JP2017082091A - Epoxy resin composition, epoxy resin sheet and metal base circuit board using the same - Google Patents
Epoxy resin composition, epoxy resin sheet and metal base circuit board using the same Download PDFInfo
- Publication number
- JP2017082091A JP2017082091A JP2015211989A JP2015211989A JP2017082091A JP 2017082091 A JP2017082091 A JP 2017082091A JP 2015211989 A JP2015211989 A JP 2015211989A JP 2015211989 A JP2015211989 A JP 2015211989A JP 2017082091 A JP2017082091 A JP 2017082091A
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- resin composition
- boron nitride
- circuit board
- metal base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003822 epoxy resin Substances 0.000 title claims abstract description 78
- 229920000647 polyepoxide Polymers 0.000 title claims abstract description 78
- 239000000203 mixture Substances 0.000 title claims abstract description 40
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 22
- 239000002184 metal Substances 0.000 title claims abstract description 22
- 239000000843 powder Substances 0.000 claims abstract description 41
- 239000002245 particle Substances 0.000 claims abstract description 30
- 239000011256 inorganic filler Substances 0.000 claims abstract description 14
- 229910003475 inorganic filler Inorganic materials 0.000 claims abstract description 14
- 239000000463 material Substances 0.000 claims abstract description 8
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 5
- 229910052582 BN Inorganic materials 0.000 claims description 31
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical group N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 31
- 238000009413 insulation Methods 0.000 abstract description 11
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 abstract 3
- 229910052796 boron Inorganic materials 0.000 abstract 3
- 230000001070 adhesive effect Effects 0.000 abstract 1
- 230000005484 gravity Effects 0.000 description 13
- 239000000945 filler Substances 0.000 description 11
- 229920005989 resin Polymers 0.000 description 11
- 239000011347 resin Substances 0.000 description 11
- 239000011148 porous material Substances 0.000 description 10
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 9
- 238000000576 coating method Methods 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000011800 void material Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 230000001186 cumulative effect Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 150000008065 acid anhydrides Chemical class 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 229920003986 novolac Polymers 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- -1 polytetramethylene Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- MEVBAGCIOOTPLF-UHFFFAOYSA-N 2-[[5-(oxiran-2-ylmethoxy)naphthalen-2-yl]oxymethyl]oxirane Chemical compound C1OC1COC(C=C1C=CC=2)=CC=C1C=2OCC1CO1 MEVBAGCIOOTPLF-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- 238000007088 Archimedes method Methods 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000012669 compression test Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- AYEKOFBPNLCAJY-UHFFFAOYSA-O thiamine pyrophosphate Chemical compound CC1=C(CCOP(O)(=O)OP(O)(O)=O)SC=[N+]1CC1=CN=C(C)N=C1N AYEKOFBPNLCAJY-UHFFFAOYSA-O 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
- Insulated Metal Substrates For Printed Circuits (AREA)
Abstract
Description
本発明は、熱伝導性、接着性、絶縁性に優れる、エポキシ樹脂組成物、エポキシ樹脂シート、およびそれを用いた金属ベース回路基板に関する。 The present invention relates to an epoxy resin composition, an epoxy resin sheet, and a metal base circuit board using the same, which are excellent in thermal conductivity, adhesiveness, and insulation.
近年、電子部品の小型化が要求され、高密度実装化および高性能化が要求され、更には、半導体素子等の小型化、ハイパワー化により、狭いスペースの中で、半導体素子等から発生した熱を如何に放熱するかといったことが問題となっている。 In recent years, electronic components have been required to be miniaturized, high density mounting and high performance have been demanded. Furthermore, due to miniaturization and high power of semiconductor devices, they have been generated from semiconductor devices in a narrow space. The problem is how to dissipate heat.
上記の問題の解決策のひとつとして、部品を実装する基板の絶縁層に熱伝導率の高いものを使用し、素子で発生した熱を効率よく筐体や冷却フィンに熱を逃がす方法が用いられる(特許文献1、2参照)。特許文献1はアルミナ粉を充填することにより、特許文献2は窒化アルミ粉を充填することにより、それぞれ高熱伝導化を検討している。
しかしながら、特許文献1ではアルミナ粉を使用しているため、80vol%を超える高充填が可能なものの、アルミナ粉自体の熱伝導率が低いため、基板の熱伝導率は低い、といった課題があった。一方、特許文献2では窒化アルミ粉を高充填することにより、10W/mKを超える高熱伝導化を達成しているが、耐電圧の値が30kV/mm程度と十分でない、といった課題があった。
特許文献3では窒化ホウ素粉を使用し、その配向を制御することで、低いフィラー充填量で高熱伝導化を達成している。窒化ホウ素粉の一次粒子は通常燐片状であり、これをフィラーとして絶縁層内に分散させた場合は、塗工時やプレス硬化時に窒化ホウ素粉が面方向に整列し、高熱伝導化が期待できないが、窒化ホウ素粉の凝集体を絶縁層内に分散させることで、垂直方向へ配向を制御しており、高熱伝導化を達成し、かつ、効率的に熱パスを形成できることから、充填量を少なくすることができ、結果として耐電圧値の向上も両立している。
しかしながら、特許文献3では使用している凝集粉は基板作製プロセス中に凝集粉が破壊しないように粒子強度が高く、また、凝集粉内の空隙は少ないことが条件になっているため、粒子強度が高いため変形が起きず、内部の空隙へ樹脂を充填することが困難となり、電気絶縁性などの電気特性が低下したり、窒化ホウ素粉同士の接触が十分に得られず、熱伝導率の向上効果が小さくなる、といった課題があった。
One solution to the above problem is to use a material with high thermal conductivity for the insulation layer of the board on which the components are mounted, and to efficiently release the heat generated in the element to the housing and cooling fins. (See Patent Documents 1 and 2). Patent Document 1 considers high thermal conductivity by filling alumina powder and Patent Document 2 by filling aluminum nitride powder.
However, in Patent Document 1, since alumina powder is used, high filling exceeding 80 vol% is possible, but the thermal conductivity of the alumina powder itself is low, so that there is a problem that the thermal conductivity of the substrate is low. . On the other hand, Patent Document 2 achieves high thermal conductivity exceeding 10 W / mK by highly filling aluminum nitride powder, but there is a problem that the withstand voltage value is not sufficient at about 30 kV / mm.
In Patent Document 3, boron nitride powder is used and its orientation is controlled to achieve high thermal conductivity with a low filler filling amount. The primary particles of boron nitride powder are usually in the form of flakes, and when dispersed in the insulating layer as a filler, the boron nitride powder is aligned in the surface direction during coating and press curing, and high thermal conductivity is expected. Although it is not possible to disperse the agglomerates of boron nitride powder in the insulating layer, the orientation is controlled in the vertical direction, high thermal conductivity is achieved, and a heat path can be efficiently formed. As a result, the withstand voltage value is improved.
However, since the aggregated powder used in Patent Document 3 has a high particle strength so that the aggregated powder is not destroyed during the substrate manufacturing process, and there are few voids in the aggregated powder, the particle strength is Therefore, deformation does not occur and it is difficult to fill the resin into the internal voids, electrical characteristics such as electrical insulation are deteriorated, contact between boron nitride powders is not sufficiently obtained, and thermal conductivity is low. There was a problem that the improvement effect was small.
本発明は、上記の事情に鑑みてなされたものであり、熱伝導性、接着性、絶縁性に優れる、エポキシ樹脂組成物、エポキシ樹脂シート、およびそれを用いた金属ベース回路基板を提供する。 The present invention has been made in view of the above circumstances, and provides an epoxy resin composition, an epoxy resin sheet, and a metal base circuit board using the epoxy resin composition that are excellent in thermal conductivity, adhesiveness, and insulation.
すなわち、本発明は、(1)エポキシ樹脂と硬化剤と無機フィラーからなるエポキシ樹脂組成物であって、無機フィラーが窒化ホウ素凝集粉であり、前記窒化ホウ素凝集粉が、平均粒子径20〜100μm、空隙率50〜70体積%、圧壊強度1.0〜4.0MPaであり、かつ、前記窒化ホウ素凝集粉の含有量が35〜65体積%であるエポキシ樹脂組成物、(2)(1)のエポキシ樹脂組成物の硬化物であるエポキシ樹脂シート、(3)(1)のエポキシ樹脂組成物の半硬化物であるBステージ状態のエポキシ樹脂シート、(4)金属板上に絶縁層を介して回路材が積層された金属ベース回路基板であって、前記絶縁層が(2)または(3)のエポキシ樹脂シートである金属ベース回路基板、である。 That is, the present invention is (1) an epoxy resin composition comprising an epoxy resin, a curing agent and an inorganic filler, wherein the inorganic filler is boron nitride aggregated powder, and the boron nitride aggregated powder has an average particle diameter of 20 to 100 μm. An epoxy resin composition having a porosity of 50 to 70% by volume, a crushing strength of 1.0 to 4.0 MPa, and a content of the boron nitride aggregated powder of 35 to 65% by volume, (2) (1) An epoxy resin sheet that is a cured product of the epoxy resin composition of (3), a B-stage epoxy resin sheet that is a semi-cured product of the epoxy resin composition of (1), and (4) an insulating layer on a metal plate A metal base circuit board in which circuit materials are laminated, wherein the insulating layer is an epoxy resin sheet of (2) or (3).
本発明により、熱伝導性、接着性、絶縁性に優れる、エポキシ樹脂組成物、エポキシ樹脂シート、およびそれを用いた金属ベース回路基板が得られる。また、本発明のエポキシ樹脂組成物は、各種コーターによってシート状に所望の厚みに塗布し、加熱により硬化させることでエポキシ樹脂組成物のシートを作製することができる。さらに、硬化させる際の熱量を適切にコントロールすることにより、シート状に塗布したエポキシ樹脂組成物を半硬化させたBステージ状態のシートを作製することもでき、金属基板上にエポキシ樹脂組成物を塗布し、回路材を積層することで金属ベース回路基板の絶縁層として使用することもできる、といった効果を奏する。 According to the present invention, an epoxy resin composition, an epoxy resin sheet, and a metal base circuit board using the epoxy resin composition that are excellent in thermal conductivity, adhesiveness, and insulation are obtained. Moreover, the epoxy resin composition of this invention can produce the sheet | seat of an epoxy resin composition by apply | coating to sheet | seat shape with desired thickness by various coaters, and making it harden | cure by heating. Furthermore, by appropriately controlling the amount of heat at the time of curing, it is possible to produce a B-stage sheet obtained by semi-curing the epoxy resin composition applied in the form of a sheet. By applying and laminating circuit materials, it can be used as an insulating layer of a metal base circuit board.
本発明に使用するエポキシ樹脂としては、例えばビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールA型の水素添加エポキシ樹脂、ポリプロピレングリコール型エポキシ樹脂、ポリテトラメチレングリコール型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェニルメタン型エポキシ樹脂、テトラキスフェノールメタン型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリアジン核を骨格に有するエポキシ樹脂、およびビスフェノールAアルキレンオキサイド付加物型のエポキシ樹脂等が挙げられ、耐熱性の観点から、ナフタレン型エポキシ樹脂が特に好ましい。また、これらを複数組み合わせて用いることもできる。 Examples of the epoxy resin used in the present invention include bisphenol A type epoxy resin, bisphenol S type epoxy resin, bisphenol F type epoxy resin, bisphenol A type hydrogenated epoxy resin, polypropylene glycol type epoxy resin, and polytetramethylene glycol type epoxy. Resin, naphthalene type epoxy resin, phenylmethane type epoxy resin, tetrakisphenolmethane type epoxy resin, biphenyl type epoxy resin, epoxy resin having triazine nucleus in the skeleton, and bisphenol A alkylene oxide adduct type epoxy resin, etc. From the viewpoint of heat resistance, a naphthalene type epoxy resin is particularly preferable. A combination of these can also be used.
