the uneven shape formed on the surface of the base material of Example 3 has a ten-point average roughness (Rzjis) of 0.8 μm, an average interval (Sm) of irregularities of the roughness curve of 5 μm, and a maximum height roughness. (Rz) was 30 μm, the maximum difference in waviness (Wmax) was 60 μm, and the ratio [Wmax / PV] of the maximum difference in waviness (Wmax) to the maximum difference in height (PV) of unevenness was 40.
なお、実施例3において、基材表面に対する水滴の接触角の測定には、実施例1と同じ装置を用いた。 In Example 3, the same apparatus as in Example 1 was used to measure the contact angle of water droplets on the substrate surface.
実施例4では、実施例3と同様に基材表面にスプレーエッチング処理を施し、その後の当該基材表面に対する水滴の接触角の確認を行った。また、実施例4における基材表面に施すスプレーエッチング処理条件は、当該基材表面に形成される凸凹形状が本件発明の条件を満たすように設定した。実施例4では、まず、基材である90mm×90mm×2(t)mmのソーダーガラス板の表面温度を200℃とし、フッ化アンモニウムとフッ化水素酸と水酸化アルミニウムを配合したエッチング液を2分間スプレー照射するという条件でエッチング処理を行った。 In Example 4, the substrate surface was spray-etched in the same manner as in Example 3, and then the contact angle of water droplets on the substrate surface was confirmed. Moreover, the spray etching process conditions performed on the base material surface in Example 4 were set so that the uneven shape formed on the base material surface satisfies the conditions of the present invention. In Example 4, first, the surface temperature of a soda glass plate of 90 mm × 90 mm × 2 (t) mm as a base material is set to 200 ° C., and an etching solution in which ammonium fluoride, hydrofluoric acid, and aluminum hydroxide are blended is prepared. Etching was performed under the condition of spray irradiation for 2 minutes.
そして、実施例4では、実施例1と同じ条件で基材表面の上にコーティング層形成剤を塗布した。このときの実施例4の基材表面に形成された凸凹形状は、十点平均粗さ(Rzjis)が8μm、粗さ曲線の凹凸の平均間隔(Sm)が35μm、最大高さ粗さ(Rz)が120μm、うねりの最大高低差(Wmax)が80μm、うねりの最大高低差(Wmax)と凸凹の最大高低差(PV)との比[Wmax/PV]が31となった。 And in Example 4, the coating layer forming agent was apply | coated on the base-material surface on the same conditions as Example 1. FIG. At this time, the uneven shape formed on the surface of the base material of Example 4 has a 10-point average roughness (Rzjis) of 8 μm, an average interval (Sm) of irregularities of the roughness curve of 35 μm, and a maximum height roughness (Rz). ) Was 120 μm, the maximum height difference (Wmax) of undulation was 80 μm, and the ratio [Wmax / PV] of the maximum height difference (Wmax) of undulation to the maximum height difference (PV) of unevenness was 31.
なお、実施例4において、基材表面に対する水滴の接触角の測定には、実施例1と同じ装置を用いた。 In Example 4, the same apparatus as in Example 1 was used to measure the contact angle of water droplets on the substrate surface.
以上に示す実施例1〜実施例4で基材表面(コーティング層形成前)に形成された凸凹形状は、本件発明の条件を全て満たすものである。表1には、これらの条件を比較例試料の条件と対比容易となるよう併せて示す。 The uneven shape formed on the substrate surface (before forming the coating layer) in Examples 1 to 4 described above satisfies all the conditions of the present invention. Table 1 shows these conditions together with the conditions of the comparative sample so as to facilitate comparison.
[比較例1]
比較例1では、実施例1と同様にスパッタエッチング処理を施し、その後の当該基材表面に対する水滴の接触角の確認を行った。また、比較例1における基材表面に施すスパッタエッチング処理条件は、当該基材表面に形成される凸凹形状が本件発明の条件を満たさぬように設定した。比較例1では、まず、基材である90mm×90mm×2(t)mmのソーダーガラス板を、アークイオンプレーティング装置に投入し、この装置中を排気して0.1torrの真空とし、温度200℃で1分間予熱した。次いで、当該装置内にアルゴンガスを導入して0.5torrとし、20秒間ボンバードによるエッチング処理を行った。
[Comparative Example 1]
In Comparative Example 1, the sputter etching process was performed in the same manner as in Example 1, and then the contact angle of water droplets on the surface of the substrate was confirmed. Moreover, the sputter etching process conditions performed on the substrate surface in Comparative Example 1 were set so that the uneven shape formed on the substrate surface did not satisfy the conditions of the present invention. In Comparative Example 1, first, a soda glass plate of 90 mm × 90 mm × 2 (t) mm as a base material was put into an arc ion plating apparatus, and the inside of the apparatus was evacuated to a vacuum of 0.1 torr, Preheated at 200 ° C. for 1 minute. Next, argon gas was introduced into the apparatus to 0.5 torr, and etching was performed by bombardment for 20 seconds.
そして、比較例1では、実施例1と同じ条件で基材表面の上にコーティング層形成剤を塗布した。このときの比較例1の基材表面に形成された凸凹形状は、十点平均粗さ(Rzjis)が120μm、粗さ曲線の凹凸の平均間隔(Sm)が0.1μm、最大高さ粗さ(Rz)が65μm、うねりの最大高低差(Wmax)が120μm、うねりの最大高低差(Wmax)と凸凹の最大高低差(PV)との比[Wmax/PV]が85となった。 And in the comparative example 1, the coating layer forming agent was apply | coated on the base-material surface on the same conditions as Example 1. FIG. The uneven shape formed on the surface of the base material of Comparative Example 1 at this time has a ten-point average roughness (Rzjis) of 120 μm, an average interval (Sm) of irregularities of the roughness curve of 0.1 μm, and a maximum height roughness. (Rz) was 65 μm, the maximum difference in waviness (Wmax) was 120 μm, and the ratio [Wmax / PV] of the maximum difference in waviness (Wmax) to the maximum difference in height (PV) of the unevenness was 85.
なお、比較例1において、基材表面に対する水滴の接触角の測定には、実施例1と同じ装置を用いた。 In Comparative Example 1, the same apparatus as in Example 1 was used for measuring the contact angle of water droplets on the substrate surface.
[比較例2]
比較例2では、実施例3と同様に基材表面にスプレーエッチング処理を施し、その後の当該基材表面に対する水滴の接触角の確認を行った。また、比較例2における基材表面に施すスプレーエッチング処理条件は、当該基材表面に形成される凸凹形状が本件発明の条件を満たさぬように設定した。比較例2では、まず、基材である90mm×90mm×2(t)mmのソーダーガラス板の表面温度を200℃とし、フッ化アンモニウムとフッ化水素酸と水酸化アルミニウムを配合したエッチング液を2分間スプレー照射するという条件でエッチング処理を行った。
[Comparative Example 2]
In Comparative Example 2, the substrate surface was spray-etched in the same manner as in Example 3, and then the contact angle of water droplets on the substrate surface was confirmed. Moreover, the spray etching process conditions performed on the substrate surface in Comparative Example 2 were set so that the uneven shape formed on the substrate surface did not satisfy the conditions of the present invention. In Comparative Example 2, first, the surface temperature of a soda glass plate of 90 mm × 90 mm × 2 (t) mm as a base material is set to 200 ° C., and an etching solution containing ammonium fluoride, hydrofluoric acid, and aluminum hydroxide is mixed. Etching was performed under the condition of spray irradiation for 2 minutes.
そして、比較例2では、実施例1と同じ条件で基材表面の上にコーティング層形成剤を塗布した。このときの比較例2の基材表面に形成された凸凹形状は、十点平均粗さ(Rzjis)が140μm、粗さ曲線の凹凸の平均間隔(Sm)が0.1μm、最大高さ粗さ(Rz)が80m、うねりの最大高低差(Wmax)が105μm、うねりの最大高低差(Wmax)と凸凹の最大高低差(PV)との比[Wmax/PV]が10となった。 And in the comparative example 2, the coating layer forming agent was apply | coated on the base-material surface on the same conditions as Example 1. FIG. At this time, the uneven shape formed on the surface of the base material of Comparative Example 2 has a ten-point average roughness (Rzjis) of 140 μm, an average interval (Sm) of irregularities of the roughness curve of 0.1 μm, and a maximum height roughness. (Rz) was 80 m, the maximum waviness difference (Wmax) was 105 μm, and the ratio [Wmax / PV] of the waviness maximum height difference (Wmax) to the uneven height difference (PV) was 10.
なお、比較例2において、基材表面に対する水滴の接触角の測定には、実施例1と同じ装置を用いた。 In Comparative Example 2, the same apparatus as in Example 1 was used to measure the contact angle of water droplets on the substrate surface.
[実施例と比較例との対比]
以下に示す表1には、実施例1について、凸凹形状が形成された基材表面(コーティング層形成前)に対する水滴の接触角度を対比した結果を示している。また、以下に示す表2には、基材表面に形成された凸凹形状の粗さ条件がそれぞれ異なる実施例1、実施例2、実施例3、実施例4、比較例1、比較例2について、当該凸凹形状が形成された基材表面に対し、同じ条件でコーティング層を形成した後の水滴の接触角度を対比した結果を示している。以下に、本件発明の当該凸凹形状の粗さ条件が基材の撥水性にどのような影響を及ぼすのかについて、表1に示す内容を基に実施例1〜4と比較例1、2とを対比しつつ検討していく。
[Contrast between Example and Comparative Example]
Table 1 below shows the results of comparing the contact angle of water droplets with respect to the substrate surface (before forming the coating layer) on which the uneven shape was formed in Example 1. Moreover, in Table 2 shown below, about Example 1, Example 2, Example 3, Example 4, Comparative Example 1, and Comparative Example 2 in which the roughness conditions of the irregularities formed on the substrate surface are different, respectively. The result which contrasted the contact angle of the water droplet after forming the coating layer on the same conditions with respect to the base-material surface in which the said uneven shape was formed is shown. Hereinafter, Examples 1-4 and Comparative Examples 1 and 2 based on the contents shown in Table 1 on how the roughness condition of the uneven shape of the present invention affects the water repellency of the substrate. We will examine it in comparison.
表1及び表2において、凸凹形状が形成された基材表面に対する水滴の接触角が102°以上を撥水性が良好である状態を示す「○」とし、凸凹形状が形成された基材表面に対する水滴の接触角が100°以下を撥水性が劣る状態を示す「×」として評価した。表1から明らかなように、本件発明の条件を満たす実施例1は、撥水性に優れ「○」であった。ちなみに、実施例1は、凸凹形状が形成された基材表面(コーティング層形成前)に対する水滴の接触角が104°であった。 In Table 1 and Table 2, the contact angle of the water droplet with respect to the substrate surface on which the uneven shape is formed is 102 ° or more, “◯” indicating a state of good water repellency, and the surface of the substrate on which the uneven shape is formed. A contact angle of water droplets of 100 ° or less was evaluated as “x” indicating a state of poor water repellency. As is apparent from Table 1, Example 1, which satisfies the conditions of the present invention, was excellent in water repellency and was “◯”. Incidentally, in Example 1, the contact angle of water droplets with respect to the surface of the substrate on which the uneven shape was formed (before forming the coating layer) was 104 °.
また、表2より、コーティング層形成後の実施例1〜4は、全て撥水性に優れ「○」であった。これに対し、コーティング層形成後の比較例1、2は、全て撥水性が劣り「×」となった。ちなみに、凸凹形状が形成された基材表面に対する水滴の接触角は、実施例1が120°、実施例2が125°、実施例3が118°、実施例4が128°、比較例1が100°、比較例2が100°であった。この基材表面に対する水滴の接触角の測定結果から明らかなように、実施例1〜4は、全般に高い接触角が得られ、高い撥水性を有している。これに対して、比較例1、2は、十分な撥水性が得られているとは言えない。 Moreover, from Table 2, Examples 1-4 after coating layer formation were all excellent in water repellency, and were "(circle)". On the other hand, Comparative Examples 1 and 2 after the formation of the coating layer were all poor in water repellency and were “x”. Incidentally, the contact angle of the water droplet with respect to the surface of the substrate on which the uneven shape is formed is 120 ° in Example 1, 125 ° in Example 2, 118 ° in Example 3, 128 ° in Example 4, and Comparative Example 1 100 ° and Comparative Example 2 were 100 °. As is apparent from the measurement results of the contact angle of water droplets on the surface of the substrate, Examples 1 to 4 generally have high contact angles and have high water repellency. On the other hand, Comparative Examples 1 and 2 cannot be said to have sufficient water repellency.
なお、実施例1〜4、及び比較例1,2について、日本電色工業株式会社製ヘーズメーターNDH2000(光源:ハロゲンランプ)を用いて全光線透過率を測定したところ、実施例1〜4の透過率は、全て90%以上の結果が得られた。これに対し、比較例1,2の透過率は、全て84%以下となり、低い透過率が得られた。この結果から、本件発明に係る撥水性面形成方法によれば、例え基材がガラス材であったとしても、撥水性の向上が十分に図られ、且つ、視認性の低下を招かない。 In addition, about Examples 1-4 and Comparative Examples 1 and 2, when the total light transmittance was measured using the Nippon Denshoku Industries Co., Ltd. haze meter NDH2000 (light source: halogen lamp), Examples 1-4 were used. All the transmittances were 90% or more. On the other hand, the transmittances of Comparative Examples 1 and 2 were all 84% or less, and a low transmittance was obtained. From this result, according to the water repellent surface forming method according to the present invention, even if the base material is a glass material, the water repellency is sufficiently improved and the visibility is not lowered.
本件発明に係る撥水性面形成方法によれば、高い撥水性を安定して実現することの出来る撥水性面を簡易に形成することが出来る。また、本件発明に係る撥水性面形成方法は、量産性が高く、製造コストを低減させることが出来る。従って、本件発明に係る撥水性面形成方法を用いて形成された撥水性面を備えた撥水性物品は、安価でありながらも優れた撥水性を有するものとなる。従って、本件発明に係る撥水性物品は、防滴、防汚、防雪等に優れるため、自動車灯体のカバーレンズ、ヘルメットシールド、眼鏡レンズ等の様々な物品に好適に用いることが出来る。 According to the water repellent surface forming method according to the present invention, a water repellent surface capable of stably realizing high water repellency can be easily formed. Moreover, the water-repellent surface forming method according to the present invention has high mass productivity and can reduce the manufacturing cost. Therefore, the water-repellent article having the water-repellent surface formed by using the water-repellent surface forming method according to the present invention has excellent water repellency while being inexpensive. Therefore, since the water-repellent article according to the present invention is excellent in drip-proofing, antifouling, snowproofing, etc., it can be suitably used for various articles such as automobile lamp cover lenses, helmet shields, and spectacle lenses.
1 基材撥水性面
2 基材
3 カップリング剤からなる層
4 フロロシラン化合物及び/又はメタロハイドロジェン変性シリコンからなる層
5 コーティング層
10 水滴
11 空隙
DESCRIPTION OF
Claims (6)
当該基材表面に、十点平均粗さ(Rzjis)が0.2μm〜120μm、粗さ曲線の凹凸の平均間隔(Sm)が0.5μm〜35μm、最大高さ粗さ(Rz)が0.1μm〜40μmである凸凹形状を形成することを特徴とする撥水性面形成方法。 A method of forming a water-repellent surface by performing an etching process on a substrate,
On the surface of the base material, the ten-point average roughness (Rzjis) is 0.2 μm to 120 μm, the average interval (Sm) of the unevenness of the roughness curve is 0.5 μm to 35 μm, and the maximum height roughness (Rz) is 0.00. A method for forming a water-repellent surface, comprising forming an uneven shape having a size of 1 to 40 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015120667A JP2017001000A (en) | 2015-06-15 | 2015-06-15 | Method for forming water-repellent surface and water-repellent article with water-repellent surface formed using the same method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015120667A JP2017001000A (en) | 2015-06-15 | 2015-06-15 | Method for forming water-repellent surface and water-repellent article with water-repellent surface formed using the same method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017001000A true JP2017001000A (en) | 2017-01-05 |
Family
ID=57753070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015120667A Pending JP2017001000A (en) | 2015-06-15 | 2015-06-15 | Method for forming water-repellent surface and water-repellent article with water-repellent surface formed using the same method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017001000A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020080281A1 (en) * | 2018-10-15 | 2020-04-23 | 東京エレクトロン株式会社 | Method for forming silicon film on substrate having fine pattern |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996004123A1 (en) * | 1994-07-29 | 1996-02-15 | Wilhelm Barthlott | Self-cleaning surfaces of objects and process for producing same |
JPH10156282A (en) * | 1996-11-28 | 1998-06-16 | Seimi Chem Co Ltd | Water-oil repellent metallic material |
JPH10309768A (en) * | 1991-01-23 | 1998-11-24 | Matsushita Electric Ind Co Ltd | Article with water repellent oil repellent film, and its manufacture |
JP2004017591A (en) * | 2002-06-19 | 2004-01-22 | Dainippon Printing Co Ltd | Highly water-repellent laminate |
JP2006083244A (en) * | 2004-09-15 | 2006-03-30 | Citizen Seimitsu Co Ltd | Molded article having extremely water-repelling surface and method for producing the same |
JP2008279398A (en) * | 2007-05-14 | 2008-11-20 | Kagawa Gakusei Venture:Kk | Member having water-repellent and oil-repellent antifouling property surface, and manufacturing method of the water-repellent and oil-repellent antifouling property surface |
-
2015
- 2015-06-15 JP JP2015120667A patent/JP2017001000A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10309768A (en) * | 1991-01-23 | 1998-11-24 | Matsushita Electric Ind Co Ltd | Article with water repellent oil repellent film, and its manufacture |
WO1996004123A1 (en) * | 1994-07-29 | 1996-02-15 | Wilhelm Barthlott | Self-cleaning surfaces of objects and process for producing same |
JPH10156282A (en) * | 1996-11-28 | 1998-06-16 | Seimi Chem Co Ltd | Water-oil repellent metallic material |
JP2004017591A (en) * | 2002-06-19 | 2004-01-22 | Dainippon Printing Co Ltd | Highly water-repellent laminate |
JP2006083244A (en) * | 2004-09-15 | 2006-03-30 | Citizen Seimitsu Co Ltd | Molded article having extremely water-repelling surface and method for producing the same |
JP2008279398A (en) * | 2007-05-14 | 2008-11-20 | Kagawa Gakusei Venture:Kk | Member having water-repellent and oil-repellent antifouling property surface, and manufacturing method of the water-repellent and oil-repellent antifouling property surface |
WO2008143064A1 (en) * | 2007-05-14 | 2008-11-27 | Kazufumi Ogawa | Member having water repellent, oil repellent and anti-fouling surface and method for forming the water repellent, oil repellent and anti-fouling surface |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020080281A1 (en) * | 2018-10-15 | 2020-04-23 | 東京エレクトロン株式会社 | Method for forming silicon film on substrate having fine pattern |
JP2020062580A (en) * | 2018-10-15 | 2020-04-23 | 東京エレクトロン株式会社 | Method of forming silicon film on substrate having fine pattern |
JP7156620B2 (en) | 2018-10-15 | 2022-10-19 | 東京エレクトロン株式会社 | Method for forming silicon film on substrate having fine pattern |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6939573B2 (en) | Translucent structure | |
US9651720B2 (en) | Anti-glare surface treatment method and articles thereof | |
JP5962652B2 (en) | Antireflection glass substrate and method for producing antireflection glass substrate | |
US9279912B2 (en) | Anti-glare glass article and display system | |
TW201337316A (en) | Coated articles including anti-fingerprint and/or smudge-reducing coatings, and/or methods of making the same | |
US20120128963A1 (en) | Superhydrophilic nanostructure | |
US10450225B2 (en) | Low reflective and superhydrophobic or super water-repellent glasses and method of fabricating the same | |
JP2017001166A (en) | Method for forming water-repellent surface and water-repellent article with water-repellent surface formed using the same method | |
WO2010101250A1 (en) | Fine structure, process for producing the fine structure, and automotive component comprising the fine structure | |
JP6171801B2 (en) | Antifouling body and method for producing the same | |
JP2015530298A (en) | Anti-fogging nano-textured surface and articles containing the same | |
KR101451790B1 (en) | Methods for fabrication of stable ultra-low reflectivive surface and the ultra-low reflectivive surface itself | |
WO2014061615A1 (en) | Production method for glass having anti-reflective properties, and glass having anti-reflective properties | |
KR20120024542A (en) | Method for producing a reflection-reduced pane | |
JPWO2017056405A1 (en) | Glass plate with coating film and method for producing the same | |
WO2016060165A1 (en) | Transparent member, method for manufacturing transparent member and method for evaluating degree of soiling of surface of transparent member | |
JP2017001000A (en) | Method for forming water-repellent surface and water-repellent article with water-repellent surface formed using the same method | |
JPH04359031A (en) | Water-and-oil repellent film | |
JP7305982B2 (en) | Concavo-convex glass substrate and manufacturing method thereof | |
JP2017056592A (en) | Droplet holding sheet | |
Yasuda et al. | Fabrication of Superhydrophobic Nanostructures on Glass Surfaces Using Hydrogen Fluoride Gas | |
KR102000413B1 (en) | Automobile parts provided with an antifouling structure and the antifouling structure | |
US11994651B2 (en) | Anti-reflective transparent oleophobic surfaces and methods of manufacturing thereof | |
JP2015074588A (en) | Method for producing hydrophilized glass substrate | |
CN108641113A (en) | Antifog film, preparation method and application, the application of fog-proof adhesive film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180607 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190402 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20191002 |