JP2017093171A - コアレスリニアモータ、コアレスリニアモータ電機子およびその製造方法 - Google Patents
コアレスリニアモータ、コアレスリニアモータ電機子およびその製造方法 Download PDFInfo
- Publication number
- JP2017093171A JP2017093171A JP2015221135A JP2015221135A JP2017093171A JP 2017093171 A JP2017093171 A JP 2017093171A JP 2015221135 A JP2015221135 A JP 2015221135A JP 2015221135 A JP2015221135 A JP 2015221135A JP 2017093171 A JP2017093171 A JP 2017093171A
- Authority
- JP
- Japan
- Prior art keywords
- linear motor
- armature
- armature coil
- coreless linear
- ring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Linear Motors (AREA)
Abstract
【課題】コアレスリニアモータにおける推力リップルを低減する。【解決手段】反発し合う対向磁極の複数の永久磁石を有する円柱状の固定子と、前記固定子の外周を囲む電機子コイルを有する中空円筒状の可動子と、を備えるコアレスリニアモータであって、前記電機子コイルの移動方向の少なくとも一端に非磁性金属からなるリングを配置したことを特徴とするコアレスリニアモータ。【選択図】図3
Description
本発明は、コアレスリニアモータ、コアレスリニアモータ電機子およびその製造方法に関する。
リニアモータは、電磁誘導により作動するため、ボールねじ機構のような機械作動に比べて、小型で高速動作が可能である。
特許文献1は、ステンレス製の巻線固定枠の両端部を傾斜させて成型したことで、巻線固定枠に発生する渦電流による粘性制動力のリップルを低減するものである。特許文献2は、振動を減衰させるような渦電流を渦電流部材に発生させるようにしたものである。このように、渦電流を抑制する技術、有効利用する技術が知られている。
反発し合う対向磁極配置の永久磁石を有する円柱状の固定子と、固定子の外周を囲む電機子コイルを有する可動子と、を備えるコアレスリニアモータは、高速・高精度の運転に適している。コアレスリニアモータにおいては、大推力と低推力リップル(脈動成分)とが要求される。
しかしながら、大推力と低推力リップルとを両立させることは難しかった。以下に、コアレスモータにおいて、同じ巻数の三相コイル(U,V,W)がそれぞれ1つずつ設けられ、Y結線の場合の相互インダクタンスという観点から考察を行う。
回転モータにおける相互インダクタンスの検討結果を、図9(a)を参照しながら説明する。
巻線の配置が円筒状になるため、以下の式に示すように、U/V/Wの相互インダクタンスは同じである。
Mu/v(Mv/u)=Mv/w(Mw/v)=Mw/u(Mu/w)=M
各線間インダクタンスLu-v、Lv-w、Lw-uは同じである。
U/V/W相の自己インダクタンスをそれぞれLu、Lv、Lwとすると、以下の式に示すように、各線間或いはU/V/W各相のインダクタンスは同じである。
Lu-v=Lu+Lv-Mu/v-Mv/u=2L-2M、同様にLv-w=Lw-u=2L-2M
リニアモータにおける相互インダクタンスの検討結果を、図9(b)を参照しながら説明する。
図9(b)に示すように、U相とW相がそれぞれ端部に配置するため、相互インダクタンスが異なる。すなわち、以下の式に示すように、U/V/Wの相互インダクタンスは、距離が遠くなるほど相互インダクタンスが小さくなる。
Mu/v(Mv/u)=Mv/w(Mw/v)>Mw/u(Mu/w)
従って、リニアモータ構造に起因した線間或いは各相のインダクタンスは以下の通りのアンバランスを有する。
Lu-v=U/V相自己インダクタンスLu+Lv-2Mu/v=2L-2Mu/v
Lv-w=V/W相自己インダクタンスLv+Lw-2Mv/w=2L-2Mv/w
Lw-u=W/U相自己インダクタンスLw+Lu-2Mw/u=2L-2Mw/u
従って、Lu-v=Lv-w<Lu-wである。
Lv-w=V/W相自己インダクタンスLv+Lw-2Mv/w=2L-2Mv/w
Lw-u=W/U相自己インダクタンスLw+Lu-2Mw/u=2L-2Mw/u
従って、Lu-v=Lv-w<Lu-wである。
表1には、試作したモータのインダクタンスの測定結果の一例を示す。
ここで、Lu-vとLv−wがほぼ同じ値になるが,Lw-uはLu-v(Lv-w)と比べるとかなり大きな値になった。また、各線間インダクタンスのアンバランス(%)は、測定した線間インダクタンス値を、インダクタンスの平均値0.7045で除算した値であり、この値が大きいほど、インダクタンスのアンバランスが大きい。
表1に示すように、リニアモータでは、U相とW相との間の距離が大きいため、アンバランスが大きくなることがわかる。このようなアンバランスに起因して、推力リップルが大きくなる。
本発明は、コアレスリニアモータにおける推力リップルを低減することを目的とする。
本発明の一観点によれば、反発し合う対向磁極の複数の永久磁石を有する円柱状の固定子と、前記固定子の外周を囲む電機子コイルを有する中空円筒状の可動子と、を備えるコアレスリニアモータであって、前記電機子コイルの移動方向の少なくとも一端に非磁性金属からなるリングを配置したことを特徴とするコアレスリニアモータが提供される。
移動方向の少なくとも一端とは、中空円筒の電機子の側面(端面)のことである。リングは、前記中空円筒の側面と対面するように設ける。
また、本発明は、反発し合う対向磁極の複数の永久磁石を有する円柱状の固定子と、前記固定子の外周を囲む電機子コイルを有する中空円筒状の可動子と、を備えるコアレスリニアモータ電機子であって、前記電機子コイルの移動方向の少なくとも一端に非磁性金属からなるリングを配置したことを特徴とするコアレスリニアモータ電機子である。
本発明の他の観点によれば、反発し合う対向磁極の複数の永久磁石を有する円柱状の固定子と、前記固定子の外周を囲む電機子コイルを有する中空円筒状の可動子と、を備えるコアレスリニアモータ電機子の製造方法であって、前記電機子コイルの移動方向の両端に非磁性金属からなるリングを配置し、両端の前記リング間にわたって、前記リングと前記電機子コイルとを連結体により連結し、樹脂成型により前記電機子コイルと前記リングと前記連結体とを一体成型することを特徴とするコアレスリニアモータの電機子の製造方法が提供される。
本発明によれば、コアレスリニアモータにおける推力リップルを低減することができる。
以下に、本発明の一実施の形態によるコアレスリニアモータおよびリニアモータ電機子について、図面を参照しながら詳細に説明する。
本発明の実施の形態によるリニアモータは、シャフト型リニアモータと呼ばれる構造を有している。以下に示すシャフト型リニアモータは、ビルトインタイプと呼ばれ、出荷状態では、リニアエンコーダや可動子を支持するリニアガイドは取り付けられず、出荷した後に、リニアエンコーダやリニアガイドが取り付けられる。
(第1の実施の形態)
図1は、本発明の第1の実施の形態によるシャフト型のコアレスリニアモータの出荷状態における外観構成例を示す斜視図である。図2は、シャフト型のコアレスリニアモータの出荷状態における外観構成例を示す側面図、正面図および上面図である。図3は、シャフト型のコアレスリニアモータの出荷状態における内部構成例を示す側面図および側面図におけるA−A線に沿う正面の断面図、および、そのB−B線に沿う側断面図である。
図1は、本発明の第1の実施の形態によるシャフト型のコアレスリニアモータの出荷状態における外観構成例を示す斜視図である。図2は、シャフト型のコアレスリニアモータの出荷状態における外観構成例を示す側面図、正面図および上面図である。図3は、シャフト型のコアレスリニアモータの出荷状態における内部構成例を示す側面図および側面図におけるA−A線に沿う正面の断面図、および、そのB−B線に沿う側断面図である。
コアレスリニアモータ1は、固定子(励磁部)3と、電機子(可動子)5と、フレーム部を構成する端面板7a、7b、磁性ヨーク11および磁性カバー15を有する。
電機子5は、中空円筒状の構造を有しており、中空内に固定子3が挿入されている。
固定子3は、反発し合う対向磁極配置の円柱磁石31の間に磁性スペーサ33bを挟み、両端にも磁性スペーサ33a、33cを配置した構造を有する。そして、円柱磁石31の外周部は、ステンレスパイプ25により覆われている。円柱磁石31は、永久磁石を用いることができる。また、磁性スペーサ33a、33b、33cにより、磁束密度を向上させるとともに、使用する磁石量を減らすことができる。
端面板7a、7bは、固定子3の両端に設けられ、固定子3と端面板7a、7bとは、それぞれネジ21a、21bにより固定される。磁性ヨーク11は、固定子3および電機子5の下方に配置される。磁性ヨーク11は、例えばネジにより端面板7a、7bに取り付けられる。
磁性カバー15は、固定子3および電機子5の上方に配置される。磁性カバー15は、例えばネジにより端面板7a、7bに取り付けられる。
電機子5の外側に、円弧状の磁性ヨーク11と磁性カバー15とを設けることで、電機子5の電機子コイル51に鎖交する磁束量を増やし、モータの大推力化を図ることができる。
磁性ヨーク11と磁性カバー15とは、図3(右図)の断面図に示すように、固定子3および電機子5と同心円の円弧(11a、15a)をその内面に有する。電機子5の円筒状の電機子コイル51が固定子3の円柱磁石を囲み,電機子5の円筒状の電機子コイル51の外側に円弧状の磁性体(磁性ヨーク11、磁性カバー15)を設けて磁気ギャップを最短にすることにより、固定子3の磁石からの磁束を有効に利用することができ、モータ推力を向上させることができる。
図4は、電機子5の構造の詳細を示す図であり、図4(a)は側断面図であり、図4(b)は図4(a)のA−O−O−A線に沿った断面図である。
電機子5は、円筒状の電機子コイル51と、電機子コイル51の外周面を覆うように設けられたフレーム53とを有している。さらに、本実施の形態における電機子5には、円筒の延在する方向の両端部に、非磁性金属により形成されたリング55a、55bが設けられている。リング55a、55bは、電機子5の移動方向の少なくとも一端に設けられる。すなわち、リング55a、55bは、中空円筒の電機子5の側面(端面)に、電機子5の中空円筒の側面と対面するように接触させて設けても良い。尚、リング55a、55bの側面とコイル51の側面と接触していてもいなくても良い。但し、リング55a、55bがコイル51に近いほど、渦電流の効果が大きい。
尚、「電機子コイル51の両端部」の端とは、隣り合いながら連続的に配置したコイル群の隣り合うコイルがない端面である。図3、図4では、コイルが3相(U、V、W相)であるため、3個のコイルを示したが、連続的に配置するコイルの数は、3相では3の倍数であれば良い。
このような構造により、リング55a、55bに、電機子コイル51の端部からのもれ磁束に起因する渦電流を流すことで、リニアモータ1における各相のインダクタンスのアンバランスを抑制し、推力リップルを小さくすることができる。
図4に示す電機子5の製造方法の一例について以下に説明する。
まず、アルミニウム製のフレーム(枠)53内にコイル51を挿入し、非磁性金属リング55a、55bを配置する。次いで、フレーム53とコイル51とリング55a、55bとを一体成型する。
図5は、本実施の形態によるリニアモータ1の推力と変位の関係を示す図であり、図5(b)は、電機子コイル51にリングを設けない場合の例、図5(a)は、電機子コイル51にリングを設けた場合の例を示す図である。
表2は表1に対応し、電機子コイル51にリングを設けた場合のインダクタンスとアンバランスとを示す表である。表1と表2とを比較すると、電機子コイル51にリングを設けることで、インダクタンスのアンバランスが小さくなっている。
図5(a)に示すように、リング55a、55bを設けると、リング55a、55bを設けない場合に観測されていた推力リップルが小さくなっていることがわかる。リング55a、55bを設けることで推力リップルが小さくなった理由は、表2に示すように、インダクタンスのアンバランスが小さくなったことに起因すると考えられる。
以上のように、本実施の形態によるリニアモータでは、電機子コイル51の少なくとも一端、好ましくは両端に非磁性金属からなるリングを配置することで、インダクタンスのアンバランスを低減し、推力リップルを抑制することができる。
尚、非磁性金属には、例えば、銅、アルミニウム、真鍮などがあるが、アルミニウムを用いるとインダクタンスのアンバランスを効果的に解消することができる。また、アルミニウムは、軽量であるため、モータの軽量化にも寄与する。アルミニウムのリング55a、55bは、電機子コイル51の両端面に接触させて、配置することが好ましい。リング55a、55bの位置が、電機子コイル51の端面に近いほど、渦電流によるアンバランス低減の効果が大きいためである。
リング55a、55bの形状(幅)は、以下の式のように、電機子コイル51の幅とほぼ同じにすると良い。
電機子コイル幅=電機子コイルの外径−電機子コイルの内径
電機子コイル幅=電機子コイルの外径−電機子コイルの内径
リング55a、55bの厚さは、0.5mm〜5.0mm程度が好ましい。この範囲よりも薄い場合には、渦電流が流れにくくアンバランスの改善効果が小さい。また、この範囲より厚くしても、渦電流の増加はあまり期待できないため、改善効果があまり大きくならない。
尚、本実施の形態では、コイルの両端にリングを設けたが、コイルの端部の一方に配置してもある程度の効果が得られる。
以下に、電機子コイルの端面に設けるリングの構造について、より具体的に説明する。
[実施例1]
図6(a)に示すように、実施例1に係る電機子5は、アルミニウムのリング55a、55bを、電機子5の電機子コイルと一体成型する基本的な実施例である。アルミニウムのリング55a、55bを、電機子5の電機子コイル、電機子5の電機子コイルの外側に設けたフレーム53とともに樹脂成型で一体化することにより形成することができる。尚、樹脂成形はモールドにより行い、樹脂材料としては熱硬化性の材料を用いることができる。
図6(a)に示すように、実施例1に係る電機子5は、アルミニウムのリング55a、55bを、電機子5の電機子コイルと一体成型する基本的な実施例である。アルミニウムのリング55a、55bを、電機子5の電機子コイル、電機子5の電機子コイルの外側に設けたフレーム53とともに樹脂成型で一体化することにより形成することができる。尚、樹脂成形はモールドにより行い、樹脂材料としては熱硬化性の材料を用いることができる。
[実施例2]
図6(b)に示すように、実施例2に係る電機子5は、実施例1と同様に、アルミニウムのリング55a、55bを、電機子5の電機子コイルと一体成型する。リング55aにアースピン用の導通穴57を設けている。
図6(b)に示すように、実施例2に係る電機子5は、実施例1と同様に、アルミニウムのリング55a、55bを、電機子5の電機子コイルと一体成型する。リング55aにアースピン用の導通穴57を設けている。
[実施例3]
図6(c)に示すように、実施例3に係る電機子5は、折り返し59をリング55aに追加することで、一体成型時に、より強固な固定が可能である。
図6(c)に示すように、実施例3に係る電機子5は、折り返し59をリング55aに追加することで、一体成型時に、より強固な固定が可能である。
(第2の実施の形態)
次に、本発明の第2の実施の形態について説明する。第2の実施の形態においては、電機子(可動子)5を、第1の実施の形態とは異なる構成とした。図7は、本実施の形態による電機子コイルの一構成例を示す斜視図である。図8は、図7に示す電機子の構造の詳細を示す図であり、両側面図、断面図および上面図である。
次に、本発明の第2の実施の形態について説明する。第2の実施の形態においては、電機子(可動子)5を、第1の実施の形態とは異なる構成とした。図7は、本実施の形態による電機子コイルの一構成例を示す斜視図である。図8は、図7に示す電機子の構造の詳細を示す図であり、両側面図、断面図および上面図である。
図7および図8に示すように、本実施の形態による電機子5は、円筒状のコイル51と、コイル51の端部、好ましくは両端に設けられたアルミニウム製のリング57a、57bと、リング57aからリング57bまでの間にわたって、リングとコイル51とを一括して連結するアルミニウム製の連結体(連結バー)81a、81bとを有する。連結は、仮止め状態を維持できれば良い。連結バー81a、81bと、リング57a、57bと、コイル51とは、例えば樹脂75により一体成形される。これにより、リング57a、57bと電機子コイル51と連結バー81a、81bにより画定される空間内に樹脂75などの接着剤が充填される。この時点で、連結状態が仮止めから接着剤による本固定に移行する。
尚、連結バーは1つでも良いが、剛性などの面から考えると図7および図8に示すように、2箇所で支持、連結した方が好ましい。ここで、連結バー81a、81bの機能は、第1の実施の形態におけるフレーム53の機能に相当する。
このような構造により、リング57a、57bに、電機子コイル51の端部からのもれ磁束に起因する渦電流を流すことで、リニアモータ1における各相のインダクタンスのアンバランスを抑制し、推力リップルを小さくすることができる。
電機子5の製造方法は、例えば以下の通りである。
まず、コイル51とリング57a、57bとを、連結バー81a、81bにより、連結する。より詳細には、コイル51とリング57a、57bとを、リング57a、57bの外周面に形成された凹部57c、57dと、凹部57c、57dと係合する連結バーの係合部81c、81dとを係合させることで連結する。
まず、コイル51とリング57a、57bとを、連結バー81a、81bにより、連結する。より詳細には、コイル51とリング57a、57bとを、リング57a、57bの外周面に形成された凹部57c、57dと、凹部57c、57dと係合する連結バーの係合部81c、81dとを係合させることで連結する。
この状態で、組み立てた電機子5を図示しないモールド治具(金型)の中に入れて、樹脂成型により一体化する。
第1の実施の形態で説明したアルミフレーム枠53の中にコイル51を挿入し、フレーム枠53とコイル51とを一体成型する方法では、フレーム枠53の内外径を同軸にして工程を進める必要があるため、製造工程が複雑になる。
一方、本実施の形態による製造方法によれば、アルミニウム製のリング57a、57bと係合する連結バー81a、81bにより係合させた状態でング57a、57bとコイル51とを一体成形するため、電機子5の製造工程が簡単になる。
また、本実施の形態では、電機子コイル51の両端に配置するアルミニウム製のリング57aおよび57b、両側に設ける連結バー81a、81bは同じ形状の部品であるため、ともに部品の共通化ができる。また、樹脂をこの空間内に充填することによりアルミニウムの使用量を削減することができる。従って、電機子5が軽量になる。さらに、鋳込み樹脂成型により電機子5の高剛性化を図ることができる。
さらに、本実施の形態による製造方法では、樹脂モールド工程の前に、図7に示す状態においてリード線を処理できるため、第1の実施の形態による製造方法と比較して、リード線の処理がしやすいという利点がある。
上記の実施の形態において、添付図面に図示されている構成等については、これらに限定されるものではなく、本発明の効果を発揮する範囲内で適宜変更することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。
また、本発明の各構成要素は、任意に取捨選択することができ、取捨選択した構成を具備する発明も本発明に含まれるものである。
本発明は、コアレスリニアモータに利用可能である。
1…シャフト型のコアレスリニアモータ、3…固定子(円柱磁石、励磁部)、5…電機子(可動子)、7a、7b…端面板、11…磁性ヨーク、15…磁性カバー、33a、33b、33c…磁性スペーサ、51…円筒状の電機子コイル、55a、55b…リング、57a、57b…リング、57c、57d…凹部、81a、81b…連結体(連結バー)。
Claims (12)
- 反発し合う対向磁極の複数の永久磁石を有する円柱状の固定子と、前記固定子の外周を囲む電機子コイルを有する中空円筒状の可動子と、を備えるコアレスリニアモータであって、
前記電機子コイルの移動方向の少なくとも一端に非磁性金属からなるリングを配置したことを特徴とするコアレスリニアモータ。 - 前記リングを、前記電機子コイルの両端に設けることを特徴とする請求項1に記載のコアレスリニアモータ。
- 前記非磁性金属は、アルミニウムであることを特徴とする請求項1又は2に記載のコアレスリニアモータ。
- 前記リングの厚さは、0.5mmから5.0mmの間であることを特徴とする請求項3に記載のコアレスリニアモータ。
- 前記固定子において、前記複数の永久磁石間に磁性スペーサが設けられていることを特徴とする請求項1から4までのいずれか1項に記載のコアレスリニアモータ。
- さらに、前記電機子コイルの外側に、円弧状の内面を有する磁性体を配置したことを特徴とする請求項1から5までのいずれか1項に記載のコアレスリニアモータ。
- 前記リングは、前記電機子コイルの両端に設けられており、
前記電機子コイルの両端に設けられた前記リング間にわたって、前記リングと前記電機子コイルとを連結する連結体を有していることを特徴とする請求項1に記載のコアレスリニアモータ。 - 前記リングと前記電機子コイルと前記連結体とにより画定される空間内に樹脂が充填されていることを特徴とする請求項7に記載のコアレスリニアモータ。
- 反発し合う対向磁極の複数の永久磁石を有する円柱状の固定子と、前記固定子の外周を囲む電機子コイルを有する中空円筒状の可動子と、を備えるコアレスリニアモータ電機子であって、
前記電機子コイルの移動方向の少なくとも一端に非磁性金属からなるリングを配置したことを特徴とするコアレスリニアモータ電機子。 - 前記リングは、前記電機子コイルの両端に設けられており、
前記電機子コイルの両端に設けられた前記リング間にわたって、前記リングと前記電機子コイルとを連結する連結体を有していることを特徴とする請求項9に記載のコアレスリニアモータ電機子。 - 前記リングと前記電機子コイルと前記連結体により画定される空間内に樹脂が充填されていることを特徴とする請求項10に記載のコアレスリニアモータ電機子。
- 反発し合う対向磁極の複数の永久磁石を有する円柱状の固定子と、前記固定子の外周を囲む電機子コイルを有する中空円筒状の可動子と、を備えるコアレスリニアモータ電機子の製造方法であって、
前記電機子コイルの移動方向の両端に非磁性金属からなるリングを配置し、
両端の前記リング間にわたって、前記リングと前記電機子コイルとを連結体により連結し、
樹脂成型により前記電機子コイルと前記リングと前記連結体とを一体成型することを特徴とするコアレスリニアモータの電機子の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015221135A JP2017093171A (ja) | 2015-11-11 | 2015-11-11 | コアレスリニアモータ、コアレスリニアモータ電機子およびその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015221135A JP2017093171A (ja) | 2015-11-11 | 2015-11-11 | コアレスリニアモータ、コアレスリニアモータ電機子およびその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017093171A true JP2017093171A (ja) | 2017-05-25 |
Family
ID=58771720
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015221135A Pending JP2017093171A (ja) | 2015-11-11 | 2015-11-11 | コアレスリニアモータ、コアレスリニアモータ電機子およびその製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017093171A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019115171A (ja) * | 2017-12-22 | 2019-07-11 | 日本パルスモーター株式会社 | リニアモータの可動子、およびその製造方法 |
-
2015
- 2015-11-11 JP JP2015221135A patent/JP2017093171A/ja active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019115171A (ja) * | 2017-12-22 | 2019-07-11 | 日本パルスモーター株式会社 | リニアモータの可動子、およびその製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201334371A (zh) | 電動機械 | |
US9059626B2 (en) | Electric machine with linear mover | |
JP5511713B2 (ja) | リニアモータ | |
Zhang et al. | Mechanical construction and analysis of an axial flux segmented armature torus machine | |
JP5527426B2 (ja) | リニアモータ | |
JP4775760B2 (ja) | シリンダ形リニアモータおよびそのガイド装置 | |
EP2819283A1 (en) | Linear motor | |
JP5972876B2 (ja) | リニアモータ | |
JP2010041761A (ja) | リニアモータ | |
JP2024138536A (ja) | 回転電機 | |
JP5415161B2 (ja) | リニア同期モータ | |
US10778077B2 (en) | Synchronous linear motor | |
JP2017093171A (ja) | コアレスリニアモータ、コアレスリニアモータ電機子およびその製造方法 | |
JP5589507B2 (ja) | リニア駆動装置の可動子及び固定子 | |
JP2013138592A (ja) | 磁石部材を備えるリニアモータ及びこの磁石部材の製造方法 | |
JP2012100407A (ja) | リニアアクチュエータ | |
JP2010098880A (ja) | 円筒形リニアモータ | |
JP4580847B2 (ja) | リニアモータユニット及びその組み合わせ方法 | |
KR101460400B1 (ko) | 리니어 모터 | |
US20130002053A1 (en) | Slotless motors with grooved core | |
US20230155431A1 (en) | Motor | |
JP6070329B2 (ja) | 回転電機用ステータコア | |
JP5991841B2 (ja) | 円筒型リニアモータ | |
JP2009011157A (ja) | リニアモータユニット及びその組み合わせ方法 | |
CN110120714B (zh) | 外转子型旋转电机 |