本発明に使用する硬化剤としては、アミン系樹脂、酸無水物系樹脂、フェノール系樹脂からなる群から選ばれる1種類以上を用いることができる。アミン系樹脂は一般にエポキシ樹脂との反応性が高く、硬化後の絶縁特性が優れる。また、酸無水物系樹脂、フェノール系樹脂は一般にエポキシ樹脂との反応性が低いため、エポキシ樹脂と混合した際、塗布するまでの時間が長くなっても反応による塗布液の粘度上昇が少なく、好適である。 As the curing agent used in the present invention, one or more selected from the group consisting of amine resins, acid anhydride resins, and phenol resins can be used. Amine-based resins are generally highly reactive with epoxy resins and have excellent insulating properties after curing. In addition, since acid anhydride resins and phenol resins generally have low reactivity with epoxy resins, there is little increase in the viscosity of the coating liquid due to the reaction even when the time to application is long when mixed with the epoxy resin, Is preferred.
本発明に使用する無機フィラーは、窒化ホウ素粉が凝集した凝集粉であり、その凝集粉の空隙率が50〜70体積%で、窒化ホウ素凝集粉の圧壊強度は1.0〜4.0MPaの範囲である。窒化ホウ素凝集粉の圧壊強度が1.0MPa未満の場合、樹脂との混練プロセス中に凝集粉が崩れ、配向制御が難しい。圧壊強度が4.0MPaを超える場合はプレス成形時に加圧を行ってもフィラーの変形がおきず、窒化ホウ素粉同士の接触が取りにくいため、熱伝導率が上昇しにくい。 The inorganic filler used in the present invention is an agglomerated powder obtained by agglomerating boron nitride powder, the porosity of the agglomerated powder is 50 to 70% by volume, and the crushing strength of the boron nitride agglomerated powder is 1.0 to 4.0 MPa. It is a range. When the crushing strength of the boron nitride agglomerated powder is less than 1.0 MPa, the agglomerated powder collapses during the kneading process with the resin, and orientation control is difficult. When the crushing strength exceeds 4.0 MPa, the filler is not deformed even if pressurization is performed during press molding, and contact between the boron nitride powders is difficult to take, so that the thermal conductivity is hardly increased.
本発明に使用する窒化ホウ素凝集粉の空隙率は、50〜70体積%である。50体積%未満の場合、プロセスによってはプレス成形した際のフィラーの変形が十分に起こらず、窒化ホウ素粉同士の接触が得られにくく、熱伝導率が上昇しにくい。空隙率が70体積%を超える場合、窒化ホウ素粉の内部の空隙に多くの樹脂が入り込むため、塗工液の粘度が上昇しやすく、ボイド等の欠陥が生じやすい。 The porosity of the boron nitride agglomerated powder used in the present invention is 50 to 70% by volume. When the amount is less than 50% by volume, the filler is not sufficiently deformed during press molding depending on the process, it is difficult to obtain contact between boron nitride powders, and the thermal conductivity is hardly increased. When the porosity exceeds 70% by volume, a large amount of resin enters the voids inside the boron nitride powder, so that the viscosity of the coating liquid is likely to increase and defects such as voids are likely to occur.
本発明に使用する窒化ホウ素凝集粉の平均粒径は、20〜100μmが好ましい。平均粒径が20μ未満の場合、樹脂と混合した際に、窒化ホウ素粒子と樹脂界面の総数の増加にともなう接触熱抵抗の増加により熱伝導率が低下する。また、混合液の粘度が上がるため、塗工時にボイド等の欠陥を生じやすい。平均粒径が100μmを超える場合、200μm以下での絶縁層形成が難しくなる。 As for the average particle diameter of the boron nitride aggregate powder used for this invention, 20-100 micrometers is preferable. When the average particle size is less than 20 μm, when mixed with the resin, the thermal conductivity decreases due to an increase in contact thermal resistance accompanying an increase in the total number of boron nitride particles and the resin interface. Further, since the viscosity of the liquid mixture increases, defects such as voids are likely to occur during coating. When the average particle size exceeds 100 μm, it becomes difficult to form an insulating layer at 200 μm or less.
本発明において、熱硬化前のエポキシ樹脂組成物に対する無機フィラーの含有量は適宜選択してよいが、熱伝導率の観点から、35体積%以上が好ましく、40体積%以上がより好ましい。また、高充填し過ぎると塗工が難しくなり、絶縁層形成時に空隙が出来やすく、基板物性、熱伝導率ともに低下するため、65体積%以下が好ましく60体積%以下がより好ましい。なお、この無機フィラーの体積%とは、熱硬化前に含有された無機フィラーの体積が熱硬化後の熱伝導用エポキシ樹脂組成物の体積に占める割合を意図しており、この無機フィラーの体積は、含有される無機フィラーの重量を無機フィラーの真比重で除して求めることができる。 In this invention, although content of the inorganic filler with respect to the epoxy resin composition before thermosetting may be selected suitably, from a viewpoint of thermal conductivity, 35 volume% or more is preferable and 40 volume% or more is more preferable. Further, if the filling is too high, coating becomes difficult, and voids are easily formed during the formation of the insulating layer, and both the physical properties of the substrate and the thermal conductivity are lowered. Therefore, it is preferably 65% by volume or less, more preferably 60% by volume or less. The volume% of the inorganic filler is intended to indicate the ratio of the volume of the inorganic filler contained before thermosetting to the volume of the epoxy resin composition for heat conduction after thermosetting, and the volume of the inorganic filler. Can be determined by dividing the weight of the inorganic filler contained by the true specific gravity of the inorganic filler.
本発明に使用する窒化ホウ素凝集粉の空隙率はJIS R 1655に準拠し、水銀ポロシメーターを用いて全細孔容積を測定することにより求めた値である。
水銀ポロシメーターを用いた全細孔容積としては、例えば、「PASCAL 140−440」(FISONS INSTRUMENTS社製)を用いて測定することができる。この測定の原理は、式εg=Vg/(Vg+1/ρt)×100に基づいている。式中、εgは、窒化ホウ素粒子の空隙率(%)であり、Vgは、粒子内空隙2の積算細孔容積(cm3/g)であり(図1の符号5)、ρtは、一次粒子の六方晶窒化ホウ素粒子の密度2.34(g/cm3)である。なお、Vgは、全細孔容積3(図1)から粒子間空隙1の積算細孔容積を差し引いた値(図1の符号4)として求めることができる。図1に測定結果の一例を示す。
The porosity of the boron nitride agglomerated powder used in the present invention is a value determined by measuring the total pore volume using a mercury porosimeter in accordance with JIS R 1655.
The total pore volume using a mercury porosimeter can be measured using, for example, “PASCAL 140-440” (manufactured by FISON INSTRUMENTS). The principle of this measurement is based on the equation εg = Vg / (Vg + 1 / ρt) × 100. In the formula, εg is the porosity (%) of the boron nitride particles, Vg is the cumulative pore volume (cm3 / g) of the intraparticle voids 2 (reference numeral 5 in FIG. 1), and ρt is the primary particles The density of hexagonal boron nitride particles is 2.34 (g / cm 3). Vg can be obtained as a value (reference numeral 4 in FIG. 1) obtained by subtracting the accumulated pore volume of the interparticle voids 1 from the total pore volume 3 (FIG. 1). FIG. 1 shows an example of the measurement result.
1 粒子間空隙
2 粒子内空隙
3 全細孔容積
4 全細孔容積3から粒子間空隙1の積算細孔容積を差し引いた値
5 粒子内空隙2の積算細孔容積
1 Inter-particle void 2 Intra-particle void 3 Total pore volume 4 Total pore volume 3 minus accumulated pore volume of inter-particle void 1 5 Integrated pore volume of intra-particle void 2
本発明に使用する窒化ホウ素凝集粉の圧壊強度は、JIS R 1639−5に準拠し、粒子が変形した際の試験力から求めた値である。
圧壊強度を求める際の測定機としては、例えば島津製作所 微小圧縮試験機 MCT-510を用いて測定することが出来る。圧壊強度は 式St=2.8P/πd2を用いて計算を行った。式中、Stは圧壊強度(MPa)であり、Pは破壊試験力(N)、dは粒子径(mm)である。式中、2.8は係数であり、日本鉱業会誌、81、p1024、1965年を参考に決定した。試験はφ200μmの平面圧子による圧縮試験によって行い、試験条件は設定試験力49(mN)、負荷速度(mN/sec)を用いた。測定回数は10回行い、その平均値を窒化ホウ素凝集粉の圧壊強度とした。
The crushing strength of the boron nitride agglomerated powder used in the present invention is a value determined from the test force when the particles are deformed in accordance with JIS R 1639-5.
For example, Shimadzu Corporation micro compression tester MCT-510 can be used as a measuring instrument for determining the crushing strength. The crushing strength was calculated using the formula St = 2.8P / πd 2 . In the formula, St is the crushing strength (MPa), P is the fracture test force (N), and d is the particle diameter (mm). In the formula, 2.8 is a coefficient, which was determined with reference to the Journal of the Japan Mining Association, 81, p1024, 1965. The test was performed by a compression test using a planar indenter with a diameter of 200 μm, and the test conditions were set test force 49 (mN) and load speed (mN / sec). The measurement was performed 10 times, and the average value was taken as the crushing strength of the boron nitride aggregated powder.
本発明に使用する窒化ホウ素凝集粉の平均粒径は、レーザー回折光散乱法による粒度分布測定において、累積粒度分布の累積値50%の粒径である。粒度分布測定機としては、例えば、「MT3300EX」(日機装社製)にて測定することができる。測定に際しては、溶媒には水、分散剤としてはヘキサメタリン酸を用い、前処理として、30秒間、ホモジナイザーを用いて20Wの出力をかけて分散処理させた。水の屈折率には1.33を用い、窒化ホウ素粉末の屈折率については1.80を用いた。一回当たりの測定時間は30秒である。 The average particle size of the boron nitride agglomerated powder used in the present invention is a particle size of 50% of the cumulative value of the cumulative particle size distribution in the particle size distribution measurement by the laser diffraction light scattering method. As a particle size distribution measuring device, for example, it is possible to measure with “MT3300EX” (manufactured by Nikkiso Co., Ltd.). In the measurement, water was used as a solvent, hexametaphosphoric acid was used as a dispersant, and a pretreatment was performed for 30 seconds using a homogenizer with an output of 20 W for dispersion treatment. The refractive index of water was 1.33, and the refractive index of boron nitride powder was 1.80. The measurement time per time is 30 seconds.
本発明のエポキシ樹脂組成物は、各種コーターによってシート状に所望の厚みに塗布し、加熱により硬化させることで上記エポキシ樹脂組成物のシートを作製することができる。シート状への成形は、剥離フィルムに塗工する方法、押出成形、射出成形、ラミネート成形等がある。硬化させる際の熱量を適切にコントロールすることにより、シート状に塗布したエポキシ樹脂組成物を半硬化させたBステージ状態のシートを作製することもできる。 The epoxy resin composition of the present invention can be prepared in the form of a sheet with various coaters to a desired thickness and cured by heating to produce a sheet of the epoxy resin composition. Forming into a sheet form includes a method of coating on a release film, extrusion molding, injection molding, laminate molding and the like. By appropriately controlling the amount of heat at the time of curing, a sheet in a B stage state in which the epoxy resin composition applied in a sheet shape is semi-cured can be produced.
また、金属基板上に本発明のエポキシ樹脂組成物を塗布し、回路材を積層することで金属ベース回路基板の絶縁層としても使用することができる。金属ベース回路基板に用いられる金属板は、アルミニウム、銅、鉄などにより形成された、例えば、0.1〜5mm厚さのものを用いることができる。この金属板としては、軽量で良好な熱伝導性を示すことからアルミニウムを用いることが好ましく、また、高い熱容量をもつ銅を用いることが好ましい。 Moreover, it can use also as an insulating layer of a metal base circuit board by apply | coating the epoxy resin composition of this invention on a metal substrate, and laminating | stacking a circuit material. The metal plate used for the metal base circuit board may be formed of aluminum, copper, iron or the like, for example, having a thickness of 0.1 to 5 mm. As the metal plate, aluminum is preferably used because it is lightweight and exhibits good thermal conductivity, and copper having a high heat capacity is preferably used.
本発明において、上記エポキシ樹脂組成物には組成に影響を与えない範囲で、硬化促進剤、変色防止剤、界面活性剤、カップリング剤、着色剤、粘度調整剤などを適宜配合することができる。 In the present invention, a curing accelerator, a discoloration inhibitor, a surfactant, a coupling agent, a colorant, a viscosity modifier and the like can be appropriately blended in the epoxy resin composition as long as the composition is not affected. .
「実施例1」
(エポキシ樹脂組成物の作製)
エポキシ樹脂としてビスフェノールA型エポキシ樹脂ep828(三菱化学株式会社製、比重1.2g/cm3)31.0体積%、硬化剤としてフェノールノボラック樹脂TD−2131(東都化成株式会社製、比重1.1g/cm3)18.4体積%を120℃で攪拌し、溶解した。
溶解した樹脂と、熱伝導性の無機フィラーとして窒化ホウ素フィラー FP−70(デンカ社製、平均粒径70μm、空隙率60体積%、圧壊強度2MPa)を50.0体積%、硬化促進剤として2E4MZ(四国化成工業社製、比重0.975g/cm3)0.6体積%をプラネタリーミキサーで15分間、攪拌混合しエポキシ樹脂組成物を作製した。
"Example 1"
(Preparation of epoxy resin composition)
Epoxy resin bisphenol A type epoxy resin ep828 (Mitsubishi Chemical Co., Ltd., specific gravity 1.2 g / cm 3 ) 31.0% by volume, phenolic novolac resin TD-2131 (manufactured by Toto Kasei Co., Ltd., specific gravity 1.1 g) / Cm 3 ) 18.4% by volume was stirred at 120 ° C. and dissolved.
Boron nitride filler FP-70 (manufactured by Denka Corp., average particle size 70 μm, porosity 60 volume%, crushing strength 2 MPa) 50.0 volume% as a thermally conductive inorganic filler and 2E4MZ as a curing accelerator 0.6 volume% (manufactured by Shikoku Kasei Kogyo Co., Ltd., specific gravity 0.975 g / cm 3 ) was stirred and mixed with a planetary mixer for 15 minutes to prepare an epoxy resin composition.
〈エポキシ樹脂組成物シートの作製〉
エポキシ樹脂組成物を、厚さ0.05mmのポリエチレンテレフタレート(PET)製のフィルム上に、硬化後の厚さが0.20mmになるように塗布し、100℃15分加熱乾燥させ、これによりBステージ状態のシートを作製した。
<Preparation of epoxy resin composition sheet>
The epoxy resin composition was applied onto a 0.05 mm thick polyethylene terephthalate (PET) film so that the thickness after curing was 0.20 mm, and dried by heating at 100 ° C. for 15 minutes. A staged sheet was prepared.
〈金属ベース回路基板の作製〉
作製したエポキシ樹脂組成物のシートをPETフィルムからはがし、金属板として厚さ1.5mmのアルミニウム板上に置き、その上に0.035mm銅箔GTS−MP(古河サーキットフォイル社製)の粗化面を配置し、プレス機によって面圧160kgf/cm2をかけながら180℃180分間加熱硬化した。
<Production of metal base circuit board>
The produced epoxy resin composition sheet is peeled off from the PET film, placed on a 1.5 mm thick aluminum plate as a metal plate, and 0.035 mm copper foil GTS-MP (Furukawa Circuit Foil Co., Ltd.) is roughened thereon. The surface was placed and heat-cured at 180 ° C. for 180 minutes while applying a surface pressure of 160 kgf / cm 2 with a press.
〈金属ベース回路基板の絶縁強度測定〉
作製した基板の絶縁強度はJIS C 6481に基づき、TOS 8650(KIKUSUI社製)を用いて測定した。200μmの絶縁層のとき、8kV以上(40kV/mm以上)の値が望ましい。
<Measurement of insulation strength of metal base circuit board>
The insulation strength of the produced substrate was measured using TOS 8650 (manufactured by KIKUSUI) based on JIS C 6481. When the insulating layer is 200 μm, a value of 8 kV or more (40 kV / mm or more) is desirable.
〈金属ベース回路基板の熱伝導率測定〉
エポキシ樹脂組成物をシリコーンシート上に流し込み、縦10mm、横10mm、厚さ0.5mmの硬化体を作製し、レーザーフラッシュ法により、熱拡散率αを測定し、下記式から熱伝導率λを評価した。
λ=α×Cp×ρ
比熱CpはDSC測定から算出し、比重ρはアルキメデス法による実測値を使用した。
熱伝導率は8W/mK以上が望ましい。
<Measurement of thermal conductivity of metal base circuit board>
The epoxy resin composition is poured onto a silicone sheet to produce a cured body having a length of 10 mm, a width of 10 mm, and a thickness of 0.5 mm, and the thermal diffusivity α is measured by a laser flash method. evaluated.
λ = α × Cp × ρ
The specific heat Cp was calculated from DSC measurement, and the specific gravity ρ was measured by the Archimedes method.
The thermal conductivity is desirably 8 W / mK or more.
「実施例2〜19、比較例1〜8」
使用材料を変えて、実施例1と同様に、エポキシ樹脂組成物、エポキシ樹脂シートを作製し、基板の絶縁強度、熱伝導率の測定を行った。結果を表1、2に示す。
"Examples 2 to 19 and Comparative Examples 1 to 8"
An epoxy resin composition and an epoxy resin sheet were prepared in the same manner as in Example 1 by changing the materials used, and the insulating strength and thermal conductivity of the substrate were measured. The results are shown in Tables 1 and 2.
(使用材料)
1.エポキシ樹脂
(1)ビスフェノールA型エポキシ樹脂、三菱化学株式会社製、商品名ep828、比重1.2g/cm3
(2)ビスフェノールF型エポキシ樹脂、DIC株式会社製、商品名、商品名YDF−170、比重1.2g/cm3
(3)ナフタレン型エポキシ樹脂、DIC株式会社製、商品名HP−4032D、比重1.2g/cm3
2.硬化剤
(1)フェノールノボラック樹脂、東都化成株式会社製、商品名TD2131、比重1.1g/cm3
(2)芳香族アミン、日本合成加工株式会社製、商品名H84B、比重1.1g/cm3
(3)脂肪族アミン、三井化学ファイン株式会社製、商品名D400、比重1.05g/cm3
3.硬化促進剤
(1)四国化成工業社製、商品名2E4MZ、比重0.975g/cm3
(2)北興化学工業社製、商品名TPP、比重1.1g/cm3
4.窒化ホウ素凝集粉
(1)FP−10:デンカ社製、平均粒径10μm
(2)FP−20:デンカ社製、平均粒径20μm
(3)FP−70:デンカ社製、平均粒径70μm
(4)FP−100:デンカ社製、平均粒径100μm
(5)FP−150:デンカ社製、平均粒径150μm
(Materials used)
1. Epoxy resin (1) Bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation, trade name ep828, specific gravity 1.2 g / cm 3
(2) Bisphenol F type epoxy resin, manufactured by DIC Corporation, trade name, trade name YDF-170, specific gravity 1.2 g / cm 3
(3) Naphthalene type epoxy resin, manufactured by DIC Corporation, trade name HP-4032D, specific gravity 1.2 g / cm 3
2. Curing agent (1) Phenol novolak resin, manufactured by Tohto Kasei Co., Ltd., trade name TD2131, specific gravity 1.1 g / cm 3
(2) Aromatic amine, manufactured by Nippon Synthetic Processing Co., Ltd., trade name H84B, specific gravity 1.1 g / cm 3
(3) Aliphatic amine, manufactured by Mitsui Chemicals Fine Co., Ltd., trade name D400, specific gravity 1.05 g / cm 3
3. Curing accelerator (1) manufactured by Shikoku Kasei Kogyo Co., Ltd., trade name 2E4MZ, specific gravity 0.975 g / cm 3
(2) Made by Hokuko Chemical Co., Ltd., trade name TPP, specific gravity 1.1 g / cm 3
4). Boron nitride agglomerated powder (1) FP-10: Denka, average particle size 10 μm
(2) FP-20: Denka Co., average particle size 20 μm
(3) FP-70: manufactured by Denka Co., Ltd., average particle diameter of 70 μm
(4) FP-100: Denka Co., average particle size 100 μm
(5) FP-150: Denka Co., average particle size 150 μm
表1、2から、実施例1〜19は熱伝導率、絶縁性共に良好であった。比較例1は窒化ホウ素凝集粉の充填量が低く、熱伝導率が低かった。比較例2は充填量が高すぎたため、絶縁性が低下した。比較例3はフィラーの空隙率が低いため、プレス時にフィラー同士の接触が不足し、熱伝導率が低かった。比較例4は塗工液の粘度が高くなったことが要因で絶縁性が低かった。比較例5は作製プロセス中にフィラーの破壊が起こったため、熱伝導率が低かった。比較例6はフィラー同士の接触が少なく、熱伝導率が低かった。比較例7はフィラーの粒径が小さいことが要因で熱伝導率が低かった。比較例8はフィラーの粒径が大きく、均一な絶縁層が形成されず、絶縁性が低かった。 From Tables 1 and 2, Examples 1 to 19 were good in both thermal conductivity and insulation. In Comparative Example 1, the filling amount of the boron nitride aggregated powder was low, and the thermal conductivity was low. In Comparative Example 2, since the filling amount was too high, the insulating property was lowered. In Comparative Example 3, since the porosity of the filler was low, contact between the fillers was insufficient during pressing, and the thermal conductivity was low. In Comparative Example 4, the insulating property was low due to the increase in the viscosity of the coating solution. In Comparative Example 5, the thermal conductivity was low because the filler was destroyed during the production process. In Comparative Example 6, there was little contact between the fillers and the thermal conductivity was low. In Comparative Example 7, the thermal conductivity was low due to the small particle size of the filler. In Comparative Example 8, the filler particle size was large, a uniform insulating layer was not formed, and the insulating property was low.
本発明により、熱伝導性、接着性、絶縁性に優れる、エポキシ樹脂組成物、エポキシ樹脂シート、およびそれを用いた金属ベース回路基板が得られ、半導体分野に好適である。 According to the present invention, an epoxy resin composition, an epoxy resin sheet, and a metal base circuit board using the epoxy resin composition, which are excellent in thermal conductivity, adhesiveness, and insulation are obtained, and are suitable for the semiconductor field.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015211989A JP6612584B2 (en) | 2015-10-28 | 2015-10-28 | Epoxy resin composition, epoxy resin sheet, and metal base circuit board using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015211989A JP6612584B2 (en) | 2015-10-28 | 2015-10-28 | Epoxy resin composition, epoxy resin sheet, and metal base circuit board using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017082091A true JP2017082091A (en) | 2017-05-18 |
JP6612584B2 JP6612584B2 (en) | 2019-11-27 |
Family
ID=58713994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015211989A Active JP6612584B2 (en) | 2015-10-28 | 2015-10-28 | Epoxy resin composition, epoxy resin sheet, and metal base circuit board using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6612584B2 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018188632A (en) * | 2017-04-28 | 2018-11-29 | 積水化学工業株式会社 | Thermosetting sheet, and method of producing cured sheet |
WO2019049707A1 (en) * | 2017-09-06 | 2019-03-14 | デンカ株式会社 | Thermally conductive sheet |
WO2019138300A1 (en) * | 2018-01-09 | 2019-07-18 | 3M Innovative Properties Company | Thermally conductive sheet precursor, thermally conductive sheet obtained from the precursor, and production method thereof |
JP2019169634A (en) * | 2018-03-23 | 2019-10-03 | 三菱マテリアル株式会社 | Insulative circuit board, and method for manufacturing the same |
JP2020132670A (en) * | 2019-02-13 | 2020-08-31 | デンカ株式会社 | Method for producing insulation sheet, method for producing metal base circuit board and insulation sheet |
JPWO2020196643A1 (en) * | 2019-03-27 | 2020-10-01 | ||
WO2021039630A1 (en) * | 2019-08-27 | 2021-03-04 | デンカ株式会社 | Insulating resin composition, insulating resin cured body, layered body and circuit base board |
JP2021091787A (en) * | 2019-12-10 | 2021-06-17 | 日東シンコー株式会社 | Resin composition and heat conductive sheet |
WO2021125092A1 (en) * | 2019-12-17 | 2021-06-24 | デンカ株式会社 | Resin sheet and manufacturing method thereof |
KR20210135997A (en) | 2019-02-27 | 2021-11-16 | 미쯔비시 케미컬 주식회사 | Boron nitride agglomerated powder, heat dissipation sheet and semiconductor device |
WO2021241700A1 (en) * | 2020-05-29 | 2021-12-02 | デンカ株式会社 | Cured sheet and method for producing same |
JPWO2021241699A1 (en) * | 2020-05-29 | 2021-12-02 | ||
WO2022050415A1 (en) * | 2020-09-07 | 2022-03-10 | デンカ株式会社 | Insulating resin composition, insulating resin cured body, layered body, and circuit substrate |
WO2022107849A1 (en) * | 2020-11-20 | 2022-05-27 | 日東電工株式会社 | Bonding method |
CN115260705A (en) * | 2022-06-07 | 2022-11-01 | 四川大学 | Reactor epoxy resin insulation layer crack repair material and preparation method thereof |
WO2023033036A1 (en) * | 2021-08-31 | 2023-03-09 | デンカ株式会社 | Powder including specific boron nitride particles, heat dissipation sheet, and method for producing heat dissipation sheet |
WO2023189030A1 (en) * | 2022-03-28 | 2023-10-05 | 三菱ケミカル株式会社 | Thermosetting resin composition, resin cured product and composite molded body |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010157563A (en) * | 2008-12-26 | 2010-07-15 | Mitsubishi Electric Corp | Heat conductive sheet and power module |
JP2014040341A (en) * | 2012-08-22 | 2014-03-06 | Denki Kagaku Kogyo Kk | Boron nitride powder and use thereof |
JP2014152299A (en) * | 2013-02-13 | 2014-08-25 | Mitsubishi Electric Corp | Thermosetting resin composition, conductive resin sheet, method for producing the same, and power module comprising the same |
WO2014136959A1 (en) * | 2013-03-07 | 2014-09-12 | 電気化学工業株式会社 | Boron-nitride powder and resin composition containing same |
JP2017028128A (en) * | 2015-07-23 | 2017-02-02 | 住友ベークライト株式会社 | Substrate for power module, circuit board for power module, and power module |
-
2015
- 2015-10-28 JP JP2015211989A patent/JP6612584B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010157563A (en) * | 2008-12-26 | 2010-07-15 | Mitsubishi Electric Corp | Heat conductive sheet and power module |
JP2014040341A (en) * | 2012-08-22 | 2014-03-06 | Denki Kagaku Kogyo Kk | Boron nitride powder and use thereof |
JP2014152299A (en) * | 2013-02-13 | 2014-08-25 | Mitsubishi Electric Corp | Thermosetting resin composition, conductive resin sheet, method for producing the same, and power module comprising the same |
WO2014136959A1 (en) * | 2013-03-07 | 2014-09-12 | 電気化学工業株式会社 | Boron-nitride powder and resin composition containing same |
JP2017028128A (en) * | 2015-07-23 | 2017-02-02 | 住友ベークライト株式会社 | Substrate for power module, circuit board for power module, and power module |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018188632A (en) * | 2017-04-28 | 2018-11-29 | 積水化学工業株式会社 | Thermosetting sheet, and method of producing cured sheet |
KR20200050943A (en) * | 2017-09-06 | 2020-05-12 | 덴카 주식회사 | Thermally conductive sheet |
TWI848917B (en) * | 2017-09-06 | 2024-07-21 | 日商電化股份有限公司 | Thermally conductive sheet and heat dissipation component |
KR102626983B1 (en) * | 2017-09-06 | 2024-01-18 | 덴카 주식회사 | thermal conductive sheet |
WO2019049707A1 (en) * | 2017-09-06 | 2019-03-14 | デンカ株式会社 | Thermally conductive sheet |
JPWO2019049707A1 (en) * | 2017-09-06 | 2020-08-20 | デンカ株式会社 | Thermal conductive sheet |
JP7189879B2 (en) | 2017-09-06 | 2022-12-14 | デンカ株式会社 | thermally conductive sheet |
CN110892025A (en) * | 2017-09-06 | 2020-03-17 | 电化株式会社 | Thermal conductive sheet |
WO2019138300A1 (en) * | 2018-01-09 | 2019-07-18 | 3M Innovative Properties Company | Thermally conductive sheet precursor, thermally conductive sheet obtained from the precursor, and production method thereof |
JP2019121708A (en) * | 2018-01-09 | 2019-07-22 | スリーエム イノベイティブ プロパティズ カンパニー | Thermally conductive sheet precursor, thermally conductive sheet obtained from that precursor, and production method thereof |
JP7135364B2 (en) | 2018-03-23 | 2022-09-13 | 三菱マテリアル株式会社 | INSULATED CIRCUIT BOARD AND METHOD FOR MANUFACTURING INSULATED CIRCUIT BOARD |
JP2019169634A (en) * | 2018-03-23 | 2019-10-03 | 三菱マテリアル株式会社 | Insulative circuit board, and method for manufacturing the same |
JP7304167B2 (en) | 2019-02-13 | 2023-07-06 | デンカ株式会社 | Method for manufacturing insulating sheet, method for manufacturing metal-based circuit board, and insulating sheet |
JP2020132670A (en) * | 2019-02-13 | 2020-08-31 | デンカ株式会社 | Method for producing insulation sheet, method for producing metal base circuit board and insulation sheet |
KR20210135997A (en) | 2019-02-27 | 2021-11-16 | 미쯔비시 케미컬 주식회사 | Boron nitride agglomerated powder, heat dissipation sheet and semiconductor device |
JP7145315B2 (en) | 2019-03-27 | 2022-09-30 | デンカ株式会社 | Agglomerated boron nitride particles, thermally conductive resin composition, and heat dissipation member |
TWI838500B (en) * | 2019-03-27 | 2024-04-11 | 日商電化股份有限公司 | Blocky boron nitride particles, heat conductive resin composition, and heat dissipation member |
JPWO2020196643A1 (en) * | 2019-03-27 | 2020-10-01 | ||
CN113710747B (en) * | 2019-08-27 | 2024-04-16 | 电化株式会社 | Insulating resin composition, insulating resin cured body, laminate, and circuit board |
JP7566756B2 (en) | 2019-08-27 | 2024-10-15 | デンカ株式会社 | Insulating resin composition, cured insulating resin body, laminate and circuit board |
WO2021039630A1 (en) * | 2019-08-27 | 2021-03-04 | デンカ株式会社 | Insulating resin composition, insulating resin cured body, layered body and circuit base board |
CN113710747A (en) * | 2019-08-27 | 2021-11-26 | 电化株式会社 | Insulating resin composition, cured insulating resin, laminate, and circuit board |
JP7486941B2 (en) | 2019-12-10 | 2024-05-20 | 日東シンコー株式会社 | Resin composition and thermally conductive sheet |
JP2021091787A (en) * | 2019-12-10 | 2021-06-17 | 日東シンコー株式会社 | Resin composition and heat conductive sheet |
WO2021125092A1 (en) * | 2019-12-17 | 2021-06-24 | デンカ株式会社 | Resin sheet and manufacturing method thereof |
JP7577687B2 (en) | 2019-12-17 | 2024-11-05 | デンカ株式会社 | Resin sheet and method for producing same |
WO2021241699A1 (en) * | 2020-05-29 | 2021-12-02 | デンカ株式会社 | Cured sheet and method for producing same |
JP7361909B2 (en) | 2020-05-29 | 2023-10-16 | デンカ株式会社 | Cured sheet and manufacturing method thereof |
JPWO2021241699A1 (en) * | 2020-05-29 | 2021-12-02 | ||
JP7523534B2 (en) | 2020-05-29 | 2024-07-26 | デンカ株式会社 | Hardened sheet and its manufacturing method |
JPWO2021241700A1 (en) * | 2020-05-29 | 2021-12-02 | ||
WO2021241700A1 (en) * | 2020-05-29 | 2021-12-02 | デンカ株式会社 | Cured sheet and method for producing same |
WO2022050415A1 (en) * | 2020-09-07 | 2022-03-10 | デンカ株式会社 | Insulating resin composition, insulating resin cured body, layered body, and circuit substrate |
JP7566917B2 (en) | 2020-09-07 | 2024-10-15 | デンカ株式会社 | Insulating resin composition, cured insulating resin body, laminate and circuit board |
WO2022107849A1 (en) * | 2020-11-20 | 2022-05-27 | 日東電工株式会社 | Bonding method |
WO2023033036A1 (en) * | 2021-08-31 | 2023-03-09 | デンカ株式会社 | Powder including specific boron nitride particles, heat dissipation sheet, and method for producing heat dissipation sheet |
WO2023189030A1 (en) * | 2022-03-28 | 2023-10-05 | 三菱ケミカル株式会社 | Thermosetting resin composition, resin cured product and composite molded body |
CN115260705A (en) * | 2022-06-07 | 2022-11-01 | 四川大学 | Reactor epoxy resin insulation layer crack repair material and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP6612584B2 (en) | 2019-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6612584B2 (en) | Epoxy resin composition, epoxy resin sheet, and metal base circuit board using the same | |
JP5761639B2 (en) | Adhesive resin composition, cured product thereof, and adhesive film | |
US10351728B2 (en) | Thermosetting resin composition, method of producing thermal conductive sheet, and power module | |
JP6945241B2 (en) | Resin composition for film, film, film with base material, metal / resin laminate, cured resin, semiconductor device, and film manufacturing method | |
JP6023474B2 (en) | Thermally conductive insulating sheet, metal base substrate and circuit board, and manufacturing method thereof | |
JP6803401B2 (en) | Heat dissipation board, heat dissipation circuit configuration, and its manufacturing method | |
US20180163112A1 (en) | Thermally conductive sheet | |
TW201335260A (en) | Resin cured product, semi-cured resin film and resin composition | |
JP5652307B2 (en) | Prepress and laminate for heat and pressure molding | |
JP2014193965A (en) | High thermal conductive resin composition, high thermal conductive semi-cured resin film and high thermal conductive resin cured product | |
JP2009024126A (en) | Polymer composition, thermally-conductive sheet, highly thermally-conductive adhesive sheet with metal foil, highly thermally-conductive adhesive sheet with metal plate, metal-based circuit board and power module | |
CN110546209B (en) | Resin material, method for producing resin material, and laminate | |
JP6125282B2 (en) | Boron nitride composite powder and thermosetting resin composition using the same | |
JP7188070B2 (en) | LAMINATED STRUCTURE WITH RADIATION INSULATING SHEET AND CURED SHEET AS INSULATING LAYER | |
JP2015189884A (en) | Thermosetting resin composition, resin sheet, prepreg and laminate sheet | |
JP2014189701A (en) | High thermal conductive resin cured product, high thermal conductive semi-cured resin film and high thermal conductive resin composition | |
JP2017059704A (en) | Thermally conducting composition, thermally conducting sheet, manufacturing method of thermally conducting sheet, and member | |
CN110546202A (en) | Resin material, method for producing resin material, and laminate | |
TW201840727A (en) | Resin material and laminate | |
JP7304167B2 (en) | Method for manufacturing insulating sheet, method for manufacturing metal-based circuit board, and insulating sheet | |
JP6074447B2 (en) | Epoxy resin composition, epoxy resin sheet, and metal base circuit board using the same | |
JP2018082165A (en) | Hardening material and laminate | |
TW201840730A (en) | Resin material and laminate | |
US20230017856A1 (en) | Resin sheet and manufacturing method thereof | |
JP2019176100A (en) | Heat dissipation substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181018 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190710 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190716 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190904 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191029 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191031 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6612584 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |