JP2017069926A - 画像処理装置、および画像処理方法、並びにプログラム - Google Patents
画像処理装置、および画像処理方法、並びにプログラム Download PDFInfo
- Publication number
- JP2017069926A JP2017069926A JP2015197209A JP2015197209A JP2017069926A JP 2017069926 A JP2017069926 A JP 2017069926A JP 2015197209 A JP2015197209 A JP 2015197209A JP 2015197209 A JP2015197209 A JP 2015197209A JP 2017069926 A JP2017069926 A JP 2017069926A
- Authority
- JP
- Japan
- Prior art keywords
- image
- parallax
- unit
- pixel
- sub
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012545 processing Methods 0.000 title claims abstract description 101
- 238000003672 processing method Methods 0.000 title claims abstract description 8
- 238000003384 imaging method Methods 0.000 claims abstract description 108
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 80
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 80
- 230000035945 sensitivity Effects 0.000 claims abstract description 25
- 230000003287 optical effect Effects 0.000 claims description 26
- 238000013519 translation Methods 0.000 claims description 19
- 238000000034 method Methods 0.000 description 89
- 239000000203 mixture Substances 0.000 description 31
- 238000006243 chemical reaction Methods 0.000 description 17
- 230000014616 translation Effects 0.000 description 17
- 238000011156 evaluation Methods 0.000 description 12
- 230000006870 function Effects 0.000 description 12
- 238000001308 synthesis method Methods 0.000 description 10
- 238000002156 mixing Methods 0.000 description 5
- 230000002194 synthesizing effect Effects 0.000 description 5
- 239000003086 colorant Substances 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 239000000284 extract Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/50—Image enhancement or restoration using two or more images, e.g. averaging or subtraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
- G06T7/55—Depth or shape recovery from multiple images
- G06T7/593—Depth or shape recovery from multiple images from stereo images
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/10—Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/45—Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/95—Computational photography systems, e.g. light-field imaging systems
- H04N23/951—Computational photography systems, e.g. light-field imaging systems by using two or more images to influence resolution, frame rate or aspect ratio
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/10—Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
- H04N25/11—Arrangement of colour filter arrays [CFA]; Filter mosaics
- H04N25/13—Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
- H04N25/134—Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/60—Noise processing, e.g. detecting, correcting, reducing or removing noise
- H04N25/61—Noise processing, e.g. detecting, correcting, reducing or removing noise the noise originating only from the lens unit, e.g. flare, shading, vignetting or "cos4"
- H04N25/611—Correction of chromatic aberration
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10004—Still image; Photographic image
- G06T2207/10012—Stereo images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20212—Image combination
- G06T2207/20221—Image fusion; Image merging
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N2013/0074—Stereoscopic image analysis
- H04N2013/0088—Synthesising a monoscopic image signal from stereoscopic images, e.g. synthesising a panoramic or high resolution monoscopic image
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computing Systems (AREA)
- Human Computer Interaction (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Image Processing (AREA)
- Studio Devices (AREA)
Abstract
【課題】複数の撮像部により撮像される複数の画像を用いて画質を向上させる画像処理装置、および画像処理方法、並びにプログラムを提供する。【解決手段】高解像度撮像部31により撮像された低感度な高解像度画像からなるメイン画像と、高感度撮像部33により撮像された低解像度だが高感度画像からなるサブ画像とを用いて、相互の視差の有無を求め、視差があるときは、探索合成処理によりメイン画像の各画素について、サブ画像内を探索して類似した画素と合成し、視差がないときは最適合成処理で同一位置の画素間で画素を合成する。【選択図】図1
Description
本開示は、画像処理装置、および画像処理方法、並びにプログラムに関し、特に、複数の撮像系で撮像された画像を合成することで、画像の高画質化を実現できるようにした画像処理装置、および画像処理方法、並びにプログラムに関する。
複数の異なる撮像系から構成される複眼カメラで撮影された画像を合成し、高画質化する技術が提案されている(特許文献1,2参照)。
しかしながら、上述した特許文献1,2に代表される、これまでの手法では、異なる撮像系の間に存在する視差が無視された状態で合成されていた。
視差は被写体の撮像系からの距離に応じて変化するため、画素ごとに視差を正確に求めることは、コストが大きく、また、視差がある状態で複数の画像を合成するとアーティファクトや偽色を生じさせてしまう恐れがあった。
本開示は、このような状況に鑑みてなされたものであり、特に、複数の撮像系により撮像された画像を、視差を考慮して合成することで、画像の高画質化を実現できるようにするものである。
本開示の一側面の画像処理装置は、第1の画像を撮像する第1の撮像部と、第2の画像を撮像する第2の撮像部と、前記第1の画像および前記第2の画像の視差の有無を判定する視差判定部と、前記視差判定部の判定結果に応じて、前記第1の画像および前記第2の画像のそれぞれの画素を合成する合成部とを含む画像処理装置である。
前記第1の撮像部、および前記第2の撮像部は、同一面上で、かつ、それぞれの光軸を平行とすることができる。
前記第1の画像、および前記第2の画像は、画像特性が異なるようにすることができる。
前記第1の画像、および前記第2の画像は、画素数、画角、波長帯域、またはカラーフィルタの配列の少なくともいずれかの前記画像特性が異なるようにすることができる。
前記視差量判定部には、前記第1の画像および前記第2の画像の画素単位、または、複数の画素からなる、複数の領域に分割された領域単位で視差の有無を判定させるようにすることができる。
前記合成部には、前記視差判定部が、前記視差がないと判定した場合、前記第1の画像および前記第2の画像のそれぞれの対応する位置の画素を合成させ、前記視差判定部が、前記視差があると判定した場合、前記第1の画像の各画素について、前記第2の画像上において、類似した画素を探索させ、探索した画素と合成させるようにすることができる。
前記第1の画像および前記第2の画像の特性を一致するように調整する特性調整部をさらに含ませるようにすることができ、前記視差判定部には、前記特性調整部により前記特性が一致するように調整された前記第1の画像および前記第2の画像について、前記視差の有無を判定させるようにすることができる。
前記特性調整部には、前記第1の画像および前記第2の画像の、解像度、感度、空間周波数特性、または、光軸の方向、もしくは、レンズ歪みを修正する平行化処理のうちの少なくともいずれかを一致するように調整させるようにすることができる。
前記第1の画像に対して、前記第2の画像を平行移動して視差を低減する平行移動部をさらに含ませるようにすることができ、前記平行移動部には、前記第2の画像の画像全体、または、前記第2の画像における画素単位で平行移動して視差を低減させるようにすることができる。
前記平行移動部には、前記第1の撮像部から、前記合焦面までの距離、前記第1の撮像部および前記第2の撮像部の配置、光学特性、および解像度に応じて求められる視差量、前記第1の撮像部の焦点距離を合わせた設定値から事前に設定されたテーブルを参照することで求められる視差量、前記第1の画像および前記第2の画像の共通する特徴点間のズレとして求められる視差量、前記第1の画像および前記第2の画像のそれぞれに応じた奥行きマップが与えられたときに、奥行きに応じて求める視差量、または、予め設定された所定の視差量だけ、前記第2の画像の画像全体、または、前記第2の画像における画素単位で平行移動させるようにすることができる。
本開示の一側面の画像処理方法は、第1の画像を撮像し、第2の画像を撮像し、前記第1の画像および前記第2の画像の視差の有無を判定し、前記視差の判定結果に応じて、前記第1の画像および前記第2の画像のそれぞれの画素を合成するステップを含む画像処理方法である。
本開示の一側面のプログラムは、第1の画像を撮像する第1の撮像部と、第2の画像を撮像する第2の撮像部と、前記第1の画像および前記第2の画像の視差の有無を判定する視差判定部と、前記視差判定部の判定結果に応じて、前記第1の画像および前記第2の画像のそれぞれの画素を合成する合成部としてコンピュータを機能させるプログラムである。
本開示の一側面においては、第1の画像が撮像され、第2の画像が撮像され、前記第1の画像および前記第2の画像の視差の有無が判定され、前記視差の有無の判定結果に応じて、前記第1の画像および前記第2の画像のそれぞれの画素が合成される。
本開示の一側面によれば、2枚の画像を視差に応じて適切に合成することができるので、複数の撮像部により同一の範囲を撮像して重ね合わせるといった合成により、適切な高画質化を実現させることが可能となる。
以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
また、以下の順序で説明を行う。
1.本開示の実施の形態
2.第1の応用例
3.第2の応用例
1.本開示の実施の形態
2.第1の応用例
3.第2の応用例
<<1.第1の実施の形態>>
<画像処理装置の構成例>
図1は、本開示を適用した複数の撮像系により撮像された画像を合成して(重ね合わせて)、画像を高画質化する画像処理装置の一実施の形態の構成例である。
<画像処理装置の構成例>
図1は、本開示を適用した複数の撮像系により撮像された画像を合成して(重ね合わせて)、画像を高画質化する画像処理装置の一実施の形態の構成例である。
図1の画像処理装置11は、高解像度撮像部31、特性変換部32、高感度撮像部33、特性変換部34、平行移動部35、視差判定部36、および2眼合成部37を備えている。
撮像方向に対して同一の面上であって、光軸が平行に構成された、例えば、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどからなる高解像度撮像部31および高感度撮像部33が設けられている。高解像度撮像部31は、図中左上部で示されるようなBayer配列の画像を撮像し、特性変換部32に供給する。一方、高感度撮像部33は、図中左下部で示されるような同じくBayer配列の画像を撮像し、特性変換部32に供給する。
高解像度撮像部31により撮像される画像は、高感度撮像部33により撮像される画像と比較して、高解像度であるが、低感度の画像である。一方、高感度撮像部33により撮像される画像は、高解像度撮像部31により撮像される画像と比較して、高感度であるが、低解像度の画像である。また、高解像度撮像部31および高感度撮像部33は、同一面上で、かつ、それぞれの光軸が平行となるように設けられている。
尚、以降においては、高解像度撮像部31により撮像される画像を、高感度撮像部33により撮像された画像で高画質化する例について説明を進めるものとする。そこで、高解像度撮像部31により撮像される画像を基準とするため、以降においては、メイン画像とも称するものとし、同様に、高感度撮像部34により撮像された画像をサブ画像とも称するものとする。
特性変換部32,34は、それぞれ高解像度撮像部31により撮像された高解像度のメイン画像の画像特性と、高感度撮像部33により撮像された高感度のサブ画像の画像特性とを、相互に比較して一致しない場合、揃えるように変換し、視差判定部36に出力する。ここでは、メイン画像とサブ画像との解像度が異なり、メイン画像の方が高解像度であるため、特性変換部32は、高解像度のメイン画像の解像度を下げることで、低解像度のサブ画像に揃える。また、メイン画像は、サブ画像より低感度の画像であるため、特性変換部32は、メイン画像の感度を、サブ画像の感度に合わせるように調整する。さらに、特性変換部32,34は、高解像度撮像部31および高感度撮像部33の光学特性や、組立ばらつきなどを補償するために平行化も行う。尚、すでにメイン画像とサブ画像の特性が揃っている場合、特性変換部32,34は、いずれも何も処理を行わない。
平行移動部35は、予めわかっている高解像度撮像部31、および高感度撮像部33のそれぞれの光学特性などから生じる視差量の情報を入手できる場合、視差量を補正する方向にメイン画像およびサブ画像を平行移動させる。尚、高解像度撮像部31、および高感度撮像部33の光学特性などからなる視差量の情報については、必ずしも取得できないこともあるため、平行移動部35は、視差量の情報が取得できた場合にのみ、この視差量の情報を利用して、メイン画像およびサブ画像のいずれか一方の画像の位置を基準として、他方の画像を平行移動させる。
視差判定部36は、後述するメイン画像とサブ画像とを合成する手法を切り替えるために視差量を求め、合成方法を調整する。すなわち、メイン画像とサブ画像との視差が存在する画素を合成すると、アーティファクトや偽色が生じる原因となる。そのため、視差判定部36は、視差量に応じて、合成方法を判定し、判定結果となる合成方法を2眼合成部37に供給する。
2眼合成部37は、視差判定部36の判定結果に基づいて特定された合成方法で、特性が揃えられたメイン画像とサブ画像とを重ね合わせるようにして合成し、合成した画像を出力する。
<図1の画像処理装置により画像合成処理>
次に、図2のフローチャートを参照して、図1の画像処理装置11による画像を合成する画像合成処理について説明する。
次に、図2のフローチャートを参照して、図1の画像処理装置11による画像を合成する画像合成処理について説明する。
ステップS11において、高解像度撮像部31および高感度撮像部33は、それぞれメイン画像およびサブ画像を撮像し、特性変換部32,34にそれぞれ出力する。
ステップS12において、特性変換部32,34は、相互に入力されたメイン画像およびサブ画像の画像特性を比較し、画像特性が異なるか否かを判定する。ステップS12において、この例においては、メイン画像がサブ画像に対して高解像度であり、特性が異なるので、処理は、ステップS13に進む。
ステップS13において、特性変換部32,34は、メイン画像およびサブ画像の画像特性を一致するように調整する。そして、特性変換部32は、特性を調整したメイン画像を視差判定部36に供給する。また、特性変換部34は、サブ画像を平行移動部35に供給する。調整対象となる特性としては、例えば、メイン画像およびサブ画像の解像度、感度、空間周波数特性、または、光軸の方向、もしくは、レンズ歪みの平行化処理等を含むものである。
より詳細には、ここでは、メイン画像がサブ画像に対して、高解像度で有り、かつ、低感度であるため、特性変換部32が、メイン画像の解像度を、サブ画像の解像度に揃えると共に、メイン画像の感度をサブ画像の感度に調整することにより、メイン画像とサブ画像との特性を揃える。この他にも、特性変換部32,34は、高解像度撮像部31および高感度撮像部33の光学特性や、組立ばらつきなどを補償するために、メイン画像およびサブ画像を平行化する。ここでは、メイン画像の解像度をサブ画像に合わせる例について説明するものとするが、サブ画像をアップサンプルして、高解像度画像を作成し、サブ画像の解像度をメイン画像に揃えるようにしてもよい。
尚、ステップS11において、メイン画像およびサブ画像の画像特性が一致している場合、ステップS12の処理がスキップされる。
ステップS14において、平行移動部35は、高解像度撮像部31および高感度撮像部33の光学特性などからなる視差量を求めることができる情報(例えば、レンズ焦点距離などの情報)が取得できる状態であるか否かを判定する。予め高解像度撮像部31および高感度撮像部33の光学特性などの視差量を求めるために必要とされる情報が入力されていたり、または、高解像度撮像部31および高感度撮像部33などから通信等により視差量を求めるために必要とされる情報が取得できるような場合、処理は、ステップS15に進む。
ステップS15において、平行移動部35は、視差量の情報を利用して、メイン画像を基準位置として、サブ画像を平行移動させる。
すなわち、高解像度撮像部31および高感度撮像部33からなる2眼のカメラで撮像した場合、図3で示されるように、メイン画像P1とサブ画像P2との間には視差が生じる。視差量は、注目領域の撮像位置からの距離、すなわち、奥行に応じて、異なるもので有り、例えば、図3の場合、メイン画像P1およびサブ画像P2の左部の家Cの左端部が注目領域であるとした場合、視差は、視差d1となるが、右部の人物Dの左端部が注目領域であるとした場合、視差はd2となる。これは、高解像度撮像部31および高感度撮像部33の撮像位置からみて家Cが、人物Dよりも遠い位置に存在することにより生じるものである。
より詳細には、高解像度撮像部31および高感度撮像部33が、同一平面上かつ水平方向に設置された場合、高解像度撮像部31および高感度撮像部33のそれぞれで撮像された被写体は、それぞれ高解像度撮像部31のイメージセンサ31a上の位置x_l、および、高感度撮像部33のイメージセンサ33a上の位置x_rで結像される。この時の位置のずれが視差として現れ、視差量δ(=x_l−x_r)は以下の式(1)で表される。ここで、図3においては、イメージセンサ31aからなる高解像度撮像部31の視線方向がQ1であり、イメージセンサ33aからなる高感度撮像部33の視線方向がQ2である。
ここで、δは視差量、fはレンズの焦点距離、Tは撮像系間の距離、Zは被写体までの距離であり、いずれも単位は[mm]である。
高解像度撮像部31および高感度撮像部33のイメージセンサ31a,33aにおける画素ピッチがp[mm/pixel]である場合、画像での視差δ_p[pixel]は式(2)で表される。
図5は、式(2)の関係を表したものであり、焦点距離fおよび撮像系間の距離Tが不変であるならば、視差量δは被写体までの距離に反比例する。
例えば、所定の被写体に合焦しており、その被写体までの距離が既知の場合、式(1),式(2)から画像上における視差量を求めることができる。そこで、平行移動部35は、上述した式(1),式(2)より視差量を求め、求めた視差量δだけ、メイン画像に対してサブ画像を平行移動することで、合焦位置の奥行に存在する被写体のメイン画像とサブ画像との視差を0にする。
尚、ステップS14において、視差量を求めるための情報がない場合、ステップS15の処理はスキップされ、平行移動部35は、平行移動を行わず、サブ画像をそのまま視差判定部36に出力する。また、仮に視差量を求めるための情報が直接得られない場合であっても、例えば、無限遠を基準として視差量を求めるようにして、平行移動するようにしてもよい。また、以上においては、画像全体を平行移動する例について説明してきたが、画素単位に平行移動するようにしてもよい。
尚、平行移動については、上述したように、合焦面までの距離、高解像度撮像部31、および高感度撮像部33の配置、光学特性、および解像度に応じて求められる視差量に応じて行うようにしてもよいが、平行移動ができればよいので、他の手法であってもよい。
例えば、高解像度撮像部31の焦点距離を合わせた設定値から事前に設定されたテーブルを参照することで求められる視差量分だけ平行移動するようにしてもよい。また、メイン画像およびサブ画像の共通する特徴点間のズレとして求められる視差量分だけ平行移動するようにしてもよい。さらに、メイン画像およびサブ画像のそれぞれに応じた奥行きマップが与えられたときに、奥行きに応じて求められる視差量分だけ平行移動するようにしてもよいし、予め設定された所定の視差量だけ平行移動するようにしてもよい。
ステップS16において、視差判定部36は、以降において画素単位での処理となるため、メイン画像とサブ画像とのそれぞれ対応する画素位置について、未処理の画素のいずれかを処理対象となる注目画素に設定する。
ステップS17において、視差判定部36は、判定値算出処理を実行し、画素単位でのメイン画素とサブ画素の合成方法を判定するために必要となる画素単位の判定値αを算出する。
<判定値算出処理>
ここで、図6のフローチャートを参照して判定値αを算出する判定値算出処理について説明する。
ここで、図6のフローチャートを参照して判定値αを算出する判定値算出処理について説明する。
ステップS31において、視差判定部36は、メイン画像およびサブ画像のそれぞれについて、注目画素の輝度値を算出する。
ここで、RGBは、注目画素の画素位置におけるRGBのそれぞれの補間画素値であり、Lは、輝度値である。
ステップS32において、視差判定部36は、メイン画像およびサブ画像のそれぞれについて求められた輝度値を用いて、高解像度撮像部31および高感度撮像部33の特性よりノイズの上限値および下限値を設定する。
ステップS33において、視差判定部36は、ノイズの上限値および下限値に基づいて、判定値を求めるための関数を設定する。ここで、判定値を求めるための関数とは、例えば、図7で示される関数である。図7のグラフにおいては、横軸がノイズの評価値Eであり、縦軸が判定値αである。ここで、ノイズの評価値における閾値th1、th2は、それぞれノイズの下限値および上限値である。後述する処理により求められるメイン画像およびサブ画像の注目画素におけるRGBの画素間差分が、ノイズレベルの下限値よりも小さいとき、判定値αが0とされ、上限値よりも大きいとき、判定値αが1とされ、その間については、画素間差分に応じた0乃至1の値とされる。
ステップS34において、視差判定部36は、注目画素におけるRGBのそれぞれのメイン画像とサブ画像との画素間差分値を算出し、その最大値を評価値Eとして算出する。すなわち、メイン画像の注目画素のRGBの画素値が(Rm,Gm,Bm)であり、サブ画像の注目画素のRGBの画素値が(Rs,Gs,Bs)であるとき、画素間差分値として、(|Rm−Rs|,|Gm−Gs|,|Bm−Bs|)が算出され、このうちの最大値が評価値Eとして算出される。尚、評価値Eは、メイン画像とサブ画像の同一位置の画素間の差分が求められればよいものであるので、画素間差分値(|Rm−Rs|,|Gm−Gs|,|Bm−Bs|)の最大値ではなく、例えば、平均値などでもよい。
ステップS35において、視差判定部36は、ステップS33において設定された関数における、評価値Eに対応する判定値αを注目画素の判定値として求める。
すなわち、図7で示されるように、評価値Eが、推定したノイズの下限値th1より差分が小さければ、注目画素におけるメイン画像とサブ画像との間には視差が存在しない領域であるものと判定し、判定値αが0とされる。また、評価値Eがノイズの下限値th1と上限値th2の間の場合、判定値αは、評価値に対応した0乃至1の値とされる。さらに、評価値Eが、ノイズの上限値th2より大きければ、注目画素におけるメイン画像とサブ画像との間には視差が存在する領域であるものと判定し、判定値αが1とされる。
ここで、図2のフローチャートの説明に戻る。
ステップS17において、合成方法を判定するための判定値αが求められると、ステップS18において、視差判定部36は、判定値αが1であるか否かを判定する。ステップS18において、判定値αが1である場合、処理は、ステップS19に進む。
ステップS19において、視差判定部36は、注目画素の合成方法を探索合成とし、2眼合成部37に供給して探索合成処理を実行させて、注目画素を合成させる。
すなわち、判定値αが1であるということは、メイン画像とサブ画像との同一位置の画素の画素値が大きく異なり、同一の画素ではないと見なされ、視差が生じているものと見なされる。そこで、メイン画像における注目画素と同一の画素をサブ画像から探索し、探索された画素と合成する探索合成処理が選択される。尚、探索合成処理については、詳細を後述する。
また、ステップS18において、判定値αが1ではない場合、処理は、ステップS20に進む。
ステップS20において、視差判定部36は、判定値αが0であるか否かを判定し、判定値αが0である場合、処理は、ステップS21に進む。
ステップS21において、視差判定部36は、注目画素の合成方法を最適合成とし、2眼合成部37に供給して最適合成処理を実行させて、注目画素を合成させる。
すなわち、判定値αが0であるということは、メイン画像とサブ画像との同一位置の画素の画素値はほぼ同一であるものとみなされ、視差が生じていないものと見なされる。そこで、メイン画像における注目画素と同一位置のサブ画像の画素とを合成する最適合成処理が選択される。尚、最適合成処理については、詳細を後述する。
ステップS20において、判定値αが0ではない場合、すなわち、判定値αが0<α<1である場合、処理は、ステップS22に進む。
ステップS22において、視差判定部36は、注目画素の合成方法を探索合成と最適合成とを判定値αを用いてブレンドするブレンド合成とし、2眼合成部37に供給してブレンド合成処理を実行させて注目画素を合成する。
すなわち、判定値αが0乃至1の範囲内であるということは、メイン画像における注目画素とサブ画像上の同一位置の画素とは、同一ではないので視差が生じてはいる疑いがあるが、比較的近い画素値であり、差分が視差であるかノイズであるかを判定できない画素である。そこで、探索合成画素と最適合成画素とを判定値αに応じてブレンドするブレンド合成処理が選択される。尚、ブレンド合成処理については、詳細を後述する。
すなわち、判定値αの値に応じて、合成方法が設定されて、設定された合成方法で画素が合成される。
ステップS23において、視差判定部36は、未処理の画素が存在するか否かを判定し、未処理の画素が存在する場合、処理は、ステップS16に戻る。すなわち、ステップS16乃至S23の処理が、全ての画素が合成されるまで同様の処理が繰り返される。そして、ステップS23において、全ての画素が合成されて、未処理の画素が存在しない場合、処理は、ステップS24に進む。
ステップS24において、2眼合成部37は、メイン画像とサブ画像とを合成した画素からなる合成画像を出力し、処理を終了する。
以上の処理により、メイン画像およびサブ画像を合成することが可能となる。
<図1の画像処理装置における探索合成処理>
次に、図8のフローチャートを参照して、探索合成処理について説明する。
次に、図8のフローチャートを参照して、探索合成処理について説明する。
ステップS41において、2眼合成部37は、メイン画像のSNR(Signal to Noise Ratio)を向上させるため、注目画素を中心とした、所定の範囲、例えば、3×3画素の範囲を探索してノイズリダクションを掛ける。より具体的には、以下の式(4)で示されるフィルタ処理を施す。
ここで、Pm,n mは、メイン画像における注目画素(m,n)の画素信号であり、σは、ノイズ推定値であり、Pref mは新たな基準信号(注目画素の画素信号)である。
式(4)で示される処理は、例えば、図9で示されるような、メイン画像の注目画素Pm,n mに対応する点線で囲まれる3×3画素の範囲にεフィルタ処理を施す処理である。
ステップS42において、2眼合成部37は、メイン画像の注目画素の画素信号を基準画素信号として、サブ画像内の基準画素信号と類似した画素信号を探索し、探索された画素の画素信号と、メイン画像の注目画素の画素信号である基準画素信号とを合成することで、探索合成画素として出力する。より具体的には、以下の式(5)で示される演算により探索合成画素が求められる。
・・・(5)
ここで、Pm,n Sは、サブ画像における画素(m、n)の画素信号であり、σは、ノイズ推定値であり、Poutは探索合成画素の画素信号である。
すなわち、探索合成処理は、メイン画像の画素を基準画素信号とし、サブ画像内の基準画素信号と類似した画素信号を双方の類似度を求めて探索し、探索した注目画素と類似したサブ画像の画素と、メイン画像の注目画素の画素信号と合成する処理である。尚、探索に当たり利用される類似度としては、例えば、画素間の類似度の重みに応じる加重平均や、注目画素を中心とした3×3画素の範囲における対応する画素間の差分絶対値和などである。
このような合成処理が施されることにより、メイン画像に対してノイズリダクション掛けることが可能となる。サブ画像の信号がより高感度であれば、高いノイズリダクションの効果が期待できる。
メイン画像における注目画素の画素信号と類似した画素信号と判定する基準は、視差判定部における評価値を求める処理と同じ手法であり、まずノイズの値が推定され、ノイズの推定値と、基準画素信号とサブ画像の画素との差分信号を比較することで有意性を判定する。
視差のあるサブ画像を同一画素として合成した場合、アーティファクトや偽色が生じる可能性が高いため、視差のあるサブ画像の画素と合成され難いようにノイズ推定値を小さく計算されるように高解像度撮像部31および高感度撮像部33の光学系の特性を調整する。
メイン画像とサブ画像の感度差が顕著に大きい場合、基準画素信号は相対的にノイズを多く含むことになり、基準画素信号とサブ画像の各画素の真値が等しいかどうか判断することが困難になる。そこで、ステップS41の処理により、メイン画像のSNRを向上させることを目的に、事前処理としてメイン画素のみで3x3の範囲で探索しノイズリダクションが行われている。
尚、注目画素と類似した画素を探索するサブ画像内の探索の初期位置は、メイン画像と同じ座標でもよいし、所定値分だけ移動させた位置を初期位置としてもよい。所定値としては、合焦面で視差0となるように算出した既出の視差量、または、メイン画像とサブ画像に共通して存在する特徴点(共通して存在するオブジェクトの同一の画素位置など)に対応する位置の視差量を利用するようにしてもよい。
また、この時、サブ画像の探索範囲は、垂直方向と水平方向をパラメータで調整するようにしてもよく、例えば、視差が垂直方向に存在すれば、図10の点線で囲まれた範囲で示されるように、垂直方向の探索範囲を広くし、視差が水平方向に存在すれば、図11の点線で囲まれた範囲で示されるように水平方向の探索範囲を広くすることで、効率的な探索を実現することが可能となり、演算量を抑制することが可能となる。
<図1の画像処理装置による最適合成処理>
次に、図12のフローチャートを参照して、最適合成処理について説明する。
次に、図12のフローチャートを参照して、最適合成処理について説明する。
ステップS51において、2眼合成部37は、メイン画像における注目画素と対応する位置のサブ画像における画素とを合成するための、混合比βを、例えば、以下の式(6)を演算することにより算出する。
ここで、σmainは、メイン画像のノイズ分散推定値であり、σsubは、サブ画像のノイズ分散推定値であり、βは、メイン画像における注目画素の画素信号と、サブ画像における注目画素に対応する位置の画素の画素信号との混合比である。
ステップS52において、2眼合成部37は、以下の式(7)を演算することにより、算出した混合比βでメイン画像における注目画素の画素信号と、サブ画像における注目画素に対応する位置の画素の画素信号とを合成し、最適合成信号として算出する。
最適合成は、合成後の信号のSNRが最大となるように合成する手法である。すなわち、最適合成は、メイン画像とサブ画像の視差やブラー、および飽和画素がないときの合成を想定している。つまり、サブ画像をメイン画像と入れ替えるような処理をしても、アーティファクトや偽色が生じない状況での合成である。
また、最適合成処理は、繰り返しの演算がないため、探索合成処理と比較すると演算量を低減することが可能となる。また、予め視差判定処理により、最適合成処理で問題のある画素だけを探索合成処理で対応することができ、それ以外の画素については、最適合成処理により対応するようにすることで、全画素に探索合成処理を掛けずに済ますことが可能となるので、演算量を低減させることが可能になると共に、SNRを最大にして合成することが可能となる。
<図1の画像処理装置によるブレンド合成処理>
次に、図13のフローチャートを参照して、ブレンド合成処理について説明する。
次に、図13のフローチャートを参照して、ブレンド合成処理について説明する。
ステップS71において、2眼合成部37は、メイン画像の注目画素について、サブ画像の対応する画素と探索合成処理により合成画素を生成する。尚、探索合成処理については、図8のフローチャートを参照して説明した処理と同様であるので、その説明は省略する。
ステップS72において、2眼合成部37は、メイン画像の注目画素について、サブ画像の対応する画素と最適合成処理により合成画素を生成する。尚、最適合成処理については、図12のフローチャートを参照して説明した処理と同様であるので、その説明は省略する。
ステップS73において、2眼合成部37は、判定値αを混合比として、探索合成処理により求められた画素信号と、最適合成処理により求められた画素信号とを混合することで合成し、ブレンド合成画素として出力する。より具体的には、2眼合成部37は、例えば、以下の式(8)の演算により、判定値αを混合比として、探索合成処理により求められた画素信号と、最適合成処理により求められた画素信号とを合成する。
ここで、OUTは、ブレンド合成信号であり、OUTsearchは、探索合成処理により求められた画素信号であり、OUToptは、最適合成処理により求められた画素信号であり、αは、判定値(0<α<1)である。
尚、判定値αが切り替わる閾値となる、ノイズの下限値th1、および上限値th2が同値であれば、最適合成処理および探索合成処理が急峻に切り替わることとなり、実質的にブレンド合成処理なくなり、探索合成処理または最適合成処理のいずれかにより画素が合成されることになる。
また、サブ画像をメイン画像に合わせて、視差量分だけ平行移動させる処理は、高解像度撮像部31および高感度撮像部33の光学系の視差量を得るための情報が得られる場合にのみなされるものであるので、平行移動部35は、省略するようにしてもよい。
<2.第1の応用例>
以上においては、メイン画像およびサブ画像の入力を、いずれもBayer配列の画像としてきたが、例えば、図14で示されるように、メイン画像およびサブ画像における各画素にRGBの3色がそろった画像を利用するようにしてもよい。この場合、RGBの各画像に対して処理が必要となるため、演算量が増加するが、各画素についてRGBの3色のそれぞれが揃った状態で処理がなされるため、よりメイン画像の高感度化を実現することが可能となる。
以上においては、メイン画像およびサブ画像の入力を、いずれもBayer配列の画像としてきたが、例えば、図14で示されるように、メイン画像およびサブ画像における各画素にRGBの3色がそろった画像を利用するようにしてもよい。この場合、RGBの各画像に対して処理が必要となるため、演算量が増加するが、各画素についてRGBの3色のそれぞれが揃った状態で処理がなされるため、よりメイン画像の高感度化を実現することが可能となる。
また、以上の実施例は、感度が異なる構成でSNRの向上を目的に合成する手法について説明してきたが、感度が低い信号値の感度差分を補償して合成することで、HDR(ハイダイナミックレンジ)機能を実現することも可能となる。
<3.第2の応用例>
さらに、以上においては、メイン画像およびサブ画像の画角が同一の画像である場合について説明してきたが、必ずしも同一の画角からなる画像同士でなくてもよく、例えば、それぞれ広角画像および望遠画像とするようにしてもよい。
さらに、以上においては、メイン画像およびサブ画像の画角が同一の画像である場合について説明してきたが、必ずしも同一の画角からなる画像同士でなくてもよく、例えば、それぞれ広角画像および望遠画像とするようにしてもよい。
すなわち、図15で示されるように、高解像度撮像部31にメイン画像として広角画像を入力し、高感度撮像部33にサブ画像として望遠画像を入力するようにしてもよい。
図15は、高解像度撮像部31にメイン画像として広角画像を入力し、高感度撮像部33にサブ画像として望遠画像を入力するようにした画像処理装置11の構成例を示している。尚、図15の画像処理装置11において、図1の画像処理装置11と同一の機能を備えた構成については、同一の名称、および同一の符号を付すものとし、その説明は適宜省略するものとする。
すなわち、図15の画像処理装置11において、図1の画像処理装置と異なるのは、視差判定部36、および2眼合成部37に代えて、視差判定部101、および2眼合成部102を備えている点である。
視差判定部101は、基本的には視差判定部36と同様の機能を備えているが、さらに、画角が異なるメイン画像たる広角画像とサブ画像たる望遠画像のうち、メイン画像とサブ画像との画角が重なる範囲の画素のみの視差判定を行う。
2眼合成部102は、メイン画像たる広角画像とサブ画像たる望遠画像との画角が重なる領域において、サブ画像における高周波成分を抽出して、広角画像のうち、望遠画像の領域となる範囲に加算することで、広角画像であって、望遠画像に対応する領域を高精細な画像とする。
<図15の画像処理装置による画像合成処理>
次に、図16のフローチャートを参照して、図15の画像処理装置による画像合成処理について説明する。尚、図16のステップS91乃至S95,S98,S99,S101、S104,S105の処理は、図2のステップS11乃至S15,S17,S18,S20,S23,S24の処理と同様であるので、適宜省略するものとする。
次に、図16のフローチャートを参照して、図15の画像処理装置による画像合成処理について説明する。尚、図16のステップS91乃至S95,S98,S99,S101、S104,S105の処理は、図2のステップS11乃至S15,S17,S18,S20,S23,S24の処理と同様であるので、適宜省略するものとする。
すなわち、ステップS96においては、視差判定部36は、以降において画素単位での処理となるため、メイン画像の画素位置について、未処理の画素のいずれかを処理対象となる注目画素に設定する。
ステップS97において、視差判定部36は、注目画素がサブ画像における画角内の画素であるか否かを判定する。すなわち、ここでは、メイン画像が広角画像であり、サブ画像が望遠画像であるため、サブ画像は、メイン画像の一部となる。このため、処理が可能なのは、メイン画像とサブ画像の画角がいずれも重なる領域となるため、それ以外の領域は、処理範囲から除外するため、注目画素がサブ画像の画角内の画素であるか否かを判定する。ステップS97において、注目画素がサブ画像の画角内の画素である場合、処理は、ステップS98に進む。
ステップS98において、判定値算出処理がなされることにより、メイン画像である注目画素と、対応する画素位置のサブ画像の画素との間に視差の有無を判定するための判定値αが算出されることになる。尚、判定値算出処理は、図6のフローチャートを参照して説明した処理と同様であるので、ここでは省略するものとする。
そして、ステップS99において、判定値αが1であり、視差があると判定された場合、処理は、ステップS100に進む。
ステップS100において、2眼合成部101は、探索合成処理を実行し、注目画素に対して、サブ画像上の類似する画素を探索し、探索した画素の高周波成分を加算する。
すなわち、判定値αが1であるということは、メイン画像上の注目画素と、同一位置のサブ画像の画素は、視差により同一ではないことになるため、サブ画像上で注目画素と類似する画素を探索し、探索されたサブ画像上の画素を用いた処理が必要となる。
<図15の画像処理装置による探索合成処理>
ここで、図17のフローチャートを参照して、図15の画像処理装置11による探索合成処理について説明する。
ここで、図17のフローチャートを参照して、図15の画像処理装置11による探索合成処理について説明する。
ステップS121において、2眼合成部102は、メイン画像のSNR(Signal to Noise Ratio)を向上させるため、注目画素を中心とした、所定の範囲、例えば、3×3画素の範囲を探索してノイズリダクションを掛ける。この処理は、上述した図8におけるステップS41の処理と同様である。
ステップS122において、2眼合成部102は、サブ画像内であって、探索範囲内において、現在の注目画素と最も類似する画素を探索する。ここで、注目画素と最も類似するサブ画像上の画素とは、例えば、画素間の類似度の重みに応じる加重平均や、注目画素と探索画素とのそれぞれを中心とした3画素×3画素の範囲における画素間差分絶対値和などである。
ステップS123において、2眼合成部102は、注目画素と最も類似度の高いサブ画像上の画素の高周波成分を抽出する。
ステップS124において、2眼合成部102は、注目画素の画素値に、抽出した高周波成分を加算して合成結果として記憶する。
すなわち、このような処理により、メイン画像のうち、視差があるとみなされた画素に対して、サブ画像内で類似度の高い画素が探索されることにより、視差による影響を低減して、サブ画像の高周波成分をメイン画像におけるサブ画像と同一の画角領域の画素に加算することが可能となる。
ここで、図16の説明に戻る。
一方、ステップS101において、判定値αが0である場合については、メイン画像上の注目画素と、対応するサブ画像上の画素に視差が生じていないとみなされることになるので、処理は、ステップS102に進み、最適合成処理がなされて、対応する位置のサブ画像における高周波成分が注目画素の画素値に加算される。
<図15の画像処理装置による最適合成処理>
ここで、図18のフローチャートを参照して、図15の画像処理装置による最適合成処理について説明する。
ここで、図18のフローチャートを参照して、図15の画像処理装置による最適合成処理について説明する。
ステップS141において、2眼合成部102は、メイン画像における注目画素と対応するサブ画像上の位置の画素の高周波成分を抽出する。
ステップS142において、2眼合成部102は、メイン画像における注目画素の画素値に抽出した、サブ画像上の注目画素に対応する位置の画素の高周波成分を加算して記憶する。
以上の処理により、メイン画像上の注目画素と対応する位置のサブ画像上の画素は、視差がないものとみなされて、サブ画像上の画素の高周波成分が、そのまま注目画素に加算されることになる。
ここで、図16のフローチャートの説明に戻る。
さらに、判定値αが0乃至1の範囲内である場合、ステップS103において、ブレンド合成処理が実行されて、探索合成処理で高周波成分が加算された画素と、最適合成処理で高周波成分が加算された画素とが、判定値αを用いた混合比でブレンドされる。尚、この処理については、図13のフローチャートを参照して説明した処理と同様であるので、その説明は省略するものとする。
そして、ステップS97において、注目画素のうち、サブ画像の画角外であるとみなされた場合、処理は、ステップS104に進む。すなわち、この場合、注目画素については、処理が施されないまま記憶される。そして、メイン画像の全画素について処理がなされると、ステップS105において、2眼合成部102により記憶された画素値からなる画像が出力される。
この結果、広角画像たるメイン画像のうち、望遠画像たるサブ画像の領域内に、サブ画像の高周波成分が加算されることになるので、広角画像であって、かつ、望遠画像に対応する領域を高精細な画像とすることが可能となる。
尚、メイン画像とサブ画像の組み合わせはこれ以外のものであってもよく、例えば、メイン画像をBayer画像とし、サブ画像をモノクロ画像とするようにしてもよいし、また、メイン画像をBayer画像とし、サブ画像を近赤外線画像とするようにしてもよい。
すなわち、メイン画像をBayer配列のセンサにより撮像された画像として、サブ画像をモノクロのセンサにより撮像された画像にすることで、高解像度な合成結果の取得が可能になる。この構成の場合、光学系をメイン画像とサブ画像とで同一にすることができるため、全画角において合成することが可能である。
モノクロ画像のセンサはBayer配列のセンサと比べると、輝度が高解像度である点と感度がよい点が特徴である。結果として、合成画像は、高解像度の効果とSNRを向上させるようにすることができる。
また、メイン画像をBayer配列のセンサ、サブ画像の近赤外画像に感度を持つセンサにすることで、可視光では撮影することができない画像をメイン画像に合成することが可能である。血中のヘモグロビンを撮像することが可能となる。
視差がある領域と視差がない領域をあらかじめ切り分けることで、視差有無に応じて処理を切り替え、演算量の削減を図ることが可能となる。
また、メイン画像とサブ画像の探索の演算範囲を、視差方向に垂直な方向は狭く、平行な方向は広く範囲を持つことで、演算量を抑えつつ、高画質化することが可能となる。
注目する領域の視差を最小にすることによって、特性を最大化して合成することが可能となる。
さらに、以上においては、画素単位での視差の有無を求める判定値を求める例について説明してきたが、視差の有無は、画素単位でなくてもよく、例えば、画像全体を複数の画素単位の領域に分割し、分割された領域毎に視差の有無を求め、判定値を求めるようにし、領域単位で合成するようにしてもよい。
また、以上においては、平行移動部35における動作は、高解像度撮像部31および高感度撮像部33の合焦面までの距離といった光学特性など視差を求めるのに必要な情報を外部から取得し、それぞれの合焦面までの距離、配置、光学特性、および解像度に応じて求められる視差量分だけ平行移動させる例について説明してきたが、視差を低減できるようにする平行移動であれば、他の方法でもよく、例えば、一方の撮像部の焦点距離を合わせた設定値から事前に設定されたテーブルを参照することで求められる視差量、2の画像の共通する特徴点間のズレとして求められる視差量、2の画像のそれぞれに応じた奥行きマップが与えられたときに、奥行きに応じて求める視差量、または、予め設定された所定の視差量だけ平行移動して視差を低減させるようにしてもよい。
<ソフトウェアにより実行させる例>
ところで、上述した一連の処理は、ハードウェアにより実行させることもできるが、ソフトウェアにより実行させることもできる。一連の処理をソフトウェアにより実行させる場合には、そのソフトウェアを構成するプログラムが、専用のハードウェアに組み込まれているコンピュータ、または、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータなどに、記録媒体からインストールされる。
ところで、上述した一連の処理は、ハードウェアにより実行させることもできるが、ソフトウェアにより実行させることもできる。一連の処理をソフトウェアにより実行させる場合には、そのソフトウェアを構成するプログラムが、専用のハードウェアに組み込まれているコンピュータ、または、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータなどに、記録媒体からインストールされる。
図19は、汎用のパーソナルコンピュータの構成例を示している。このパーソナルコンピュータは、CPU(Central Processing Unit)1001を内蔵している。CPU1001にはバス1004を介して、入出力インタ-フェイス1005が接続されている。バス1004には、ROM(Read Only Memory)1002およびRAM(Random Access Memory)1003が接続されている。
入出力インタ-フェイス1005には、ユーザが操作コマンドを入力するキーボード、マウスなどの入力デバイスよりなる入力部1006、処理操作画面や処理結果の画像を表示デバイスに出力する出力部1007、プログラムや各種データを格納するハードディスクドライブなどよりなる記憶部1008、LAN(Local Area Network)アダプタなどよりなり、インターネットに代表されるネットワークを介した通信処理を実行する通信部1009が接続されている。また、磁気ディスク(フレキシブルディスクを含む)、光ディスク(CD-ROM(Compact Disc-Read Only Memory)、DVD(Digital Versatile Disc)を含む)、光磁気ディスク(MD(Mini Disc)を含む)、もしくは半導体メモリなどのリムーバブルメディア1011に対してデータを読み書きするドライブ1010が接続されている。
CPU1001は、ROM1002に記憶されているプログラム、または磁気ディスク、光ディスク、光磁気ディスク、もしくは半導体メモリ等のリムーバブルメディア1011ら読み出されて記憶部1008にインストールされ、記憶部1008からRAM1003にロードされたプログラムに従って各種の処理を実行する。RAM1003にはまた、CPU1001が各種の処理を実行する上において必要なデータなども適宜記憶される。
以上のように構成されるコンピュータでは、CPU1001が、例えば、記憶部1008に記憶されているプログラムを、入出力インタフェース1005及びバス1004を介して、RAM1003にロードして実行することにより、上述した一連の処理が行われる。
コンピュータ(CPU1001)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブルメディア1011に記録して提供することができる。また、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することができる。
コンピュータでは、プログラムは、リムーバブルメディア1011をドライブ1010に装着することにより、入出力インタフェース1005を介して、記憶部1008にインストールすることができる。また、プログラムは、有線または無線の伝送媒体を介して、通信部1009で受信し、記憶部1008にインストールすることができる。その他、プログラムは、ROM1002や記憶部1008に、あらかじめインストールしておくことができる。
なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
また、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
なお、本開示の実施の形態は、上述した実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。
例えば、本開示は、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。
さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。
尚、本開示は、以下のような構成も取ることができる。
<1> 第1の画像を撮像する第1の撮像部と、
第2の画像を撮像する第2の撮像部と、
前記第1の画像および前記第2の画像の視差の有無を判定する視差判定部と、
前記視差判定部の判定結果に応じて、前記第1の画像および前記第2の画像のそれぞれの画素を合成する合成部とを含む
画像処理装置。
<2> 前記第1の撮像部、および前記第2の撮像部は、同一面上で、かつ、それぞれの光軸が平行である
<1>に記載の画像処理装置。
<3> 前記第1の画像、および前記第2の画像は、画像特性が異なる
<1>または<2>に記載の画像処理装置。
<4> 前記第1の画像、および前記第2の画像は、画素数、画角、波長帯域、またはカラーフィルタの配列の少なくともいずれかの前記画像特性が異なる
<3>に記載の画像処理装置。
<5> 前記視差量判定部は、前記第1の画像および前記第2の画像の画素単位、または、複数の画素からなる、複数の領域に分割された領域単位で視差の有無を判定する
<1>乃至<4>のいずれかに記載の画像処理装置。
<6> 前記合成部は、
前記視差判定部が、前記視差がないと判定した場合、前記第1の画像および前記第2の画像のそれぞれの対応する位置の画素を合成し、
前記視差判定部が、前記視差があると判定した場合、前記第1の画像の各画素について、前記第2の画像上において、類似した画素を探索し、探索した画素と合成する
<1>乃至<5>のいずれかに記載の画像処理装置。
<7> 前記第1の画像および前記第2の画像の特性を一致するように調整する特性調整部をさらに含み、
前記視差判定部は、前記特性調整部により前記特性が一致するように調整された前記第1の画像および前記第2の画像について、前記視差の有無を判定する
<1>乃至<6>のいずれかに記載の画像処理装置。
<8> 前記特性調整部は、前記第1の画像および前記第2の画像の、解像度、感度、空間周波数特性、または、光軸の方向、もしくは、レンズ歪みを修正する平行化処理のうちの少なくともいずれかを一致するように調整する
<1>乃至<7>のいずれかに記載の画像処理装置。
<9> 前記第1の画像に対して、前記第2の画像を平行移動して視差を低減する平行移動部をさらに含み、
前記平行移動部は、前記第2の画像の画像全体、または、前記第2の画像における画素単位で平行移動して視差を低減する
<1>乃至<8>のいずれかに記載の画像処理装置。
<10> 前記平行移動部は、前記第1の撮像部から、前記合焦面までの距離、前記第1の撮像部および前記第2の撮像部の配置、光学特性、および解像度に応じて求められる視差量、前記第1の撮像部の焦点距離を合わせた設定値から事前に設定されたテーブルを参照することで求められる視差量、前記第1の画像および前記第2の画像の共通する特徴点間のズレとして求められる視差量、前記第1の画像および前記第2の画像のそれぞれに応じた奥行きマップが与えられたときに、奥行きに応じて求める視差量、または、予め設定された所定の視差量だけ、前記第2の画像の画像全体、または、前記第2の画像における画素単位で平行移動する
<9>に記載の画像処理装置。
<11> 第1の画像を撮像し、
第2の画像を撮像し、
前記第1の画像および前記第2の画像の視差の有無を判定し、
前記視差の判定結果に応じて、前記第1の画像および前記第2の画像のそれぞれの画素を合成するステップを含む
画像処理方法。
<12> 第1の画像を撮像する第1の撮像部と、
第2の画像を撮像する第2の撮像部と、
前記第1の画像および前記第2の画像の視差の有無を判定する視差判定部と、
前記視差判定部の判定結果に応じて、前記第1の画像および前記第2の画像のそれぞれの画素を合成する合成部としてコンピュータを機能させる
プログラム。
<1> 第1の画像を撮像する第1の撮像部と、
第2の画像を撮像する第2の撮像部と、
前記第1の画像および前記第2の画像の視差の有無を判定する視差判定部と、
前記視差判定部の判定結果に応じて、前記第1の画像および前記第2の画像のそれぞれの画素を合成する合成部とを含む
画像処理装置。
<2> 前記第1の撮像部、および前記第2の撮像部は、同一面上で、かつ、それぞれの光軸が平行である
<1>に記載の画像処理装置。
<3> 前記第1の画像、および前記第2の画像は、画像特性が異なる
<1>または<2>に記載の画像処理装置。
<4> 前記第1の画像、および前記第2の画像は、画素数、画角、波長帯域、またはカラーフィルタの配列の少なくともいずれかの前記画像特性が異なる
<3>に記載の画像処理装置。
<5> 前記視差量判定部は、前記第1の画像および前記第2の画像の画素単位、または、複数の画素からなる、複数の領域に分割された領域単位で視差の有無を判定する
<1>乃至<4>のいずれかに記載の画像処理装置。
<6> 前記合成部は、
前記視差判定部が、前記視差がないと判定した場合、前記第1の画像および前記第2の画像のそれぞれの対応する位置の画素を合成し、
前記視差判定部が、前記視差があると判定した場合、前記第1の画像の各画素について、前記第2の画像上において、類似した画素を探索し、探索した画素と合成する
<1>乃至<5>のいずれかに記載の画像処理装置。
<7> 前記第1の画像および前記第2の画像の特性を一致するように調整する特性調整部をさらに含み、
前記視差判定部は、前記特性調整部により前記特性が一致するように調整された前記第1の画像および前記第2の画像について、前記視差の有無を判定する
<1>乃至<6>のいずれかに記載の画像処理装置。
<8> 前記特性調整部は、前記第1の画像および前記第2の画像の、解像度、感度、空間周波数特性、または、光軸の方向、もしくは、レンズ歪みを修正する平行化処理のうちの少なくともいずれかを一致するように調整する
<1>乃至<7>のいずれかに記載の画像処理装置。
<9> 前記第1の画像に対して、前記第2の画像を平行移動して視差を低減する平行移動部をさらに含み、
前記平行移動部は、前記第2の画像の画像全体、または、前記第2の画像における画素単位で平行移動して視差を低減する
<1>乃至<8>のいずれかに記載の画像処理装置。
<10> 前記平行移動部は、前記第1の撮像部から、前記合焦面までの距離、前記第1の撮像部および前記第2の撮像部の配置、光学特性、および解像度に応じて求められる視差量、前記第1の撮像部の焦点距離を合わせた設定値から事前に設定されたテーブルを参照することで求められる視差量、前記第1の画像および前記第2の画像の共通する特徴点間のズレとして求められる視差量、前記第1の画像および前記第2の画像のそれぞれに応じた奥行きマップが与えられたときに、奥行きに応じて求める視差量、または、予め設定された所定の視差量だけ、前記第2の画像の画像全体、または、前記第2の画像における画素単位で平行移動する
<9>に記載の画像処理装置。
<11> 第1の画像を撮像し、
第2の画像を撮像し、
前記第1の画像および前記第2の画像の視差の有無を判定し、
前記視差の判定結果に応じて、前記第1の画像および前記第2の画像のそれぞれの画素を合成するステップを含む
画像処理方法。
<12> 第1の画像を撮像する第1の撮像部と、
第2の画像を撮像する第2の撮像部と、
前記第1の画像および前記第2の画像の視差の有無を判定する視差判定部と、
前記視差判定部の判定結果に応じて、前記第1の画像および前記第2の画像のそれぞれの画素を合成する合成部としてコンピュータを機能させる
プログラム。
11 画像処理装置, 31 高解像度撮像部, 32 特性変換部, 33 高感度撮像部, 34 特性変換部, 35 平行移動部, 36 視差判定部, 37 2眼合成部
Claims (12)
- 第1の画像を撮像する第1の撮像部と、
第2の画像を撮像する第2の撮像部と、
前記第1の画像および前記第2の画像の視差の有無を判定する視差判定部と、
前記視差判定部の判定結果に応じて、前記第1の画像および前記第2の画像のそれぞれの画素を合成する合成部とを含む
画像処理装置。 - 前記第1の撮像部、および前記第2の撮像部は、同一面上で、かつ、それぞれの光軸が平行である
請求項1に記載の画像処理装置。 - 前記第1の画像、および前記第2の画像は、画像特性が異なる
請求項1に記載の画像処理装置。 - 前記第1の画像、および前記第2の画像は、画素数、画角、波長帯域、またはカラーフィルタの配列の少なくともいずれかの前記画像特性が異なる
請求項3に記載の画像処理装置。 - 前記視差量判定部は、前記第1の画像および前記第2の画像の画素単位、または、複数の画素からなる、複数の領域に分割された領域単位で視差の有無を判定する
請求項1に記載の画像処理装置。 - 前記合成部は、
前記視差判定部が、前記視差がないと判定した場合、前記第1の画像および前記第2の画像のそれぞれの対応する位置の画素を合成し、
前記視差判定部が、前記視差があると判定した場合、前記第1の画像の各画素について、前記第2の画像上において、類似した画素を探索し、探索した画素と合成する
請求項1に記載の画像処理装置。 - 前記第1の画像および前記第2の画像の特性を一致するように調整する特性調整部をさらに含み、
前記視差判定部は、前記特性調整部により前記特性が一致するように調整された前記第1の画像および前記第2の画像について、前記視差の有無を判定する
請求項1に記載の画像処理装置。 - 前記特性調整部は、前記第1の画像および前記第2の画像の、解像度、感度、空間周波数特性、または、光軸の方向、もしくは、レンズ歪みを修正する平行化処理のうちの少なくともいずれかを一致するように調整する
請求項1に記載の画像処理装置。 - 前記第1の画像に対して、前記第2の画像を平行移動して視差を低減する平行移動部をさらに含み、
前記平行移動部は、前記第2の画像の画像全体、または、前記第2の画像における画素単位で平行移動して視差を低減する
請求項1に記載の画像処理装置。 - 前記平行移動部は、前記第1の撮像部から、前記合焦面までの距離、前記第1の撮像部および前記第2の撮像部の配置、光学特性、および解像度に応じて求められる視差量、前記第1の撮像部の焦点距離を合わせた設定値から事前に設定されたテーブルを参照することで求められる視差量、前記第1の画像および前記第2の画像の共通する特徴点間のズレとして求められる視差量、前記第1の画像および前記第2の画像のそれぞれに応じた奥行きマップが与えられたときに、奥行きに応じて求める視差量、または、予め設定された所定の視差量だけ、前記第2の画像の画像全体、または、前記第2の画像における画素単位で平行移動する
請求項9に記載の画像処理装置。 - 第1の画像を撮像し、
第2の画像を撮像し、
前記第1の画像および前記第2の画像の視差の有無を判定し、
前記視差の判定結果に応じて、前記第1の画像および前記第2の画像のそれぞれの画素を合成するステップを含む
画像処理方法。 - 第1の画像を撮像する第1の撮像部と、
第2の画像を撮像する第2の撮像部と、
前記第1の画像および前記第2の画像の視差の有無を判定する視差判定部と、
前記視差判定部の判定結果に応じて、前記第1の画像および前記第2の画像のそれぞれの画素を合成する合成部としてコンピュータを機能させる
プログラム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015197209A JP2017069926A (ja) | 2015-10-02 | 2015-10-02 | 画像処理装置、および画像処理方法、並びにプログラム |
PCT/JP2016/077403 WO2017057047A1 (ja) | 2015-10-02 | 2016-09-16 | 画像処理装置、および画像処理方法、並びにプログラム |
US15/761,374 US10621711B2 (en) | 2015-10-02 | 2016-09-16 | Image processing device and image processing method for synthesizing plurality of images |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015197209A JP2017069926A (ja) | 2015-10-02 | 2015-10-02 | 画像処理装置、および画像処理方法、並びにプログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017069926A true JP2017069926A (ja) | 2017-04-06 |
Family
ID=58423566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015197209A Pending JP2017069926A (ja) | 2015-10-02 | 2015-10-02 | 画像処理装置、および画像処理方法、並びにプログラム |
Country Status (3)
Country | Link |
---|---|
US (1) | US10621711B2 (ja) |
JP (1) | JP2017069926A (ja) |
WO (1) | WO2017057047A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019167571A1 (ja) * | 2018-02-27 | 2019-09-06 | ソニーセミコンダクタソリューションズ株式会社 | 画像処理装置及び画像処理方法 |
WO2019221151A1 (ja) * | 2018-05-16 | 2019-11-21 | ソニーセミコンダクタソリューションズ株式会社 | 撮像システム |
WO2020189223A1 (ja) | 2019-03-15 | 2020-09-24 | ソニー株式会社 | 動画配信システム、動画配信方法、及び表示端末 |
JP2020533883A (ja) * | 2017-11-30 | 2020-11-19 | オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. | ダブルカメラベースの撮像のための方法および装置 |
WO2022035267A1 (ko) * | 2020-08-14 | 2022-02-17 | 삼성전자 주식회사 | 카메라 모듈을 포함하는 전자 장치 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017069926A (ja) * | 2015-10-02 | 2017-04-06 | ソニー株式会社 | 画像処理装置、および画像処理方法、並びにプログラム |
IL264032B (en) * | 2018-12-30 | 2020-06-30 | Elbit Systems Ltd | System and methods for removing artifacts in binocular displays |
JP7375022B2 (ja) * | 2019-08-29 | 2023-11-07 | オリンパス株式会社 | 画像処理装置の作動方法、制御装置、および内視鏡システム |
WO2021253166A1 (en) * | 2020-06-15 | 2021-12-23 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Method of generating target image data and electrical device |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11113028A (ja) * | 1997-09-30 | 1999-04-23 | Toshiba Corp | 3次元映像表示装置 |
JP2004328137A (ja) | 2003-04-22 | 2004-11-18 | Konica Minolta Photo Imaging Inc | 画像撮像装置、画像処理装置及び画像処理プログラム |
JP2006072757A (ja) * | 2004-09-02 | 2006-03-16 | Toyota Motor Corp | 物体検出装置 |
TWI336810B (en) * | 2006-12-21 | 2011-02-01 | Altek Corp | Method of generating image data having parallax using a digital image-capturing device and digital image-capturing device |
KR101588877B1 (ko) * | 2008-05-20 | 2016-01-26 | 펠리칸 이매징 코포레이션 | 이종 이미저를 구비한 모놀리식 카메라 어레이를 이용한 이미지의 캡처링 및 처리 |
JP2010147786A (ja) | 2008-12-18 | 2010-07-01 | Fujifilm Corp | 撮像装置及び画像処理方法 |
JP2010157863A (ja) | 2008-12-26 | 2010-07-15 | Fujifilm Corp | 複眼カメラ及び画像処理方法 |
US9109891B2 (en) * | 2010-02-02 | 2015-08-18 | Konica Minolta Holdings, Inc. | Stereo camera |
JP5367640B2 (ja) | 2010-05-31 | 2013-12-11 | パナソニック株式会社 | 撮像装置および撮像方法 |
JP5450330B2 (ja) * | 2010-09-16 | 2014-03-26 | 株式会社ジャパンディスプレイ | 画像処理装置および方法、ならびに立体画像表示装置 |
CN101984670B (zh) * | 2010-11-16 | 2013-01-23 | 深圳超多维光电子有限公司 | 一种立体显示方法、跟踪式立体显示器及图像处理装置 |
JP5411842B2 (ja) * | 2010-12-07 | 2014-02-12 | シャープ株式会社 | 撮像装置 |
JP5816015B2 (ja) * | 2011-07-15 | 2015-11-17 | 株式会社東芝 | 固体撮像装置及びカメラモジュール |
JP5901935B2 (ja) | 2011-10-24 | 2016-04-13 | 株式会社東芝 | 固体撮像装置及びカメラモジュール |
US8957973B2 (en) * | 2012-06-11 | 2015-02-17 | Omnivision Technologies, Inc. | Shutter release using secondary camera |
JP6216143B2 (ja) | 2012-06-20 | 2017-10-18 | キヤノン株式会社 | 画像処理装置、その制御方法、およびプログラム |
JP6585890B2 (ja) * | 2014-09-30 | 2019-10-02 | キヤノン株式会社 | 画像処理装置、画像処理方法およびプログラム、並びに撮像装置 |
US9743015B2 (en) * | 2015-05-22 | 2017-08-22 | Samsung Electronics Co., Ltd. | Image capturing apparatus and method of controlling the same |
JP2017069926A (ja) * | 2015-10-02 | 2017-04-06 | ソニー株式会社 | 画像処理装置、および画像処理方法、並びにプログラム |
US10291899B2 (en) * | 2015-11-30 | 2019-05-14 | Canon Kabushiki Kaisha | Image processing apparatus, image pickup apparatus, image processing method, and non-transitory computer-readable storage medium for generating restored image |
-
2015
- 2015-10-02 JP JP2015197209A patent/JP2017069926A/ja active Pending
-
2016
- 2016-09-16 WO PCT/JP2016/077403 patent/WO2017057047A1/ja active Application Filing
- 2016-09-16 US US15/761,374 patent/US10621711B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020533883A (ja) * | 2017-11-30 | 2020-11-19 | オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. | ダブルカメラベースの撮像のための方法および装置 |
JP6999802B2 (ja) | 2017-11-30 | 2022-02-10 | オッポ広東移動通信有限公司 | ダブルカメラベースの撮像のための方法および装置 |
WO2019167571A1 (ja) * | 2018-02-27 | 2019-09-06 | ソニーセミコンダクタソリューションズ株式会社 | 画像処理装置及び画像処理方法 |
WO2019221151A1 (ja) * | 2018-05-16 | 2019-11-21 | ソニーセミコンダクタソリューションズ株式会社 | 撮像システム |
WO2020189223A1 (ja) | 2019-03-15 | 2020-09-24 | ソニー株式会社 | 動画配信システム、動画配信方法、及び表示端末 |
US11972547B2 (en) | 2019-03-15 | 2024-04-30 | Sony Group Corporation | Video distribution system, video distribution method, and display terminal |
WO2022035267A1 (ko) * | 2020-08-14 | 2022-02-17 | 삼성전자 주식회사 | 카메라 모듈을 포함하는 전자 장치 |
Also Published As
Publication number | Publication date |
---|---|
WO2017057047A1 (ja) | 2017-04-06 |
US10621711B2 (en) | 2020-04-14 |
US20180268531A1 (en) | 2018-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017057047A1 (ja) | 画像処理装置、および画像処理方法、並びにプログラム | |
CN109792485B (zh) | 用于融合图像的系统及方法 | |
US8885067B2 (en) | Multocular image pickup apparatus and multocular image pickup method | |
CN101939978B (zh) | 高分辨率、可变景深的图像装置 | |
US8436910B2 (en) | Image processing apparatus and image processing method | |
US20120008005A1 (en) | Image processing apparatus, image processing method, and computer-readable recording medium having image processing program recorded thereon | |
JP6326180B1 (ja) | 画像処理装置 | |
US10567646B2 (en) | Imaging apparatus and imaging method | |
TWI767985B (zh) | 用於處理影像性質圖的方法及裝置 | |
EP2704423A1 (en) | Image processing apparatus, image processing method, and image processing program | |
CN102111544B (zh) | 摄像模块、图像处理装置及图像记录方法 | |
JP5984493B2 (ja) | 画像処理装置、画像処理方法、撮像装置およびプログラム | |
US10200593B2 (en) | Image capturing apparatus and control method thereof | |
US8542312B2 (en) | Device having image reconstructing function, method, and storage medium | |
US20160094822A1 (en) | Imaging device, image processing device, imaging method, and image processing method | |
JP2014039169A (ja) | 画像処理装置、および画像処理方法、並びにプログラム | |
JP2019110430A (ja) | 制御装置、撮像装置、制御方法およびプログラム | |
CN112565588A (zh) | 图像处理设备、图像处理方法和存储介质 | |
JP6332982B2 (ja) | 画像処理装置およびその方法 | |
WO2022226702A1 (zh) | 图像处理方法、处理装置、电子设备和存储介质 | |
JP2018148513A (ja) | 画像処理装置、画像処理方法、及びプログラム | |
JP6245847B2 (ja) | 画像処理装置および画像処理方法 | |
KR101602747B1 (ko) | 해상도 향상 시스템 및 방법 | |
US9924157B2 (en) | Image processing device, image pickup apparatus, image processing method, and storage medium | |
JP6979859B2 (ja) | 画像処理装置、撮像装置、画像処理方法、及びプログラム |