[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2017070024A - Battery monitoring device - Google Patents

Battery monitoring device Download PDF

Info

Publication number
JP2017070024A
JP2017070024A JP2015190615A JP2015190615A JP2017070024A JP 2017070024 A JP2017070024 A JP 2017070024A JP 2015190615 A JP2015190615 A JP 2015190615A JP 2015190615 A JP2015190615 A JP 2015190615A JP 2017070024 A JP2017070024 A JP 2017070024A
Authority
JP
Japan
Prior art keywords
voltage
battery
current
detection circuit
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015190615A
Other languages
Japanese (ja)
Inventor
孝司 中澤
Koji Nakazawa
孝司 中澤
雅俊 小池
Masatoshi Koike
雅俊 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2015190615A priority Critical patent/JP2017070024A/en
Publication of JP2017070024A publication Critical patent/JP2017070024A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery monitoring device comprising a function capable of diagnosing whether data obtained by detectors are correct or not, and mutually diagnosing circuits.SOLUTION: The battery monitoring device comprises: a voltage input circuit 22a for inputting a highest potential and a lowest potential of a battery pack 10 including a plurality of battery cells C electrically connected in series; a current input circuit 23a for inputting output of a current sensor 9 provided for measuring a current flowing in the battery pack 10; a first detection circuit 22b which detects a voltage of the battery pack 10 from output of the voltage input circuit; a second detection circuit 23b which detects a current of the battery pack 10 from output of the current input circuit; a third detection circuit 21b which detects voltages of the plurality of voltage cells C, respectively; and a circuit which includes the voltage input circuit, the current input circuit and the first to third detection circuits, and in which data obtained by the first detection circuit are compared with data obtained by the third detection circuit.SELECTED DRAWING: Figure 2

Description

本発明は、電池の状態を監視する電池監視装置に関する。   The present invention relates to a battery monitoring device that monitors the state of a battery.

リチウムイオン2次電池やニッケル水素電池、鉛電池などの2次電池の電池セルを複数個直並列して構成した組電池は、通常、電池監視装置とともに用いられる。電池監視装置は、組電池を構成する各電池セルのセル電圧を検出したり、電池セルに流れる電流を検出したりすることで、電池の状態を検出する。これにより、組電池が適切な状態にあるかを監視する。電池監視装置によっては、適切な状態を保つために、通電状態を制御するなどの、制御装置としての働きを持つ場合もある。   An assembled battery in which a plurality of secondary battery battery cells such as lithium ion secondary batteries, nickel metal hydride batteries, and lead batteries are configured in series and parallel is usually used together with a battery monitoring device. The battery monitoring device detects the state of the battery by detecting the cell voltage of each battery cell constituting the assembled battery or detecting the current flowing through the battery cell. Thereby, it is monitored whether the assembled battery is in an appropriate state. Some battery monitoring devices may function as a control device, such as controlling an energized state in order to maintain an appropriate state.

一般的な電池監視装置では、各セルが過充電・過放電されていないかを知るために、各
電池セルの電圧や通電電流を検知または計測する。また、電池の劣化状態を知るために、
電池セルの内部抵抗を検知することもある。電池が劣化すると内部抵抗が上昇するので、
内部抵抗を知ることで電池の劣化状態がわかるためである。
In a general battery monitoring device, in order to know whether or not each cell is overcharged or overdischarged, the voltage or energization current of each battery cell is detected or measured. In addition, in order to know the deterioration state of the battery,
The internal resistance of the battery cell may be detected. When the battery deteriorates, the internal resistance increases.
This is because the deterioration state of the battery can be known by knowing the internal resistance.

電池の内部抵抗の検出は、電池セルの電圧の測定値と通電電流の測定値とから求まる。
ただし、この際、電圧検出手段にて電池セルのセル電圧を検出するタイミングと、電流検出手段にて電池セルを流れる電流を正確に検出しかつ電圧の検出するタイミングを同期させる必要がある。さらに、この電池情報から電池容量(SOC:State of Charge)や電池劣化状態(SOH:State of Health)を演算し、車両コントローラ等に演算結果を通知する。
The detection of the internal resistance of the battery is obtained from the measured value of the voltage of the battery cell and the measured value of the energization current.
However, at this time, it is necessary to synchronize the timing at which the voltage detection means detects the cell voltage of the battery cell and the current detection means to accurately detect the current flowing through the battery cell and detect the voltage. Furthermore, a battery capacity (SOC: State of Charge) and a battery deterioration state (SOH: State of Health) are calculated from the battery information, and the calculation result is notified to the vehicle controller or the like.

セル電圧の検出と電流の検出させる構成としては、電圧検出回路と電流検出回路をそれぞれに設け、SOCやSOHの計算を行う演算回路との間に通信回路を用いてデータ送受信を行う構成が考えられる。   As a configuration for detecting the cell voltage and detecting the current, a configuration in which a voltage detection circuit and a current detection circuit are provided in each of them, and a data transmission / reception is performed using a communication circuit between the calculation circuit that calculates SOC and SOH is considered. It is done.

しかし、このような構成では、電流センサ、電圧センサ検出回路の測定したデータが正しいかどうか判断出来ないという問題がある。   However, in such a configuration, there is a problem that it cannot be determined whether or not the data measured by the current sensor and the voltage sensor detection circuit is correct.

これに対して、アナログセレクタを用いる事により単一のAD変換装置により、数種のデータを取り込む事で検出回路の診断を行う構成が特許文献1に示されている。   On the other hand, Patent Document 1 discloses a configuration in which a detection circuit is diagnosed by fetching several types of data by using a single AD converter by using an analog selector.

国際公開第2010/106588号International Publication No. 2010/106588

しかしながら、単にアナログセレクタで、数種のデータを読み込むのみでは真に装置の故障か否か判断出来ないという課題があった。   However, there has been a problem that it is not possible to determine whether or not the device is truly malfunctioning by simply reading several types of data with an analog selector.

本発明の電池監視装置は、電気的に直列に接続された複数の電池セルCを備えた組電池10の最高電位と最低電位とを入力するための電圧入力回路(第2電圧入力フィルタ22a)と、組電池10に流れる電流を計測するために設けられた電流センサ(電流計測素子9)の出力を入力するための電流入力回路(電流入力フィルタ23a)と、電圧入力回路(第2電圧入力フィルタ22a)の出力から組電池10の電圧を検出する第1の検出回路(第2電圧検出回路22b)と、電流入力回路(電流入力フィルタ23a)の出力から組電池10の電流を検出する第2の検出回路(電流検出回路23b)と、複数の電池セルCのそれぞれの電圧を検出する第3の検出回路(電圧検出回路21b)と、電圧入力回路(第2電圧入力フィルタ22a)、電流入力回路(電流入力フィルタ23a)、第1乃至第3の検出回路(電圧検出回路21b、第2電圧検出回路22b、電流検出回路23b)を有し、第1の検出回路(第2電圧検出回路22b)で得られるデータと第3の検出回路(電圧検出回路21b)で得られるデータを相互に比較する回路を有する。   The battery monitoring apparatus of the present invention is a voltage input circuit (second voltage input filter 22a) for inputting the highest potential and the lowest potential of the assembled battery 10 including a plurality of battery cells C electrically connected in series. A current input circuit (current input filter 23a) for inputting an output of a current sensor (current measurement element 9) provided for measuring a current flowing through the assembled battery 10, and a voltage input circuit (second voltage input) A first detection circuit (second voltage detection circuit 22b) for detecting the voltage of the assembled battery 10 from the output of the filter 22a), and a first detection circuit for detecting the current of the assembled battery 10 from the output of the current input circuit (current input filter 23a). 2 detection circuits (current detection circuit 23b), a third detection circuit (voltage detection circuit 21b) for detecting each voltage of the plurality of battery cells C, and a voltage input circuit (second voltage input filter 22a). It has a current input circuit (current input filter 23a), first to third detection circuits (voltage detection circuit 21b, second voltage detection circuit 22b, current detection circuit 23b), and includes a first detection circuit (second voltage detection). A circuit for comparing the data obtained by the circuit 22b) with the data obtained by the third detection circuit (voltage detection circuit 21b).

本発明を用いることによって、相互の検出回路の故障を診断することができる。   By using the present invention, it is possible to diagnose a failure of the mutual detection circuit.

図1は、電動車両駆動装置100の構成の一例を示す図である。FIG. 1 is a diagram illustrating an example of the configuration of the electric vehicle drive device 100. 図2は、電池監視装置2の構成の一例を示す図である。FIG. 2 is a diagram illustrating an example of the configuration of the battery monitoring device 2.

以下、図を参照して本発明を実施するための形態について説明する。
本発明に係る電池監視装置は、電池システム(蓄電装置とも呼ばれる)に設けられた組電池の電池状態を検出し、組電池を適切な状態に保つ装置である。図1は、本実施の形態の電池監視装置2が設けられた電池システム1を搭載する電動車両駆動装置100を示したものである。ここで、電動車両駆動装置とは、ハイブリッド自動車(HEV)や電気自動車(EV)などの電動車両を駆動する回転機システムである。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
A battery monitoring device according to the present invention is a device that detects a battery state of an assembled battery provided in a battery system (also called a power storage device) and keeps the assembled battery in an appropriate state. FIG. 1 shows an electric vehicle drive device 100 equipped with a battery system 1 provided with a battery monitoring device 2 of the present embodiment. Here, the electric vehicle drive device is a rotating machine system that drives an electric vehicle such as a hybrid vehicle (HEV) or an electric vehicle (EV).

電動車両駆動装置100には、電池監視装置2および組電池10等を備える電池システ
ム1、車両全体の制御を行う車両コントローラ30、インバータ40,回転電機50等を
備えている。電池システム1はリレー60,61を介してインバータ40に接続されてい
る。電池監視装置2は、インバータ40及び上位の車両コントローラ30との通信を、C
AN(Controller Area Network)の通信バスを介して行う。
The electric vehicle drive device 100 includes a battery system 1 including the battery monitoring device 2 and the assembled battery 10, a vehicle controller 30 that controls the entire vehicle, an inverter 40, a rotating electrical machine 50, and the like. The battery system 1 is connected to the inverter 40 via relays 60 and 61. The battery monitoring device 2 communicates with the inverter 40 and the host vehicle controller 30 with C
This is performed via a communication bus of AN (Controller Area Network).

回転電機50はインバータ40からの電力により駆動される。車両の発進および加速時
には電池システム1から放電電力がインバータ40を通じて回転電機50に供給され、回
転電機50の駆動力によりエンジン(不図示)をアシストする。車両停止および減速時に
は、回転電機50からの回生電力がインバータ40を通じて電池システム1に設けられた
組電池10を充電する。なお、インバータ40は、モータコントローラ41を内蔵し、イ
ンバータ40のDC−AC変換およびAC−DC変換を制御することによって、回転電機
50の駆動制御並びに組電池10の充放電制御を行う。
The rotating electrical machine 50 is driven by electric power from the inverter 40. When the vehicle starts and accelerates, discharge power is supplied from the battery system 1 to the rotating electrical machine 50 through the inverter 40, and an engine (not shown) is assisted by the driving force of the rotating electrical machine 50. When the vehicle is stopped and decelerated, regenerative electric power from the rotating electrical machine 50 charges the assembled battery 10 provided in the battery system 1 through the inverter 40. The inverter 40 includes a motor controller 41, and controls the DC-AC conversion and AC-DC conversion of the inverter 40, thereby performing drive control of the rotating electrical machine 50 and charge / discharge control of the assembled battery 10.

電池システム1は、組電池10、電池監視装置2を備えている。組電池10は、最小単位である電池セルC(C(1)〜C(N))が複数直列に接続されて構成されている。なお、本実施形態の組電池10は、例えば、12個程度の電池セルCが直列接続されて構成され、全体として48V程度となる。また、絶縁素子は挿入されていない。従って電池監視装置2全体のGNDは共通となる。以下の説明では、組電池10を構成する電池セルCの個数をNとし、以下では、N個の電池セルC(1)〜C(N)の一つを代表して表す場合には電池セルCのように呼ぶ場合がある。組電池10を構成する電池セルCとしては、例えば充放電可能なリチウムイオン二次電池が用いられる。図1に示す例の電池セルCを備える組電池10は、所定数の電池セルにグループ化された複数のセルブロックを、直列に接続して成る接続体の構成としてもよい。この場合、グループ化された組電池10に接続されるセル電圧計測部21も複数のグループ化されたブロックとなる。   The battery system 1 includes an assembled battery 10 and a battery monitoring device 2. The assembled battery 10 is configured by connecting a plurality of battery cells C (C (1) to C (N)) as a minimum unit in series. In addition, the assembled battery 10 of the present embodiment is configured by, for example, about 12 battery cells C connected in series, and has a voltage of about 48V as a whole. Moreover, the insulating element is not inserted. Accordingly, the GND of the entire battery monitoring device 2 is common. In the following description, the number of battery cells C constituting the assembled battery 10 is N, and in the following, the battery cell is represented in the case of representing one of the N battery cells C (1) to C (N). Sometimes called C. As the battery cell C which comprises the assembled battery 10, the lithium ion secondary battery which can be charged / discharged is used, for example. The assembled battery 10 including the battery cell C of the example shown in FIG. 1 may have a configuration of a connection body formed by connecting a plurality of cell blocks grouped into a predetermined number of battery cells in series. In this case, the cell voltage measurement unit 21 connected to the grouped assembled battery 10 is also a plurality of grouped blocks.

(電池監視装置2の構成)
続いて図2を用いて電池監視装置2の構成について説明する。電池監視装置2は、組電池10の状態を監視する装置であり、組電池10の各電池セルCの過充電および過放電を検出する過充放電検出機能、組電池10の各電池セルCの内部抵抗を検知する内部抵抗検出機能等を有する。電池監視装置2は、セル電圧計測部21、電流総電圧検出部400、電流計測素子9、制御部24等を内蔵する。また電流総電圧検出部400は第2電圧計測部22、電流計測部23、AD変換制御部250、第一演算部405を内蔵する。
(Configuration of battery monitoring device 2)
Then, the structure of the battery monitoring apparatus 2 is demonstrated using FIG. The battery monitoring device 2 is a device that monitors the state of the assembled battery 10. An overcharge / discharge detection function that detects overcharge and overdischarge of each battery cell C of the assembled battery 10, and each battery cell C of the assembled battery 10. It has an internal resistance detection function for detecting internal resistance. The battery monitoring device 2 includes a cell voltage measurement unit 21, a total current voltage detection unit 400, a current measurement element 9, a control unit 24, and the like. The total current voltage detection unit 400 includes a second voltage measurement unit 22, a current measurement unit 23, an AD conversion control unit 250, and a first calculation unit 405.

セル電圧計測部21は、組電池10を構成する各電池セルCのセル毎の電圧(以下、セル電圧と呼ぶ)を計測する回路である。セル電圧計測部21は、4〜12個程度の電池セルCのセル電圧を計測できる回路であり、集積回路(IC)として構成されたものを用いてもよい。   The cell voltage measurement unit 21 is a circuit that measures the voltage of each battery cell C constituting the assembled battery 10 (hereinafter referred to as cell voltage). The cell voltage measurement unit 21 is a circuit capable of measuring the cell voltages of about 4 to 12 battery cells C, and may be configured as an integrated circuit (IC).

第2電圧計測部22は、組電池10を構成するN個の電池セル全体の電圧(以下では総
電圧Vtと呼ぶ)を計測する回路である。N個の電池セルCを組電池負極側から符号C(1),C(2),・・・・,C(N-1),C(N)で表すと、第2電圧計測部22の第2電圧入力端子220は、電池セルC(N)の正極に接続されている。セル電圧計測部21は、各電池セルの電圧を測定する。なお、図示は省略したが、セル電圧計測部21は、各電池セルC(1)〜C(N)のセル電圧のバランシング動作を行うバランシング抵抗とバランシングスイッチ、制御部24と通信を行って制御を行うロジック部を備えている。
The second voltage measurement unit 22 is a circuit that measures the voltage of all N battery cells constituting the assembled battery 10 (hereinafter referred to as the total voltage Vt). When N battery cells C are represented by symbols C (1), C (2),..., C (N-1), C (N) from the assembled battery negative electrode side, the second voltage measuring unit 22 The second voltage input terminal 220 is connected to the positive electrode of the battery cell C (N). The cell voltage measurement unit 21 measures the voltage of each battery cell. Although not shown, the cell voltage measurement unit 21 performs control by communicating with a balancing resistor and a balancing switch that perform the balancing operation of the cell voltages of the battery cells C (1) to C (N), and the control unit 24. The logic part which performs is provided.

組電池10に流れる電流を計測する電流計測部23には、電流計測素子9から計測信号
(電気信号)が入力される。電流計測素子9は、電流の大きさを電気信号に変換する素子
であり、具体的には、ホール素子センサやシャント抵抗素子などがある。電流計測素子9
からは電流の大きさに対応した電気信号が出力され、その電気信号は電流計測部23で計
測される。
A measurement signal (electric signal) is input from the current measurement element 9 to the current measurement unit 23 that measures the current flowing through the assembled battery 10. The current measuring element 9 is an element that converts the magnitude of the current into an electric signal, and specifically includes a Hall element sensor, a shunt resistance element, and the like. Current measuring element 9
Outputs an electric signal corresponding to the magnitude of the current, and the electric signal is measured by the current measuring unit 23.

なお、シャント抵抗素子は以下の点で、ホール素子センサに比べて優れている。シャン
ト抵抗素子はオフセット電流が小さいので、組電池10の充電状態(SOC)を正確(高
精度に)に計測することができる。また、シャント抵抗素子は応答特性(電流変化に対す
る電圧値の追従性)が速いので、電流計測部23の測定時定数を速くすれば、それに応じ
て時間分解能を高くすることができる。すなわち、計測の同時性を達成しやすいという点
で優れている。
The shunt resistor element is superior to the Hall element sensor in the following points. Since the shunt resistor element has a small offset current, the state of charge (SOC) of the assembled battery 10 can be accurately measured (with high accuracy). Further, since the shunt resistance element has a fast response characteristic (trackability of the voltage value with respect to the current change), if the measurement time constant of the current measuring unit 23 is increased, the time resolution can be increased accordingly. That is, it is excellent in that it is easy to achieve simultaneity of measurement.

第2電圧計測部22は第2電圧入力フィルタ22a及び第2電圧検出回路22bを備えている。電流計測部23は電流入力フィルタ23a及び電流検出回路23bを備えている。この場合、第2電圧計測部22が備える第2電圧入力フィルタ22aの特性周波数と、電流計
測部23が備える電流入力フィルタ23aの特性周波数とが、互いに等しくなるように構
成する事が好ましい。具体的には両フィルタ回路の時定数を同一とする。このような構成にすることによって、電流と電圧が同一のタイミングで測定されれば、フィルタ回路の時定数による測定の遅れも無くなり、電圧と電流の測定の同時性を担保できる。
The second voltage measurement unit 22 includes a second voltage input filter 22a and a second voltage detection circuit 22b. The current measurement unit 23 includes a current input filter 23a and a current detection circuit 23b. In this case, it is preferable that the characteristic frequency of the second voltage input filter 22a included in the second voltage measurement unit 22 and the characteristic frequency of the current input filter 23a included in the current measurement unit 23 be equal to each other. Specifically, both filter circuits have the same time constant. By adopting such a configuration, if the current and voltage are measured at the same timing, there is no measurement delay due to the time constant of the filter circuit, and the simultaneity of voltage and current measurement can be ensured.

集積回路25は第一演算部405、AD変換制御部250、第2電圧検出回路22b、電流検出回路23bを内蔵する。第2電圧検出回路22bおよび電流検出回路23bは、それぞれAD変換制御部250からのトリガ信号を受けてAD変換を開始する。AD変換制御部250は、電圧検出回路22bおよび電流検出回路23bの変換タイミングが互いに等しくなるようにトリガ信号を発生する。さらには、電圧検出回路22bおよび電流検出回路23bが同一のトリガ信号で変換を開始するように構成するのが好ましい。   The integrated circuit 25 includes a first calculation unit 405, an AD conversion control unit 250, a second voltage detection circuit 22b, and a current detection circuit 23b. The second voltage detection circuit 22b and the current detection circuit 23b each receive a trigger signal from the AD conversion control unit 250 and start AD conversion. The AD conversion control unit 250 generates a trigger signal so that the conversion timings of the voltage detection circuit 22b and the current detection circuit 23b are equal to each other. Furthermore, it is preferable that the voltage detection circuit 22b and the current detection circuit 23b are configured to start conversion with the same trigger signal.

また、電圧検出回路22bおよび電流検出回路23bに、ΔΣ型のAD変換器を用いるのが好ましい。ΔΣ型のAD変換器を用いると、高精度なAD変換を行えるので好ましい。   Further, it is preferable to use a ΔΣ AD converter for the voltage detection circuit 22b and the current detection circuit 23b. It is preferable to use a ΔΣ type AD converter because highly accurate AD conversion can be performed.

さらに好ましくは、ΔΣ型のAD変換器のデシメーション・フィルタを電圧検出回路22bと電流検出回路23bとで同じ特性のデシメーション・フィルタとすることで、これら2つのAD変換器の伝達関数を互いに等しくすることができる。このような構成にすることによって、電圧と電流の測定の同時性をより担保することができる。従って、その後の計算でもより正確な値を算出することが可能となる。   More preferably, the decimation filter of the ΔΣ type AD converter is a decimation filter having the same characteristics in the voltage detection circuit 22b and the current detection circuit 23b, so that the transfer functions of these two AD converters are equal to each other. be able to. By adopting such a configuration, the simultaneity of voltage and current measurement can be further ensured. Accordingly, it is possible to calculate a more accurate value even in subsequent calculations.

制御部24は電池監視装置2の全体の制御を行うものであり、例えば、セル電圧計測回路の動作制御や状態判定などを行う。制御部24は、セル電圧計測部21、電流総電圧検出部400のそれぞれから送られる信号を受け取り、それらの信号値を用いて、各電池セルC(1)〜C(N)の内部抵抗を検知する。またリレー60のON,OFF機能を有する場合もある。   The control unit 24 performs overall control of the battery monitoring device 2, and performs, for example, operation control and state determination of the cell voltage measurement circuit. The control unit 24 receives signals sent from the cell voltage measurement unit 21 and the total current voltage detection unit 400, and uses the signal values to determine the internal resistances of the battery cells C (1) to C (N). Detect. In some cases, the relay 60 has an ON / OFF function.

第2電圧計測部22及び電流計測部23で同時性を持って検出された電流値と電圧値は電流総電圧検出部400に内蔵される第1演算部405にて平均化、IIR(Infinite Impulse Response)、FFT(Fast Fourier Transform)等の演算処理が行われる。この演算処理は時間がかかる為、第一演算部405で占有して行われる。また、電圧値と電流値の演算処理結果も同時性を保ったままとなる。   The current value and the voltage value detected at the same time by the second voltage measurement unit 22 and the current measurement unit 23 are averaged by a first calculation unit 405 built in the total current voltage detection unit 400, and IIR (Infinite Impulse). Processing such as Response) and FFT (Fast Fourier Transform) is performed. Since this calculation process takes time, the first calculation unit 405 occupies the calculation process. In addition, the calculation processing result of the voltage value and the current value also remains synchronized.

制御部24に内蔵される第2演算部502は第1演算部405から送られる演算処理結果の信号とセル電圧計測部21から送られるセル電圧値の信号を元に電池容量(SOC),電池劣化状態(SOH)の演算処理が行われる。   The second calculation unit 502 built in the control unit 24 is configured to have a battery capacity (SOC) and a battery based on the calculation processing result signal sent from the first calculation unit 405 and the cell voltage value signal sent from the cell voltage measurement unit 21. Deterioration state (SOH) calculation processing is performed.

(電流変化に対する計測時刻ズレの説明)
電池システム1における組電池10の通電電流の時間変化の、計測時刻ズレへの影響に
ついて説明する。図1に示す電動車両(HEV)においては、電動車両の走行状態に応じ
て回転電機50の出力トルクが時間的に変動する。例えば、回転電機50によるエンジン
のアシストが必要になると、回転電機50の出力トルクが増加するため、それに応じてイ
ンバータ40の出力電力が増加する。そして、インバータ40への入力電流、すなわち、
組電池10の通電電流も増加する。逆に、電動車両が回生ブレーキを使用して回生状態に
なると、回転電機50が発電機として動作して、回生電力が回転電機50(発電機)から
インバータ40、そして組電池10へと流れる。このため、組電池10への充電電流が増
加する。このように、電池システム1においては、組電池10への通電電流が時間変化を
する。
(Explanation of measurement time deviation for current change)
The influence of the time change of the energization current of the battery pack 10 in the battery system 1 on the measurement time deviation will be described. In the electric vehicle (HEV) shown in FIG. 1, the output torque of the rotating electrical machine 50 varies with time in accordance with the traveling state of the electric vehicle. For example, when the rotating electrical machine 50 needs to assist the engine, the output torque of the rotating electrical machine 50 increases, and the output power of the inverter 40 increases accordingly. And the input current to the inverter 40, that is,
The energization current of the assembled battery 10 also increases. Conversely, when the electric vehicle enters a regenerative state using the regenerative brake, the rotating electrical machine 50 operates as a generator, and regenerative power flows from the rotating electrical machine 50 (generator) to the inverter 40 and the assembled battery 10. For this reason, the charging current to the assembled battery 10 increases. Thus, in the battery system 1, the energization current to the assembled battery 10 changes with time.

第2電圧計測部22は組電池10から出力される総電圧を測定し、第1演算部405へ送信する。一方セル電圧計測部21で測定された各セル電圧信号は第2演算部502へ送信される。つまり、第2演算部502は各セル電圧の総和により総電圧を検出可能となる。そのため、第1演算部405と第2演算部502は相互に総電圧のデータを比較し診断を行う。このような構成にすることによって、第1演算部405で測定されている総電圧のデータと、第2演算部502で各セルの電圧から算出された総電圧のデータを常に比較することが可能となり、実際に測定されている電流、各セル電圧、総電圧が互いに正確か否かを判断することができる。そのため、セル電圧計測部21と電流総電圧検出部400がそれぞれ故障していないか、互いに診断することが出来る。なお、電流総電圧検出部400とセル電圧計測部21は同一の回路基板に形成されることが、測定の同時性を担保できるため好ましい。   The second voltage measurement unit 22 measures the total voltage output from the assembled battery 10 and transmits it to the first calculation unit 405. On the other hand, each cell voltage signal measured by the cell voltage measurement unit 21 is transmitted to the second calculation unit 502. That is, the second calculation unit 502 can detect the total voltage by the sum of the cell voltages. Therefore, the first calculation unit 405 and the second calculation unit 502 perform diagnosis by comparing the total voltage data with each other. With this configuration, the total voltage data measured by the first calculation unit 405 and the total voltage data calculated from the voltage of each cell by the second calculation unit 502 can always be compared. Thus, it can be determined whether or not the actually measured current, each cell voltage, and the total voltage are accurate. Therefore, it is possible to diagnose each other whether the cell voltage measurement unit 21 and the total current voltage detection unit 400 are out of order. In addition, it is preferable that the current total voltage detection unit 400 and the cell voltage measurement unit 21 are formed on the same circuit board because the simultaneity of measurement can be ensured.

第一演算部405に電源電圧又はリファレンス電圧を検出する回路(不図示)を設け第二演算部502にも同様に電源電圧又はリファレンス電圧を検出する回路(不図示)を設ける。第一演算部405または第二演算部502のどちらかが故障により電源電圧、リファレンス電圧を検出する事が出来ない場合でも、一演算部405または第二演算部502によって検出可能となる為、診断性が向上する。   A circuit (not shown) for detecting a power supply voltage or a reference voltage is provided in the first calculation unit 405, and a circuit (not shown) for detecting a power supply voltage or a reference voltage is also provided in the second calculation unit 502. Even if either the first calculation unit 405 or the second calculation unit 502 cannot detect the power supply voltage and the reference voltage due to a failure, it can be detected by the one calculation unit 405 or the second calculation unit 502. Improves.

以上、本発明について簡単にまとめる。   The present invention will be briefly described above.

本発明に記載の電池監視装置は、電気的に直列に接続された複数の電池セルCを備えた組電池10の最高電位と最低電位とを入力するための電圧入力回路(第2電圧入力フィルタ22a)と、組電池10に流れる電流を計測するために設けられた電流センサ(電流計測素子9)の出力を入力するための電流入力回路(電流入力フィルタ23a)と、電圧入力回路(第2電圧入力フィルタ22a)の出力から組電池10の電圧を検出する第1の検出回路(第2電圧検出回路22b)と、電流入力回路(電流入力フィルタ23a)の出力から組電池10の電流を検出する第2の検出回路(電流検出回路23b)と、複数の電池セルCのそれぞれの電圧を検出する第3の検出回路(電圧検出回路21b)と、電圧入力回路(第2電圧入力フィルタ22a)、電流入力回路(電流入力フィルタ23a)、第1乃至第3の検出回路(電圧検出回路21b、第2電圧検出回路22b、電流検出回路23b)を有し、第1の検出回路(第2電圧検出回路22b)で得られるデータと第3の検出回路(電圧検出回路21b)で得られるデータを相互に比較する回路を有する。このような構成にすることによって、第1演算部405で測定されている総電圧のデータと、第2演算部502で各セルの電圧から算出された総電圧のデータを常に比較することが可能となり、実際に測定されている電流、各セル電圧、総電圧が互いに正確か否かを判断することができる。そのため、セル電圧計測部21と電流総電圧検出部400がそれぞれ故障していないか、互いに診断することが出来る。   The battery monitoring device according to the present invention includes a voltage input circuit (second voltage input filter) for inputting the highest potential and the lowest potential of the assembled battery 10 including a plurality of battery cells C electrically connected in series. 22a), a current input circuit (current input filter 23a) for inputting the output of a current sensor (current measurement element 9) provided for measuring the current flowing through the assembled battery 10, and a voltage input circuit (second A first detection circuit (second voltage detection circuit 22b) for detecting the voltage of the assembled battery 10 from the output of the voltage input filter 22a) and a current of the assembled battery 10 from the output of the current input circuit (current input filter 23a) A second detection circuit (current detection circuit 23b), a third detection circuit (voltage detection circuit 21b) for detecting the respective voltages of the plurality of battery cells C, and a voltage input circuit (second voltage input filter 2). a), a current input circuit (current input filter 23a), first to third detection circuits (voltage detection circuit 21b, second voltage detection circuit 22b, current detection circuit 23b), and a first detection circuit (first detection circuit). A circuit for comparing the data obtained by the two voltage detection circuit 22b) with the data obtained by the third detection circuit (voltage detection circuit 21b). With this configuration, the total voltage data measured by the first calculation unit 405 and the total voltage data calculated from the voltage of each cell by the second calculation unit 502 can always be compared. Thus, it can be determined whether or not the actually measured current, each cell voltage, and the total voltage are accurate. Therefore, it is possible to diagnose each other whether the cell voltage measurement unit 21 and the total current voltage detection unit 400 are out of order.

また、本発明に記載の電池監視装置は、第1の検出回路(第2電圧検出回路22b)は電源電圧又はリファレンス電圧の電圧検出回路を有し、第3の検出回路(電圧検出回路21b)は電源電圧又はリファレンス電圧の電圧検出回路を有する。このような構成にすることによって、第一演算部405または第二演算部502のどちらかが故障により電源電圧、リファレンス電圧を検出する事が出来ない場合でも、一演算部405または第二演算部502によって検出可能となる為、診断性が向上する。   In the battery monitoring apparatus according to the present invention, the first detection circuit (second voltage detection circuit 22b) includes a voltage detection circuit for a power supply voltage or a reference voltage, and the third detection circuit (voltage detection circuit 21b). Has a voltage detection circuit for a power supply voltage or a reference voltage. With such a configuration, even when either the first calculation unit 405 or the second calculation unit 502 cannot detect the power supply voltage and the reference voltage due to a failure, the one calculation unit 405 or the second calculation unit Since it becomes detectable by 502, diagnostic property improves.

また、本発明に記載の電池監視装置は、電圧入力回路(第2電圧入力フィルタ22a)と前記電流入力回路(電流入力フィルタ23a)の特性周波数は互いに同一である。このような構成にすることによって、電流と電圧が同一のタイミングで測定されれば、フィルタ回路の時定数による測定の遅れも無くなり、電圧と電流の測定の同時性を担保できる。   In the battery monitoring device according to the present invention, the characteristic frequencies of the voltage input circuit (second voltage input filter 22a) and the current input circuit (current input filter 23a) are the same. By adopting such a configuration, if the current and voltage are measured at the same timing, there is no measurement delay due to the time constant of the filter circuit, and the simultaneity of voltage and current measurement can be ensured.

また、本発明に記載の電池監視装置は、第1の検出回路(第2電圧検出回路22b)は第1のAD変換器と接続され、第2の検出回路(電圧検出回路21b)は第2のAD変換器と接続され、第1のAD変換器と第2のAD変換器とは、同一の特性を有するフィルタ(同じ特性のデシメーション・フィルタ)を有する。このような構成にすることによって、電圧と電流の測定の同時性をより担保することができる。従って、その後の計算でもより正確な値を算出することが可能となる。   In the battery monitoring device according to the present invention, the first detection circuit (second voltage detection circuit 22b) is connected to the first AD converter, and the second detection circuit (voltage detection circuit 21b) is the second. The first AD converter and the second AD converter have filters having the same characteristics (decimation filters having the same characteristics). By adopting such a configuration, the simultaneity of voltage and current measurement can be further ensured. Accordingly, it is possible to calculate a more accurate value even in subsequent calculations.

以上、本発明の実施の形態について詳述したが、本発明は、前記の実施の形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。
さらに、本発明に係る二次電池モジュールは、自動車等の車両の用途のみに関わらず、鉄道車両の用途にも適用できるものである。
Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention described in the claims. The design can be changed.
Furthermore, the secondary battery module according to the present invention is applicable not only to the use of vehicles such as automobiles but also to the use of railway vehicles.

1…電池システム、2…電池監視装置、9…電流計測素子、10…組電池、21…セル
電圧計測部、21a…電圧入力フィルタ、21b…電圧検出回路、22…第2電圧計測部、22a…第2電圧入力フィルタ、22b…第2電圧検出回路、23a…電流入力フィルタ、23b…電流検出回路、23…電流計測部、24…制御部、25…集積回路、30…車両コントローラ、40…インバータ、41…モータコントローラー、50…回転電機、100…電動車両駆動装置、250…AD変換制御部、400…電流総電圧検出部、405…第一演算部、502…第二演算部
DESCRIPTION OF SYMBOLS 1 ... Battery system, 2 ... Battery monitoring apparatus, 9 ... Current measuring element, 10 ... Assembly battery, 21 ... Cell voltage measurement part, 21a ... Voltage input filter, 21b ... Voltage detection circuit, 22 ... 2nd voltage measurement part, 22a 2nd voltage input filter, 22b 2nd voltage detection circuit, 23a ... Current input filter, 23b ... Current detection circuit, 23 ... Current measurement unit, 24 ... Control unit, 25 ... Integrated circuit, 30 ... Vehicle controller, 40 ... Inverter, 41 ... motor controller, 50 ... rotating electric machine, 100 ... electric vehicle drive device, 250 ... AD conversion control unit, 400 ... current total voltage detection unit, 405 ... first calculation unit, 502 ... second calculation unit

Claims (4)

電気的に直列に接続された複数の電池セルを備えた組電池の最高電位と最低電位とを入力するための電圧入力回路と、
前記組電池に流れる電流を計測するために設けられた電流センサの出力を入力するための電流入力回路と、
前記電圧入力回路の出力から前記組電池の電圧を検出する第1の検出回路と、
前記電流入力回路の出力から前記組電池の電流を検出する第2の検出回路と、
前記複数の電池セルのそれぞれの電圧を検出する第3の検出回路と、
前記電圧入力回路、前記電流入力回路、前記第1乃至第3の検出回路を有する電池監視装置において、
前記第1の検出回路で得られるデータと第3の検出回路で得られるデータを相互に比較する回路を有することを特徴とする電池監視装置。
電池監視装置。
A voltage input circuit for inputting a maximum potential and a minimum potential of an assembled battery including a plurality of battery cells electrically connected in series;
A current input circuit for inputting an output of a current sensor provided to measure a current flowing through the assembled battery;
A first detection circuit for detecting a voltage of the assembled battery from an output of the voltage input circuit;
A second detection circuit for detecting a current of the assembled battery from an output of the current input circuit;
A third detection circuit for detecting a voltage of each of the plurality of battery cells;
In the battery monitoring device having the voltage input circuit, the current input circuit, and the first to third detection circuits,
A battery monitoring device comprising a circuit for comparing data obtained by the first detection circuit and data obtained by a third detection circuit.
Battery monitoring device.
請求項1に記載の電池監視装置において、
前記第1の検出回路は電源電圧、リファレンス電圧の電圧検出回路を有し、
前記第3の検出回路は電源電圧、リファレンス電圧の電圧検出回路を有することを特徴とする電池監視装置。
The battery monitoring device according to claim 1,
The first detection circuit includes a voltage detection circuit for a power supply voltage and a reference voltage,
The battery monitoring apparatus, wherein the third detection circuit includes a voltage detection circuit for a power supply voltage and a reference voltage.
請求項2に記載の電池監視装置において、
前記電圧入力回路と前記電流入力回路の特性周波数は互いに同一であることを特徴とする電池監視装置。
The battery monitoring device according to claim 2,
The battery monitoring device, wherein the voltage input circuit and the current input circuit have the same characteristic frequency.
請求項3に記載の電池監視装置において、
前記第1の検出回路は第1のAD変換器と接続され、
前記第2の検出回路は第2のAD変換器と接続され、
前記第1のAD変換器と第2のAD変換器とは、同一の特性を有するフィルタを有することを特徴とする電池監視装置。
The battery monitoring device according to claim 3,
The first detection circuit is connected to a first AD converter;
The second detection circuit is connected to a second AD converter;
The battery monitoring apparatus, wherein the first AD converter and the second AD converter have filters having the same characteristics.
JP2015190615A 2015-09-29 2015-09-29 Battery monitoring device Pending JP2017070024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015190615A JP2017070024A (en) 2015-09-29 2015-09-29 Battery monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015190615A JP2017070024A (en) 2015-09-29 2015-09-29 Battery monitoring device

Publications (1)

Publication Number Publication Date
JP2017070024A true JP2017070024A (en) 2017-04-06

Family

ID=58495492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015190615A Pending JP2017070024A (en) 2015-09-29 2015-09-29 Battery monitoring device

Country Status (1)

Country Link
JP (1) JP2017070024A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108933462A (en) * 2018-07-31 2018-12-04 长沙龙生光启新材料科技有限公司 A kind of charging batteries of electric automobile device
JP2019068671A (en) * 2017-10-03 2019-04-25 株式会社デンソー Battery control device and power source system
WO2019123904A1 (en) * 2017-12-19 2019-06-27 三洋電機株式会社 Management device, and electricity storage system
JP2021139656A (en) * 2020-03-02 2021-09-16 株式会社デンソー Control device
WO2023050082A1 (en) * 2021-09-28 2023-04-06 宁德时代新能源科技股份有限公司 Battery sampling chip and battery management system
CN117392951A (en) * 2023-12-05 2024-01-12 上海视涯技术有限公司 Power supply detection circuit, silicon-based display panel and display device
WO2024045502A1 (en) * 2022-08-31 2024-03-07 岚图汽车科技有限公司 Battery voltage acquisition fault early warning method and system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06331714A (en) * 1993-05-27 1994-12-02 Seiko Epson Corp Residual capacity meter for battery
JP2004132797A (en) * 2002-10-10 2004-04-30 Furukawa Battery Co Ltd:The Method and apparatus for measuring internal impedance of storage battery
JP2005345124A (en) * 2004-05-31 2005-12-15 Sanyo Electric Co Ltd Data collector
JP2008092656A (en) * 2006-09-30 2008-04-17 Sanyo Electric Co Ltd Power supply for vehicle
JP2011191291A (en) * 2010-02-18 2011-09-29 Nissan Motor Co Ltd Device for estimation of battery state
US20120310562A1 (en) * 2011-06-01 2012-12-06 Johannes Petrus Maria Van Lammeren Battery monitoring circuit, apparatus and method
JP2013029412A (en) * 2011-07-28 2013-02-07 Yokogawa Electric Corp Battery impedance measuring device
JP2013096770A (en) * 2011-10-31 2013-05-20 Hitachi Ltd Power storage system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06331714A (en) * 1993-05-27 1994-12-02 Seiko Epson Corp Residual capacity meter for battery
JP2004132797A (en) * 2002-10-10 2004-04-30 Furukawa Battery Co Ltd:The Method and apparatus for measuring internal impedance of storage battery
JP2005345124A (en) * 2004-05-31 2005-12-15 Sanyo Electric Co Ltd Data collector
JP2008092656A (en) * 2006-09-30 2008-04-17 Sanyo Electric Co Ltd Power supply for vehicle
JP2011191291A (en) * 2010-02-18 2011-09-29 Nissan Motor Co Ltd Device for estimation of battery state
US20120310562A1 (en) * 2011-06-01 2012-12-06 Johannes Petrus Maria Van Lammeren Battery monitoring circuit, apparatus and method
JP2013029412A (en) * 2011-07-28 2013-02-07 Yokogawa Electric Corp Battery impedance measuring device
JP2013096770A (en) * 2011-10-31 2013-05-20 Hitachi Ltd Power storage system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019068671A (en) * 2017-10-03 2019-04-25 株式会社デンソー Battery control device and power source system
WO2019123904A1 (en) * 2017-12-19 2019-06-27 三洋電機株式会社 Management device, and electricity storage system
JPWO2019123904A1 (en) * 2017-12-19 2021-01-21 三洋電機株式会社 Management device and power storage system
JP7152420B2 (en) 2017-12-19 2022-10-12 三洋電機株式会社 Management device and power storage system
CN108933462A (en) * 2018-07-31 2018-12-04 长沙龙生光启新材料科技有限公司 A kind of charging batteries of electric automobile device
CN108933462B (en) * 2018-07-31 2021-07-23 中南大学 Battery charging device for electric automobile
JP2021139656A (en) * 2020-03-02 2021-09-16 株式会社デンソー Control device
WO2023050082A1 (en) * 2021-09-28 2023-04-06 宁德时代新能源科技股份有限公司 Battery sampling chip and battery management system
US12055599B2 (en) 2021-09-28 2024-08-06 Contemporary Amperex Technology Co., Limited Battery sampling chip and battery management system
WO2024045502A1 (en) * 2022-08-31 2024-03-07 岚图汽车科技有限公司 Battery voltage acquisition fault early warning method and system
CN117392951A (en) * 2023-12-05 2024-01-12 上海视涯技术有限公司 Power supply detection circuit, silicon-based display panel and display device
CN117392951B (en) * 2023-12-05 2024-03-19 上海视涯技术有限公司 Power supply detection circuit, silicon-based display panel and display device

Similar Documents

Publication Publication Date Title
JP2017070024A (en) Battery monitoring device
US11124072B2 (en) Battery control device and electric motor vehicle system
JP6312508B2 (en) Battery monitoring device, battery system, and electric vehicle drive device
KR101453786B1 (en) Apparatus for measuring isolation resistance having malfunction self -diagnosing function and malfunction self-diagnosing method using the same
CN112313521B (en) Battery monitoring device, integrated circuit, and battery monitoring system
JP6023312B2 (en) Battery system monitoring device
US11079442B2 (en) Method of operating battery management systems, corresponding device and vehicle
WO2016072002A1 (en) Electricity storage management system
US20110049977A1 (en) Safety and performance optimized controls for large scale electric vehicle battery systems
EP3933415B1 (en) Apparatus for estimating insulation resistance and battery system using the same
JP5838224B2 (en) Battery control device
CN107889526B (en) Battery system monitoring device
KR101473395B1 (en) Apparatus for measuring isolation resistance having malfunction self-diagnosing and method thereof
JP2012208066A (en) Battery voltage detection device
WO2018101005A1 (en) Battery control device
JP5561049B2 (en) Battery voltage measuring device
JP6383496B2 (en) Battery monitoring device
JP2015102336A (en) Battery monitoring device
KR101475914B1 (en) Apparatus for measuring isolation resistance having malfunction self-diagnosing and method thereof
JP7107707B2 (en) Battery monitoring device and battery monitoring method
JP6742471B2 (en) Battery system monitoring device
CN110350257B (en) Battery system for a motor vehicle and motor vehicle
JP2020190529A (en) Voltage measuring circuit
JP2017118702A (en) Device and method for state determination
JP5432035B2 (en) Secondary battery current detection device and method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170119

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181225