JP2017092018A - Overheated steam treatment device and operation method therefor - Google Patents
Overheated steam treatment device and operation method therefor Download PDFInfo
- Publication number
- JP2017092018A JP2017092018A JP2016032928A JP2016032928A JP2017092018A JP 2017092018 A JP2017092018 A JP 2017092018A JP 2016032928 A JP2016032928 A JP 2016032928A JP 2016032928 A JP2016032928 A JP 2016032928A JP 2017092018 A JP2017092018 A JP 2017092018A
- Authority
- JP
- Japan
- Prior art keywords
- superheated steam
- flow path
- temperature
- path forming
- water vapor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 9
- 239000004020 conductor Substances 0.000 claims abstract description 165
- 230000003647 oxidation Effects 0.000 claims abstract description 96
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 96
- 238000010438 heat treatment Methods 0.000 claims abstract description 83
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 88
- 238000003860 storage Methods 0.000 claims description 35
- 230000006698 induction Effects 0.000 claims description 30
- 238000001514 detection method Methods 0.000 claims description 19
- 229910052751 metal Inorganic materials 0.000 claims description 15
- 239000002184 metal Substances 0.000 claims description 15
- 230000007246 mechanism Effects 0.000 claims description 10
- 230000015572 biosynthetic process Effects 0.000 claims description 9
- 229910052741 iridium Inorganic materials 0.000 claims description 9
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 9
- 229910000575 Ir alloy Inorganic materials 0.000 claims description 5
- 230000006866 deterioration Effects 0.000 abstract description 2
- 239000012530 fluid Substances 0.000 description 18
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 15
- 238000002844 melting Methods 0.000 description 15
- 230000008018 melting Effects 0.000 description 15
- 239000001301 oxygen Substances 0.000 description 15
- 229910052760 oxygen Inorganic materials 0.000 description 15
- 238000012545 processing Methods 0.000 description 15
- 239000000463 material Substances 0.000 description 13
- 229920006395 saturated elastomer Polymers 0.000 description 12
- 238000004364 calculation method Methods 0.000 description 10
- 238000013500 data storage Methods 0.000 description 8
- 230000009467 reduction Effects 0.000 description 7
- 238000012937 correction Methods 0.000 description 5
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 239000011733 molybdenum Substances 0.000 description 4
- 229910052715 tantalum Inorganic materials 0.000 description 4
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 239000010937 tungsten Substances 0.000 description 4
- 206010037660 Pyrexia Diseases 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000005485 electric heating Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 229910001026 inconel Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000011017 operating method Methods 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 230000007723 transport mechanism Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D7/00—Forming, maintaining, or circulating atmospheres in heating chambers
- F27D7/02—Supplying steam, vapour, gases, or liquids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D7/00—Forming, maintaining, or circulating atmospheres in heating chambers
- F27D7/06—Forming or maintaining special atmospheres or vacuum within heating chambers
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/34—Methods of heating
- C21D1/42—Induction heating
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/0006—Details, accessories not peculiar to any of the following furnaces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D11/00—Arrangement of elements for electric heating in or on furnaces
- F27D11/06—Induction heating, i.e. in which the material being heated, or its container or elements embodied therein, form the secondary of a transformer
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D21/00—Arrangements of monitoring devices; Arrangements of safety devices
- F27D21/0014—Devices for monitoring temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D7/00—Forming, maintaining, or circulating atmospheres in heating chambers
- F27D7/04—Circulating atmospheres by mechanical means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D7/00—Forming, maintaining, or circulating atmospheres in heating chambers
- F27D7/02—Supplying steam, vapour, gases, or liquids
- F27D2007/023—Conduits
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Power Engineering (AREA)
- Resistance Heating (AREA)
- Apparatus For Disinfection Or Sterilisation (AREA)
- Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
- Control Of Resistance Heating (AREA)
- Furnace Details (AREA)
Abstract
Description
本発明は、水から過熱水蒸気を生成する過熱水蒸気生成装置及び当該過熱水蒸気生成装置を用いた処理方法に関するものである。 The present invention relates to a superheated steam generator that generates superheated steam from water and a treatment method using the superheated steam generator.
近年、過熱水蒸気を用いて、被処理物の洗浄、乾燥又は殺菌を行う過熱水蒸気処理装置が考えられている。 In recent years, a superheated steam treatment apparatus for cleaning, drying, or sterilizing an object to be treated using superheated steam has been considered.
この過熱水蒸気処理装置は、特許文献1に示すように、過熱水蒸気を生成する過熱装置と、当該過熱装置より生成された過熱水蒸気が供給される熱処理炉とを備え、当該熱処理炉に収容された被処理物を洗浄、乾燥又は殺菌するように構成されている。 As shown in Patent Document 1, the superheated steam treatment apparatus includes a superheater that generates superheated steam and a heat treatment furnace to which the superheated steam generated from the superheater is supplied, and is accommodated in the heat treatment furnace. The workpiece is configured to be washed, dried or sterilized.
この処理装置では、前記過熱装置により生成された過熱水蒸気を噴出するスチームライン(導入管)を熱処理炉の内部に設けている。 In this processing apparatus, a steam line (introduction pipe) for ejecting superheated steam generated by the superheater is provided inside the heat treatment furnace.
ここで、熱処理炉の内部が水蒸気又は過熱水蒸気で充満されている状態では、酸素が存在しない又は極めて低濃度であるため、スチームラインの酸化による劣化は生じ難い。 Here, in a state where the inside of the heat treatment furnace is filled with water vapor or superheated water vapor, oxygen does not exist or has a very low concentration, so that deterioration due to oxidation of the steam line hardly occurs.
しかしながら、熱処理炉の内部が水蒸気又は過熱水蒸気で充満されていない状態では、高温となっているスチームラインが熱処理炉の内部に残留した大気中の酸素と結合して酸化が進んでしまう。その結果、スチームラインが劣化して、装置寿命の低下を招いてしまう。 However, in a state where the inside of the heat treatment furnace is not filled with steam or superheated steam, the steam line, which is at a high temperature, is combined with oxygen in the atmosphere remaining inside the heat treatment furnace and oxidation proceeds. As a result, the steam line is deteriorated and the life of the apparatus is reduced.
そこで本発明は、上記問題点を解決すべくなされたものであり、高温に加熱された流路形成体の酸化を抑制することをその主たる課題とするものである。 Therefore, the present invention has been made to solve the above-mentioned problems, and its main object is to suppress oxidation of the flow path forming body heated to a high temperature.
すなわち本発明に係る過熱水蒸気生成装置は、内部に流路が形成された導電性材料からなる流路形成体を通電加熱して、前記流路を流れる水蒸気を加熱して過熱水蒸気を生成する過熱水蒸気生成部と、前記流路形成体の一部又は全部が配置され、前記流路形成体により生成された過熱水蒸気が導入される過熱水蒸気収容部とを備え、前記流路形成体は、100℃以上の酸化開始温度を有する導電性材料から形成されており、前記過熱水蒸気生成部は、前記流路形成体の温度を前記酸化開始温度未満の温度と前記酸化開始温度以上の温度とに切替運転可能に構成されている。
ここで、酸化開始温度とは、100℃より高温の温度であり、大気中において導電性材料の酸化が急速に進む温度である。つまり、酸化開始温度未満の温度では、大気中において導電性材料の酸化速度が小さく実質的に無視できる程度であり、酸化開始温度以上の温度では、大気中において導電性材料の酸化速度が大きく酸化により腐食が大きい。
That is, the superheated steam generation device according to the present invention is a superheater that heats and energizes a flow path forming body made of a conductive material having a flow path formed therein, and heats the water vapor flowing through the flow path to generate superheated steam. A water vapor generating section; and a superheated steam containing section into which the superheated steam generated by the flow path forming body is introduced, wherein a part or all of the flow path forming body is disposed. The superheated steam generation unit is configured to switch the temperature of the flow path forming body between a temperature lower than the oxidation start temperature and a temperature higher than the oxidation start temperature. It is configured to be operable.
Here, the oxidation start temperature is a temperature higher than 100 ° C., and is a temperature at which oxidation of the conductive material proceeds rapidly in the atmosphere. In other words, at a temperature lower than the oxidation start temperature, the oxidation rate of the conductive material is small and substantially negligible in the atmosphere, and at a temperature higher than the oxidation start temperature, the oxidation rate of the conductive material is greatly increased in the atmosphere. Corrosion is greater due to
このようなものであれば、100℃以上の酸化開始温度を有する導電性材料から形成された流路形成体の温度を酸化開始温度未満の温度と酸化開始温度以上の温度とに切替運転可能であるので、流路形成体を酸化開始温度未満の温度で運転して過熱水蒸気収容部を水蒸気又は過熱水蒸気で満たし、その後に、流路形成体の温度を酸化開始温度以上の温度で運転すれば、流路形成体が大気中の酸素によって酸化することを防ぐことができる。 If this is the case, the temperature of the flow path forming body formed of the conductive material having an oxidation start temperature of 100 ° C. or higher can be switched between a temperature lower than the oxidation start temperature and a temperature higher than the oxidation start temperature. Therefore, if the flow path forming body is operated at a temperature lower than the oxidation start temperature and the superheated steam container is filled with water vapor or superheated steam, then the flow path forming body is operated at a temperature equal to or higher than the oxidation start temperature. It is possible to prevent the flow path forming body from being oxidized by oxygen in the atmosphere.
具体的には、前記過熱水蒸気生成部は、前記過熱水蒸気収容部に水蒸気又は過熱水蒸気が充満する前は前記流路形成体の温度が前記酸化開始温度未満となるように動作して水蒸気又は過熱水蒸気を前記過熱水蒸気収容部に導入し、前記過熱水蒸気収容部に水蒸気又は過熱水蒸気で充満した後は前記流路形成体の温度が前記酸化開示温度以上となるように動作して過熱水蒸気を前記過熱水蒸気収容部に導入することが望ましい。 Specifically, the superheated steam generation unit operates so that the temperature of the flow path forming body becomes lower than the oxidation start temperature before the superheated steam storage unit is filled with steam or superheated steam. After introducing water vapor into the superheated steam container, and filling the superheated steam container with water vapor or superheated steam, the superheated steam is operated by operating so that the temperature of the flow path forming body is equal to or higher than the oxidation disclosure temperature. It is desirable to introduce it into the superheated steam container.
例えば、酸化開始温度以上で運転されている状態で過熱水蒸気収容部の扉を開けて被処理物を取り出すと、外部から空気が流入して過熱水蒸気生成部の流路形成体が酸化されてしまう。このため、前記過熱水蒸気生成部は、前記過熱水蒸気収容部が過熱水蒸気で充満しており、かつ、前記流路形成体が前記酸化開始温度以上である状態から、前記過熱水蒸気収容部の外部から過熱水蒸気以外の気体が流入する状態になる前に、前記流路形成体の温度を前記酸化開始温度未満となるように動作することが望ましい。 For example, when the superheated steam storage unit is opened at a temperature equal to or higher than the oxidation start temperature and the door is opened and the object to be processed is taken out, air flows from the outside and the flow path forming body of the superheated steam generation unit is oxidized. . For this reason, the superheated steam generation unit is configured so that the superheated steam storage unit is filled with superheated steam and the flow path forming body is at or above the oxidation start temperature from the outside of the superheated steam storage unit. It is desirable to operate so that the temperature of the flow path forming body becomes lower than the oxidation start temperature before a gas other than superheated steam flows.
前記過熱水蒸気生成部の具体的な構成としては、2N本(Nは1以上の整数である。)の前記流路形成体である導体管が互いに平行となるように配置されており、前記2N本の導体管の一端部が互いに電気的に接続され、前記2N本の導体管の他端部において、互いに隣接する他端部に接続される単相交流電源の極性が異なるように、単相交流電源のU相及びV相が交互に接続されていることが望ましい。この構成であれば、互いに隣接する導体管に流れる電流が互いに逆向きとなるので、それぞれの電流により発生する磁束が打ち消し合い、導体管に発生するインピーダンスが低減されて回路力率を改善することができる。したがって、流体加熱装置の設備効率を向上させることができる。 As a specific configuration of the superheated steam generation unit, 2N (N is an integer of 1 or more) conductor pipes which are the flow path forming bodies are arranged so as to be parallel to each other, and the 2N Single-phase AC power supplies are electrically connected to each other, and the other-phase ends of the 2N conductor tubes have different polarities of the single-phase AC power supplies connected to the other adjacent ends. It is desirable that the U phase and the V phase of the AC power supply are alternately connected. With this configuration, the currents flowing in the adjacent conductor tubes are opposite to each other, so the magnetic fluxes generated by the respective currents cancel each other out, and the impedance generated in the conductor tubes is reduced, improving the circuit power factor. Can do. Therefore, the equipment efficiency of the fluid heating device can be improved.
前記過熱水蒸気生成部の別の具体的な構成としては、3N本(Nは1以上の整数である。)の前記流路形成体である導体管が互いに平行となるように配置されており、前記3N本の導体管の一端部が互いに電気的に接続され、前記3N本の導体管の他端部において、連続して並ぶ3つの他端部に接続される三相交流電源の極性がそれぞれ異なるように、三相交流電源のU相、V相及びW相が交互に接続されていることが望ましい。この構成であれば、連続して並ぶ3つの他端部に接続される三相交流電源の極性がそれぞれ異なるように三相交流電源のU相、V相及びW相が接続されているので、連続して並ぶ3つの導体管に流れる電流により発生する磁束が打ち消し合い導体管に発生するインピーダンスが低減されて回路力率を改善することができる。したがって、流体加熱装置の設備効率を向上させることができる。 As another specific configuration of the superheated steam generation unit, 3N (N is an integer of 1 or more) conductor pipes which are the flow path forming bodies are arranged so as to be parallel to each other, The one end portions of the 3N conductor tubes are electrically connected to each other, and the polarity of the three-phase AC power source connected to the other end portions of the 3N conductor tubes connected to three other end portions arranged in series is respectively It is desirable that the U-phase, V-phase and W-phase of the three-phase AC power supply are alternately connected so as to be different. With this configuration, the U-phase, V-phase, and W-phase of the three-phase AC power supply are connected so that the polarities of the three-phase AC power supply connected to the three other ends arranged in succession are different. The magnetic flux generated by the current flowing through the three conductor tubes arranged in series cancels each other out, and the impedance generated in the conductor tube is reduced, so that the circuit power factor can be improved. Therefore, the equipment efficiency of the fluid heating device can be improved.
前記過熱水蒸気収容部は、供給された水蒸気又は過熱水蒸気を排出する排出部を有することが望ましい。この構成であれば、水蒸気又は過熱水蒸気を常時供給することができ、過熱水蒸気収容部を常に低酸素状態に保つことができる。 The superheated steam container preferably has a discharge unit for discharging the supplied steam or superheated steam. If it is this structure, water vapor | steam or superheated water vapor | steam can always be supplied and a superheated water vapor | steam accommodating part can always be maintained in a low oxygen state.
高温の過熱水蒸気を生成する場合、過熱水蒸気収容部内の温度も高温になるため、過熱水蒸気収容部外の流路形成体又は流路形成体に接続された流路接続部(例えば通電部材や外部配管)も高温になる場合が多い。ここで、過熱水蒸気収容部外の流路形成体又は流路接続部が酸化開始温度以上になれば流路形成部又は流路接続部の寿命低下に繋がる。
このため、前記流路形成体又は前記流路形成体に接続された流路接続部において、前記過熱水蒸気収容部内の部分の通電断面積よりも前記過熱水蒸気収容部外の部分の通電断面積が大きく、又は、前記過熱水蒸気収容部内の通電部分の抵抗よりも前記過熱水蒸気収容部外の通電部分の抵抗が小さいことが望ましい。この構成であれば、過熱水蒸気収容部外の流路形成体又は流路接続部の発熱を抑えて、酸化開始温度未満に維持することができ、寿命低下を抑制することができる。
When high-temperature superheated steam is generated, the temperature inside the superheated steam container also becomes high, so that the flow channel forming body outside the superheated steam container or the channel connecting part connected to the flow channel forming body (for example, a current-carrying member or external (Piping) is often hot. Here, if the flow path forming body or the flow path connecting part outside the superheated steam containing part reaches the oxidation start temperature or higher, the life of the flow path forming part or the flow path connecting part is reduced.
For this reason, in the flow path connecting part connected to the flow path forming body or the flow path forming body, the energization cross-sectional area of the portion outside the superheated steam accommodating portion is larger than the energizing cross sectional area of the portion inside the superheated steam accommodating portion. It is desirable that the resistance of the energized part outside the superheated steam container is larger or smaller than the resistance of the energized part in the superheated steam container. If it is this structure, heat_generation | fever of the flow-path formation body outside a superheated steam accommodating part or a flow-path connection part can be suppressed, it can maintain below oxidation start temperature, and lifetime reduction can be suppressed.
また、過熱水蒸気収容部外の流路形成体又は流路接続部を酸化開始温度未満に冷却することができれば、流路形成体又は流路接続部の寿命低下を抑制することができる。このための具体的な構成としては、前記過熱水蒸気収容部とは別に、前記流路形成体又は前記流路形成体に接続された流路接続部が貫通するとともに水蒸気が導入される水蒸気導入部が設けられているが望ましい。この構成であれば、水蒸気導入部に100℃以上かつ酸化開始温度未満の水蒸気が導入することで、過熱水蒸気収容部外の流路形成体又は流路接続部を酸化開始温度未満に維持することができ、寿命低下を抑制することができる。 Moreover, if the flow path formation body or flow path connection part outside the superheated water vapor storage part can be cooled below the oxidation start temperature, the life reduction of the flow path formation body or the flow path connection part can be suppressed. As a specific configuration for this purpose, apart from the superheated steam storage section, the steam flow introducing section through which the flow path connecting body connected to the flow path forming body or the flow path forming body is introduced and water vapor is introduced. Is desirable. If it is this structure, the flow path formation body or flow path connection part outside a superheated steam accommodating part will be maintained below an oxidation start temperature by introduce | transducing water vapor | steam 100 degreeC or more and less than an oxidation start temperature into a water vapor introduction part. It is possible to suppress the life reduction.
ここで、水蒸気導入部には、外部から温度調整された過熱水蒸気を導入するように構成しても良いし、水蒸気収容部に過熱水蒸気発生部を設けおき、外部から飽和水蒸気を導入して前記過熱水蒸気発生部により過熱水蒸気を発生させる構成としても良い。 Here, the steam introduction unit may be configured to introduce superheated steam whose temperature is adjusted from the outside, or a superheated steam generation unit is provided in the steam storage unit, and saturated steam is introduced from the outside. It is good also as a structure which generates superheated steam by a superheated steam generation part.
前記流路形成体は、当然のことながら融点以下の温度で使用しなければならない。したがって、できるだけ融点が高い材質を用いて流路形成体を形成することが望ましいが、実用的には入手性や加工性及びその材料コスト及び加工コストも重要な要素である。 As a matter of course, the flow path forming body must be used at a temperature below the melting point. Therefore, it is desirable to form the flow path forming body using a material having a melting point as high as possible, but practically, availability, workability, material cost and processing cost are also important factors.
例えば、2000℃以上の融点を持つ金属には以下のようなものがある。
タングステン(融点:3443℃)、タンタル(融点:3027℃)、オスミウム(融点:2697℃)、モリブデン(融点:2622℃)、ニオビウム(融点:2500℃)、コランビウム(融点2500℃)、イリジウム(融点:2454℃)、ルテニウム(融点:2427℃)、ジルコニウム(融点:2127℃)
上記の金属のうち、融点2000℃以上であり、比較的入手性や加工性が良く、高温過熱水蒸気に対して化学変化し難いものは純イリジウム及びイリジウム合金である。図7は、1000℃以上の過熱水蒸気雰囲気にタングステン、タンタル、モリブデン、チタン及びイリジウムを1.5〜6時間置いた試験データである。イリジウムの重量減少率は1.4%と測定誤差程度であったが、モリブデンは50.5%、タンタルは30.8%、タングステンは15.7%と大きな値であり、実用化は困難である。チタンについては24.4%の増加となったが、これは水分子中の酸素原子又は水素原子と化合して酸化物等が生じることによって重量増加したと考えられる。この場合も材質が他物質に変化しており、実用化は困難である。
For example, the following metals have a melting point of 2000 ° C. or higher.
Tungsten (melting point: 3443 ° C.), tantalum (melting point: 3027 ° C.), osmium (melting point: 2697 ° C.), molybdenum (melting point: 2622 ° C.), niobium (melting point: 2500 ° C.), coranbium (melting point 2500 ° C.), iridium (melting point) : 2454 ° C), ruthenium (melting point: 2427 ° C), zirconium (melting point: 2127 ° C)
Among the above metals, those having a melting point of 2000 ° C. or higher, relatively good availability and workability, and hardly chemically changed with respect to high-temperature superheated steam are pure iridium and iridium alloys. FIG. 7 shows test data obtained by placing tungsten, tantalum, molybdenum, titanium, and iridium in a superheated steam atmosphere at 1000 ° C. or higher for 1.5 to 6 hours. The weight reduction rate of iridium was 1.4%, which was about a measurement error. However, molybdenum was 50.5%, tantalum was 30.8%, and tungsten was 15.7%. is there. Titanium increased by 24.4%, which is thought to have increased in weight by combining with oxygen atoms or hydrogen atoms in water molecules to form oxides and the like. In this case as well, the material has been changed to another substance, and practical application is difficult.
前記流路形成体の温度を検出する具体的な実施の態様としては、過熱水蒸気処理装置が、前記流路形成体の抵抗値から前記流路形成体の温度を算出する温度検出機構を備えることが考えられる。具体的には、過熱水蒸気処理装置が、前記流路形成体に印加される交流電圧を検出する電圧検出部と、前記流路形成体に流れる電流を検出する電流検出部と、前記電圧検出部により得られる電圧値及び前記電流検出部から得られる電流値により得られるインピーダンスと前記流路形成体の温度との関係から、前記流路形成体の温度を算出する温度検出機構とを備えることが考えられる。この構成であれば、流路形成体に通電することで電気的に流路形成体の温度を測定することができ、無理なく温度を測定することができる。その他、過熱水蒸気処理装置は、前記流路形成体に直流電圧を印加する直流電源と、前記流路形成体に流れる直流電流を検出する電流検出部と、前記直流電圧と前記電流検出部から得られる電流値により抵抗値と前記流路形成体の温度との関係から、前記流路形成体の温度を算出するものであっても良い。 As a specific embodiment for detecting the temperature of the flow path forming body, the superheated steam treatment apparatus includes a temperature detection mechanism that calculates the temperature of the flow path forming body from the resistance value of the flow path forming body. Can be considered. Specifically, the superheated steam treatment device includes a voltage detection unit that detects an AC voltage applied to the flow path forming body, a current detection unit that detects a current flowing through the flow path forming body, and the voltage detection unit. A temperature detection mechanism that calculates the temperature of the flow path forming body from the relationship between the voltage value obtained by the above and the impedance obtained from the current value obtained from the current detection section and the temperature of the flow path forming body. Conceivable. If it is this structure, the temperature of a flow-path formation body can be electrically measured by supplying with electricity to a flow-path formation body, and can measure temperature easily. In addition, the superheated steam treatment device is obtained from a DC power source that applies a DC voltage to the flow path forming body, a current detection unit that detects a DC current flowing in the flow path forming body, and the DC voltage and the current detection unit. The temperature of the flow path forming body may be calculated from the relationship between the resistance value and the temperature of the flow path forming body based on the current value.
前記流路形成体とは別に過熱水蒸気収容部内に100℃以上の酸化開始温度を有する金属体を設置し、前記金属体の抵抗値から前記過熱水蒸気収容部内の雰囲気温度を算出する温度検出機構を備えることが望ましい。過熱水蒸気収容部内に金属体を設置して、金属体に通電していない状態又は大きな発熱をしない程度の微弱な電流を流した状態では、金属体は過熱水蒸気収容部内の雰囲気温度と同等の温度となる。この金属体に印加される電圧と流れる電流との関係、又は、間欠的に通電を行ったときの印加電圧と電流値から抵抗値を算出して、その抵抗値から温度を算出することで過熱水蒸気収容部内の雰囲気温度を検出できる。ここで、前記金属体は酸化開始温度が100℃以上の材質で構成し、その融点温度が過熱水蒸気収容部内雰囲気温度より高いことが望ましい。例えば、金属体は、流路形成体と同一材料から形成することが考えられる。このように金属体を100℃以上の酸化開始温度を有する材質で構成しているので、金属体の酸化を防ぐことができる。 A temperature detection mechanism that installs a metal body having an oxidation start temperature of 100 ° C. or higher in the superheated steam container separately from the flow path forming body, and calculates the atmospheric temperature in the superheated steam container from the resistance value of the metal body. It is desirable to provide. In a state where a metal body is installed in the superheated steam container and the metal body is not energized or a weak current that does not generate a large amount of heat is passed, the metal body has a temperature equivalent to the ambient temperature in the superheated steam container. It becomes. By calculating the resistance value from the relationship between the voltage applied to the metal body and the flowing current, or the applied voltage and current value when intermittent energization is performed, and calculating the temperature from the resistance value, overheating The atmospheric temperature in the water vapor storage unit can be detected. Here, it is desirable that the metal body is made of a material having an oxidation start temperature of 100 ° C. or higher, and the melting point temperature thereof is higher than the atmospheric temperature in the superheated steam housing portion. For example, it is conceivable that the metal body is formed from the same material as the flow path forming body. Thus, since the metal body is comprised with the material which has an oxidation start temperature of 100 degreeC or more, the oxidation of a metal body can be prevented.
また、本発明に係る過熱水蒸気処理装置は、水蒸気を収容する水蒸気収容部と、前記水蒸気収容部内に設けられた導電性材料からなる加熱用部材と、前記水蒸気収容部外に設けられて、前記加熱用部材を誘導加熱する誘導加熱部とを備え、前記誘導加熱部により誘導加熱された前記加熱用部材により、前記水蒸気収容部内の水蒸気を加熱して過熱水蒸気を生成するものであり、前記加熱用部材は、100℃以上の酸化開始温度を有する導電性材料から形成されており、前記誘導加熱部は、前記加熱用部材の温度を前記酸化開始温度未満の温度と前記酸化開始温度以上の温度とに切替運転可能に構成されていることを特徴とする。 Further, the superheated steam treatment apparatus according to the present invention is provided with a water vapor accommodating part for accommodating water vapor, a heating member made of a conductive material provided in the water vapor accommodating part, and provided outside the water vapor accommodating part, An induction heating unit for induction heating the heating member, and the heating member heated by induction by the induction heating unit heats the water vapor in the water vapor storage unit to generate superheated steam, and the heating The member for use is made of a conductive material having an oxidation start temperature of 100 ° C. or higher, and the induction heating unit sets the temperature of the heating member to a temperature lower than the oxidation start temperature and a temperature higher than the oxidation start temperature. And is configured to be capable of switching operation.
この構成であれば、100℃以上の酸化開始温度を有する導電性材料から形成された加熱用部材の温度を酸化開始温度未満の温度と酸化開始温度以上の温度とに切替運転可能であるので、加熱用部材を酸化開始温度未満の温度で運転して水蒸気収容部を水蒸気又は過熱水蒸気で満たし、その後に、加熱用部材の温度を酸化開始温度以上の温度で運転すれば、加熱用部材が水蒸気収容部内の大気中の酸素によって酸化することを防ぐことができる。 With this configuration, the temperature of the heating member formed from the conductive material having an oxidation start temperature of 100 ° C. or higher can be switched between a temperature lower than the oxidation start temperature and a temperature higher than the oxidation start temperature. If the heating member is operated at a temperature lower than the oxidation start temperature to fill the water vapor container with water vapor or superheated steam, and then the temperature of the heating member is operated at a temperature equal to or higher than the oxidation start temperature, the heating member becomes water vapor. Oxidation by oxygen in the atmosphere in the housing can be prevented.
また、本発明に係る過熱水蒸気処理装置の動作方法は、内部に流路が形成された導電性材料からなる流路形成体を通電加熱して、前記流路を流れる水蒸気を加熱して過熱水蒸気を生成する過熱水蒸気生成部と、前記流路形成体の一部又は全部が配置され、前記流路形成体により生成された過熱水蒸気が導入される過熱水蒸気収容部とを備え、前記流路形成体は、100℃以上の酸化開始温度を有する導電性材料から形成されている過熱水蒸気処理装置の動作方法であって、前記過熱水蒸気収容部に水蒸気又は過熱水蒸気が充填される前は、前記過熱水蒸気生成部を前記酸化開始温度未満の温度で動作させ、前記過熱水蒸気収容部に水蒸気又は過熱水蒸気が充填された後は、前記過熱水蒸気生成部を前記酸化開示温度以上の温度で動作させることを特徴とする。 The superheated steam treatment device operating method according to the present invention includes heating a flow path forming body made of a conductive material having a flow path formed therein, and heating the steam flowing in the flow path to superheated steam. And a superheated steam generating part for generating superheated water vapor, and a superheated steam containing part into which the superheated steam generated by the flow path forming body is introduced. The body is a method of operating a superheated steam treatment device formed of a conductive material having an oxidation start temperature of 100 ° C. or higher, and before the superheated steam container is filled with steam or superheated steam, After the steam generation unit is operated at a temperature lower than the oxidation start temperature and the superheated steam storage unit is filled with water vapor or superheated steam, the superheated steam generation unit is operated at a temperature equal to or higher than the oxidation disclosure temperature. The features.
さらに、本発明に係る過熱水蒸気処理装置の動作方法は、水蒸気を収容する水蒸気収容部と、前記水蒸気収容部内に設けられた導電性材料からなる加熱用部材と、前記水蒸気収容部外に設けられて、前記加熱用部材を誘導加熱する誘導加熱部とを備え、前記誘導加熱部により誘導加熱された前記加熱用部材により、前記水蒸気収容部内の水蒸気を加熱して過熱水蒸気を生成するものであり、前記加熱用部材は、100℃以上の酸化開始温度を有する導電性材料から形成された過熱水蒸気処理装置の動作方法であって、前記水蒸気収容部に水蒸気又は過熱水蒸気が充満する前は、前記加熱用部材が前記酸化開始温度未満の温度となるように前記誘導加熱部を動作させつつ、水蒸気又は過熱水蒸気を前記水蒸気収容部に導入し、前記水蒸気収容部に水蒸気又は過熱水蒸気が充填した後は、前記加熱用部材が前記酸化開示温度以上の温度となるように前記誘導加熱部を動作させることを特徴とする。 Furthermore, the operating method of the superheated steam treatment apparatus according to the present invention is provided outside the steam accommodating part, a steam accommodating part for accommodating steam, a heating member made of a conductive material provided in the steam accommodating part, and And an induction heating unit that induction-heats the heating member, and the heating member that is induction-heated by the induction heating unit heats the water vapor in the water vapor storage unit to generate superheated water vapor. The heating member is a method of operating a superheated steam treatment device formed of a conductive material having an oxidation start temperature of 100 ° C. or higher, and before the steam containing portion is filled with steam or superheated steam, While operating the induction heating unit so that the heating member has a temperature lower than the oxidation start temperature, water vapor or superheated steam is introduced into the water vapor storage unit, and the water vapor storage unit After steam or superheated steam is filled, the heating member is characterized in that operating the induction heating section so that the oxide disclosure temperature or higher.
このように構成した本発明によれば、流路形成体を酸化開始温度未満の温度で運転して過熱水蒸気収容部を水蒸気又は過熱水蒸気で満たし、その後に、流路形成体の温度を酸化開始温度以上の温度で運転することによって、流路形成体が大気中の酸素によって酸化することを防ぐことができる。 According to the present invention configured as described above, the flow path forming body is operated at a temperature lower than the oxidation start temperature to fill the superheated steam container with water vapor or superheated steam, and then the temperature of the flow path forming body is started to oxidize. By operating at a temperature higher than the temperature, it is possible to prevent the flow path forming body from being oxidized by oxygen in the atmosphere.
以下に本発明に係る過熱水蒸気処理装置の一実施形態について図面を参照して説明する。 Hereinafter, an embodiment of a superheated steam treatment apparatus according to the present invention will be described with reference to the drawings.
本実施形態に係る過熱水蒸気処理装置100は、図1に示すように、水蒸気を加熱して過熱水蒸気を生成する通電加熱方式の過熱水蒸気生成部2と、過熱水蒸気生成部2により生成された過熱水蒸気が導入される過熱水蒸気収容部3とを備えている。 As shown in FIG. 1, the superheated steam treatment apparatus 100 according to the present embodiment is a superheated steam generation unit 2 of an electric heating system that heats steam to generate superheated steam, and the superheat generated by the superheated steam generation unit 2. And a superheated steam containing section 3 into which steam is introduced.
過熱水蒸気生成部2は、内部に水蒸気が流れる流路Rが形成された導電性材料からなる流路形成体である導体管21に交流電圧を印加して直接通電し、導体管21の内部抵抗により発生するジュール熱によって導体管21を加熱することにより、前記流路Rを流れる水蒸気を加熱するものである。 The superheated steam generator 2 applies an AC voltage directly to the conductor tube 21, which is a channel forming body made of a conductive material in which a channel R in which water vapor flows is formed, and directly conducts the internal resistance of the conductor tube 21. The water vapor flowing through the flow path R is heated by heating the conductor tube 21 with Joule heat generated by the above.
具体的に過熱水蒸気生成部2は、図2に示すように、2本の導体管21が互いに平行となるように配置されており、当該2本の導体管21の水蒸気導入側である一端部21aが互いに電気的に接続されている。各導体管21は、直管状をなす円筒管であり、同一形状をなすものである。 Specifically, as shown in FIG. 2, the superheated steam generator 2 is arranged such that two conductor tubes 21 are parallel to each other, and one end portion on the steam introduction side of the two conductor tubes 21. 21a are electrically connected to each other. Each conductor tube 21 is a cylindrical tube having a straight tube shape and has the same shape.
また、導体管21は、100℃以上の酸化開始温度を有する導電性材料から形成されている。つまり導体管21は、酸化開始温度未満では、大気中の酸素と結合して形成された酸化皮膜により、腐食が進行しない又は腐食が進行しても実質的に無視できる状態である。一方、導体管21は、酸化開始温度以上では、表面に形成された酸化皮膜が破壊されて、酸素が内部に侵入して導電性材料の更なる酸化が進み酸化速度が著しく増大する。この酸化開始温度は、導体管21に用いる導電性材料の材質、想定する導体管21の寿命等によって定められる温度である。 The conductor tube 21 is made of a conductive material having an oxidation start temperature of 100 ° C. or higher. That is, the conductor tube 21 is in a state where the corrosion does not proceed or is substantially negligible even if the corrosion proceeds due to the oxide film formed by being combined with oxygen in the atmosphere below the oxidation start temperature. On the other hand, when the temperature of the conductor tube 21 is higher than the oxidation start temperature, the oxide film formed on the surface is destroyed, oxygen enters the inside, further oxidation of the conductive material proceeds, and the oxidation rate increases remarkably. This oxidation start temperature is a temperature determined by the material of the conductive material used for the conductor tube 21, the expected life of the conductor tube 21, and the like.
導体管21を形成する具体的な導電性材料として、オーステナイト系ステンレス鋼やインコネル合金を用いることができる。その他、高耐熱性を兼ね備える導電性材料として、融点温度が2000℃以上の純イリジウム又はイリジウム合金等を用いることができる。 As a specific conductive material for forming the conductor tube 21, austenitic stainless steel or Inconel alloy can be used. In addition, as a conductive material having high heat resistance, pure iridium or an iridium alloy having a melting point temperature of 2000 ° C. or higher can be used.
上記の各導電性材料の酸化開始温度の具体例としては、例えば以下である。
オーステナイト系ステンレス鋼:500℃〜700℃
インコネル合金:900℃
純イリジウム又はイリジウム合金:600℃
Specific examples of the oxidation start temperature of each conductive material are as follows, for example.
Austenitic stainless steel: 500 ° C to 700 ° C
Inconel alloy: 900 ° C
Pure iridium or iridium alloy: 600 ° C
具体的に2本の導体管21の一端部21aは、導体管21と同一材料からなる分流管22により電気的に接続されている。この分流管22は、2本の導体管21の一端部21aに接続されるとともに、当該2本の導体管21に水蒸気又は過熱水蒸気を分流させるものである。また、本実施形態では、導体管21及び分流管22が一体構成されたものである。 Specifically, the one end portions 21 a of the two conductor tubes 21 are electrically connected by a shunt tube 22 made of the same material as the conductor tube 21. The branch pipe 22 is connected to one end portion 21 a of the two conductor pipes 21, and splits water vapor or superheated steam into the two conductor pipes 21. Moreover, in this embodiment, the conductor pipe | tube 21 and the shunt pipe 22 are comprised integrally.
また、2本の導体管21の他端部21bは閉塞されており、導体管21の途中(一端部21a及び他端部21bの間)の側壁に複数の流体噴出ノズル23が設けられている。この複数の流体噴出ノズル23は、導体管21の側壁において周方向全体に形成されるものであっても良いし、導体管21の側壁において配列方向に直交する一方向側に形成されるものであっても良い。また、複数の流体噴出ノズル23は、側壁において一端部21aから他端部21bに亘って等間隔に設けられているが、これに限られない。 The other end 21b of the two conductor tubes 21 is closed, and a plurality of fluid ejection nozzles 23 are provided on the side wall of the conductor tube 21 (between the one end 21a and the other end 21b). . The plurality of fluid ejection nozzles 23 may be formed in the entire circumferential direction on the side wall of the conductor tube 21 or may be formed on one side of the side wall of the conductor tube 21 perpendicular to the arrangement direction. There may be. Moreover, although the some fluid ejection nozzle 23 is provided in the side wall from the one end part 21a to the other end part 21b at equal intervals, it is not restricted to this.
なお、分流管22の上流側開口により構成される流体導入口には、フランジ部221が形成されており、誘導加熱方式又は通電加熱方式の飽和水蒸気生成部200に接続された外部配管(不図示)との接続が可能となるように構成されている。 Note that a flange portion 221 is formed at the fluid inlet formed by the upstream opening of the branch pipe 22 and is connected to an external pipe (not shown) connected to the saturated steam generator 200 of the induction heating method or the energization heating method. ) Is possible.
そして、2本の導体管21の流体導出側である他端部21bに単相交流電源24が接続されている。具体的には、2本の導体管21の他端部21bの一方に単相交流電源24のU相が接続されており、2本の導体管21の他端部21bの他方に単相交流電源のV相が接続されている。各導体管21の他端部21bに接続される電極25は、導体管21と同一材質(例えばオーステナイト系ステンレス鋼)かつ中実材料であって、電極幅寸法が導体管21の直径以下であり、導体管21の延長線上に配置された直線状をなすものである。なお、電極幅寸法とは、導体管21の管軸方向に直交する方向の寸法である。また、電極25における導体管21との接続部の外面は、導体管21の外側周面と面一又は径方向内側に位置するように構成されている。これにより、過熱水蒸気収容部3への挿入を簡単に行うことができるようにしている。さらに、電極25には、外部配線を接続するための接続孔251が形成されている。 A single-phase AC power supply 24 is connected to the other end portion 21 b on the fluid outlet side of the two conductor tubes 21. Specifically, the U-phase of the single-phase AC power supply 24 is connected to one of the other end portions 21b of the two conductor tubes 21, and the other end portion 21b of the two conductor tubes 21 is connected to the other end portion 21b. The V phase of the power supply is connected. The electrode 25 connected to the other end portion 21 b of each conductor tube 21 is the same material as the conductor tube 21 (for example, austenitic stainless steel) and a solid material, and the electrode width dimension is equal to or smaller than the diameter of the conductor tube 21. A straight line arranged on the extension line of the conductor tube 21 is formed. The electrode width dimension is a dimension in a direction orthogonal to the tube axis direction of the conductor tube 21. Further, the outer surface of the connection portion of the electrode 25 with the conductor tube 21 is configured to be flush with the outer peripheral surface of the conductor tube 21 or on the radially inner side. Thereby, it can be easily inserted into the superheated steam container 3. Further, a connection hole 251 for connecting an external wiring is formed in the electrode 25.
このように構成した過熱水蒸気生成部2において、単相交流電源4から単相交流電圧を電極25を介して導体管1に印加すると、一方の導体管21に流れる電流の向きと、他方の導体管21に流れる電流の向きとが逆向きとなる。そうすると、それぞれの電流により発生する磁束が打ち消し合い、導体管2に発生するインピーダンスが低減されて回路力率を改善することができる。したがって、過熱水蒸気生成部2の設備効率を向上させることができる。 In the superheated steam generating unit 2 configured as described above, when a single-phase AC voltage is applied from the single-phase AC power source 4 to the conductor tube 1 via the electrode 25, the direction of the current flowing in one conductor tube 21 and the other conductor The direction of the current flowing through the tube 21 is opposite. If it does so, the magnetic flux which generate | occur | produces by each electric current will mutually cancel, the impedance which generate | occur | produces in the conductor tube 2 will be reduced, and a circuit power factor can be improved. Therefore, the equipment efficiency of the superheated steam generator 2 can be improved.
過熱水蒸気収容部3は、導体管21の流体噴出ノズル23から噴出された過熱水蒸気によって被処理物Wを熱処理(例えば洗浄、乾燥、焼成又は殺菌)するための処理室31を形成するチャンバーである。ここで、被処理物Wは、前記処理室31に搬送ベルト等の搬送機構により連続的に搬送される構成とすることが考えられる。 The superheated steam container 3 is a chamber that forms a processing chamber 31 for heat-treating (for example, washing, drying, firing, or sterilizing) the workpiece W with superheated steam ejected from the fluid ejection nozzle 23 of the conductor tube 21. . Here, it can be considered that the workpiece W is continuously transported to the processing chamber 31 by a transport mechanism such as a transport belt.
具体的には、チャンバー3の左右側壁32、33を貫通するように導体管21が挿入して設けられている。このとき、導体管21がチャンバー3の左右側壁32、33に挿入された状態で、複数の流体噴出ノズル23は、チャンバー3の左右側壁32、33の間、つまり、チャンバー3の内部空間に位置する。 Specifically, the conductor tube 21 is inserted and provided so as to penetrate the left and right side walls 32 and 33 of the chamber 3. At this time, with the conductor tube 21 inserted into the left and right side walls 32 and 33 of the chamber 3, the plurality of fluid ejection nozzles 23 are positioned between the left and right side walls 32 and 33 of the chamber 3, that is, in the internal space of the chamber 3. To do.
また、導体管21がチャンバー3に挿入された状態で、当該導体管21に接続される電極25は、チャンバー3の外側に位置している。これにより、チャンバー3の左右側壁32、33に導体管21を取り付けるための孔を形成するだけで、電極25が設けられた導体管21を簡単に着脱することができる。つまり、導体管21をチャンバー3に挿入して取り付ける際、又、導体管21をチャンバー3から抜き出して取り外す際に、電極25が左右側壁32、33に干渉して邪魔になることを防止できる。また、導体管21に接続される単相交流電源24は、チャンバー3の外部に設けられた電源室(不図示)内に設けられている。このようにチャンバー3とは異なる空間に設置された単相交流電源24は、電気配線によって導電管の電極25に電気的に接続される。 Further, the electrode 25 connected to the conductor tube 21 is located outside the chamber 3 in a state where the conductor tube 21 is inserted into the chamber 3. As a result, the conductor tube 21 provided with the electrode 25 can be easily attached and detached simply by forming holes for attaching the conductor tube 21 to the left and right side walls 32 and 33 of the chamber 3. That is, when the conductor tube 21 is inserted into the chamber 3 and attached, or when the conductor tube 21 is removed from the chamber 3 and removed, it is possible to prevent the electrode 25 from interfering with the left and right side walls 32 and 33. The single-phase AC power supply 24 connected to the conductor tube 21 is provided in a power supply chamber (not shown) provided outside the chamber 3. Thus, the single-phase alternating current power supply 24 installed in the space different from the chamber 3 is electrically connected to the electrode 25 of the conductive tube by electric wiring.
さらに、チャンバー3には、供給された水蒸気又は過熱水蒸気を排出する排出部34が形成されている。この排出部34は、外部配管に接続される排出ポートであっても良いし、大気開放された排出ポートであっても良いし、チャンバー外部に連通する隙間であっても良い。 Further, the chamber 3 is formed with a discharge portion 34 for discharging the supplied water vapor or superheated water vapor. The discharge part 34 may be a discharge port connected to an external pipe, a discharge port opened to the atmosphere, or a gap communicating with the outside of the chamber.
次に、本実施形態の過熱水蒸気処理装置100の動作について図3を参照して説明する。 Next, operation | movement of the superheated steam processing apparatus 100 of this embodiment is demonstrated with reference to FIG.
この過熱水蒸気処理装置100において、過熱水蒸気生成部2は、導体管21の温度が100度以上であり、且つ、酸化開始温度未満の第1温度範囲となるように運転する第1運転と、導体管21の温度が酸化開始温度以上の第2温度範囲となるように運転する第2運転とで切替可能に構成されている。 In this superheated steam treatment apparatus 100, the superheated steam generation unit 2 includes a first operation that operates so that the temperature of the conductor tube 21 is 100 degrees or higher and is less than the oxidation start temperature, and a conductor. The tube 21 is configured to be switchable between a second operation that operates so that the temperature of the tube 21 is in a second temperature range that is equal to or higher than the oxidation start temperature.
具体的に過熱水蒸気生成部2は、過熱水蒸気収容部3であるチャンバーに水蒸気又は過熱水蒸気が充満する前、つまり、チャンバー3内に大気が残留している間は、導体管21の温度が100度以上であり、且つ、酸化開始温度未満の第1温度範囲となるように第1運転する。この第1運転中は、過熱水蒸気生成部2を制御する制御装置4は、導体管21に設けられて導体管21の温度を検出する温度センサ(不図示)からの測定値を取得して、前記導体管21の温度が第1温度範囲の所定値となるように、単相交流電源24をフィードバック制御する。 Specifically, the superheated steam generator 2 is configured such that the temperature of the conductor tube 21 is 100 before the chamber serving as the superheated steam container 3 is filled with steam or superheated steam, that is, while the atmosphere remains in the chamber 3. The first operation is performed so that the first temperature range is equal to or higher than the temperature and lower than the oxidation start temperature. During this first operation, the control device 4 that controls the superheated steam generator 2 acquires a measurement value from a temperature sensor (not shown) that is provided in the conductor tube 21 and detects the temperature of the conductor tube 21, The single-phase AC power supply 24 is feedback-controlled so that the temperature of the conductor tube 21 becomes a predetermined value in the first temperature range.
この第1運転は、制御装置4が、第1運転を開始してから所定時間経過したことを示す所定時間経過信号をタイマー等から取得することで第1運転を終了させることが考えられる。その他、ユーザが外部の入力装置を用いて第1運転終了信号を前記制御装置4に入力することによって第1運転を終了させても良い。また、チャンバー3の処理室31内に酸素センサ(不図示)を設けておき、当該酸素センサからの測定値を取得して、酸素濃度がゼロ又は所定の閾値以下となった場合に、第1運転を終了させても良い。 In the first operation, it is conceivable that the control device 4 terminates the first operation by acquiring a predetermined time elapsed signal indicating that a predetermined time has elapsed since the start of the first operation from a timer or the like. Alternatively, the user may end the first operation by inputting a first operation end signal to the control device 4 using an external input device. In addition, an oxygen sensor (not shown) is provided in the processing chamber 31 of the chamber 3, and when the measured value from the oxygen sensor is acquired and the oxygen concentration becomes zero or a predetermined threshold value or less, the first The operation may be terminated.
このように第1運転を行うことによって、チャンバー3の処理室31内は水蒸気又は過熱水蒸気で充満した状態、つまり、チャンバー3内に大気が残留していない状態となる。この状態において、過熱水蒸気生成部2は、導体管21の温度が酸化開始温度以上の第2温度範囲となるように第2運転する。この第2運転中も、第1運転中と同様に、制御装置4は、導体管21に設けられて導体管21の温度を検出する温度センサ(不図示)からの測定値を取得して、前記導体管21の温度が第2温度範囲の所定値となるように、単相交流電源24をフィードバック制御する。 By performing the first operation in this way, the inside of the processing chamber 31 of the chamber 3 is filled with water vapor or superheated water vapor, that is, the atmosphere does not remain in the chamber 3. In this state, the superheated steam generator 2 performs the second operation so that the temperature of the conductor tube 21 is in the second temperature range equal to or higher than the oxidation start temperature. During the second operation, as in the first operation, the control device 4 acquires a measurement value from a temperature sensor (not shown) provided in the conductor tube 21 and detecting the temperature of the conductor tube 21. The single-phase AC power supply 24 is feedback-controlled so that the temperature of the conductor tube 21 becomes a predetermined value in the second temperature range.
この第2運転は、制御装置4が、第2運転を開始してから所定時間経過したことを示す所定時間経過信号をタイマー等から取得することで第2運転を終了させることが考えられる。その他、ユーザが外部の入力装置を用いて第2運転終了信号を前記制御装置4に入力することによって第2運転を終了させても良い。また、処理室31内の被処理物Wの状態を検知する検知部からの検知信号を取得して、被処理物Wの処理が終了した場合に第2運転を終了させても良い。 In this second operation, it is conceivable that the control device 4 terminates the second operation by acquiring a predetermined time elapse signal indicating that a predetermined time has elapsed since the start of the second operation from a timer or the like. In addition, the user may end the second operation by inputting a second operation end signal to the control device 4 using an external input device. Alternatively, the second operation may be terminated when the detection signal from the detection unit that detects the state of the workpiece W in the processing chamber 31 is acquired and the processing of the workpiece W is completed.
この第2運転を終了した後に被処理物を過熱水蒸気収容部から取り出す際に、導体管2の温度が酸化開始温度以上の場合には、外部から空気が流入して過熱水蒸気生成部の流路形成体が酸化されてしまう。このため、過熱水蒸気生成部2は、過熱水蒸気収容部3が過熱水蒸気で充満しており、かつ、導体管21が酸化開始温度以上である状態から、過熱水蒸気収容部3に空気が流入する状態になる前に、導体管21の温度を酸化開始温度未満となるように動作する。具体的には制御装置4は、第2運転を終了した時点から過熱水蒸気生成部2を制御して導体管21の温度が酸化開始温度未満となるようにする。 When the temperature of the conductor tube 2 is equal to or higher than the oxidation start temperature when the workpiece is taken out from the superheated steam container after the second operation is finished, air flows in from the outside and the flow path of the superheated steam generator The formed body is oxidized. For this reason, the superheated steam generation unit 2 is a state in which air flows into the superheated steam storage unit 3 from the state where the superheated steam storage unit 3 is filled with superheated steam and the conductor tube 21 is at or above the oxidation start temperature. Before becoming, the temperature of the conductor tube 21 is operated to be lower than the oxidation start temperature. Specifically, the control device 4 controls the superheated steam generation unit 2 from the time when the second operation is finished so that the temperature of the conductor tube 21 becomes lower than the oxidation start temperature.
このように構成した過熱水蒸気生成装置100によれば、導体管21の温度が大気中の酸素により酸化しにくい温度範囲となるように運転する第1運転と、導体管21の温度が大気中の酸素により酸化しやすい温度範囲となるように運転する第2運転とで切替可能であるので、チャンバー3に水蒸気又は過熱水蒸気が充満する前は第1運転をしつつ水蒸気又は過熱水蒸気をチャンバー内に導入し、チャンバー3に水蒸気又は過熱水蒸気が充満した後は第2運転をして過熱水蒸気をチャンバー3内に導入することができる。これにより、過熱水蒸気生成部2により酸化開始温度以上の過熱水蒸気を生成する場合であっても、導体管21がチャンバー3内に残留した大気中の酸素によって酸化することを防ぐことができる。 According to the superheated steam generator 100 configured as described above, the first operation in which the temperature of the conductor tube 21 is in a temperature range in which it is difficult to be oxidized by oxygen in the atmosphere, and the temperature of the conductor tube 21 is in the atmosphere. Since it can be switched between the second operation that operates so as to be easily oxidized by oxygen, before the chamber 3 is filled with water vapor or superheated water vapor, the water vapor or superheated water vapor is put into the chamber while performing the first operation. After the introduction and the chamber 3 is filled with steam or superheated steam, the superheated steam can be introduced into the chamber 3 by performing the second operation. Thereby, even if it is a case where superheated steam more than an oxidation start temperature is produced | generated by the superheated steam production | generation part 2, it can prevent that the conductor pipe | tube 21 is oxidized with the oxygen in the atmosphere which remained in the chamber 3. FIG.
なお、本発明は前記実施形態に限られるものではない。
例えば、前記実施形態では過熱水蒸気生成部2に供給される飽和水蒸気は、外部に設けられた飽和水蒸気生成部200から供給されているが、過熱水蒸気生成部2とともに飽和水蒸気生成部を有するものであっても良い。
The present invention is not limited to the above embodiment.
For example, in the embodiment, the saturated steam supplied to the superheated steam generation unit 2 is supplied from a saturated steam generation unit 200 provided outside, and has a saturated steam generation unit together with the superheated steam generation unit 2. There may be.
前記実施形態では、過熱水蒸気生成部2は、前段に設けられた飽和水蒸気生成部200により生成された飽和水蒸気を受け取る構成としているが、飽和水蒸気生成部200が飽和水蒸気をそれ以上に加熱して過熱水蒸気を生成するものの場合には、過熱水蒸気を受け取り、受け取った過熱水蒸気をさらに加熱して、過熱水蒸気収容部3に供給する所望温度の過熱水蒸気を生成する構成としても良い。 In the embodiment, the superheated steam generating unit 2 is configured to receive the saturated steam generated by the saturated steam generating unit 200 provided in the previous stage, but the saturated steam generating unit 200 heats the saturated steam further. In the case of generating superheated steam, the superheated steam may be received, and the received superheated steam may be further heated to generate superheated steam having a desired temperature to be supplied to the superheated steam storage unit 3.
また、前記実施形態では、2本の導体管21を有する過熱水蒸気生成部2について説明したが、2N本(Nは2以上の整数)の導体管21を有するものであっても良い。そして、2N本の導体管21の一端部21aに、2Nの流路に分岐した単一の分流管22を接続することで電気的に接続する。また、2N本の導体管2の他端部21bにおいて、互いに隣接する他端部21bに接続される単相交流電源24の極性が異なるように、単相交流電源24のU相及びV相が交互に接続されている。 Moreover, although the said embodiment demonstrated the superheated steam production | generation part 2 which has the two conductor tubes 21, you may have 2N (N is an integer greater than or equal to 2) conductor tubes 21. FIG. And it connects electrically by connecting the single branch pipe 22 branched to the 2N flow path to the one end part 21a of the 2N conductor pipes 21. Further, the U-phase and V-phase of the single-phase AC power supply 24 are different from each other in the other end portions 21b of the 2N conductor tubes 2 so that the polarities of the single-phase AC power supply 24 connected to the other end portions 21b adjacent to each other are different. Connected alternately.
さらに、図4に示すように、3本の導体管21が互いに平行となるように配置されており、当該3本の導体管21の水蒸気導入側である一端部21aが互いに電気的に接続されている。各導体管21は、直管状をなす円筒管であり、同一形状をなすものである。また、3本の導体管21は、同一平面上に等間隔に配列されている。 Further, as shown in FIG. 4, the three conductor tubes 21 are arranged so as to be parallel to each other, and the one end portions 21a on the water vapor introduction side of the three conductor tubes 21 are electrically connected to each other. ing. Each conductor tube 21 is a cylindrical tube having a straight tube shape and has the same shape. The three conductor tubes 21 are arranged at equal intervals on the same plane.
また、3本の導体管21の他端部21bは閉塞されており、導体管21の途中(一端部21a及び他端部21bの間)の側壁に複数の流体噴出ノズル23が設けられている。この複数の流体噴出ノズル23は、導体管21の側壁において周方向全体に形成されるものであっても良いし、導体管21の側壁において配列方向に直交する一方向側に形成されるものであっても良い。また、複数の流体噴出ノズル23は、側壁において一端部21aから他端部21bに亘って等間隔に設けられているが、これに限られない。 The other end 21b of the three conductor tubes 21 is closed, and a plurality of fluid ejection nozzles 23 are provided on the side wall of the conductor tube 21 (between the one end 21a and the other end 21b). . The plurality of fluid ejection nozzles 23 may be formed in the entire circumferential direction on the side wall of the conductor tube 21 or may be formed on one side of the side wall of the conductor tube 21 perpendicular to the arrangement direction. There may be. Moreover, although the some fluid ejection nozzle 23 is provided in the side wall from the one end part 21a to the other end part 21b at equal intervals, it is not restricted to this.
そして、3本の導体管21の流体導出側である他端部21bに三相交流電源が接続されている。具体的には、3本の導体管21の他端部21bにおいて1つ目の他端部21bに三相交流電源のU相が接続されており、2つ目の他端部21bに三相交流電源のV相が接続されており、3つ目の他端部21bに三相交流電源のW相が接続されている。 A three-phase AC power source is connected to the other end portion 21 b on the fluid outlet side of the three conductor tubes 21. Specifically, in the other end 21b of the three conductor tubes 21, the U-phase of the three-phase AC power source is connected to the first other end 21b, and the three-phase is connected to the second other end 21b. The V phase of the AC power supply is connected, and the W phase of the three-phase AC power supply is connected to the third other end 21b.
このように構成した過熱水蒸気生成部2において、三相交流電源から三相交流電圧を電極25を介して導体管21に印加すると、3本の導体管21に流れる電流により発生する磁束が打ち消し合い、導体管21に発生するインピーダンスが低減されて回路力率を改善することができる。したがって、過熱水蒸気生成部2の設備効率を向上することができる。 In the superheated steam generator 2 configured as described above, when a three-phase AC voltage is applied from the three-phase AC power source to the conductor tube 21 via the electrode 25, magnetic fluxes generated by the currents flowing through the three conductor tubes 21 cancel each other. The impedance generated in the conductor tube 21 is reduced, and the circuit power factor can be improved. Therefore, the equipment efficiency of the superheated steam generation unit 2 can be improved.
さらに、3本の導体管21を有する過熱水蒸気生成部2の他、3N本(Nは2以上の整数)の導体管21を有するものであっても良い。そして、3N本の導体管21の一端部21aに3Nの流路に分岐した単一の分流管22を接続することで電気的に接続する。また、3N本の導体管21の他端部21bにおいて、連続して並ぶ3つの他端部21bに接続される三相交流電源の極性がそれぞれ異なるように、三相交流電源のU相、V相及びW相が交互に接続されている。 Further, in addition to the superheated steam generating unit 2 having three conductor tubes 21, the tube may have 3N conductor tubes 21 (N is an integer of 2 or more). And it connects electrically by connecting the single shunt pipe 22 branched to the 3N flow path to the one end part 21a of the 3N conductor pipes 21. Further, at the other end 21b of the 3N conductor tubes 21, the U-phase, V, and V of the three-phase AC power supply are connected so that the polarities of the three-phase AC power supply connected to the three other end portions 21b arranged in succession are different. Phases and W phases are connected alternately.
前記実施形態の導体管21において、流体噴出ノズル23を設ける他に、側壁に複数の流体噴出口を設けても良い。この流体噴出口は、導体管21の側壁において周方向全体に形成されるものであっても良いし、導体管21の側壁において配列方向に直交する一方向側に形成されるものであっても良い。また、複数の流体噴出口は、側壁において一端部21aから他端部21bに亘って長手方向の略全体に形成されているが、長手方向の一部、例えば導体管21の長手方向中央部から他端部21bに形成しても良い。 In the conductor tube 21 of the embodiment, in addition to providing the fluid ejection nozzle 23, a plurality of fluid ejection ports may be provided on the side wall. The fluid ejection port may be formed in the entire circumferential direction on the side wall of the conductor tube 21, or may be formed on one side of the side wall of the conductor tube 21 that is orthogonal to the arrangement direction. good. In addition, the plurality of fluid ejection ports are formed on the side wall from the one end portion 21a to the other end portion 21b in substantially the entire longitudinal direction, but from a part of the longitudinal direction, for example, from the longitudinal center portion of the conductor tube 21 You may form in the other end part 21b.
さらに、導体管の他端部21bを閉塞せずにフランジ部等設けることにより、当該他端部21bを外部配管と接続可能に構成しても良い。 Furthermore, the other end portion 21b may be configured to be connectable to an external pipe by providing a flange portion or the like without closing the other end portion 21b of the conductor tube.
前記実施形態の過熱水蒸気収容部3は、過熱水蒸気を収容して保温するための収容室を形成する保温容器であっても良い。この保温容器に収容された過熱水蒸気は、保温容器に設けられた流体導出ポートから外部に導出されて利用される。この場合、収容容器は、収容した過熱水蒸気をさらに加熱するための加熱機構を有するものであっても良いし、過熱水蒸気の温度調節をするための温度調節機能を有するものであっても良い。 The superheated steam container 3 of the embodiment may be a heat retaining container that forms a storage chamber for storing and warming the superheated steam. The superheated steam accommodated in the heat retaining container is led out to the outside from a fluid outlet port provided in the heat retaining container and used. In this case, the storage container may have a heating mechanism for further heating the stored superheated steam, or may have a temperature adjusting function for adjusting the temperature of the superheated steam.
導体管21又は導体管21に接続された流路接続部において、過熱水蒸気収容部3内の部分の通電断面積よりも過熱水蒸気収容部3外の部分の通電断面積を大きくしても良い。ここで、流路接続部は、例えば、導体管21に接続されて導体管21と共に通電される配管や、導体管に接続されるが通電はされない配管等が考えられる。この構成であれば、過熱水蒸気収容部3外の導体管21又は流路接続部の発熱を抑えて、酸化開始温度未満に維持することができ、寿命低下を抑制することができる。 In the flow path connecting portion connected to the conductor tube 21 or the conductor tube 21, the energizing cross-sectional area of the portion outside the superheated steam housing portion 3 may be made larger than the energizing cross-sectional area of the portion inside the superheated steam housing portion 3. Here, the flow path connecting portion may be, for example, a pipe connected to the conductor pipe 21 and energized together with the conductor pipe 21, or a pipe connected to the conductor pipe but not energized. If it is this structure, the heat_generation | fever of the conductor pipe | tube 21 outside a superheated steam accommodating part 3 or a flow-path connection part can be suppressed, it can maintain below oxidation start temperature, and lifetime reduction can be suppressed.
また、導体管21又は導体管21に接続された流路接続部において、過熱水蒸気収容部3内の通電部分の抵抗よりも過熱水蒸気収容部3外の通電部分の抵抗を小さくしても良い。例えば、過熱水蒸気収容部3外の通電武運の材質を過熱水蒸気収容部3内の通電部分の材質よりも低抵抗材料とすることが考えられる。この構成であれば、過熱水蒸気収容部3外の導体管21又は流路接続部の発熱を抑えて、酸化開始温度未満に維持することができ、寿命低下を抑制することができる。 In addition, the resistance of the energized portion outside the superheated steam housing portion 3 may be made smaller than the resistance of the energized portion in the superheated steam housing portion 3 in the conductor tube 21 or the flow path connecting portion connected to the conductor tube 21. For example, it is conceivable that the current-carrying material outside the superheated steam container 3 is made to have a lower resistance than the material of the current-carrying part inside the superheated steam container 3. If it is this structure, the heat_generation | fever of the conductor pipe | tube 21 outside a superheated steam accommodating part 3 or a flow-path connection part can be suppressed, it can maintain below oxidation start temperature, and lifetime reduction can be suppressed.
前記実施形態の過熱水蒸気処理装置100の構成に加えて、図5に示すように、過熱水蒸気収容部3外の導体管21又は流路接続部を100℃以上且つ酸化開始温度未満に冷却する冷却機構を備えても良い。具体的には、過熱水蒸気処理装置100が、過熱水蒸気収容部3とは別に、導体管21又は導体管21に接続された流路接続部が貫通するとともに水蒸気が導入される水蒸気導入部5を備えている。 In addition to the configuration of the superheated steam treatment apparatus 100 of the above embodiment, as shown in FIG. 5, the cooling for cooling the conductor tube 21 or the flow path connecting portion outside the superheated steam storage unit 3 to 100 ° C. or higher and lower than the oxidation start temperature. A mechanism may be provided. Specifically, the superheated steam treatment apparatus 100 has a steam introduction part 5 through which the conductor pipe 21 or the flow path connecting part connected to the conductor pipe 21 penetrates and the steam is introduced separately from the superheated steam storage part 3. I have.
この水蒸気導入部5は、過熱水蒸気収容部3外に設けけられ、過熱水蒸気収容部3外における導体管21又は流路接続部の所定範囲を取り囲む収容空間を形成するものであり、当該所定範囲の温度を100℃以上且つ酸化開始温度未満に低下させる。具体的に水蒸気導入部5は、飽和水蒸気又は過熱水蒸気が導入される導入ポート51と、飽和水蒸気又は過熱水蒸気を導出する導出ポート52とを有する。ここで、水蒸気導入部5には、外部から温度調整された過熱水蒸気を導入するように構成しても良いし、水蒸気収容部5に過熱水蒸気発生部(不図示)を設けおき、外部から飽和水蒸気を導入して過熱水蒸気発生部により過熱水蒸気を発生させる構成としても良い。 The water vapor introducing portion 5 is provided outside the superheated steam housing portion 3 and forms a housing space surrounding a predetermined range of the conductor tube 21 or the flow path connecting portion outside the superheated steam housing portion 3. Is lowered to 100 ° C. or higher and lower than the oxidation start temperature. Specifically, the water vapor introduction unit 5 includes an introduction port 51 through which saturated water vapor or superheated water vapor is introduced, and a lead-out port 52 through which saturated water vapor or superheated water vapor is derived. Here, the steam introduction section 5 may be configured to introduce superheated steam whose temperature is adjusted from the outside, or a superheated steam generation section (not shown) is provided in the steam storage section 5 to saturate from the outside. It is good also as a structure which introduce | transduces water vapor | steam and generates superheated steam by a superheated steam generation part.
この構成であれば、水蒸気導入部5に100℃以上かつ酸化開始温度未満の水蒸気が導入することで、過熱水蒸気収容部3外の導体管21又は流路接続部を酸化開始温度未満に維持することができ、寿命低下を抑制することができる。 If it is this structure, the water vapor | steam of 100 degreeC or more and less than oxidation start temperature will be introduce | transduced into the water vapor introduction part 5, and the conductor pipe | tube 21 or flow path connection part outside the superheated steam accommodating part 3 is maintained below oxidation start temperature. It is possible to suppress the life reduction.
また、水蒸気導入部5内の導体管21又は流路接続部の通電断面積が、過熱水蒸気収容部3内の導体管21又は流路接続部の通電断面積よりも大きいことが望ましい。この構成であれば、上記の冷却機構とともに、過熱水蒸気収容部3外の導体管21又は流路接続部を酸化開始温度未満に維持することができ、寿命低下を抑制することができる。 Moreover, it is desirable that the conductive cross-sectional area of the conductor tube 21 or the flow path connecting portion in the water vapor introducing portion 5 is larger than the conductive cross sectional area of the conductor tube 21 or the flow path connecting portion in the superheated steam containing portion 3. With this configuration, together with the above cooling mechanism, the conductor tube 21 or the flow path connecting portion outside the superheated steam accommodating portion 3 can be maintained below the oxidation start temperature, and the life reduction can be suppressed.
また、導体管21の温度を計測する温度センサが不要となるように構成しても良い。具体的には、過熱水蒸気処理装置100が、導体管21に印加される交流電圧を検出する電圧検出部と、導体管21に流れる電流を検出する電流検出部と、電圧検出部により得られる電圧値及び電流検出部から得られる電流値からインピーダンスを算出するインピーダンス算出部と、インピーダンスと導体管21の温度との関係を示す関係データを格納する関係データ格納部と、インピーダンス算出部により得られたインピーダンスと関係データ格納部に格納された関係データとから導体管21の温度を算出する温度算出部とを備えている。ここで、インピーダンス算出部、関係データ格納部及び温度算出部は、コンピュータから構成されており、これらにより、温度検出機構が構成される。また、前記関係データは、例えば基準となる導体管21を用いて得られものであり、関係データ格納部は、コンピュータの内部メモリの所定領域に設定されたものであっても良いし、コンピュータに外付けされる外部メモリの所定領域に設定されたものであっても良い。この構成であれば、導体管21に通電することで電気的に導体管21の温度を測定することができ、無理なく温度を測定することができる。 Moreover, you may comprise so that the temperature sensor which measures the temperature of the conductor pipe | tube 21 may become unnecessary. Specifically, the superheated steam treatment apparatus 100 detects a AC voltage applied to the conductor tube 21, a current detector that detects a current flowing through the conductor tube 21, and a voltage obtained by the voltage detector. Obtained by the impedance calculation unit for calculating the impedance from the value and the current value obtained from the current detection unit, the relationship data storage unit for storing the relationship data indicating the relationship between the impedance and the temperature of the conductor tube 21, and the impedance calculation unit. And a temperature calculation unit that calculates the temperature of the conductor tube 21 from the impedance and the relationship data stored in the relationship data storage unit. Here, the impedance calculation unit, the relational data storage unit, and the temperature calculation unit are configured by a computer, and a temperature detection mechanism is configured by these. Further, the relation data is obtained by using, for example, a standard conductor tube 21, and the relation data storage unit may be set in a predetermined area of the internal memory of the computer, It may be set in a predetermined area of an external memory attached externally. If it is this structure, the temperature of the conductor pipe | tube 21 can be electrically measured by supplying with electricity to the conductor pipe | tube 21, and temperature can be measured easily.
さらに、過熱水蒸気処理装置100が、導体管21に印加する交流電圧を生成する変圧器と、変圧器の一次側の交流電圧を検出する電圧検出部と、変圧器の一次側の電流を検出する電流検出部と、電圧検出部により得られる電圧値及び前記電流検出部から得られる電流値からインピーダンスを算出するインピーダンス算出部と、当該インピーダンス算出部により得られたインピーダンスから変圧器のインピーダンスを除去する補正をするインピーダンス補正部と、インピーダンスと導体管21の温度との関係を示す関係データを格納する関係データ格納部と、インピーダンス補正部により得られた補正インピーダンスと関係データ格納部に格納された関係データとから導体管21の温度を算出する温度算出部とを備えている。ここで、インピーダンス算出部、インピーダンス補正部、関係データ格納部及び温度算出部は、コンピュータから構成されており、これらにより、温度検出機構が構成される。また、前記関係データは、例えば基準となる導体管21を用いて得られものであり、関係データ格納部は、コンピュータの内部メモリの所定領域に設定されたものであっても良いし、コンピュータに外付けされる外部メモリの所定領域に設定されたものであっても良い。 Furthermore, the superheated steam treatment apparatus 100 detects a transformer that generates an AC voltage to be applied to the conductor tube 21, a voltage detector that detects an AC voltage on the primary side of the transformer, and a current on the primary side of the transformer. A current detection unit, an impedance calculation unit for calculating an impedance from the voltage value obtained by the voltage detection unit and the current value obtained from the current detection unit, and removing the impedance of the transformer from the impedance obtained by the impedance calculation unit Impedance correction unit that performs correction, relationship data storage unit that stores relationship data indicating the relationship between the impedance and the temperature of the conductor tube 21, the correction impedance obtained by the impedance correction unit, and the relationship stored in the relationship data storage unit And a temperature calculation unit for calculating the temperature of the conductor tube 21 from the data. Here, the impedance calculation unit, the impedance correction unit, the relational data storage unit, and the temperature calculation unit are configured from a computer, and a temperature detection mechanism is configured by these. Further, the relation data is obtained by using, for example, a standard conductor tube 21, and the relation data storage unit may be set in a predetermined area of the internal memory of the computer, It may be set in a predetermined area of an external memory attached externally.
また、前記実施形態では、通電加熱方式の過熱水蒸気処理装置であったが、誘導加熱方式の過熱水蒸気処理装置であっても良い。 In the above-described embodiment, the electric heating type superheated steam treatment apparatus is used, but an induction heating type superheated steam treatment apparatus may be used.
具体的には、図6に示すように、過熱水蒸気処理装置Z1は、水蒸気を収容する水蒸気収容部Z11と、水蒸気収容部Z11内に設けられた導電性材料からなる加熱用部材Z12と、水蒸気収容部Z11外に設けられて、加熱用部材Z12を誘導加熱する誘導加熱部Z13とを備えている。 Specifically, as shown in FIG. 6, the superheated steam treatment device Z1 includes a steam housing part Z11 that contains steam, a heating member Z12 made of a conductive material provided in the steam housing part Z11, and steam. An induction heating unit Z13 is provided outside the housing unit Z11 and induction-heats the heating member Z12.
水蒸気収容部Z11は、誘導加熱方式又は通電加熱方式の飽和水蒸気生成部200から飽和水蒸気が導入されるものであり、水蒸気が導入される導入ポートZ11aと、水蒸気を導出する導出ポートZ11bとを有している。また、水蒸気収容部Z11は、内部に被加熱物Wが収容されるものである。 The water vapor accommodating part Z11 is one in which saturated water vapor is introduced from the saturated water vapor generating part 200 of the induction heating system or the current heating system, and has an introduction port Z11a through which water vapor is introduced and a lead-out port Z11b through which water vapor is derived. doing. Moreover, the to-be-heated material W is accommodated in the water vapor | steam accommodating part Z11.
加熱用部材Z12は、前記実施形態と同様の材料から形成されるものであり、本実施形態では、水蒸気収容部Z11の内面の一部又は全部を覆うように設けられた平板状をなすものである。なお、加熱用部材Z12は、内面に接触して設けられるものである必要はなく、加熱用部材Z12の内部に設けられるものであれば良い。 The heating member Z12 is formed of the same material as that of the above embodiment, and in this embodiment, the heating member Z12 has a flat plate shape so as to cover a part or all of the inner surface of the water vapor accommodating portion Z11. is there. Note that the heating member Z12 does not have to be provided in contact with the inner surface, and may be provided as long as it is provided inside the heating member Z12.
誘導加熱部Z13は、加熱用部材Z12に誘導電流を生じさせるための誘導コイルZ131と、当該誘導コイルZ131に交流電圧を印加する交流電源Z132とを有している。なお、交流電源Z132は、前記実施形態と同様に制御装置により制御される。 The induction heating unit Z13 includes an induction coil Z131 for generating an induction current in the heating member Z12, and an AC power supply Z132 that applies an AC voltage to the induction coil Z131. Note that the AC power supply Z132 is controlled by the control device in the same manner as in the above embodiment.
そして、この過熱水蒸気処理装置Z1は、水蒸気収容部Z11が飽和水蒸気生成部200からの飽和水蒸気が充満する前は、加熱用部材Z12が酸化開始温度未満の温度となるように誘導加熱部Z13を動作させつつ、飽和水蒸気を水蒸気収容部Z11に導入する。そして、過熱水蒸気処理装置Z1は、水蒸気収容部Z11に飽和水蒸気又は過熱水蒸気が充填した後は、加熱用部材Z12が酸化開示温度以上の温度となるように誘導加熱部Z13を動作させる。 And this superheated steam processing apparatus Z1 makes the induction heating part Z13 so that the heating member Z12 becomes a temperature lower than the oxidation start temperature before the steam containing part Z11 is filled with the saturated steam from the saturated steam generating part 200. Saturated water vapor is introduced into the water vapor accommodating part Z11 while operating. And the superheated steam processing apparatus Z1 operates the induction heating part Z13 so that the heating member Z12 becomes a temperature equal to or higher than the oxidation disclosure temperature after the steam containing part Z11 is filled with saturated steam or superheated steam.
この構成であれば、100℃以上の酸化開始温度を有する導電性材料から形成された加熱用部材Z12の温度を酸化開始温度未満の温度と酸化開始温度以上の温度とに切替運転可能であるので、加熱用部材Z12を酸化開始温度未満の温度で運転して水蒸気収容部Z11を水蒸気又は過熱水蒸気で満たし、その後に、加熱用部材Z12の温度を酸化開始温度以上の温度で運転すれば、加熱用部材Z12が水蒸気収容部Z11内の大気中の酸素によって酸化することを防ぐことができる。 With this configuration, the temperature of the heating member Z12 formed of a conductive material having an oxidation start temperature of 100 ° C. or higher can be switched between a temperature lower than the oxidation start temperature and a temperature higher than the oxidation start temperature. If the heating member Z12 is operated at a temperature lower than the oxidation start temperature to fill the water vapor accommodating part Z11 with water vapor or superheated steam, and then the temperature of the heating member Z12 is operated at a temperature equal to or higher than the oxidation start temperature, heating is performed. The member Z12 can be prevented from being oxidized by oxygen in the atmosphere in the water vapor accommodating part Z11.
その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。 In addition, it goes without saying that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
100・・・過熱水蒸気処理装置
2 ・・・過熱水蒸気生成部
21 ・・・流路形成体(導体管)
3 ・・・過熱水蒸気収容部(チャンバー)
DESCRIPTION OF SYMBOLS 100 ... Superheated steam processing apparatus 2 ... Superheated steam generation part 21 ... Flow path formation body (conductor pipe)
3 ... Superheated steam container (chamber)
Claims (16)
前記流路形成体の一部又は全部が配置され、前記流路形成体により生成された過熱水蒸気が導入される過熱水蒸気収容部とを備え、
前記流路形成体は、100℃以上の酸化開始温度を有する導電性材料から形成されており、
前記過熱水蒸気生成部は、前記流路形成体の温度を前記酸化開始温度未満の温度と前記酸化開始温度以上の温度とに切替運転可能に構成されている過熱水蒸気処理装置。 A superheated steam generating section that heats and energizes a flow path forming body made of a conductive material having a flow path formed therein, and heats water vapor flowing through the flow path to generate superheated steam;
A part or all of the flow path forming body is disposed, and a superheated steam containing portion into which superheated steam generated by the flow path forming body is introduced,
The flow path forming body is formed of a conductive material having an oxidation start temperature of 100 ° C. or higher,
The superheated steam generator is configured to be capable of switching the temperature of the flow path forming body between a temperature lower than the oxidation start temperature and a temperature equal to or higher than the oxidation start temperature.
前記2N本の導体管の一端部が互いに電気的に接続され、前記2N本の導体管の他端部において、互いに隣接する他端部に接続される単相交流電源の極性が異なるように、単相交流電源のU相及びV相が交互に接続されている請求項1乃至3の何れか一項に記載の過熱水蒸気処理装置。 The superheated steam generation unit is arranged so that 2N (N is an integer of 1 or more) conductor pipes that are the flow path forming bodies are parallel to each other,
One end portions of the 2N conductor tubes are electrically connected to each other, and at the other end portions of the 2N conductor tubes, the polarities of the single-phase AC power sources connected to the other end portions adjacent to each other are different. The superheated steam treatment apparatus according to any one of claims 1 to 3, wherein the U-phase and the V-phase of the single-phase AC power supply are alternately connected.
前記3N本の導体管の一端部が互いに電気的に接続され、前記3N本の導体管の他端部において、連続して並ぶ3つの他端部に接続される三相交流電源の極性がそれぞれ異なるように、三相交流電源のU相、V相及びW相が交互に接続されている請求項1乃至3の何れか一項に記載の過熱水蒸気処理装置。 3N (N is an integer of 1 or more) conductor pipes that are the flow path forming bodies are arranged so as to be parallel to each other,
The one end portions of the 3N conductor tubes are electrically connected to each other, and the polarity of the three-phase AC power source connected to the other end portions of the 3N conductor tubes connected to three other end portions arranged in series is respectively The superheated steam treatment device according to any one of claims 1 to 3, wherein the U phase, the V phase, and the W phase of the three-phase AC power supply are alternately connected so as to be different.
前記水蒸気収容部内に設けられた導電性材料からなる加熱用部材と、
前記水蒸気収容部外に設けられて、前記加熱用部材を誘導加熱する誘導加熱部とを備え、
前記誘導加熱部により誘導加熱された前記加熱用部材により、前記水蒸気収容部内の水蒸気を加熱して過熱水蒸気を生成するものであり、
前記加熱用部材は、100℃以上の酸化開始温度を有する導電性材料から形成されており、
前記誘導加熱部は、前記加熱用部材の温度を前記酸化開始温度未満の温度と前記酸化開始温度以上の温度とに切替運転可能に構成されている過熱水蒸気処理装置。 A water vapor containing part for containing water vapor;
A heating member made of a conductive material provided in the water vapor accommodating portion;
An induction heating unit provided outside the water vapor storage unit and induction heating the heating member;
The heating member heated by induction by the induction heating unit generates superheated steam by heating the water vapor in the water vapor storage unit,
The heating member is formed of a conductive material having an oxidation start temperature of 100 ° C. or higher,
The induction heating unit is a superheated steam treatment device configured to be capable of switching the temperature of the heating member between a temperature lower than the oxidation start temperature and a temperature higher than the oxidation start temperature.
前記過熱水蒸気収容部に水蒸気又は過熱水蒸気が充満する前は、前記流路形成体の温度が前記酸化開始温度未満となるように前記過熱水蒸気生成部を動作させて水蒸気又は過熱水蒸気を前記過熱水蒸気収容部に導入し、
前記過熱水蒸気収容部に水蒸気又は過熱水蒸気が充填した後は、前記流路形成体の温度が前記酸化開示温度以上となるように前記過熱水蒸気生成部を動作させて過熱水蒸気を前記過熱水蒸気収容部に導入する過熱水蒸気処理装置の動作方法。 An overheated steam generator for energizing and heating a flow path forming body made of a conductive material having a flow path formed therein to heat the water vapor flowing through the flow path to generate superheated steam; and the flow path forming body And a superheated steam containing portion into which the superheated steam generated by the flow path forming body is introduced, the flow path forming body having an oxidation start temperature of 100 ° C. or higher. A method of operating a superheated steam treatment device formed from
Before the superheated steam storage section is filled with steam or superheated steam, the superheated steam generation section is operated so that the temperature of the flow path forming body is lower than the oxidation start temperature, and steam or superheated steam is converted into the superheated steam. Introduced into the containment section,
After the superheated steam storage section is filled with steam or superheated steam, the superheated steam generation section is operated so that the temperature of the flow path forming body is equal to or higher than the oxidation disclosure temperature, and superheated steam is stored in the superheated steam storage section. Of operation of the superheated steam treatment apparatus to be introduced into the plant.
前記水蒸気収容部に水蒸気又は過熱水蒸気が充満する前は、前記加熱用部材が前記酸化開始温度未満の温度となるように前記誘導加熱部を動作させつつ、水蒸気又は過熱水蒸気を前記水蒸気収容部に導入し、
前記水蒸気収容部に水蒸気又は過熱水蒸気が充填した後は、前記加熱用部材が前記酸化開示温度以上の温度となるように前記誘導加熱部を動作させる過熱水蒸気処理装置の動作方法。 A water vapor containing part for containing water vapor, a heating member made of a conductive material provided in the water vapor containing part, and an induction heating part provided outside the water vapor containing part for induction heating the heating member. The heating member heated by induction heating by the induction heating unit heats the water vapor in the water vapor storage unit to generate superheated steam, and the heating member has an oxidation start temperature of 100 ° C. or higher. A method of operating a superheated steam treatment device formed from a conductive material having:
Before the steam storage part is filled with steam or superheated steam, the induction heating part is operated so that the heating member has a temperature lower than the oxidation start temperature, and steam or superheated steam is supplied to the steam storage part. Introduced,
An operation method of a superheated steam treatment apparatus that operates the induction heating unit so that the heating member has a temperature equal to or higher than the oxidation disclosure temperature after the water vapor storage unit is filled with water vapor or superheated water vapor.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160137294A KR102503455B1 (en) | 2015-11-10 | 2016-10-21 | Superheated steam processing apparatus and its operation method |
CN201610920951.XA CN107036448B (en) | 2015-11-10 | 2016-10-21 | Overheated steam processing unit and its method of operation |
TW105135960A TWI687638B (en) | 2015-11-10 | 2016-11-04 | Superheated steam processing device and the method of using the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015220187 | 2015-11-10 | ||
JP2015220187 | 2015-11-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017092018A true JP2017092018A (en) | 2017-05-25 |
JP6697897B2 JP6697897B2 (en) | 2020-05-27 |
Family
ID=58768775
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016032928A Active JP6697897B2 (en) | 2015-11-10 | 2016-02-24 | Superheated steam treatment device and operating method thereof |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6697897B2 (en) |
KR (1) | KR102503455B1 (en) |
CN (1) | CN107036448B (en) |
TW (1) | TWI687638B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3502558A1 (en) * | 2017-12-21 | 2019-06-26 | Tokuden Co., Ltd. | Superheated steam generator and maintenance method therefor |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS492644B1 (en) * | 1970-11-09 | 1974-01-22 | ||
US4818311A (en) * | 1987-01-21 | 1989-04-04 | American Telephone And Telegraph Company, At&T Technologies Inc. | Methods of and apparatus for heating a moving metallic strand material |
JP2006226561A (en) * | 2005-02-15 | 2006-08-31 | Muramatsu Fuusou Setsubi Kogyo Kk | Heat treatment device |
JP2011173787A (en) * | 2010-02-25 | 2011-09-08 | Corning Inc | Apparatus for use in direct resistance heating of platinum-containing vessel |
JP2015083913A (en) * | 2013-03-08 | 2015-04-30 | トクデン株式会社 | Fluid heating device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB587341A (en) * | 1945-01-05 | 1947-04-22 | George Edward Daniel Weston | Improvements in or relating to the insulation of electrical conductors |
JP2011086443A (en) * | 2009-10-14 | 2011-04-28 | Izumi Food Machinery Co Ltd | Energization heating device of migration body |
CN201636833U (en) * | 2010-04-07 | 2010-11-17 | 天津宝成机械集团有限公司 | Novel electric heating superheated stem boiler |
CN203258845U (en) * | 2012-02-09 | 2013-10-30 | 特电株式会社 | Fluid heating device |
CN103634950B (en) * | 2012-08-21 | 2016-09-28 | 特电株式会社 | Fluid heater |
CN206235168U (en) * | 2015-11-10 | 2017-06-09 | 特电株式会社 | Overheated steam processing unit |
-
2016
- 2016-02-24 JP JP2016032928A patent/JP6697897B2/en active Active
- 2016-10-21 CN CN201610920951.XA patent/CN107036448B/en active Active
- 2016-10-21 KR KR1020160137294A patent/KR102503455B1/en active IP Right Grant
- 2016-11-04 TW TW105135960A patent/TWI687638B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS492644B1 (en) * | 1970-11-09 | 1974-01-22 | ||
US4818311A (en) * | 1987-01-21 | 1989-04-04 | American Telephone And Telegraph Company, At&T Technologies Inc. | Methods of and apparatus for heating a moving metallic strand material |
JP2006226561A (en) * | 2005-02-15 | 2006-08-31 | Muramatsu Fuusou Setsubi Kogyo Kk | Heat treatment device |
JP2011173787A (en) * | 2010-02-25 | 2011-09-08 | Corning Inc | Apparatus for use in direct resistance heating of platinum-containing vessel |
JP2015083913A (en) * | 2013-03-08 | 2015-04-30 | トクデン株式会社 | Fluid heating device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3502558A1 (en) * | 2017-12-21 | 2019-06-26 | Tokuden Co., Ltd. | Superheated steam generator and maintenance method therefor |
Also Published As
Publication number | Publication date |
---|---|
CN107036448A (en) | 2017-08-11 |
TWI687638B (en) | 2020-03-11 |
JP6697897B2 (en) | 2020-05-27 |
KR20170054986A (en) | 2017-05-18 |
CN107036448B (en) | 2019-11-08 |
TW201716736A (en) | 2017-05-16 |
KR102503455B1 (en) | 2023-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6282238B2 (en) | Superheated steam recycling apparatus and method of using the same | |
TW201731339A (en) | Fluid heater device | |
JP6697897B2 (en) | Superheated steam treatment device and operating method thereof | |
JP6452600B2 (en) | Superheated steam generator | |
JP6466641B2 (en) | Fluid heating device | |
JP2017083153A (en) | Overheated steam generation device | |
KR101983731B1 (en) | Apparatus for rapidly heating of fluid and system for processing object using the same | |
JP2014055696A (en) | Steam superheating system | |
CN206235168U (en) | Overheated steam processing unit | |
JP6224971B2 (en) | Fluid heating device | |
CN106940009B (en) | Superheated steam generator and treatment method using same | |
KR101226520B1 (en) | Sterillization apparatus | |
US10011775B2 (en) | Oil purifying apparatus | |
JP2019116986A (en) | Superheated steam furnace | |
JP6806530B2 (en) | Processing method using superheated steam generator and superheated steam generator | |
JP2019113282A (en) | Superheated steam generation device | |
JP2015146968A (en) | steam sterilizer | |
JP7406800B2 (en) | Superheated steam generator | |
JP2006071116A (en) | Superheated steam generating device | |
JP6224970B2 (en) | Fluid heating device | |
JP2005007290A (en) | Garbage treatment apparatus | |
JP2005233572A (en) | Superheated steam generating device | |
EP3088749A1 (en) | Oil diffusion pump and oil vapor generator used therefor | |
JP2014042765A (en) | Steam sterilizer | |
JP2017150735A (en) | Induction heating type steam generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191119 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191120 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191217 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200421 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200427 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6697897 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |