[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2017078103A - Organic silicon compound, thermosetting composition comprising the organic silicon compound, and optical semiconductor sealing material - Google Patents

Organic silicon compound, thermosetting composition comprising the organic silicon compound, and optical semiconductor sealing material Download PDF

Info

Publication number
JP2017078103A
JP2017078103A JP2015205742A JP2015205742A JP2017078103A JP 2017078103 A JP2017078103 A JP 2017078103A JP 2015205742 A JP2015205742 A JP 2015205742A JP 2015205742 A JP2015205742 A JP 2015205742A JP 2017078103 A JP2017078103 A JP 2017078103A
Authority
JP
Japan
Prior art keywords
formula
thermosetting composition
compound
silicon compound
phenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015205742A
Other languages
Japanese (ja)
Other versions
JP6766334B2 (en
JP2017078103A5 (en
Inventor
清志 坂井
Kiyoshi Sakai
清志 坂井
孝志 松尾
Takashi Matsuo
孝志 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
JNC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JNC Corp filed Critical JNC Corp
Priority to JP2015205742A priority Critical patent/JP6766334B2/en
Publication of JP2017078103A publication Critical patent/JP2017078103A/en
Publication of JP2017078103A5 publication Critical patent/JP2017078103A5/ja
Application granted granted Critical
Publication of JP6766334B2 publication Critical patent/JP6766334B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicon Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermosetting composition excellent in gas permeability and characteristics of a cold-hot cycle test.SOLUTION: The present invention provides a thermosetting composition comprising an organic silicon compound and a vinyl group-containing silicon compound (Rs independently represent a C1-4 alkyl group, alicyclic group or phenyl group; Rs independently represent H or a linear siloxane chain group).SELECTED DRAWING: None

Description

本発明は、有機ケイ素化合物、および該化合物を含む、光学材料、電気絶縁材料などの用途に有用な熱硬化性組成物、これを熱硬化させた硬化物、並びにこれを用いた光半導体用の封止材料に関する。   The present invention relates to an organosilicon compound, a thermosetting composition useful for applications such as optical materials and electrical insulating materials containing the compound, a cured product obtained by thermally curing the composition, and an optical semiconductor using the same. The present invention relates to a sealing material.

近年、発光ダイオード(LED)等の発光装置は、種々の表示板、画像読み取り用光源、交通信号、大型ディスプレイ用ユニット、携帯電話のバックライト等に実用化されている。これら発光装置は、芳香族エポキシ樹脂と硬化剤である脂環式酸無水物とを硬化させて得られた硬化性樹脂で封止されているのが一般的である。しかし、この芳香族エポキシ樹脂系では脂環式酸無水物が酸で変色しやすいことや、硬化するまでに長時間を要することが問題として知られている。また、発光装置が屋外に放置される場合や、紫外線を発生する光源に曝される場合に、封止した硬化性樹脂が黄変するという問題を有している。   In recent years, light emitting devices such as light emitting diodes (LEDs) have been put to practical use in various display boards, image reading light sources, traffic signals, large display units, mobile phone backlights, and the like. These light emitting devices are generally sealed with a curable resin obtained by curing an aromatic epoxy resin and an alicyclic acid anhydride as a curing agent. However, in this aromatic epoxy resin system, it is known that the alicyclic acid anhydride is easily discolored by an acid and that it takes a long time to cure. Further, when the light emitting device is left outdoors or exposed to a light source that generates ultraviolet rays, there is a problem that the sealed curable resin is yellowed.

このような問題を解消するために、脂環式エポキシ樹脂またはアクリル樹脂と、カチオン重合開始剤とを用いた硬化性樹脂でLED等を封止する方法が試みられている(特許文献1および2を参照)。しかし、上記カチオン重合した硬化性樹脂は、非常に脆く、冷熱サイクル試験(ヒートサイクル試験ともいう。)により亀裂破壊を生じやすい欠点を有している。また、この硬化性樹脂は、従来の芳香族エポキシ樹脂と酸無水物とを用いる硬化性樹脂と比べて、硬化後の封止した硬化性樹脂の着色が著しいという欠点を有している。そのため、この硬化性樹脂は、無色透明性を要求される用途、特に耐熱性と透明性が要求されるLEDの封止用途には不向きである。   In order to solve such a problem, a method of sealing an LED or the like with a curable resin using an alicyclic epoxy resin or an acrylic resin and a cationic polymerization initiator has been attempted (Patent Documents 1 and 2). See). However, the cation-polymerized curable resin is very fragile and has a defect that it is liable to cause crack fracture in a cold cycle test (also referred to as a heat cycle test). Further, this curable resin has a defect that the sealed curable resin is markedly colored after curing, as compared with a curable resin using a conventional aromatic epoxy resin and acid anhydride. Therefore, this curable resin is not suitable for applications requiring colorless transparency, particularly for LED sealing applications requiring heat resistance and transparency.

そこで、冷熱サイクル試験による亀裂破壊の発生が改良され、耐光性に優れたLED封止材用樹脂組成物が検討されている(特許文献3を参照)。ここに示された樹脂組成物は、水素化エポキシ樹脂や脂環式エポキシ樹脂をマトリックス成分とするものではあるが、未だ硬化後の着色が大きく更なる変色に対する改善が望まれている。   Then, the generation | occurrence | production of the crack fracture | rupture by a thermal cycle test is improved, and the resin composition for LED sealing materials excellent in light resistance is examined (refer patent document 3). Although the resin composition shown here uses a hydrogenated epoxy resin or an alicyclic epoxy resin as a matrix component, the coloration after curing is still large, and an improvement for further discoloration is desired.

一方、白色LEDが照明等の用途に用いられ、その大出力化に伴いLEDパッケージの発熱が無視できなくなっている。エポキシ樹脂を封止材料に用いた場合にはその発熱による黄変が避けられなくなったため、エポキシ樹脂に代わってシリコーン樹脂が白色LEDの封止材料に用いられてきている。LEDに用いられるシリコーン樹脂は大きく分けて、メチルシリコーン樹脂、フェニルシリコーン樹脂の2種類に分けられる。メチルシリコーン樹脂は、耐熱性・耐候性は非常に優れているものの、屈折率が低いためLEDの光取り出し効率が悪いという欠点がある。さらに硬化したメチルシリコーン樹脂は非常に脆く、冷熱サイクル試験により亀裂破壊を生じやすい、ガス透過性が高いという欠点がある。一方、フェニルシリコーン樹脂は、屈折率は満足するものである。ガス透過性についてはメチルシリコーン樹脂よりは優れている。冷熱サイクル試験についても同様であるが、LEDの大出力化に対応するには十分ではない。特にガス透過性と冷熱サイクル試験の特性は相反する関係を持つため、改善を行うのは困難であった。   On the other hand, white LEDs are used for applications such as lighting, and heat generation of the LED package cannot be ignored as the output increases. When an epoxy resin is used as a sealing material, yellowing due to the heat generation is unavoidable. Therefore, a silicone resin has been used as a sealing material for white LEDs in place of the epoxy resin. Silicone resins used for LEDs are roughly divided into two types: methylsilicone resins and phenylsilicone resins. Although methylsilicone resin is very excellent in heat resistance and weather resistance, it has a drawback that the light extraction efficiency of the LED is poor because of its low refractive index. Furthermore, the cured methylsilicone resin is very brittle, has a disadvantage that it is prone to crack fracture by a thermal cycle test and has high gas permeability. On the other hand, the phenyl silicone resin has a satisfactory refractive index. Gas permeability is superior to methyl silicone resin. The same applies to the thermal cycle test, but it is not sufficient to cope with the increased output of the LED. In particular, since the gas permeability and the characteristics of the thermal cycle test have a contradictory relationship, it was difficult to improve.

そのため、白色LEDの大出力化に対応できる、高屈折率、耐熱性等の性能を保持ちながら、ガス透過性および冷熱サイクル試験の特性を両立させた封止材料、およびそれに用いられる熱硬化性組成物が求められていた。   Therefore, a sealing material that has both gas permeability and characteristics of a thermal cycle test while maintaining performance such as high refractive index and heat resistance, which can cope with a large output of a white LED, and thermosetting used for it. A composition was sought.

特開昭61−112334号公報、JP-A-61-112334, 特開平02−289611号公報Japanese Patent Laid-Open No. 02-289611 特開2003−277473号公報JP 2003-277473 A 特開2006−070049号公報JP 2006-070049 A 国際公開2004/081084号International Publication No. 2004/081084 特開2004−331647号公報JP 2004-331647 A 国際公開2003/24870号International Publication No. 2003/24870 国際公開2004/24741号International Publication No. 2004/24741

本発明は、ガス透過性の性能を維持しつつ、冷熱サイクル試験に対する良好な硬化物を得ることができる熱硬化性組成物を提供することを課題の一つとし、また、この熱硬化性組成物に含有させる有機ケイ素化合物、熱硬化性組成物からなる硬化物、成形体、および発光ダイオード用などの封止材料を提供することを課題の一つとする。   An object of the present invention is to provide a thermosetting composition capable of obtaining a good cured product for a cold cycle test while maintaining gas permeability performance. An object is to provide an organic silicon compound to be contained in a product, a cured product formed of a thermosetting composition, a molded body, and a sealing material for a light-emitting diode.

本発明者は、上記課題を解決すべく鋭意検討を行った。その結果、ダブルデッカー型のケイ素化合物の構造を含み、該化合物と硬化剤とを含む熱硬化性組成物の硬化物が、ガス透過性の性能を維持しつつ、冷熱サイクル試験に優れることを見出し、本発明を完成するに至った。
即ち、本発明は下記の構成を有する。
The present inventor has intensively studied to solve the above problems. As a result, it has been found that a cured product of a thermosetting composition containing a structure of a double-decker silicon compound and containing the compound and a curing agent is excellent in a thermal cycle test while maintaining gas permeability. The present invention has been completed.
That is, the present invention has the following configuration.

[1] 式(1)で表される有機ケイ素化合物。

Figure 2017078103

式(1)中、Rは独立して、炭素数1〜4のアルキル、シクロペンチル、シクロヘキシル、またはフェニルであり、Rは独立して、水素または式(2)で表される基であり、4つのRのうちの少なくとも1つは、式(2)で表される基である。

Figure 2017078103

式(2)中、Rは炭素数1〜20の炭化水素基であり、Rは独立して、炭素数1〜20のアルキル、フェニル、シクロペンチル、またはシクロヘキシルであり、Rは、炭素数1〜20のアルキルまたはフェニルであり、nは0〜1,000の整数である。 [1] An organosilicon compound represented by the formula (1).

Figure 2017078103

In formula (1), R 1 is independently alkyl having 1 to 4 carbon atoms, cyclopentyl, cyclohexyl, or phenyl, and R 2 is independently hydrogen or a group represented by formula (2). At least one of the four R 2 is a group represented by the formula (2).

Figure 2017078103

In Formula (2), R 3 is a hydrocarbon group having 1 to 20 carbon atoms, R 4 is independently alkyl having 1 to 20 carbon atoms, phenyl, cyclopentyl, or cyclohexyl, and R 5 is carbon. N is an integer of 0 to 1,000.

[2] 式(3)で表される化合物と、式(4)で表される化合物とを、ヒドロシリル化反応することで得られる有機ケイ素化合物の製造方法。

Figure 2017078103

式(3)中、Rは独立して、炭素数1〜4のアルキル、シクロペンチル、シクロヘキシル、またはフェニルである。

Figure 2017078103

式(4)中、
は独立して、炭素数1〜20のアルキル、フェニル、シクロペンチル、またはシクロヘキシルであり、Rは炭素数1〜20のアルキルまたはフェニルであり、Rは炭素数1〜20の不飽和炭化水素基であり、nは0〜1,000の整数である。 [2] A method for producing an organosilicon compound obtained by hydrosilylating a compound represented by the formula (3) and a compound represented by the formula (4).

Figure 2017078103

In formula (3), R 1 is independently alkyl having 1 to 4 carbons, cyclopentyl, cyclohexyl, or phenyl.

Figure 2017078103

In formula (4),
R 4 is independently alkyl having 1 to 20 carbons, phenyl, cyclopentyl, or cyclohexyl, R 5 is alkyl or phenyl having 1 to 20 carbons, and R 6 is unsaturated having 1 to 20 carbons. It is a hydrocarbon group, and n is an integer of 0 to 1,000.

[3] [1]に記載の有機ケイ素化合物または[2]に記載の製造方法により製造された有機ケイ素化合物(A)、と少なくとも2つのビニル基を有するケイ素化合物(B)、とを含有する熱硬化性組成物。 [3] An organosilicon compound according to [1] or an organosilicon compound (A) produced by the production method according to [2], and a silicon compound (B) having at least two vinyl groups. Thermosetting composition.

[4] さらに、白金触媒(C)、を含有する[3]記載の熱硬化性組成物。 [4] The thermosetting composition according to [3], further comprising a platinum catalyst (C).

[5] さらに、末端に少なくとも2つのSiH基を有するケイ素化合物(D)、を含有する[3]または[4]に記載の熱硬化性組成物。 [5] The thermosetting composition according to [3] or [4], further comprising a silicon compound (D) having at least two SiH groups at the terminals.

[6] さらに、金属酸化物または蛍光体を分散させた、[3]〜[5]のいずれか1項に記載の熱硬化性組成物。 [6] The thermosetting composition according to any one of [3] to [5], in which a metal oxide or a phosphor is further dispersed.

[7] [3]〜[6]のいずれか1項に記載の熱硬化性組成物を熱硬化させてなる硬化物。 [7] A cured product obtained by thermosetting the thermosetting composition according to any one of [3] to [6].

[8] [7]に記載の硬化物を成形して得られる成形体。 [8] A molded product obtained by molding the cured product according to [7].

[9] [3]〜[6]のいずれか1項に記載の熱硬化性組成物を塗布してなる塗膜。 [9] A coating film formed by applying the thermosetting composition according to any one of [3] to [6].

[10] [3]〜[6]のいずれか1項に記載の熱硬化性組成物からなる、光半導体用封止材。 [10] An encapsulant for optical semiconductors comprising the thermosetting composition according to any one of [3] to [6].

本発明の熱硬化性組成物を用いて得られた硬化物は、高透明、および高屈折率の特性を持ち合わせており、従来のフェニルシリコーン系封止材と比較して、耐熱性に優れ、さらに接着強さにも優れている。また、この硬化物はダブルデッカー型のシルセスキオキサンの骨格を有することから、絶縁性にも優れている。   The cured product obtained by using the thermosetting composition of the present invention has high transparency and high refractive index characteristics, and is superior in heat resistance as compared with conventional phenyl silicone-based sealing materials. Furthermore, it has excellent adhesion strength. Further, since this cured product has a double-decker silsesquioxane skeleton, it is excellent in insulation.

図1は、合成例2で合成したSi4VのH−NMRスペクトルである。FIG. 1 is a 1 H-NMR spectrum of Si4V synthesized in Synthesis Example 2. 図2は、合成例2で合成したSi4Vの29Si−NMRスペクトルである。FIG. 2 is a 29 Si-NMR spectrum of Si4V synthesized in Synthesis Example 2. 図3は、実施例1で合成した化合物(1−1)の29Si−NMRスペクトルである。FIG. 3 is a 29 Si-NMR spectrum of the compound (1-1) synthesized in Example 1. 図4は、実施例2で合成した化合物(1−2)の29Si−NMRスペクトルである。4 is a 29 Si-NMR spectrum of the compound (1-2) synthesized in Example 2. FIG. 図5は、実施例3で合成した化合物(1−3)の29Si−NMRスペクトルである。FIG. 5 is a 29 Si-NMR spectrum of the compound (1-3) synthesized in Example 3.

<本発明の有機ケイ素化合物>
本発明の有機ケイ素化合物は、式(1)で表される。

Figure 2017078103
<Organic silicon compound of the present invention>
The organosilicon compound of the present invention is represented by the formula (1).

Figure 2017078103

式(1)中、Rは独立して、炭素数1〜4のアルキル、シクロペンチル、シクロヘキシル、またはフェニルであり、Rは独立して、水素または式(2)で表される基であり、4つのRのうちの少なくとも1つは、式(2)で表される基である。

Figure 2017078103

は炭素数1〜20までの炭化水素基であり、Rは独立して、炭素数1〜20のアルキル、フェニル、シクロペンチル、またはシクロヘキシルであり、Rは炭素数1〜20のアルキルまたはフェニルであり、nは0〜1,000の整数である。 In formula (1), R 1 is independently alkyl having 1 to 4 carbon atoms, cyclopentyl, cyclohexyl, or phenyl, and R 2 is independently hydrogen or a group represented by formula (2). At least one of the four R 2 is a group represented by the formula (2).

Figure 2017078103

R 3 is a hydrocarbon group having 1 to 20 carbon atoms, R 4 is independently alkyl having 1 to 20 carbon atoms, phenyl, cyclopentyl, or cyclohexyl, and R 5 is an alkyl having 1 to 20 carbon atoms. Or it is phenyl and n is an integer of 0-1,000.

本発明の有機ケイ素化合物は、式(3)で表される化合物(シルセスキオキサン誘導体)と式(4)で表されるオルガノポリシロキサンとを、ヒドロシリル化反応することで得られる。


Figure 2017078103

式(3)中、Rは独立して、炭素数1〜4のアルキル、シクロペンチル、シクロヘキシル、またはフェニルである。

Figure 2017078103

式(4)中、Rは独立して、炭素数1〜20のアルキル、フェニル、シクロペンチル、またはシクロヘキシルであり、Rは炭素数1〜20のアルキルまたはフェニルら選択される基であり、Rは炭素数1〜20の不飽和炭化水素基であり、nは0〜1,000の整数である。 The organosilicon compound of the present invention can be obtained by hydrosilylation reaction of a compound represented by formula (3) (silsesquioxane derivative) and an organopolysiloxane represented by formula (4).


Figure 2017078103

In formula (3), R 1 is independently alkyl having 1 to 4 carbons, cyclopentyl, cyclohexyl, or phenyl.

Figure 2017078103

In formula (4), R 4 is independently alkyl having 1 to 20 carbons, phenyl, cyclopentyl, or cyclohexyl, R 5 is a group selected from alkyl having 1 to 20 carbons or phenyl, R 6 is an unsaturated hydrocarbon group having 1 to 20 carbon atoms, and n is an integer of 0 to 1,000.

式(3)で表される化合物と式(4)で表される化合物とのヒドロシリル化反応は、公知の方法が使用でき、溶剤は必ずしも必要としない。使用する際は、反応の進行を阻害しないものであれば特に制限されない。好ましい溶剤は、ヘキサン、ヘプタンなどの炭化水素系溶剤、ベンゼン、トルエン、キシレンなどの芳香族炭化水素系溶剤、ジエチルエーテル、テトラハイドロフラン(THF)、ジオキサンなどのエーテル系溶剤、塩化メチレン、四塩化炭素などのハロゲン化炭化水素系溶剤、酢酸エチルなどのエステル系溶剤などである。これらの溶剤は単独で使用しても、その複数を組み合わせて使用してもよい。これらの溶剤の中でも、芳香族炭化水素系溶剤、その中でもトルエンが最も好ましい。   A known method can be used for the hydrosilylation reaction between the compound represented by formula (3) and the compound represented by formula (4), and a solvent is not necessarily required. When used, it is not particularly limited as long as it does not inhibit the progress of the reaction. Preferred solvents are hydrocarbon solvents such as hexane and heptane, aromatic hydrocarbon solvents such as benzene, toluene and xylene, ether solvents such as diethyl ether, tetrahydrofuran (THF) and dioxane, methylene chloride and tetrachloride. Halogenated hydrocarbon solvents such as carbon and ester solvents such as ethyl acetate. These solvents may be used alone or in combination. Among these solvents, aromatic hydrocarbon solvents, and toluene is most preferable.

ヒドロシリル化反応は、室温、常圧で実施することができ、反応を促進させるために加熱してもよい。反応による発熱または好ましくない反応等を制御するために冷却してもよい。ヒドロシリル化反応では、必要に応じて触媒を用いることができる。ヒドロシリル化触媒を添加することによって、反応をより容易に進行させることができる。好ましいヒドロシリル化触媒の例は、カルステッド(Karsted’t)触媒、スパイヤー(Spier)触媒、ヘキサクロロプラチニック酸などであり、これらは一般的によく知られた触媒である。これらのヒドロシリル化触媒は、反応性が高いので、少量添加すれば十分に反応を進めることができる。その使用量は、触媒に含まれる遷移金属のヒドロシリル基に対する割合で、10−9〜1モル%である。好ましい添加割合は10−7〜10−3モル%である。 The hydrosilylation reaction can be carried out at room temperature and normal pressure, and may be heated to accelerate the reaction. It may be cooled to control exothermic reaction or undesirable reaction. In the hydrosilylation reaction, a catalyst can be used as necessary. By adding a hydrosilylation catalyst, the reaction can proceed more easily. Examples of preferred hydrosilylation catalysts are Karsted't catalyst, Spier catalyst, hexachloroplatinic acid and the like, which are generally well known catalysts. Since these hydrosilylation catalysts are highly reactive, the reaction can proceed sufficiently if added in a small amount. The amount used is 10 −9 to 1 mol% in terms of the ratio of the transition metal contained in the catalyst to the hydrosilyl group. A preferable addition ratio is 10 −7 to 10 −3 mol%.

本発明の有機ケイ素化合物の分子量は重量平均分子量(Mw)で1,000〜100,000であることが好ましい。   The molecular weight of the organosilicon compound of the present invention is preferably 1,000 to 100,000 in terms of weight average molecular weight (Mw).

また、本発明の有機ケイ素化合物は、該化合物を含有する熱硬化性組成物を調製して硬化させた硬化物が屈折率、透明性、耐熱性(耐熱黄変性、耐透明性)、および冷熱サイクル特性に優れており、従来使用されていたフェニルシリコーン樹脂やメチルシリコーン樹脂からなる硬化物の欠点が改善された、優れた硬化物の原料である。
LED等に用いる場合には、硬化物の屈折率は、1.4以上であれば特に問題なく利用でき、好ましくは、1.49以上であり、上限は特に制限されない。
In addition, the organosilicon compound of the present invention has a refractive index, transparency, heat resistance (heat-resistant yellowing resistance, transparency resistance), and cooling heat, which is obtained by preparing and curing a thermosetting composition containing the compound. It is excellent in cycle characteristics and is a raw material of an excellent cured product in which defects of a cured product made of a phenyl silicone resin and a methyl silicone resin that have been conventionally used are improved.
When used for an LED or the like, if the refractive index of the cured product is 1.4 or more, it can be used without any problem, preferably 1.49 or more, and the upper limit is not particularly limited.

式(3)で表される化合物であるシルセスキオキサン誘導体は、例えば国際公開2004/024741号に開示されている方法により合成することができる。式(3)で表される化合物の例(以下DD−4Hと表記する。)を示す。構造式中のMeはメチルである。

Figure 2017078103
The silsesquioxane derivative which is a compound represented by the formula (3) can be synthesized by, for example, a method disclosed in International Publication No. 2004/024741. Examples of the compound represented by the formula (3) (hereinafter referred to as DD-4H) are shown. Me in the structural formula is methyl.

Figure 2017078103

式(4)で表される不飽和炭化水素基を有するオルガノポリシロキサンは公知の方法により合成することができ、また市販の化合物を用いてもよい。
式(4)で表される化合物としては、例えば式(5)で表されるトリメチルビニルシランがある。また、式(6)で表される1−ブチル−1、1、3、3、5、5、7、7−7−ビニルテトラシロキサンなどが例示できる。構造式中のBuはブチルである。さらに、市販の化合物としてはGelest Inc.から入手可能な“MonoVinyl Terminated PolyDimethylsiloxanes”で分子量が5,500〜6,500、55,000〜65,000も例示できる。好ましくは、炭化水素基の末端に不飽和基を持つような化合物、さらに好ましくは、CH=CH−基やCH=CH−CH−基である。式(4)中のnは、0〜1,000の整数であり、0〜10であることが好ましい。

Figure 2017078103

Figure 2017078103
The organopolysiloxane having an unsaturated hydrocarbon group represented by the formula (4) can be synthesized by a known method, or a commercially available compound may be used.
An example of the compound represented by the formula (4) is trimethylvinylsilane represented by the formula (5). Further, 1-butyl-1, 1, 3, 3, 5, 5, 7, 7-7-vinyltetrasiloxane represented by the formula (6) can be exemplified. Bu in the structural formula is butyl. Further, commercially available compounds include Gelest Inc. Examples of the molecular weights are 5,500-6,500 and 55,000-65,000 in “MonoVinyl Terminated Polydimethylsiloxanes” available from A compound having an unsaturated group at the terminal of the hydrocarbon group is preferable, and a CH 2 ═CH— group or a CH 2 ═CH—CH 2 — group is more preferable. N in Formula (4) is an integer of 0 to 1,000, and preferably 0 to 10.

Figure 2017078103

Figure 2017078103

本発明の熱硬化性組成物は、式(1)で表される有機ケイ素化合物、または式(3)で表される化合物と式(4)で表される化合物とをヒドロシリル化反応することで得られる有機ケイ素化合物(A)、と1分子中に少なくとも2つのビニル基を有するケイ素化合物(B)、とを含有する。
熱硬化性組成物に、さらに硬化触媒(C)を加え、加熱することで、硬化物となる。また、この熱硬化性組成物に、末端に少なくとも2つSiH基を有するケイ素化合物(D)、をさらに含有することも好ましい態様である。
The thermosetting composition of the present invention undergoes a hydrosilylation reaction between an organosilicon compound represented by formula (1) or a compound represented by formula (3) and a compound represented by formula (4). The resulting organosilicon compound (A) and a silicon compound (B) having at least two vinyl groups in one molecule are contained.
A cured product is obtained by further adding a curing catalyst (C) to the thermosetting composition and heating. Moreover, it is also a preferable aspect that this thermosetting composition further contains a silicon compound (D) having at least two SiH groups at the terminals.

少なくとも2つのビニル基を有するケイ素化合物(B)は、架橋用のビニル基を少なくとも2つ有するケイ素化合物であれば特に限定はされず、例えば両末端にビニル基を有する直鎖ポリシロキサンや末端に少なくとも2つのビニル基を有する分岐ポリシロキサンを用いることができる。具体的には、1,1,3,3−ジビニルテトラメチルジシロキサン、1,1,5,5−ジビニルヘキサメチルトリシロキサン、両末端にビニル基を有する直鎖状ポリシロキサン、T構造を持ち末端ビニル基を有する分岐ポリシロキサンなどが挙げられ、分子量が150〜10,000、好ましくは分子量が200〜5,000の化合物を用いることが好ましい。   The silicon compound (B) having at least two vinyl groups is not particularly limited as long as it is a silicon compound having at least two vinyl groups for crosslinking. For example, a linear polysiloxane having vinyl groups at both ends or a terminal polysiloxane. Branched polysiloxanes having at least two vinyl groups can be used. Specifically, 1,1,3,3-divinyltetramethyldisiloxane, 1,1,5,5-divinylhexamethyltrisiloxane, linear polysiloxane having vinyl groups at both ends, and having a T structure. Examples thereof include branched polysiloxane having a terminal vinyl group, and it is preferable to use a compound having a molecular weight of 150 to 10,000, preferably 200 to 5,000.

少なくとも2つのビニル基を有するケイ素化合物(B)は、1種類でも、異なる2種類以上の化合物をブレンドして使用してもよい。   The silicon compound (B) having at least two vinyl groups may be used alone or in a blend of two or more different compounds.

また、末端に少なくとも2つのSiH基を有するケイ素化合物(D)は、架橋用のSiH基を少なくとも2つ有するケイ素化合物であれば特に限定はされず、例えば両末端にSiH基を有する直鎖ポリシロキサンや、側鎖にSiH基を有する直鎖ポリシロキサン、末端に少なくとも2つのSiH基を有する分岐ポリシロキサンや式(3)で表されるような化合物を用いることができる。具体的には、1,3,5,7−テトラメチルシクロテトラシロキサン、1,1,3,3,5,5−ヘキサメチルトリシロキサン、両末端にSiH基を持つ直鎖状ポリシロキサン、T構造を持ち末端SiH基を持つ分岐ポリシロキサンなどが挙げられ、分子量が150〜10,000、好ましくは分子量が200〜5,000の化合物を用いることが好ましい。末端に少なくとも2つのSiH基を有するケイ素化合物は、1種類でも、異なる2種類以上の化合物をブレンドして使用してもよい。   Further, the silicon compound (D) having at least two SiH groups at the terminals is not particularly limited as long as it is a silicon compound having at least two SiH groups for crosslinking. A siloxane, a linear polysiloxane having a SiH group in the side chain, a branched polysiloxane having at least two SiH groups at the terminal, or a compound represented by the formula (3) can be used. Specifically, 1,3,5,7-tetramethylcyclotetrasiloxane, 1,1,3,3,5,5-hexamethyltrisiloxane, a linear polysiloxane having SiH groups at both ends, T Examples thereof include branched polysiloxane having a structure and a terminal SiH group, and it is preferable to use a compound having a molecular weight of 150 to 10,000, preferably a molecular weight of 200 to 5,000. The silicon compound having at least two SiH groups at the end may be used alone or in a blend of two or more different compounds.

これらの分子量は、GPCで測定できる範囲の場合には、重量平均分子量であり、GPCで測定できない低分子量の場合には、化合物の構造から算出した分子量である。   These molecular weights are weight average molecular weights in the range that can be measured by GPC, and molecular weights calculated from the structure of the compound in the case of a low molecular weight that cannot be measured by GPC.

本発明の熱硬化性組成物中、化合物(A)の含有量は、耐熱性の観点から、化合物(A)、化合物(B)、および化合物(D)の全量に対し、0.1重量%以上であることが好ましく、1重量%以上であることがより好ましく、5重量%以上であることがより一層好ましい。また、化合物(B)の含有量は、化合物(A)、化合物(B)、および化合物(D)の全量に対し、1〜50重量%であることが好ましく、3〜30重量%であることがより好ましく、5〜15重量%であることがより一層好ましい。本発明の熱硬化性組成物中、SiH基合計とビニル基合計の含有比はSiH基とビニル基の官能基モル比で1:2〜2:1であることが好ましい。   In the thermosetting composition of the present invention, the content of the compound (A) is 0.1% by weight based on the total amount of the compound (A), the compound (B), and the compound (D) from the viewpoint of heat resistance. Preferably, it is preferably 1% by weight or more, more preferably 5% by weight or more. Moreover, it is preferable that content of a compound (B) is 1 to 50 weight% with respect to the whole quantity of a compound (A), a compound (B), and a compound (D), and it is 3 to 30 weight%. Is more preferable, and it is still more preferable that it is 5 to 15 weight%. In the thermosetting composition of the present invention, the content ratio of the total SiH groups and the total vinyl groups is preferably 1: 2 to 2: 1 in terms of the functional group molar ratio of SiH groups to vinyl groups.

硬化触媒(C)は、通常、反応触媒として用いられる遷移金属触媒であれば特に限定されないが、白金触媒を用いることが好ましい。白金触媒の例としては、通常のヒドロシリル化触媒が選択できる。好ましいヒドロシリル化触媒の例は、カルステッド(Karsted’t)触媒、スパイヤー(Spier)触媒、ヘキサクロロプラチニック酸などである。   The curing catalyst (C) is not particularly limited as long as it is a transition metal catalyst usually used as a reaction catalyst, but a platinum catalyst is preferably used. As an example of the platinum catalyst, a normal hydrosilylation catalyst can be selected. Examples of preferred hydrosilylation catalysts are Karsted't catalysts, Spier catalysts, hexachloroplatinic acid and the like.

その使用量は、触媒に含まれる遷移金属の、熱硬化性組成物に対する重量比で、0.1ppm〜10ppmである。添加割合が0.1ppm以上であれば、硬化が良好である。また添加割合が10ppm以下であれば、熱硬化性組成物調製後のポットライフが短くなりすぎることがなく、好適に使用でき、また得られる硬化物の着色も生じにくい。好ましい添加割合は0.5ppm〜4ppmである。   The amount used is 0.1 ppm to 10 ppm in terms of the weight ratio of the transition metal contained in the catalyst to the thermosetting composition. If the addition ratio is 0.1 ppm or more, curing is good. Moreover, if the addition ratio is 10 ppm or less, the pot life after preparing the thermosetting composition will not be too short, it can be used suitably, and coloring of the resulting cured product will not easily occur. A preferable addition ratio is 0.5 ppm to 4 ppm.

本発明の熱硬化性組成物は溶媒を必要としない。本発明の熱硬化性組成物は、溶媒の混入が好まれない用途に使用することができるため、用途が大幅に拡がる。   The thermosetting composition of the present invention does not require a solvent. Since the thermosetting composition of the present invention can be used for applications where mixing of solvents is not preferred, the applications are greatly expanded.

本発明の熱硬化性組成物には、さらに下記成分を配合してもよい。
(i) 粉末状の補強剤や充填剤、例えば、酸化アルミニウム、酸化マグネシウムなどの金属酸化物、微粉末シリカ、溶融シリカ、結晶シリカなどのケイ素化合物、ガラスビーズ等の透明フィラー、水酸化アルミニウムなどの金属水酸化物、その他、カオリン、マイカ、石英粉末、グラファイト、二硫化モリブデン等。これらは、好ましくは、本発明の熱硬化性組成物の透明性を損なわない範囲で配合される。これらを配合するときの好ましい割合は、本発明の熱硬化性組成物全量に対する重量比で、0.1〜0.6の範囲である。
The thermosetting composition of the present invention may further contain the following components.
(I) Powdery reinforcing agents and fillers, for example, metal oxides such as aluminum oxide and magnesium oxide, silicon compounds such as fine powder silica, fused silica and crystalline silica, transparent fillers such as glass beads, aluminum hydroxide, etc. Metal hydroxide, kaolin, mica, quartz powder, graphite, molybdenum disulfide, etc. These are preferably blended within a range that does not impair the transparency of the thermosetting composition of the present invention. A desirable ratio when blending these is a weight ratio with respect to the total amount of the thermosetting composition of the present invention, and is in a range of 0.1 to 0.6.

(ii) 着色剤または顔料、例えば、二酸化チタン、モリブデン赤、紺青、群青、カドミウム黄、カドミウム赤および有機色素等。
(iii) 難燃剤、例えば、三酸化アンチモン、ブロム化合物およびリン化合物等。
(iv) イオン吸着体。
(ii)〜(iv)の成分を配合するときの好ましい割合は、熱硬化性組成物全量に対する重量比で0.0001〜0.30である。
(Ii) Coloring agents or pigments such as titanium dioxide, molybdenum red, bitumen, ultramarine blue, cadmium yellow, cadmium red and organic dyes.
(Iii) Flame retardants such as antimony trioxide, bromine compounds and phosphorus compounds.
(Iv) Ion adsorbent.
A preferable ratio when the components (ii) to (iv) are blended is 0.0001 to 0.30 in a weight ratio with respect to the total amount of the thermosetting composition.

(v) シランカップリング剤。
(vi) ジルコニア、チタニア、アルミナ、シリカなどの金属酸化物のナノ粒子分散液。
(v)〜(vi)の成分を配合するときの好ましい割合は、熱硬化性組成物全量に対する重量比で0.01〜0.50である。
(V) Silane coupling agent.
(Vi) A nanoparticle dispersion of a metal oxide such as zirconia, titania, alumina, or silica.
A preferable ratio when the components (v) to (vi) are blended is 0.01 to 0.50 in a weight ratio with respect to the total amount of the thermosetting composition.

(vii) フェノール系、硫黄系、リン系などの酸化防止剤。
硬化促進剤を使用するときの好ましい割合は、本発明の熱硬化性組成物全量に対する重量比で、0.0001〜0.1の範囲である。
(viii) 耐光性を向上させるための紫外線吸収剤。
紫外線吸収剤を使用するときの好ましい割合は、本発明の熱硬化性組成物全量に対する重量比で、0.0001〜0.1の範囲である。
(Vii) Phenolic, sulfur and phosphorus antioxidants.
A preferable ratio when using the curing accelerator is in a range of 0.0001 to 0.1 as a weight ratio with respect to the total amount of the thermosetting composition of the present invention.
(Viii) An ultraviolet absorber for improving light resistance.
A preferred ratio when using the ultraviolet absorber is a weight ratio with respect to the total amount of the thermosetting composition of the present invention, and is in the range of 0.0001 to 0.1.

本発明の熱硬化性組成物は、例えば以下の方法で作製できる。
(A) 本発明の有機ケイ素化合物、
(B) 少なくとも両末端にビニル基を有するケイ素化合物、
(C) 硬化触媒、
さらには必要に応じて上記任意成分を攪拌し混合した後、減圧して脱泡する。そしてこの混合物を型に流し込み、100℃で1時間加熱し、最後に150℃で1〜2時間加熱することで硬化させることができる。
The thermosetting composition of the present invention can be produced, for example, by the following method.
(A) the organosilicon compound of the present invention,
(B) a silicon compound having vinyl groups at least at both ends,
(C) curing catalyst,
Furthermore, after stirring and mixing the said arbitrary component as needed, it depressurizes and defoams. The mixture can be poured into a mold, heated at 100 ° C. for 1 hour, and finally heated at 150 ° C. for 1 to 2 hours to be cured.

硬化物の耐熱性は、耐熱透明性と耐熱黄変性を評価する。耐熱透明性は、耐熱試験前後の硬化物の透過率を紫外可視分光光度計で測定し、その光線透過率の保持率により評価した。また、耐熱黄変性は、耐熱試験前後の硬化物の黄色度(YI値)の保持率により評価した。180℃での黄色度(YI値)および光線透過率の保持率が、それぞれ5以下、90%以上であることが好ましい。これらの範囲内にそれぞれの値が入る場合には、硬化物は、無色で透明性が高いことを示しており、透明性が要求されるような光半導体封止剤などの分野に特に好ましく利用できる。   The heat resistance of the cured product is evaluated for heat-resistant transparency and heat-resistant yellowing. The heat transparency was evaluated by measuring the transmittance of the cured product before and after the heat resistance test with an ultraviolet-visible spectrophotometer and maintaining the light transmittance. Moreover, heat yellowing was evaluated by the retention of the yellowness (YI value) of the cured product before and after the heat test. The yellowness (YI value) and light transmittance retention at 180 ° C. are preferably 5% or less and 90% or more, respectively. When each value falls within these ranges, it indicates that the cured product is colorless and highly transparent, and is particularly preferably used in fields such as optical semiconductor encapsulants that require transparency. it can.

本発明の熱硬化性組成物を熱硬化させてなる硬化物の、耐熱透明性に非常に良好な特性は、式(3)で表される化合物であるシルセスキオキサン誘導体の構造に起因している。すなわち、ダブルデッカー型シルセスキオキサン骨格は、その立体構造により、通常のランダム構造であるシルセスキオキサンに較べて耐熱透明性に優れた性質を与えているとともに、硬化物の加熱における着色を抑制する効果を与える。   The very good property of heat-resistant transparency of the cured product obtained by thermosetting the thermosetting composition of the present invention is attributed to the structure of the silsesquioxane derivative, which is a compound represented by the formula (3). ing. In other words, the double-decker silsesquioxane skeleton has excellent heat resistance and transparency compared to the usual random structure silsesquioxane due to its three-dimensional structure, and the cured product can be colored by heating. Gives an inhibitory effect.

本発明の熱硬化性組成物を熱硬化させてなる硬化物を成形し、成形体とすることで、様々な用途に用いることができる。上記組成物に金属酸化物または蛍光体を分散させることで発光機能を有し、LED組成物として用いることができる。また、用途としては、光半導体封止材、半導体封止材、絶縁膜、シール材、接着剤、光学レンズなどが挙げられる。   By molding a cured product obtained by thermosetting the thermosetting composition of the present invention to form a molded product, it can be used for various applications. By dispersing a metal oxide or phosphor in the composition, the composition has a light emitting function and can be used as an LED composition. Moreover, as an application, an optical semiconductor sealing material, a semiconductor sealing material, an insulating film, a sealing material, an adhesive agent, an optical lens, etc. are mentioned.

本発明を実施例に基づいてさらに詳細に説明する。なお、本発明は以下の実施例によって限定されない。   The present invention will be described in more detail based on examples. The present invention is not limited to the following examples.

[合成例1]
<シルセスキオキサン誘導体(DD−4H)の合成>
環流冷却器、温度計、及び滴下漏斗を取り付けた反応容器に、フェニルトリメトキシシラン(6,540g)、水酸化ナトリウム(880g)、イオン交換水(660g)、および2−プロパノール(26.3L)を仕込んだ。窒素気流下、撹拌しながら加熱(80℃)を開始した。還流開始から6時間撹拌し、室温(25℃)で1晩静置した。そして反応混合物を濾過器に移し、窒素ガスで加圧して濾過した。得られた固体を2−プロピルアルコールで1回洗浄、濾過した後、80℃で減圧乾燥を行ない、下式で表される無色固体(DD−ONa)(3,300g)を得た。

Figure 2017078103
[Synthesis Example 1]
<Synthesis of Silsesquioxane Derivative (DD-4H)>
To a reaction vessel equipped with a reflux condenser, thermometer, and dropping funnel, phenyltrimethoxysilane (6,540 g), sodium hydroxide (880 g), ion-exchanged water (660 g), and 2-propanol (26.3 L) Was charged. Heating (80 ° C.) was started with stirring under a nitrogen stream. The mixture was stirred for 6 hours from the start of reflux and allowed to stand overnight at room temperature (25 ° C.). The reaction mixture was then transferred to a filter, filtered with nitrogen gas and pressurized. The obtained solid was washed once with 2-propyl alcohol, filtered, and then dried under reduced pressure at 80 ° C. to obtain a colorless solid (DD-ONa) (3,300 g) represented by the following formula.
Figure 2017078103

次に、環流冷却器、温度計、および滴下漏斗を取り付けた反応容器に、シクロペンチルメチルエーテル(2,005g)、2−プロパノール(243g)、イオン交換水(1,400g)、塩酸(461g)を仕込み、窒素雰囲気下、室温(25℃)で攪拌した。続いて滴下ロートに、上記得られた化合物(DD−ONa)(800g)、シクロペンチルメチルエーテル(2,003g)を仕込み、スラリー状にして30分かけて反応器に滴下し、滴下終了後30分間攪拌した。その後、静置して有機層と水層に分けた。得られた有機層は水洗により中性とした後、メンブレンフィルタにてゴミを取り除き、ロータリーエバポレーターを用いて60℃で減圧濃縮して、678gの無色固体を得た。この無色固体を酢酸メチル(980g)で洗浄し、減圧乾燥して下式で表される無色粉末状固体(DD−4OH)(496g)を得た。

Figure 2017078103
Next, a cyclopentyl methyl ether (2,005 g), 2-propanol (243 g), ion-exchanged water (1,400 g), and hydrochloric acid (461 g) were added to a reaction vessel equipped with a reflux condenser, a thermometer, and a dropping funnel. The mixture was stirred and stirred at room temperature (25 ° C.) under a nitrogen atmosphere. Subsequently, the above-obtained compound (DD-ONa) (800 g) and cyclopentyl methyl ether (2,003 g) were charged into a dropping funnel, and the resulting mixture was added dropwise to the reactor over 30 minutes. Stir. Then, it left still and divided into the organic layer and the water layer. The obtained organic layer was neutralized by washing with water, then dust was removed with a membrane filter and concentrated under reduced pressure at 60 ° C. using a rotary evaporator to obtain 678 g of a colorless solid. The colorless solid was washed with methyl acetate (980 g) and dried under reduced pressure to obtain a colorless powdery solid (DD-4OH) (496 g) represented by the following formula.

Figure 2017078103

次に、滴下漏斗、温度計、および還流冷却器を取り付けた反応器に、上記得られた化合物(DD−4OH)(7,160g)、トルエン(72,600g)、ジメチルクロロシラン(2,850g)を仕込み、乾燥窒素にてシールした。次いでトリエチルアミン(3,230g)を滴下漏斗から約20分間かけて滴下した。このときの、溶液温度は35℃〜40℃である。滴下終了後、1時間攪拌し、その後、イオン交換水(16,700gを)加え、過剰量のジメチルクロロシランを加水分解し、有機層と水層に分けた。有機層を水洗により中性とした後、ロータリーエバポレーターを用いて85℃で減圧濃縮を行い、得られた残渣をメタノール(19,950g)で洗浄し、8,588gの無色固体を得た。この無色固体を酢酸メチル(9,310g)で洗浄し、減圧乾燥して無色粉末状固体(7,339g)を得た。得られた無色粉末状固体は下記の分析結果から下記の構造(DD−4H)を有すると判断される。1H−NMR(溶剤:CDCl3):δ(ppm);0.16(d,24H)、4.84−4.89(m,4H)、7.05−7.50(m,40H).29Si−NMR(溶剤:CDCl3):δ(ppm);3.85(s,4Si)、−71.90(s,4Si)、−75.05(s,4Si).

Figure 2017078103
Next, a reactor equipped with a dropping funnel, a thermometer, and a reflux condenser was added to the compound (DD-4OH) (7,160 g), toluene (72,600 g), dimethylchlorosilane (2,850 g) obtained above. Was sealed with dry nitrogen. Triethylamine (3,230 g) was then added dropwise from the addition funnel over about 20 minutes. The solution temperature at this time is 35 to 40 degreeC. After completion of the dropwise addition, the mixture was stirred for 1 hour, and then ion-exchanged water (16,700 g) was added to hydrolyze an excessive amount of dimethylchlorosilane to separate into an organic layer and an aqueous layer. The organic layer was neutralized by washing with water, and concentrated under reduced pressure at 85 ° C. using a rotary evaporator. The resulting residue was washed with methanol (19,950 g) to obtain 8,588 g of a colorless solid. This colorless solid was washed with methyl acetate (9,310 g) and dried under reduced pressure to obtain a colorless powdery solid (7,339 g). The obtained colorless powdery solid is judged to have the following structure (DD-4H) from the following analysis results. 1 H-NMR (solvent: CDCl 3 ): δ (ppm); 0.16 (d, 24H), 4.84-4.89 (m, 4H), 7.05-7.50 (m, 40H) . 29 Si-NMR (solvent: CDCl 3 ): δ (ppm); 3.85 (s, 4 Si), −71.90 (s, 4 Si), −75.05 (s, 4 Si).

Figure 2017078103

[合成例2]
<Si4Vの合成>
1Lの4つ口フラスコに磁気攪拌子、冷却管、温度計、滴下ロートを取り付け、ヘキサメチルシクロテトラシロキサンを89g、テトラヒドロフランを200g仕込んだ。温度を0℃に冷却し、滴下ロートにn−ブチルリチウムを174g仕込み、滴下した。1時間反応させた後、滴下ロートにビニルジメチルクロロシランを52g仕込み、滴下した。その後、室温で15時間反応させた。トルエン201gをフラスコ内に添加し、水101gを滴下ロートに仕込み、滴下した。内容液を分液ロートに移し、水を用いて有機層を5回洗浄した。回収した有機層を蒸留により精製することで、無色透明の液体を96g得た。図1のH−NMRと図2の29Si−NMR分析の結果から、構造(Si4V)を有すると同定された。

Figure 2017078103
[Synthesis Example 2]
<Synthesis of Si4V>
A 1 L 4-neck flask was equipped with a magnetic stirrer, condenser, thermometer, and dropping funnel, and 89 g of hexamethylcyclotetrasiloxane and 200 g of tetrahydrofuran were charged. The temperature was cooled to 0 ° C., and 174 g of n-butyllithium was charged into the dropping funnel and dropped. After reacting for 1 hour, 52 g of vinyldimethylchlorosilane was charged into the dropping funnel and dropped. Then, it was made to react at room temperature for 15 hours. Toluene 201 g was added to the flask, and 101 g of water was charged into the dropping funnel and dropped. The content liquid was transferred to a separating funnel, and the organic layer was washed 5 times with water. The collected organic layer was purified by distillation to obtain 96 g of a colorless and transparent liquid. From the results of 1 H-NMR in FIG. 1 and 29 Si-NMR analysis in FIG. 2, it was identified as having a structure (Si 4 V).

Figure 2017078103

[実施例1]
式(3)で表される化合物である、合成例1で合成したシルセスキオキサン誘導体(DD−4H)と、式(4)で表される化合物である、合成例2で合成した片末端にビニル基を有するSi4Vとを、モル数の比率で1:4となるように仕込み比率を調整し、下記のとおりヒドロシリル化反応により化合物(1−1)を合成した。
[Example 1]
Silsesquioxane derivative (DD-4H) synthesized in Synthesis Example 1, which is a compound represented by Formula (3), and one end synthesized in Synthesis Example 2, which is a compound represented by Formula (4) The charge ratio was adjusted so that Si4V having a vinyl group was 1: 4 in terms of the number of moles, and the compound (1-1) was synthesized by hydrosilylation reaction as described below.

温度計、還流冷却器、および磁気撹拌子を備えた内容積100mLの反応容器にDD−4Hを5.2g、およびSi4Vを5.9g(DD−4Hの4倍モル)を仕込んだ。
窒素雰囲気下、加熱攪拌を開始した。内容物の温度が100℃に達した後、カルステッド触媒を1μLを加えて、そのまま5時間加熱攪拌を行った。その後、IR測定を行い、さらに1時間加熱撹拌を行った。Si−Hの構造に由来するピーク(2130cm−1)が変化しなったことを確認して反応を終了させた。エバポレーターにて180℃、0.1kPaの減圧条件下で未反応成分を留去し、透明液体を得た。
図3の29Si−NMR分析の結果から、式(1)中のRが4つとも式(2)で表される化合物で置換されている化合物(1−1)を得ることができた。

Figure 2017078103
A reaction vessel having an internal volume of 100 mL equipped with a thermometer, a reflux condenser, and a magnetic stir bar was charged with 5.2 g of DD-4H and 5.9 g of Si4V (4 times mol of DD-4H).
Heating and stirring were started under a nitrogen atmosphere. After the temperature of the contents reached 100 ° C., 1 μL of karsted catalyst was added, and the mixture was heated and stirred as it was for 5 hours. Thereafter, IR measurement was performed, and the mixture was further heated and stirred for 1 hour. After confirming that the peak (2130 cm −1 ) derived from the Si—H structure was not changed, the reaction was terminated. Unreacted components were distilled off under reduced pressure at 180 ° C. and 0.1 kPa with an evaporator to obtain a transparent liquid.
From the result of 29 Si-NMR analysis in FIG. 3, the compound (1-1) in which all four R 2 s in the formula (1) were substituted with the compound represented by the formula (2) could be obtained. .

Figure 2017078103

[実施例2〜3]
実施例1において、式(4)で表される化合物であるDD−4Hと、合成例2で製造した片末端にビニル基を有するオルガノポリシロキサン(Si4V)の仕込みモル比率を変更した以外は実施例1と同様に行い、化合物(1−2)、(1−3)を得た。表1にDD−4HとSi4Vの仕込み量および仕込み比率を示した。下記図4、図5の29Si−NMR分析の結果から、式(1)中のRが式(2)で表1中に記載されるような数で置換されている化合物(1−2、1−3)を得ることができた。
[Examples 2-3]
In Example 1, it implemented except having changed the preparation molar ratio of DD-4H which is a compound represented by Formula (4), and the organopolysiloxane (Si4V) which has the vinyl group at the one end manufactured in the synthesis example 2. In the same manner as in Example 1, compounds (1-2) and (1-3) were obtained. Table 1 shows the charged amounts and charged ratios of DD-4H and Si4V. From the results of 29 Si-NMR analysis shown in FIGS. 4 and 5 below, the compound (1-2) in which R 2 in formula (1) is substituted with the number described in Table 1 in formula (2) 1-3) could be obtained.

表1

Figure 2017078103
Table 1
Figure 2017078103

[実施例4〜6]
実施例1および2において、Si4Vを片末端にビニル基を有し、分子量が6,000のオルガノポリシロキサン(製品名:MCR−V21、製造メーカー:Gelest Inc.)に変更し、溶剤としてトルエンを使用した以外は、実施例1および2と同様に行った。表2にDD−4H、MCR−V21、トルエンの仕込み量およびDD−4HとMCR−V21の仕込み比率を示した。その結果、実施例1および2記載の化合物と同様で、式(1)中のRが式(2)で表2に記載されるような数で置換されている化合物(2−1、2−2、2−3)を得ることができた。
[Examples 4 to 6]
In Examples 1 and 2, Si4V was changed to an organopolysiloxane having a vinyl group at one end and a molecular weight of 6,000 (product name: MCR-V21, manufacturer: Gelest Inc.), and toluene was used as a solvent. The procedure was the same as in Examples 1 and 2 except that they were used. Table 2 shows the charged amounts of DD-4H, MCR-V21, and toluene, and the charged ratios of DD-4H and MCR-V21. As a result, in the same manner as the compounds described in Examples 1 and 2, R 2 in formula (1) was substituted with a number as described in Table 2 in formula (2) (2-1, 2 -2, 2-3) could be obtained.

表2

Figure 2017078103
Table 2
Figure 2017078103

[実施例7]
実施例1および2において、Si4Vの代わりにビニルペンタメチルジシロキサン(MV)(製造メーカー:Gelest Inc.)を使用した以外は、実施例1および2と同様に行った。表3にDD−4H、MV、トルエンの仕込み量およびDD−4HとMVの仕込み比率を示した。その結果、実施例1および2記載の化合物と同様で、式(1)中のRが式(2)で表3に記載されるような数で置換されている化合物(3)を得ることができた。
[Example 7]
In Example 1 and 2, it carried out like Example 1 and 2 except having used vinyl pentamethyldisiloxane (MV) (manufacturer: Gelest Inc.) instead of Si4V. Table 3 shows the charged amounts of DD-4H, MV, and toluene and the charged ratios of DD-4H and MV. As a result, similar to the compounds described in Examples 1 and 2, the compound (3) in which R 2 in the formula (1) is substituted with a number as described in Table 3 in the formula (2) is obtained. I was able to.

表3

Figure 2017078103
Table 3
Figure 2017078103

[実施例8]
実施例1および2において、Si4Vの代わりにビニルフェニルジメチルシラン(VPDMS)(製造メーカー:Gelest Inc.)を使用した以外は、実施例1および2と同様に行った。表4に(DD−4H)、VPDMS、トルエンの仕込み量、およびDD−4HとVPDMSの仕込み比率を示した。その結果、実施例1および2記載の化合物と同様で、式(1)中のRが式(2)で表4に記載されるような数で置換されている化合物(4)を得ることができた。
[Example 8]
In Example 1 and 2, it carried out like Example 1 and 2 except having used vinyl phenyl dimethylsilane (VPDMS) (manufacturer: Gelest Inc.) instead of Si4V. Table 4 shows the charged amounts of (DD-4H), VPDMS, and toluene, and the charged ratios of DD-4H and VPDMS. As a result, a compound (4) is obtained which is similar to the compounds described in Examples 1 and 2 and in which R 2 in formula (1) is substituted with a number as described in Table 4 in formula (2). I was able to.

表4

Figure 2017078103
Table 4
Figure 2017078103

以下、熱硬化性組成物の調製、この組成物から得られる硬化物、および物性評価試験方法について説明する。   Hereinafter, preparation of a thermosetting composition, a cured product obtained from the composition, and a physical property evaluation test method will be described.

使用した主な材料は以下のとおりである。
有機ケイ素化合物:実施例で合成した化合物(1−1)〜(1−3)
PSQポリマー:特再公表WO2011/145638の実施例1に記載された方法で合成したPSQ誘導体
DVTS:1、5−ジビニル−1、1、3、3、5、5−ヘキサメチルトリシロキサン(Gelest社から入手)
ビニルシロキサン:分子鎖両末端にビニル基を有する、分子量750の直鎖状ジメチルポリシロキサン。(ViMeSiO1/21.5(MeSiO2/21.5。公知の方法で合成することができる。
接着付与剤:3−グリシドキシプロピルトリメトキシシラン(JNC株式会社性S510)
The main materials used are as follows.
Organosilicon compound: Compounds (1-1) to (1-3) synthesized in Examples
PSQ polymer: PSQ derivative synthesized by the method described in Example 1 of Japanese Patent Publication No. WO 2011/145638 DVTS: 1,5-divinyl-1,1,3,3,5,5-hexamethyltrisiloxane (Gelest) Obtained from)
Vinylsiloxane: A linear dimethylpolysiloxane having a molecular weight of 750 and having vinyl groups at both ends of the molecular chain. (ViMe 2 SiO 1/2 ) 1.5 (Me 2 SiO 2/2 ) 1.5 . It can be synthesized by a known method.
Adhesion imparting agent: 3-glycidoxypropyltrimethoxysilane (JNC Corporation S510)

<熱硬化性組成物の調製>
スクリュー管に表5に示した通りの化合物を入れた。スクリュー管を自転・公転ミキサー(株式会社シンキー製 あわとり練太郎ARE−250)にセットし、混合・脱泡を行い、ワニスとした。白金触媒を白金が1ppmになるように加え、ふたたび自転・公転ミキサーにて混合・脱泡を行い、熱硬化性の組成物1〜3、および比較組成物1を得た。
表5に各組成物の配合比を示す。
<Preparation of thermosetting composition>
The compound as shown in Table 5 was put into the screw tube. The screw tube was set in a rotation / revolution mixer (Shinky Co., Ltd. Awatori Nerita ARE-250), mixed and degassed to obtain a varnish. A platinum catalyst was added so that the platinum content would be 1 ppm, and mixing and defoaming were again carried out using a rotation / revolution mixer, whereby thermosetting compositions 1 to 3 and comparative composition 1 were obtained.
Table 5 shows the mixing ratio of each composition.

<硬化物の作成>
ガラス2枚を、スペーサーとしてニチアス(株)製ナフロンSPパッキン(4mm径)で挟み、この中に上記熱硬化性組成物を流し込み、減圧脱泡後、80℃で1時間、120℃で1時間、150℃で2時間の順に加熱することにより硬化させ、ガラスをはがして4mm厚の表面が平滑な硬化物を得た。
なお、OE−6630(東レダウコーニングシリコーン製)をA液:B液=1:4の比率で混合し、比較組成物2を得て、同様に硬化させたものを比較硬化物2とした。
<Creation of cured product>
Two pieces of glass are sandwiched by Niflon SP packing (4 mm diameter) manufactured by Nichias Co., Ltd. as a spacer, and the thermosetting composition is poured into this, and after degassing under reduced pressure, 80 ° C. for 1 hour, 120 ° C. for 1 hour It was cured by heating at 150 ° C. for 2 hours in order, and the glass was peeled off to obtain a cured product having a smooth surface with a thickness of 4 mm.
OE-6630 (manufactured by Toray Dow Corning Silicone) was mixed at a ratio of A liquid: B liquid = 1: 4 to obtain a comparative composition 2, which was cured in the same manner as a comparative cured product 2.

<硬化パッケージの作成>
エノモト(株)製リードフレーム5050 D/G PKGに、青色LEDチップ、金ワイヤーを実装したものに、上記熱硬化性組成物およびOE−6630を武蔵エンジニアリング(株)製ディスペンサーMEASURING MASTER MPP−1を用いて注入し、同様に硬化させ硬化パッケージとした。
<Creation of curing package>
Enomoto Co., Ltd. lead frame 5050 D / G PKG mounted with blue LED chip and gold wire, the above thermosetting composition and OE-6630 are dispensed by Musashi Engineering Co., Ltd. dispenser MEASURING MASTER MPP-1. And then cured to form a cured package.

<光線透過率測定>
島津製作所(株)製紫外可視分光光度計 UV−1650にて透過率を測定した。また、400nm−800nmの透過率から全光線透過率を計算した。
硬化物の透明性は、目視により着色の有無で判断し、着色がない場合には、透明性がよいと判断した。
<Light transmittance measurement>
The transmittance was measured with an ultraviolet-visible spectrophotometer UV-1650 manufactured by Shimadzu Corporation. Further, the total light transmittance was calculated from the transmittance of 400 nm to 800 nm.
The transparency of the cured product was judged by visual observation based on the presence or absence of coloring. When there was no coloring, it was judged that the transparency was good.

<屈折率>
試験片は厚さ4mmの硬化物をバンドソーにて切断し、JIS K7142に従って試験片を作製した。この試験片を用いて、アッベ屈折計((株)アタゴ製NAR−2T)によりナトリウムランプのD線(586nm)を用いて屈折率を測定した。中間液はヨウ化メチレンを用いた。
<Refractive index>
For the test piece, a cured product having a thickness of 4 mm was cut with a band saw, and a test piece was prepared according to JIS K7142. Using this test piece, the refractive index was measured with an Abbe refractometer (NAR-2T manufactured by Atago Co., Ltd.) using a D line (586 nm) of a sodium lamp. The intermediate solution was methylene iodide.

<硬度>
JIS K6253に従い、西東京精密(株)製デュロメータWR−105Dにより測定した。
<Hardness>
In accordance with JIS K6253, measurement was performed with a durometer WR-105D manufactured by Nishitokyo Seimitsu Co., Ltd.

<ガラス転移温度(Tg)>
厚さ0.9mmの硬化物フィルムを同様に加熱硬化して作成し、エスアイアイ・ナノテクノロジー(株)製熱機械的分析装置TMA/SS6100により測定した。
<Glass transition temperature (Tg)>
A cured product film having a thickness of 0.9 mm was prepared by heating and curing in the same manner, and measured with a thermomechanical analyzer TMA / SS6100 manufactured by SII Nanotechnology.

<耐熱試験>
耐熱試験は、以下の方法にて実施、評価した。
厚さ4mmの硬化物を2個作製し、得られた硬化物を180℃のオーブン(定温乾燥機:ヤマト科学(株)製DX302)に入れ、160時間加熱処理することにより実施した。160時間経過後、ほとんど着色が見られなかったものを○、着色が見られたものを×とした。
<Heat resistance test>
The heat resistance test was performed and evaluated by the following method.
Two cured products having a thickness of 4 mm were prepared, and the obtained cured products were put into a 180 ° C. oven (constant temperature dryer: DX302 manufactured by Yamato Scientific Co., Ltd.) and subjected to heat treatment for 160 hours. After 160 hours, the case where coloring was hardly seen was marked with ◯, and the case where coloring was seen was marked with x.

<冷熱サイクル試験>
冷熱サイクル試験は、上記方法により作成した硬化パッケージを、エスペック(株)製冷熱衝撃装置TSA−101S−Wのテストエリアに入れ、−40℃で30分間さらし、105℃で30分間さらしを1サイクルとして、100サイクル繰り返すことにより実施した。なお、両さらし温度の間の移動時間は5分間で実施した。100サイクル後、点灯試験を行い全数点灯したものを◎、半数以上点灯したものを○、半数以下点灯したものを△、すべて不灯になったものを×とした。
<Cooling cycle test>
In the thermal cycle test, the cured package prepared by the above method is put in the test area of the thermal shock apparatus TSA-101S-W manufactured by Espec Co., Ltd., exposed at -40 ° C for 30 minutes, and exposed at 105 ° C for 30 minutes for one cycle. As shown in FIG. In addition, the movement time between both exposure temperatures was implemented in 5 minutes. After 100 cycles, a lighting test was performed, where 数 indicates that all were turned on, ○ indicates that more than half were lit, △ indicates that less than half were lit, and × indicates that all were not lit.

<耐硫黄試験>
耐硫黄試験は、上記方法により作成した硬化パッケージを、硫黄粉末5gを入れた450ml密閉容器に入れ、80℃で16時間置いた後に、硫黄による黒変の度合いを観察することにより実施した。変色が見られなかったものを◎、うすい灰色になったものを○、濃い灰色になったものを△、黒変したものを◎とした。
<Sulfur resistance test>
The sulfur resistance test was carried out by placing the cured package prepared by the above method in a 450 ml sealed container containing 5 g of sulfur powder and placing the cured package at 80 ° C. for 16 hours, and then observing the degree of blackening due to sulfur. Those in which no discoloration was observed were marked with ◎, those with a light gray color were marked with ◯, those with a dark gray color were marked with △, and those with a black color were marked with ◎.

表6に、表5の各組成物1〜3、比較組成物1、およびOE−6630を硬化させて得られた硬化物1〜3、比較硬化物1〜2の各種物性評価試験の結果を示す。
硬化物1〜3は硬度が高く、耐熱性に優れ、優れた耐ガス透過性、耐冷熱サイクル性の特長を持つ硬化物であることが明らかとなった。
これは、本発明のダブルデッカー型シルセスキオキサン構造を持つ化合物を配合することにより、比較硬化物1の耐ガス透過性を維持しつつ、耐冷熱サイクル性を改善する効果を発揮することを示している。
Table 6 shows the results of various physical property evaluation tests of cured products 1 to 3 and comparative cured products 1 to 2 obtained by curing each of the compositions 1 to 3, the comparative composition 1 and OE-6630 of Table 5. Show.
It was revealed that the cured products 1 to 3 were cured products having high hardness, excellent heat resistance, excellent gas permeation resistance and cold cycle resistance.
This indicates that by blending the compound having a double-decker silsesquioxane structure of the present invention, the effect of improving the heat cycle resistance while maintaining the gas permeation resistance of the comparative cured product 1 is demonstrated. Show.

表5

Figure 2017078103
Table 5
Figure 2017078103

表6

Figure 2017078103
Table 6
Figure 2017078103

このことから、本発明の熱硬化性組成物を用いて得られた硬化物は、透明性が良好で、1.49以上の高屈折率であるなどの良好な特性を持ち合わせており、従来のフェニルシリコーン系封止用材と比較して、耐ガス透過性を維持しつつも、冷熱サイクル試験の特性を改善できることが明らかとなった。   From this, the cured product obtained using the thermosetting composition of the present invention has good properties such as good transparency and a high refractive index of 1.49 or more, It was revealed that the characteristics of the thermal cycle test can be improved while maintaining the gas permeation resistance as compared with the phenyl silicone-based sealing material.

本発明の硬化物からなる成形体は、半導体の封止材、光半導体の封止材、絶縁膜、シール材、光学レンズなどの用途に好適に用いることができる。また、接着剤、電子材料、絶縁材料、層間絶縁膜、塗料、インク、コーティング材料、成形材料、ポッティング材料、液晶シール材、表示デバイス用シール材、太陽電池封止材料、レジスト材料、カラーフィルター、電子ペーパー用材料、ホログラム用材料、太陽電池用材料、燃料電池用材料、記録材料、防水材料、防湿材料、電池用固体電解質、ガス分離膜に用いることができる。また、他の樹脂への添加剤等に用いることができる。   The molded body made of the cured product of the present invention can be suitably used for applications such as semiconductor sealing materials, optical semiconductor sealing materials, insulating films, sealing materials, and optical lenses. Also, adhesives, electronic materials, insulating materials, interlayer insulating films, paints, inks, coating materials, molding materials, potting materials, liquid crystal sealing materials, display device sealing materials, solar cell sealing materials, resist materials, color filters, It can be used for electronic paper materials, hologram materials, solar cell materials, fuel cell materials, recording materials, waterproof materials, moisture-proof materials, battery solid electrolytes, and gas separation membranes. Moreover, it can use for the additive etc. to other resin.

Claims (10)

式(1)で表される有機ケイ素化合物。

Figure 2017078103

式(1)中、Rは独立して、炭素数1〜4のアルキル、シクロペンチル、シクロヘキシル、またはフェニルであり、Rは独立して、水素または式(2)で表される基であり、4つのRのうちの少なくとも1つは式(2)で表される基である。

Figure 2017078103

式(2)中、Rは炭素数1〜20の炭化水素基であり、Rは独立して、炭素数1〜20のアルキル、フェニル、シクロペンチル、またはシクロヘキシルであり、Rは、炭素数1〜20のアルキルまたはフェニルであり、nは0〜1,000の整数である。
An organosilicon compound represented by the formula (1).

Figure 2017078103

In formula (1), R 1 is independently alkyl having 1 to 4 carbon atoms, cyclopentyl, cyclohexyl, or phenyl, and R 2 is independently hydrogen or a group represented by formula (2). At least one of the four R 2 is a group represented by the formula (2).

Figure 2017078103

In Formula (2), R 3 is a hydrocarbon group having 1 to 20 carbon atoms, R 4 is independently alkyl having 1 to 20 carbon atoms, phenyl, cyclopentyl, or cyclohexyl, and R 5 is carbon. N is an integer of 0 to 1,000.
式(3)で表される化合物と、式(4)で表される化合物とを、ヒドロシリル化反応することで得られる有機ケイ素化合物の製造方法。

Figure 2017078103

式(3)中、Rは独立して、炭素数1〜4のアルキル、シクロペンチル、シクロヘキシル、またはフェニルである。

Figure 2017078103

式(4)中、Rは独立して、炭素数1〜20のアルキル、フェニル、シクロペンチル、またはシクロヘキシルであり、Rは炭素数1〜20のアルキルまたはフェニルであり、Rは炭素数1〜20の不飽和炭化水素基であり、nは0〜1,000の整数である。
The manufacturing method of the organosilicon compound obtained by hydrosilylating the compound represented by Formula (3), and the compound represented by Formula (4).

Figure 2017078103

In formula (3), R 1 is independently alkyl having 1 to 4 carbons, cyclopentyl, cyclohexyl, or phenyl.

Figure 2017078103

In formula (4), R 4 is independently alkyl having 1 to 20 carbons, phenyl, cyclopentyl, or cyclohexyl, R 5 is alkyl or phenyl having 1 to 20 carbons, and R 6 is carbon number. 1 to 20 unsaturated hydrocarbon groups, and n is an integer of 0 to 1,000.
請求項1に記載の有機ケイ素化合物または請求項2に記載の製造方法により製造された有機ケイ素化合物(A)、と少なくとも2つのビニル基を有するケイ素化合物(B)、とを含有する熱硬化性組成物。   A thermosetting comprising the organosilicon compound according to claim 1 or the organosilicon compound (A) produced by the production method according to claim 2, and a silicon compound (B) having at least two vinyl groups. Composition. さらに、硬化触媒(C)、を含有する請求項3に記載の熱硬化性組成物。   Furthermore, the thermosetting composition of Claim 3 containing a curing catalyst (C). さらに、末端に少なくとも2つのSiH基を有するケイ素化合物(D)、を含有する請求項3または4に記載の熱硬化性組成物。   Furthermore, the thermosetting composition of Claim 3 or 4 containing the silicon compound (D) which has an at least 2 SiH group at the terminal. さらに、金属酸化物または蛍光体を分散させた、請求項3〜5のいずれか1項に記載の熱硬化性組成物。   Furthermore, the thermosetting composition of any one of Claims 3-5 which disperse | distributed the metal oxide or fluorescent substance. 請求項3〜6のいずれか1項に記載の熱硬化性組成物を熱硬化させてなる硬化物。   Hardened | cured material formed by thermosetting the thermosetting composition of any one of Claims 3-6. 請求項7に記載の硬化物を成形して得られる成形体。   The molded object obtained by shape | molding the hardened | cured material of Claim 7. 請求項3〜6のいずれか1項に記載の熱硬化性組成物を塗布してなる塗膜。   The coating film formed by apply | coating the thermosetting composition of any one of Claims 3-6. 請求項3〜6のいずれか1項に記載の熱硬化性組成物からなる光半導体用封止材。   The sealing material for optical semiconductors which consists of a thermosetting composition of any one of Claims 3-6.
JP2015205742A 2015-10-19 2015-10-19 Organosilicon compounds, thermosetting compositions containing the organosilicon compounds, and encapsulants for opto-semiconductors. Expired - Fee Related JP6766334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015205742A JP6766334B2 (en) 2015-10-19 2015-10-19 Organosilicon compounds, thermosetting compositions containing the organosilicon compounds, and encapsulants for opto-semiconductors.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015205742A JP6766334B2 (en) 2015-10-19 2015-10-19 Organosilicon compounds, thermosetting compositions containing the organosilicon compounds, and encapsulants for opto-semiconductors.

Publications (3)

Publication Number Publication Date
JP2017078103A true JP2017078103A (en) 2017-04-27
JP2017078103A5 JP2017078103A5 (en) 2018-09-27
JP6766334B2 JP6766334B2 (en) 2020-10-14

Family

ID=58666070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015205742A Expired - Fee Related JP6766334B2 (en) 2015-10-19 2015-10-19 Organosilicon compounds, thermosetting compositions containing the organosilicon compounds, and encapsulants for opto-semiconductors.

Country Status (1)

Country Link
JP (1) JP6766334B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022239271A1 (en) * 2021-05-14 2022-11-17 Jnc株式会社 Thermosetting resin composition, organosilicon compound, molded body, and optical semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022239271A1 (en) * 2021-05-14 2022-11-17 Jnc株式会社 Thermosetting resin composition, organosilicon compound, molded body, and optical semiconductor device

Also Published As

Publication number Publication date
JP6766334B2 (en) 2020-10-14

Similar Documents

Publication Publication Date Title
JP5704168B2 (en) Novel organosilicon compound, thermosetting resin composition containing the organosilicon compound, cured resin, and sealing material for optical semiconductor
JP5793824B2 (en) Organosilicon compound, thermosetting composition containing the organosilicon compound, and sealing material for optical semiconductor
JP5784618B2 (en) Modified polyhedral polysiloxane, polyhedral polysiloxane composition, cured product, and optical semiconductor device
KR20130094715A (en) Polysiloxane composition, hardened material and optical device
JP5643009B2 (en) Optical device using organopolysiloxane composition
JP5965195B2 (en) Polysiloxane composition
WO2019163686A1 (en) Liquid organosilicon compound and thermosetting resin composition to which same is added
JP2012162666A (en) Polysiloxane-based composition of polyhedral structure
US9115243B2 (en) Organosilicon compound, thermosetting resin composition containing the organosilicon compound, hardening resin and encapsulation material for optical semiconductor
JP2015147879A (en) Curable composition, semiconductor device, and organic silicon compound containing ester bond
JP6766334B2 (en) Organosilicon compounds, thermosetting compositions containing the organosilicon compounds, and encapsulants for opto-semiconductors.
JP2013209565A (en) Polysiloxane-based composition containing modified polyhedral-structure polysiloxane, and cured product obtained by curing the composition
JP6161252B2 (en) Modified polyorganosiloxane, composition containing the modified product, and cured product obtained by curing the composition
JP5616147B2 (en) Organopolysiloxane composition and optical device using the same.
JP5912352B2 (en) Modified polyhedral polysiloxane, composition containing the modified product, and cured product obtained by curing the composition
JP5710998B2 (en) Modified polyhedral polysiloxane, composition containing the modified product, and cured product obtained by curing the composition
JP5923331B2 (en) Polysiloxane-based composition, sealing agent using the composition, and optical device
JP5819089B2 (en) Modified polyhedral polysiloxane, composition containing the modified product, and cured product obtained by curing the composition
JP2013194184A (en) Polysiloxane variant having polyhedral structure, method for producing the variant, composition including the variant and cured material obtained by curing the composition
JP2012224744A (en) Polysiloxane modified compound with polyhedral structure, composition containing the same, cured product, and optical device using the composition
JP2016204559A (en) Novel organosilicon compound, thermosetting resin composition comprising the organosilicon compound and cured product of the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180816

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200831

R150 Certificate of patent or registration of utility model

Ref document number: 6766334

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees