[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2017057264A - Polymer having silylacetylene groups as side chains, and photoelectric conversion element and solar cell employing the same - Google Patents

Polymer having silylacetylene groups as side chains, and photoelectric conversion element and solar cell employing the same Download PDF

Info

Publication number
JP2017057264A
JP2017057264A JP2015182217A JP2015182217A JP2017057264A JP 2017057264 A JP2017057264 A JP 2017057264A JP 2015182217 A JP2015182217 A JP 2015182217A JP 2015182217 A JP2015182217 A JP 2015182217A JP 2017057264 A JP2017057264 A JP 2017057264A
Authority
JP
Japan
Prior art keywords
group
photoelectric conversion
polymer
substituted
broad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2015182217A
Other languages
Japanese (ja)
Inventor
明洋 松井
Akihiro Matsui
明洋 松井
中野 義彦
Yoshihiko Nakano
義彦 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2015182217A priority Critical patent/JP2017057264A/en
Publication of JP2017057264A publication Critical patent/JP2017057264A/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photoelectric conversion element with a high open circuit voltage (Voc) by employing a novel polymer.SOLUTION: The polymer includes a repeating unit represented by the general formula (1) in the figure, which comprises a condensed heterocyclic structure and a benzodifuran structure having silylacetylene groups as side chains.SELECTED DRAWING: None

Description

本発明の実施形態は、シリルアセチレン基を側鎖として有するポリマー、ならびにこれを用いた光電変換素子および太陽電池に関する。   Embodiments described herein relate generally to a polymer having a silylacetylene group as a side chain, and a photoelectric conversion element and a solar cell using the polymer.

太陽電池は環境に優しい電気エネルギー源であり、現在深刻さを増すエネルギー問題に対する有力なエネルギー源として注目されている。現在、太陽電池の光電変換素子の半導体素材としては、単結晶シリコン、多結晶シリコン、アモルファスシリコン、化合物半導体などの無機物が使用されている。しかし、無機半導体を用いて製造される太陽電池はコストが高いために、一般家庭に広く普及するには至っていない。コスト高の要因は主として、真空かつ高温下で半導体薄膜を製造するプロセスにある。そこで、製造プロセスの簡略化が期待される半導体素材として、共役系重合体や有機結晶などの有機半導体や有機色素を用いた有機太陽電池が検討されている。   Solar cells are environmentally friendly electrical energy sources and are currently attracting attention as potential energy sources for increasingly serious energy problems. Currently, inorganic materials such as single crystal silicon, polycrystalline silicon, amorphous silicon, and compound semiconductors are used as semiconductor materials for photoelectric conversion elements of solar cells. However, solar cells manufactured using inorganic semiconductors have not been widely used in general households because of high costs. The high cost factor is mainly in the process of manufacturing a semiconductor thin film under vacuum and high temperature. Therefore, organic solar cells using organic semiconductors and organic dyes such as conjugated polymers and organic crystals are being studied as semiconductor materials expected to simplify the manufacturing process.

しかし、共役系重合体などを用いた有機太陽電池は、従来の無機半導体を用いた太陽電池と比べて光電変換効率が低いことが大きな課題であり、未だ実用化には至っていない。従来の共役系重合体を用いた有機太陽電池の光電変換効率が低いのは、太陽光の吸収効率が低いことや、太陽光によって生成された電子と正孔が分離しにくいエキシトンという束縛状態が形成されることや、キャリア(電子、正孔)を捕獲するトラップが形成されやすいために生成したキャリアがトラップに捕獲されやすく、キャリアの移動度が遅いことなどによる。これまでの有機半導体による光電変換素子は、現在のところ、電子供与性有機材料(p型有機半導体)と仕事関数の小さい金属を接合させるショットキー型、電子受容性有機材料(n型有機半導体)と電子供与性有機材料(p型有機半導体)を接合させるヘテロ接合型に分類することができる。これらの素子は、接合部の有機層(数分子層程度)のみが光電流生成に寄与するため光電変換効率が低く、その向上が課題となっている。光電変換素子の光電変換効率を向上させるための一つの方法として、電子受容性有機材料(n型有機半導体)と電子供与性有機材料(p型有機半導体)を混合し、光電変換に寄与する接合面を増加させたバルクヘテロ接合型とする方法がある。なかでも、電子供与性有機材料(p型有機半導体)として共役系重合体を用い、電子受容性有機材料として、n型の半導体特性をもつ導電性高分子、C60などのフラーレンやフラーレン誘導体を用いたバルクへテロ接合型光電変換素子が報告されている。   However, an organic solar cell using a conjugated polymer or the like has a large problem that its photoelectric conversion efficiency is lower than that of a conventional solar cell using an inorganic semiconductor, and has not yet been put into practical use. The photoelectric conversion efficiency of organic solar cells using conventional conjugated polymers is low because of the low absorption efficiency of sunlight and the bound state of exciton where electrons and holes generated by sunlight are difficult to separate. This is because a trap for trapping carriers (electrons and holes) is easily formed, and thus generated carriers are easily trapped by traps, and the mobility of carriers is slow. So far, photoelectric conversion elements using organic semiconductors are currently Schottky-type, electron-accepting organic materials (n-type organic semiconductors) that join an electron-donating organic material (p-type organic semiconductor) and a metal having a low work function. And an electron donating organic material (p-type organic semiconductor) can be classified into a heterojunction type. In these elements, only the organic layer (about several molecular layers) at the junction contributes to the photocurrent generation, so that the photoelectric conversion efficiency is low, and its improvement is a problem. As a method for improving the photoelectric conversion efficiency of the photoelectric conversion element, a junction that contributes to photoelectric conversion by mixing an electron-accepting organic material (n-type organic semiconductor) and an electron-donating organic material (p-type organic semiconductor). There is a method of using a bulk heterojunction type with an increased number of planes. In particular, conjugated polymers are used as electron-donating organic materials (p-type organic semiconductors), and conductive polymers with n-type semiconductor properties, fullerenes such as C60 and fullerene derivatives are used as electron-accepting organic materials. A bulk heterojunction photoelectric conversion element has been reported.

ところで、光電変換素子の変換効率向上のためには、電流と電圧の両面から性能を向上させる必要がある。電流を向上させるためには、現在の波長領域の変換効率を向上させる方法、吸収波長領域を広げる方法があり、電圧を向上させるためには光電変換材料のエネルギー準位を広げる必要がある。しかし、電流および電圧の性能を本質的に向上させるためには光電変換材料の開発が欠かせなくなっている。これまでに、電流および電圧の特性を向上させるために、数多くの材料が報告されており、ベンゾジチオフェンとチエノチオフェンを共重合した高分子は変換効率が高いことが知られているが、開放電圧が十分高いとは言い切れない。また、キャリア移動度と、溶解性を高めること目的にベンゾジチオフェンに類似したベンゾジフランを骨格とした材料も開発されているが、こちらも開放電圧が十分とは言えない。   By the way, in order to improve the conversion efficiency of the photoelectric conversion element, it is necessary to improve the performance in terms of both current and voltage. In order to improve the current, there are a method for improving the conversion efficiency in the current wavelength region and a method for expanding the absorption wavelength region. In order to improve the voltage, it is necessary to widen the energy level of the photoelectric conversion material. However, development of photoelectric conversion materials is indispensable in order to substantially improve current and voltage performance. To date, many materials have been reported to improve current and voltage characteristics, and polymers obtained by copolymerizing benzodithiophene and thienothiophene are known to have high conversion efficiency. The voltage is not high enough. In addition, a material having a benzodifuran skeleton similar to benzodithiophene has been developed for the purpose of enhancing carrier mobility and solubility, but this also cannot be said to have a sufficient open-circuit voltage.

特許第5482973号公報Japanese Patent No. 5482973

Macromolecules, 2012, 45, 6923-6929Macromolecules, 2012, 45, 6923-6929

本発明の目的は、新規なポリマーを用いることで、開放電圧(Voc)の高い光電変換素子を提供することである。   An object of the present invention is to provide a photoelectric conversion element having a high open circuit voltage (Voc) by using a novel polymer.

実施形態によるポリマーは、シリルアセチレン基を側鎖とするベンゾジフラン構造と縮合複素環構造とからなる、下記一般式(1)に示される繰り返し単位を含むことを特徴とするものである。

Figure 2017057264
[式中、Rは互いに独立して、水素、置換または非置換のアルキル基、芳香族基およびヘテロ芳香族基から選択される置換基であり、Arは置換または非置換の縮合複素環構造を示し、該縮合複素環構造における縮合複素環と前記ベンゾジフラン構造における縮合複素環とが直接結合している。] The polymer according to the embodiment includes a repeating unit represented by the following general formula (1), which includes a benzodifuran structure having a silylacetylene group as a side chain and a condensed heterocyclic structure.
Figure 2017057264
[Wherein, R is independently of one another a substituent selected from hydrogen, a substituted or unsubstituted alkyl group, an aromatic group and a heteroaromatic group, and Ar is a substituted or unsubstituted condensed heterocyclic structure. As shown, the condensed heterocyclic ring in the condensed heterocyclic structure and the condensed heterocyclic ring in the benzodifuran structure are directly bonded. ]

実施形態による光電変換素子の模式断面図である。It is a schematic cross section of the photoelectric conversion element by embodiment.

[シリルアセチレン基を側鎖として有するポリマー]
実施形態によるポリマーは、上記一般式(1)で表される繰り返し単位を有する。この繰り返し単位は、シリルアセチレン基を側鎖とするベンゾジフラン構造と縮合複素環構造(Ar)とからなる。この繰り返し単位において、シリルアセチレン基を側鎖とするベンゾジフラン構造がドナーユニットであり、縮合複素環構造(Ar)がアクセプターユニットである。
[Polymer having silylacetylene group as side chain]
The polymer according to the embodiment has a repeating unit represented by the general formula (1). This repeating unit consists of a benzodifuran structure having a silylacetylene group as a side chain and a condensed heterocyclic structure (Ar). In this repeating unit, a benzodifuran structure having a silylacetylene group as a side chain is a donor unit, and a condensed heterocyclic structure (Ar) is an acceptor unit.

上記シリルアセチレン基におけるRは、互いに独立して、水素、置換または非置換のアルキル基、芳香族基およびヘテロ芳香族基から選択される置換基である。そのようなアルキル基としては、直鎖、分岐状または環状のアルキル基を用いることができる。置換基を除いたアルキル基の炭素数は、好ましくは1〜50であり、より好ましくは1〜10である。そのようなアルキル基としては、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基およびn−へプチル基などの直鎖アルキル基、イソプロピル基、sec−ブチル基、イソブチル基およびtert−ブチル基などの分岐状アルキル基、シクロペンチル基、シクロヘキシル基およびシクロへプチル基などの環状アルキル基が挙げられるが、これらに限定されるものではない。   R in the silylacetylene group is independently a substituent selected from hydrogen, a substituted or unsubstituted alkyl group, an aromatic group and a heteroaromatic group. As such an alkyl group, a linear, branched or cyclic alkyl group can be used. Carbon number of the alkyl group except a substituent becomes like this. Preferably it is 1-50, More preferably, it is 1-10. Examples of such alkyl groups include methyl groups, ethyl groups, n-propyl groups, n-butyl groups, n-pentyl groups, n-hexyl groups and n-heptyl groups, linear alkyl groups such as isopropyl groups, sec Examples include, but are not limited to, branched alkyl groups such as butyl group, isobutyl group and tert-butyl group, and cyclic alkyl groups such as cyclopentyl group, cyclohexyl group and cycloheptyl group.

芳香族基としては、フェニル基、ベンジル基、フェノキシ基およびベンゾイル基などが挙げられる。上記ヘテロ芳香族基としては、フリル基、ピリジル基、キノリル基、チエニル基、ピペリジル基およびイソキノニル基などが挙げられるが、これらに限定されるものではない。   Examples of the aromatic group include a phenyl group, a benzyl group, a phenoxy group, and a benzoyl group. Examples of the heteroaromatic group include, but are not limited to, a furyl group, a pyridyl group, a quinolyl group, a thienyl group, a piperidyl group, and an isoquinonyl group.

上記シリルアセチレン基の具体例としては、トリメチルシリルアセチレン基、トリエチルシリルアセチレン基、tert-ブチルジメチルシリルアセチレン基およびトリイソプロピルシリルアセチレン基などのトリアルキルシリルアセチレン基や、tert-ブチルジフェニルシリルアセチレン基などが挙げられるが、その中でもトリイソプロピルシリルアセチレン基が好ましい。   Specific examples of the silylacetylene group include trialkylsilylacetylene groups such as trimethylsilylacetylene group, triethylsilylacetylene group, tert-butyldimethylsilylacetylene group and triisopropylsilylacetylene group, and tert-butyldiphenylsilylacetylene group. Among them, a triisopropylsilylacetylene group is preferable among them.

Arは、置換または非置換の縮合複素環構造を示し、縮合複素環構造における縮合複素環とベンゾジフラン構造における縮合複素環とが直接結合している。ここで、「縮合複素環構造における縮合複素環とベンゾジフラン構造における縮合複素環とが直接結合している」とは、「縮合複素環構造における縮合複素環」上の炭素原子と「ベンゾジフラン構造における縮合複素環」上の炭素元素が、アルキル基や単環の複素環化合物基などの他の置換基を介さずに、直接結合していることを意味する。   Ar represents a substituted or unsubstituted condensed heterocyclic structure, and the condensed heterocyclic ring in the condensed heterocyclic structure is directly bonded to the condensed heterocyclic ring in the benzodifuran structure. Here, “the condensed heterocyclic ring in the condensed heterocyclic structure and the condensed heterocyclic ring in the benzodifuran structure are directly bonded” means “the condensed heterocyclic ring in the condensed heterocyclic structure” and “the condensed in the benzodifuran structure”. It means that the carbon element on the “heterocycle” is directly bonded without any other substituent such as an alkyl group or a monocyclic heterocyclic compound group.

Arとしては、置換または非置換の縮合複素環構造であれば特に限定されないが、少なくともSを含む縮合複素環構造であることが好ましい。さらに好ましくは、Arは下記式の縮合複素環構造から選択される。

Figure 2017057264

[式中、R1は水素、置換または非置換のアルキル基、芳香族基およびヘテロ芳香族基から選択される置換基であり、R2は水素、ハロゲン元素、シアノ基ならびに置換または非置換のアルキル基から選択される置換基であり、R3は置換または非置換のアルキル基、置換または非置換のアルコキシ基、および置換または非置換の芳香族基から選択される置換基であり、XはSまたはOから選択される元素である。] Ar is not particularly limited as long as it is a substituted or unsubstituted condensed heterocyclic structure, but is preferably a condensed heterocyclic structure containing at least S. More preferably, Ar is selected from a fused heterocyclic structure of the formula
Figure 2017057264

[Wherein R 1 is a substituent selected from hydrogen, a substituted or unsubstituted alkyl group, an aromatic group and a heteroaromatic group, and R 2 is hydrogen, a halogen element, a cyano group, and a substituted or unsubstituted group. R 3 is a substituent selected from an alkyl group, R 3 is a substituent selected from a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, and a substituted or unsubstituted aromatic group, and X is It is an element selected from S or O. ]

上記アルキル基としては、直鎖、分岐状または環状のアルキル基を用いることができる。置換基を除いたアルキル基の炭素数は、好ましくは1〜50であり、より好ましくは1〜10である。そのようなアルキル基としては、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−へプチル基などの直鎖アルキル基、イソプロピル基、sec−ブチル基、イソブチル基、tert−ブチル基、1−メチルブチル基、1−エチルプロピル基などの分岐状アルキル基、シクロペンチル基、シクロヘキシル基、シクロへプチル基などの環状アルキル基が挙げられるが、これらに限定されるものではない。   As the alkyl group, a linear, branched or cyclic alkyl group can be used. Carbon number of the alkyl group except a substituent becomes like this. Preferably it is 1-50, More preferably, it is 1-10. Examples of such alkyl groups include methyl groups, ethyl groups, n-propyl groups, n-butyl groups, n-pentyl groups, n-hexyl groups, n-heptyl groups, and the like, isopropyl groups, sec Examples include branched alkyl groups such as -butyl group, isobutyl group, tert-butyl group, 1-methylbutyl group and 1-ethylpropyl group, and cyclic alkyl groups such as cyclopentyl group, cyclohexyl group and cycloheptyl group. It is not limited to.

上記芳香族基としては、フェニル基、ベンジル基、フェノキシ基、ベンゾイル基およびナフチル基などが挙げられる。上記ヘテロ芳香族基としては、フリル基、ピリジル基、キノリル基、チエニル基、ピペリジル基およびイソキノニル基などが挙げられるが、これらに限定されるものではない。   Examples of the aromatic group include a phenyl group, a benzyl group, a phenoxy group, a benzoyl group, and a naphthyl group. Examples of the heteroaromatic group include, but are not limited to, a furyl group, a pyridyl group, a quinolyl group, a thienyl group, a piperidyl group, and an isoquinonyl group.

上記ハロゲン元素としては、フッ素、塩素、臭素およびヨウ素を値いることができるが、その中でもフッ素が好ましい。   Examples of the halogen element include fluorine, chlorine, bromine and iodine, and among them, fluorine is preferable.

上記アルコキシ基としては、直鎖または分岐状のアルコキシ基を用いることができる。置換基を除いたアルコキシ基の炭素数は、好ましくは1〜50であり、より好ましくは1〜10である。そのようなアルコキシ基としては、メトキシ基、エトキシ基、n−プロポキシ基、n−ブトキシ基などの直鎖アルコキシ基、イソプロポキシ基、sec−ブトキシ基、イソブトキシ基、tert−ブトキシ基、2−エチルヘキシルオキシ基などの分岐状アルコキシ基が挙げられるが、これらに限定されるものではない。上記アルコキシ基としては、2−エチルヘキシルオキシ基が特に好ましい。   As the alkoxy group, a linear or branched alkoxy group can be used. Carbon number of the alkoxy group except a substituent becomes like this. Preferably it is 1-50, More preferably, it is 1-10. Such alkoxy groups include linear alkoxy groups such as methoxy group, ethoxy group, n-propoxy group, n-butoxy group, isopropoxy group, sec-butoxy group, isobutoxy group, tert-butoxy group, 2-ethylhexyl. Examples thereof include, but are not limited to, branched alkoxy groups such as oxy groups. As the alkoxy group, a 2-ethylhexyloxy group is particularly preferable.

上記アルキル基、アルコキシ基および芳香族基が有していてもよい置換基としては、エステル基、アミド基、アミノ基、アルキルアミノ基、メルカプト基、シアノ基などが挙げられるが、これらに限定されるものではない。   Examples of the substituent that the alkyl group, alkoxy group and aromatic group may have include an ester group, an amide group, an amino group, an alkylamino group, a mercapto group, and a cyano group, but are not limited thereto. It is not something.

実施形態による繰り返し単位の具体例を以下に示すが、本実施形態がこれらの具体例に限定されるものではない。   Although the specific example of the repeating unit by embodiment is shown below, this embodiment is not limited to these specific examples.

Arとして、上記Ar−1を選択し、Rとしてイソプロピル基を選択した場合、上記一般式(1)で表される繰り返し単位は以下のように示される。

Figure 2017057264
When Ar-1 is selected as Ar and isopropyl is selected as R, the repeating unit represented by the general formula (1) is shown as follows.
Figure 2017057264

Arとして、上記Ar−2を選択し、Rとしてイソプロピル基を選択した場合、上記一般式(1)で表される繰り返し単位は以下のように示される。

Figure 2017057264
When Ar-2 is selected as Ar and isopropyl is selected as R, the repeating unit represented by the general formula (1) is shown as follows.
Figure 2017057264

Arとして、上記Ar−3を選択し、Rとしてイソプロピル基を選択した場合、上記一般式(1)で表される繰り返し単位は以下のように示される。

Figure 2017057264
[式中、R1は水素、置換または非置換のアルキル基、芳香族基およびヘテロ芳香族基から選択される置換基である。] When Ar-3 is selected as Ar and an isopropyl group is selected as R, the repeating unit represented by the general formula (1) is shown as follows.
Figure 2017057264
[Wherein R 1 is a substituent selected from hydrogen, a substituted or unsubstituted alkyl group, an aromatic group and a heteroaromatic group. ]

具体的には、下記の繰り返し単位が挙げられる。

Figure 2017057264
Specific examples include the following repeating units.
Figure 2017057264

Arとして、上記Ar−4を選択し、Rとしてイソプロピル基を選択した場合、上記一般式(1)で表される繰り返し単位は以下のように示される。

Figure 2017057264
[式中、R1は水素、置換または非置換のアルキル基、芳香族基およびヘテロ芳香族基から選択される置換基である。] When Ar-4 is selected as Ar and an isopropyl group is selected as R, the repeating unit represented by the general formula (1) is shown as follows.
Figure 2017057264
[Wherein R 1 is a substituent selected from hydrogen, a substituted or unsubstituted alkyl group, an aromatic group and a heteroaromatic group. ]

具体的には、下記の繰り返し単位が挙げられる。

Figure 2017057264
Specific examples include the following repeating units.
Figure 2017057264

Arとして、上記Ar−5を選択し、Rとしてイソプロピル基を選択した場合、上記一般式(1)で表される繰り返し単位は以下のように示される。

Figure 2017057264
[式中、R1は水素、置換または非置換のアルキル基、芳香族基およびヘテロ芳香族基から選択される置換基であり、XはSまたはOから選択される元素である。] When Ar-5 is selected as Ar and isopropyl is selected as R, the repeating unit represented by the general formula (1) is shown as follows.
Figure 2017057264
[Wherein R 1 is a substituent selected from hydrogen, a substituted or unsubstituted alkyl group, an aromatic group and a heteroaromatic group, and X is an element selected from S and O. ]

具体的には、下記の繰り返し単位が挙げられる。

Figure 2017057264
Specific examples include the following repeating units.
Figure 2017057264

Arとして、上記Ar−6を選択し、Rとしてイソプロピル基を選択した場合、上記一般式(1)で表される繰り返し単位は以下のように示される。

Figure 2017057264
[式中、R1は水素、置換または非置換のアルキル基、芳香族基およびヘテロ芳香族基から選択される置換基である。] When Ar-6 is selected as Ar and isopropyl is selected as R, the repeating unit represented by the general formula (1) is shown as follows.
Figure 2017057264
[Wherein R 1 is a substituent selected from hydrogen, a substituted or unsubstituted alkyl group, an aromatic group and a heteroaromatic group. ]

具体的には、下記の繰り返し単位が挙げられる。

Figure 2017057264
Specific examples include the following repeating units.
Figure 2017057264

Arとして、上記Ar−7を選択し、Rとしてイソプロピル基を選択した場合、上記一般式(1)で表される繰り返し単位は以下のように示される。

Figure 2017057264
[式中、R2は水素、ハロゲン元素、シアノ基および置換または非置換のアルキル基から選択される置換基であり、R3は置換または非置換のアルキル基、置換または非置換のアルコキシ基、および置換または非置換の芳香族基から選択される置換基であり、XはSまたはOから選択される元素である。] When Ar-7 is selected as Ar and an isopropyl group is selected as R, the repeating unit represented by the general formula (1) is shown as follows.
Figure 2017057264
Wherein R 2 is a substituent selected from hydrogen, a halogen element, a cyano group and a substituted or unsubstituted alkyl group, R 3 is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, And a substituent selected from a substituted or unsubstituted aromatic group, and X is an element selected from S or O. ]

具体的には、下記の繰り返し単位が挙げられる。

Figure 2017057264
Figure 2017057264
Specific examples include the following repeating units.
Figure 2017057264
Figure 2017057264

上記繰り返し単位の中でも、上記の一般式(A‐7)で示される繰り返し単位を含むポリマーが好ましく、式(A−7d)で示される繰り返し単位を含むポリマーがより好ましい。   Among the above repeating units, a polymer containing a repeating unit represented by the above general formula (A-7) is preferred, and a polymer containing a repeating unit represented by the formula (A-7d) is more preferred.

これら、本実施形態のポリマーは架橋基を含んでいてもよい。好ましくは、繰り返し単位において、R1、R2およびRの少なくとも1つが架橋基を有する。架橋基とは光や熱、もしくはラジカル開始剤などにより架橋反応を生じさせる置換基であればよい。例えば光により結合が分解して架橋を生じさせる架橋基としては臭素やヨウ素を置換したアルキル基やアルコキシル基を含む置換基、アゾ基やジアゾ基を含む置換基が挙げられる。 These polymers of this embodiment may contain a crosslinking group. Preferably, in the repeating unit, at least one of R 1 , R 2 and R 3 has a bridging group. The crosslinking group may be any substituent that causes a crosslinking reaction by light, heat, or a radical initiator. For example, examples of the cross-linking group that causes cross-linkage by decomposition by light include a substituent containing an alkyl group or an alkoxyl group substituted with bromine or iodine, and a substituent containing an azo group or a diazo group.

架橋基は、光で光二量化を起こす炭素−炭素の二重結合や三重結合を含む置換基、求核置換反応を受ける置換基あるいは熱により付加反応を起こす置換基であってもよい。このような架橋基としては、アントラニル基、シンナモイル基、クマリン構造を含む置換基、フェニルマレイミド基、フルフリルアクリレート基、ベンゾシクロブタン、シクロペンタジエニル基、ベンゾシクロブタンやスルチン構造を持つ置換基ならびに臭化アルキル基や塩化アルキル基などのハロゲン化アルキル基が例示される。さらに、架橋基はラジカル開始剤として反応する置換基として、アクリル基やメタクリル基のような炭素−炭素の多重結合を含む置換基であってもよい。以下に架橋基を有するポリマーの繰り返し単位の具体例を以下に示す。ただし、ポリマーは以下に示す具体例の繰り返し単位を含むポリマーに限定されるものではない。

Figure 2017057264
The crosslinking group may be a substituent containing a carbon-carbon double bond or triple bond that undergoes photodimerization by light, a substituent that undergoes a nucleophilic substitution reaction, or a substituent that undergoes an addition reaction by heat. Such bridging groups include anthranyl groups, cinnamoyl groups, substituents containing coumarin structures, phenylmaleimide groups, furfuryl acrylate groups, benzocyclobutanes, cyclopentadienyl groups, substituents having benzocyclobutane and sultin structures, and odors. Illustrative are halogenated alkyl groups such as alkyl halide groups and alkyl chloride groups. Further, the crosslinking group may be a substituent containing a carbon-carbon multiple bond such as an acryl group or a methacryl group as a substituent that reacts as a radical initiator. Specific examples of the repeating unit of the polymer having a crosslinking group are shown below. However, the polymer is not limited to the polymer containing the repeating units of the specific examples shown below.
Figure 2017057264

実施形態のポリマーは、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算重量平均分子量(Mw)が、10,000〜300,000であるものが好ましい。また、実施形態のポリマーは、3,000〜100,000の数平均分子量(Mn)を有するのが好ましい。   The polymer according to the embodiment preferably has a polystyrene-reduced weight average molecular weight (Mw) of 10,000 to 300,000 by gel permeation chromatography (GPC). In addition, the polymer of the embodiment preferably has a number average molecular weight (Mn) of 3,000 to 100,000.

[光電変換素子]
次に、上記実施形態によるポリマーを光電変換素子に用いる形態について、図面を参照しながら説明すると以下の通りである。
[Photoelectric conversion element]
Next, the form in which the polymer according to the above embodiment is used for a photoelectric conversion element will be described below with reference to the drawings.

図1は実施形態による光電変換素子の模式断面図である。透明基板6上に、透明電極1、第一のバッファ層2、光電変換層3、第二のバッファ層4、背面電極5が積層している。本実施形態による光電変換素子は、上記実施形態のポリマーを少なくとも1種含む光電変換層を有する。なお、実施形態において第一と第二のバッファ層は必須では無く、省略されていてもよい。透明電極1と背面電極5は、それぞれ陰極または陽極となり、電子または正孔とがそれぞれ取り出される。透明電極が陽極となる場合を順構成と呼び、陰極となる場合は逆構成と呼ぶ。実施形態はどちらの構造でもよい。光電変換層3は、透明基板6と透明電極1と第一のバッファ層2を通過して入射した光によって励起されて起電し、透明電極1と背面電極5にそれぞれ電子と正孔を分配する層である。第一のバッファ層2と第二のバッファ層4は、光電変換層と、陰極または陽極との間に挟まれている。   FIG. 1 is a schematic cross-sectional view of a photoelectric conversion element according to an embodiment. On the transparent substrate 6, the transparent electrode 1, the first buffer layer 2, the photoelectric conversion layer 3, the second buffer layer 4, and the back electrode 5 are laminated. The photoelectric conversion element according to the present embodiment has a photoelectric conversion layer containing at least one polymer of the above embodiment. In the embodiment, the first and second buffer layers are not essential and may be omitted. The transparent electrode 1 and the back electrode 5 become a cathode or an anode, respectively, and electrons or holes are taken out, respectively. The case where the transparent electrode is an anode is called a forward configuration, and the case where it is a cathode is called a reverse configuration. The embodiment may have either structure. The photoelectric conversion layer 3 is excited by light incident through the transparent substrate 6, the transparent electrode 1, and the first buffer layer 2, and distributes electrons and holes to the transparent electrode 1 and the back electrode 5, respectively. It is a layer to do. The first buffer layer 2 and the second buffer layer 4 are sandwiched between the photoelectric conversion layer and the cathode or anode.

本実施形態のポリマーである電子供与材料を光電変換素子に用いる場合、上記一般式(1)に示される構造を有するポリマーを1種類用いてもよいし、2種類以上用いてもよい。また、他のポリマーを混ぜて用いてもよい。バルクヘテロ構造をもつ光電変換素子として用いる場合、上記一般式(1)に示される構造を有するポリマーと共にn型材料として知られる電子受容材料を用いることが好ましい。   When using the electron donating material which is a polymer of this embodiment for a photoelectric conversion element, one type of polymer having the structure represented by the general formula (1) may be used, or two or more types may be used. Moreover, you may mix and use another polymer. When used as a photoelectric conversion element having a bulk heterostructure, an electron-accepting material known as an n-type material is preferably used together with a polymer having a structure represented by the general formula (1).

電子受容体としては、フラーレンおよびその誘導体が好適に使用される。ここで使用されるフラーレン誘導体は、フラーレン骨格を有する誘導体であれば特に限定されない。具体的には、C60、C70、C76、C78およびC84等を基本骨格として含む誘導体が挙げられる。フラーレン誘導体は、フラーレン骨格における炭素原子が任意の官能基で修飾されていてもよく、この官能基同士が互いに結合して環を形成していてもよい。フラーレン誘導体には、フラーレン結合ポリマーも含まれる。溶剤に親和性の高い官能基を有し、溶媒への可溶性が高いフラーレン誘導体が好ましい。フラーレン誘導体における官能基としては、例えば、(i)水素原子、(ii)水酸基、(iii)フッ素原子、塩素原子等のハロゲン原子、(iv)メチル基、エチル基等のアルキル基、(v)ビニル基等のアルケニル基、(vi)シアノ基、(vii)メトキシ基、エトキシ基等のアルコキシ基、(viii)フェニル基、ナフチル基等の芳香族炭化水素基、(ix)チエニル基、ピリジル基等の芳香族複素環基等が挙げられる。   As the electron acceptor, fullerene and its derivatives are preferably used. The fullerene derivative used here is not particularly limited as long as it is a derivative having a fullerene skeleton. Specific examples include derivatives containing C60, C70, C76, C78, C84 and the like as a basic skeleton. In the fullerene derivative, carbon atoms in the fullerene skeleton may be modified with an arbitrary functional group, and these functional groups may be bonded to each other to form a ring. Fullerene derivatives also include fullerene bonded polymers. A fullerene derivative having a functional group with high affinity for the solvent and high solubility in the solvent is preferred. Examples of the functional group in the fullerene derivative include (i) a hydrogen atom, (ii) a hydroxyl group, (iii) a halogen atom such as a fluorine atom and a chlorine atom, (iv) an alkyl group such as a methyl group and an ethyl group, and (v) Alkenyl groups such as vinyl groups, (vi) cyano groups, (vii) alkoxy groups such as methoxy groups, ethoxy groups, (viii) aromatic hydrocarbon groups such as phenyl groups, naphthyl groups, (ix) thienyl groups, pyridyl groups And aromatic heterocyclic groups such as

フラーレン誘導体の具体例としては、C6036、C7036等の水素化フラーレン、C60、C70等を基本骨格とするオキサイドフラーレン、フラーレン金属錯体等が挙げられる。上述した中でも、フラーレン誘導体として、60PCBM([6,6]−フェニルC61酪酸メチルエステル)または70PCBM([6,6]−フェニルC71酪酸メチルエステル)を使用することが特に好ましい。未置換のフラーレンを使用する場合、C70を使用することが好ましい。フラーレンC70は、光キャリアの発生効率が高く、有機薄膜太陽電池に使用するのに適している。電子受容材料としてフラーレン誘導体を用いることがより好ましい。電子供与材料と電子受容材料の含有比は1:99−99:1の範囲であることが好ましく、より好ましくは10:90−90:10の範囲であり、さらに好ましくは20:80−80:20の範囲である。 Specific examples of the fullerene derivative, C 60 H 36, C 70 hydrogenated fullerenes such as H 36, oxide fullerenes a basic skeleton C60, C70, etc., fullerene metal complexes. Among the above-described compounds, it is particularly preferable to use 60PCBM ([6,6] -phenyl C61 butyric acid methyl ester) or 70PCBM ([6,6] -phenyl C71 butyric acid methyl ester) as the fullerene derivative. When using an unsubstituted fullerene, it is preferable to use C70. Fullerene C70 has high photocarrier generation efficiency and is suitable for use in organic thin-film solar cells. More preferably, a fullerene derivative is used as the electron-accepting material. The content ratio of the electron donor material and the electron acceptor material is preferably in the range of 1: 99-99: 1, more preferably in the range of 10: 90-90: 10, and even more preferably 20: 80-80: A range of 20.

実施形態に係る光電変換素子の構成部材についてそれぞれ説明すると以下の通りである。   The constituent members of the photoelectric conversion element according to the embodiment will be described as follows.

(透明基板6)
透明基板6は、ほかの構成部材を支持するためのものである。従来知られている光電変換素子に用いられるものから任意に選択することができる。ただし、入射光はこの透明電極を通過して光電変換層まで届く必要があるので、透明または半透明である必要がある。
(Transparent substrate 6)
The transparent substrate 6 is for supporting other components. It can be arbitrarily selected from those used in conventionally known photoelectric conversion elements. However, since incident light must pass through this transparent electrode and reach the photoelectric conversion layer, it must be transparent or translucent.

この透明基板6は、その表面に電極を形成することができるものであり、熱や有機溶媒によって変質しないものが好ましい。透明基板6の材料は、無機材料であっても有機材料であってもよい。無機材料としては、例えば、無アルカリガラス、石英ガラス等が挙げられる。また有機材料としては、例えばポリエチレン、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリイミド、ポリアミド、ポリアミドイミド、ポリエステル、ポリシクロオレフィン等のプラスチック材料が挙げられる。これらの有機材料は、液晶ポリマーや高分子フィルムの形状であってもよい。   The transparent substrate 6 is capable of forming an electrode on the surface thereof, and is preferably one that is not altered by heat or an organic solvent. The material of the transparent substrate 6 may be an inorganic material or an organic material. Examples of the inorganic material include alkali-free glass and quartz glass. Examples of the organic material include plastic materials such as polyethylene, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide, polyamide, polyamideimide, polyester, and polycycloolefin. These organic materials may be in the form of a liquid crystal polymer or a polymer film.

基板の厚さは、その他の構成部材を支持するために十分な強度があれば、特に限定されない。例えば柔軟性を持つ材料を用いることもできる。透明基板6は、光が入射する側に配置されるので、光入射面には、例えばモスアイ構造の反射防止膜を設置することができる。このような反射防止膜を設けることによって、入射光を効率的に取り込み、光電変換素子のエネルギー変換効率を向上させることが可能である。ここでモスアイ構造は表面に100nm程度の規則的な突起配列を有する構造である。この突起構造により厚み方向の屈折率が連続的に変化するため、無反射フィルムを媒介させることで屈折率の不連続的な変化面がなくなるため光の反射が減少して、光電変換素子の変換効率が改良される。   The thickness of the substrate is not particularly limited as long as it has sufficient strength to support other components. For example, a flexible material can be used. Since the transparent substrate 6 is disposed on the light incident side, an antireflection film having a moth-eye structure, for example, can be provided on the light incident surface. By providing such an antireflection film, it is possible to efficiently capture incident light and improve the energy conversion efficiency of the photoelectric conversion element. Here, the moth-eye structure is a structure having a regular protrusion arrangement of about 100 nm on the surface. This projection structure changes the refractive index in the thickness direction continuously, so there is no discontinuous change in the refractive index by mediating a non-reflective film, reducing the reflection of light and converting the photoelectric conversion element Efficiency is improved.

(透明電極1)
透明電極1は光を透過させる導電性を有するものであれば透明でも半透明でもよく、その材料は特に限定されない。透明または半透明の電極材料としては、従来知られている光電変換素子に用いられる材料から任意に選択することができる。このような材料としては、例えば導電性の金属酸化物、半透明の金属等が挙げられる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ(NESA)、およびそれらの複合体であるインジウム・スズ・オキサイド(ITO)、フッ素ドープ酸化スズ(FTO)、インジウム・亜鉛・オキサイド(IZO)等や、金、白金、銀、銅等が用いられる。特に、ITOまたはFTOが好ましい。また、電極材料として、有機系の導電性ポリマーであるポリアニリンおよびその誘導体、ポリチオフェンおよびその誘導体等を用いてもよい。
(Transparent electrode 1)
The transparent electrode 1 may be transparent or translucent as long as it has conductivity to transmit light, and the material is not particularly limited. The transparent or translucent electrode material can be arbitrarily selected from materials used for conventionally known photoelectric conversion elements. Examples of such materials include conductive metal oxides and translucent metals. Specifically, indium oxide, zinc oxide, tin oxide (NESA), and their composites such as indium tin oxide (ITO), fluorine-doped tin oxide (FTO), indium zinc oxide (IZO), etc. Alternatively, gold, platinum, silver, copper or the like is used. In particular, ITO or FTO is preferable. Further, as an electrode material, polyaniline and a derivative thereof, which is an organic conductive polymer, polythiophene and a derivative thereof, or the like may be used.

透明電極は、これらの材料を、例えば真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法、塗布法等によって透明基材6の表面に成膜することで製造することができる。   The transparent electrode can be produced by depositing these materials on the surface of the transparent substrate 6 by, for example, vacuum deposition, sputtering, ion plating, plating, coating, or the like.

透明電極の膜厚は、例えばITOからなる電極である場合、最小膜厚が30〜300nmであることが好ましい。最小膜厚が30nm以上とすると導電性が十分となって、光電変換効率が高くなる傾向になる。一方、最小膜厚が300nm以下とすることによる、透明電極であるITO膜の可撓性が高くなり、応力が作用してもひび割れなどが生じにくくなる傾向にある。透明電極のシート抵抗は可能な限り低いことが好ましく、具体的には10Ω/□以下であることが好ましい。また、透明電極は単層からなるものであってもよいが、異なる仕事関数の材料で構成される層を積層したものであってもよい。さらには、必要に応じて透明電極層にワイヤー状の電極を組み合わせることもできる。   When the film thickness of the transparent electrode is an electrode made of, for example, ITO, the minimum film thickness is preferably 30 to 300 nm. When the minimum film thickness is 30 nm or more, the conductivity becomes sufficient and the photoelectric conversion efficiency tends to increase. On the other hand, when the minimum film thickness is 300 nm or less, the flexibility of the ITO film, which is a transparent electrode, increases, and cracks and the like tend not to occur even when stress is applied. The sheet resistance of the transparent electrode is preferably as low as possible, specifically 10Ω / □ or less. The transparent electrode may be a single layer, or may be a laminate of layers made of materials having different work functions. Furthermore, if necessary, a wire electrode can be combined with the transparent electrode layer.

(第一のバッファ層2)
実施形態による光電変換素子において、順構成の場合は、第一のバッファ層2に正孔輸送材料を用いてもよい。正孔輸送材料としては、ポリチオフェン系重合体、ポリ−p−フェニレンビニレン系重合体、ポリフルオレン系重合体、ポリピロール重合体、ポリアニリン重合体、ポリフラン重合体、ポリピリジン重合体、ポリカルバゾール重合体などの導電性高分子や、フタロシアニン誘導体(HPc、CuPc、ZnPcなど)、ポルフィリン誘導体、アセン系化合物(テトラセン、ペンタセンなど)などのp型半導体特性を示す低分子有機化合物、グラフェンや酸化グラフェンなどの炭素化合物、MoOなどの酸化モリブデン(MoO)、WOなどの酸化タングステン(WO)、NiOなどの酸化ニッケル(NiO)、Vなどの酸化バナジウム(VO)、ZrOなどの酸化ジルコニウム(ZrO)、CuOなどの酸化銅(CuO)、ヨウ化銅、RuO4などの酸化ルテニウム(RuOx)、Re27などの酸化レニウム(ReO)などの無機化合物が好ましく用いられる。特に、ポリチオフェン系重合体であるポリエチレンジオキシチオフェン(PEDOT)やPEDOTにポリスチレンスルホネート(PSS)が添加されたもの、酸化モリブデン、酸化バナジウム、酸化タングステンが好ましく用いられる。
(First buffer layer 2)
In the photoelectric conversion element according to the embodiment, a hole transport material may be used for the first buffer layer 2 in the case of the forward configuration. Examples of hole transport materials include polythiophene polymers, poly-p-phenylene vinylene polymers, polyfluorene polymers, polypyrrole polymers, polyaniline polymers, polyfuran polymers, polypyridine polymers, and polycarbazole polymers. Conductive polymers, phthalocyanine derivatives (H 2 Pc, CuPc, ZnPc, etc.), porphyrin derivatives, low molecular organic compounds exhibiting p-type semiconductor properties such as acene compounds (tetracene, pentacene, etc.), graphene, graphene oxide, etc. Carbon compounds, molybdenum oxide such as MoO 3 (MoO x ), tungsten oxide such as WO 3 (WO x ), nickel oxide such as NiO (NiO x ), vanadium oxide such as V 2 O 5 (VO x ), ZrO 2 zirconium oxide, such as (ZrO x), Cu 2 O Which copper oxide (CuO x), copper iodide, ruthenium oxide, such as RuO 4 (RuO x), inorganic compounds such as rhenium oxide (ReO x), such as Re 2 O 7 is preferably used. In particular, polyethylenedioxythiophene (PEDOT), which is a polythiophene polymer, PEDOT to which polystyrene sulfonate (PSS) is added, molybdenum oxide, vanadium oxide, and tungsten oxide are preferably used.

逆構成の場合は、第一のバッファ層2に電子輸送材料を用いてもよい。電子輸送材料としては、リチウム、ナトリウム、カリ ウム、セシウム等のアルカリ金属の塩、並びに酸化チタン(TiO)や酸化亜鉛(ZnO)のようなn型の酸化物半導体化合物が用いられる。アルカリ金属の塩としては、フッ化 リチウム、フッ化ナトリウム、フッ化カリウム、フッ化セシウム等のフッ化物塩が用いられる。有機材料を用いることも可能であり、ポリエチレンイミンなどの材料も用いられる。上記正孔輸送材料および電子輸送材料は単独のでもちいてもよいし、2種以上をまぜて用いてもよい。第一のバッファ層2の膜厚は5nmから600nmの厚さが好ましく、より好ましくは10nmから200nmである。 In the case of the reverse configuration, an electron transport material may be used for the first buffer layer 2. As the electron transporting material, alkali metal salts such as lithium, sodium, potassium, and cesium, and n-type oxide semiconductor compounds such as titanium oxide (TiO x ) and zinc oxide (ZnO) are used. As the alkali metal salt, fluoride salts such as lithium fluoride, sodium fluoride, potassium fluoride and cesium fluoride are used. Organic materials can also be used, and materials such as polyethyleneimine are also used. The hole transport material and the electron transport material may be used alone or in combination of two or more. The thickness of the first buffer layer 2 is preferably 5 nm to 600 nm, more preferably 10 nm to 200 nm.

(光電変換層3)
光電変換層は前述のとおり、本実施形態のポリマーを含む有機半導体材料または有機半導体材料と電子供与材料の混合物を用いる。これらの有機半導体材料は、溶媒に溶解させて溶液を調製し、その溶液を塗布することにより成膜可能である。従って、大面積の有機薄膜太陽電池を、印刷法等により、安価な設備にて低コストで製造できるという利点がある。好ましくは、光電変換層は、上記実施形態のポリマーの少なくとも1種と、フラーレン誘導体とを含んでなるバルクヘテロ層である。
(Photoelectric conversion layer 3)
As described above, the photoelectric conversion layer uses an organic semiconductor material containing the polymer of the present embodiment or a mixture of an organic semiconductor material and an electron donating material. These organic semiconductor materials can be formed into a film by dissolving in a solvent to prepare a solution and applying the solution. Therefore, there is an advantage that a large-area organic thin film solar cell can be manufactured at low cost with inexpensive equipment by a printing method or the like. Preferably, the photoelectric conversion layer is a bulk hetero layer comprising at least one polymer of the above embodiment and a fullerene derivative.

有機半導体材料を塗布するためには、溶媒に溶解する必要があるが、それに用いる溶媒としては、例えば、(i)トルエン、キシレン、テトラリン、デカリン、メシチレン、n−ブチルベンゼン、sec−ブチルベンゼン、tert−ブチルベンゼン等の不飽和炭化水素類溶媒、(ii)クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化芳香族炭化水素類、(iii)四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、クロロブタン、ブロモブタン、クロロペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン等のハロゲン化飽和炭化水素類、(iv)テトラヒドロフラン、テトラヒドロピラン等のエーテル類が挙げられる。特に、ハロゲン化芳香族溶剤が好ましい。これらの溶剤を単独、もしくは混合して使用することが可能である。   In order to apply the organic semiconductor material, it is necessary to dissolve in a solvent. Examples of the solvent used for the organic semiconductor material include (i) toluene, xylene, tetralin, decalin, mesitylene, n-butylbenzene, sec-butylbenzene, unsaturated hydrocarbon solvents such as tert-butylbenzene, (ii) halogenated aromatic hydrocarbons such as chlorobenzene, dichlorobenzene, trichlorobenzene, (iii) carbon tetrachloride, chloroform, dichloromethane, dichloroethane, chlorobutane, bromobutane, Halogenated saturated hydrocarbons such as chloropentane, chlorohexane, bromohexane and chlorocyclohexane, and (iv) ethers such as tetrahydrofuran and tetrahydropyran. In particular, a halogenated aromatic solvent is preferable. These solvents can be used alone or in combination.

溶液を塗布する方法としては、スピンコート法、ディップコート法、キャスティング法、バーコート法、ロールコート法、ワイアーバーコート法、スプレー法、スクリーン印刷、グラビア印刷法、フレキソ印刷法、オフセット印刷法、グラビア・オフセット印刷、ディスペンサー塗布、ノズルコート法、キャピラリーコート法、インクジェット法等が挙げられる。実施形態においては、これらの塗布法を単独で、もしくは組み合わせて用いることができる。   As a method of applying the solution, spin coating method, dip coating method, casting method, bar coating method, roll coating method, wire bar coating method, spray method, screen printing, gravure printing method, flexographic printing method, offset printing method, Examples include gravure offset printing, dispenser application, nozzle coating method, capillary coating method, and ink jet method. In the embodiment, these coating methods can be used alone or in combination.

実施形態において、光電変換層にはペロブスカイト構造をもつ有機無機ハイブリット材料を用いることもできる。ペロブスカイト構造をもつ有機無機ハイブリット材料はイオンA、B、およびXからなり、化学式ABX3で表すことができる。イオンBがイオンAに比べて小さい場合にペロブスカイト構造をとる場合がある。立方晶系または正方晶系の単位格子をもち、立方晶の各頂点にAが、体心にB、これを中心として立方晶の各面心にXが配置している。BX6八面体の向きは、Aとの相互作用により容易にひずみやすい。対称性の低下により、モット転移を起こし、イオンMに局在していた価電子がバンドとして広がることができる。イオンAはCHNHなどのアルキルアミン、イオンBはPbまたはSn、イオンXはCl、Br、またはIが好ましい。ペロブスカイト構造を構成するイオンA、B、およびXは、それぞれ単一であっても混合であってもよい。なお、本明細書において、光電変換層にペロブスカイト構造をもつ有機無機ハイブリット材料を用いた光電変換素子をペロブスカイト型光電変換素子と呼ぶ。実施形態によるペロブスカイト光電変換素子は、好ましくは、光電変換層にペロブスカイト材料を用い、正孔輸送層として上記実施形態のポリマーの少なくとも1種を含む。 In the embodiment, an organic-inorganic hybrid material having a perovskite structure can also be used for the photoelectric conversion layer. An organic-inorganic hybrid material having a perovskite structure is composed of ions A, B, and X, and can be represented by the chemical formula ABX3. When the ion B is smaller than the ion A, a perovskite structure may be taken. It has a cubic or tetragonal unit cell, A is arranged at each vertex of the cubic crystal, B is arranged at the body center, and X is arranged at each face center of the cubic crystal centering on this. The orientation of the BX6 octahedron is easily distorted by the interaction with A. Due to the decrease in symmetry, the Mott transition occurs and the valence electrons localized in the ions M can spread as a band. The ion A is preferably an alkylamine such as CH 3 NH 3 , the ion B is preferably Pb or Sn, and the ion X is preferably Cl, Br, or I. The ions A, B, and X constituting the perovskite structure may be single or mixed. Note that in this specification, a photoelectric conversion element using an organic-inorganic hybrid material having a perovskite structure in a photoelectric conversion layer is referred to as a perovskite photoelectric conversion element. The perovskite photoelectric conversion element according to the embodiment preferably uses a perovskite material for the photoelectric conversion layer, and includes at least one polymer of the above embodiment as a hole transport layer.

(第二のバッファ層4)
実施形態による光電変換素子において、順構成の場合は、第二のバッファ層4に電子輸送材料を用いてもよい。電子輸送材料としては、リチウム、ナトリウム、カリ ウム、セシウム等のアルカリ金属の塩、並びに酸化チタン(TiOx)や酸化亜鉛(ZnO)のようなn型の酸化物半導体化合物が用いられる。アルカリ金属の塩としては、フッ化 リチウム、フッ化ナトリウム、フッ化カリウム、フッ化セシウム等のフッ化物塩が用いられる。有機材料を用いることも可能であり、ポリエチレンイミンなどの材料も用いられる。
(Second buffer layer 4)
In the photoelectric conversion element according to the embodiment, in the case of the forward configuration, an electron transport material may be used for the second buffer layer 4. As the electron transporting material, alkali metal salts such as lithium, sodium, potassium and cesium, and n-type oxide semiconductor compounds such as titanium oxide (TiOx) and zinc oxide (ZnO) are used. As the alkali metal salt, fluoride salts such as lithium fluoride, sodium fluoride, potassium fluoride and cesium fluoride are used. Organic materials can also be used, and materials such as polyethyleneimine are also used.

逆構成の場合は、第二のバッファ層4に正孔輸送材料を用いてもよい。正孔輸送材料としては、ポリチオフェン系重合体、ポリ−p−フェニレンビニレン系重合体、ポリフルオレン系重合体、ポリピロール重合体、ポリアニリン重合体、ポリフラン重合体、ポリピリジン重合体、ポリカルバゾール重合体などの導電性高分子や、フタロシアニン誘導体(HPc、CuPc、ZnPcなど)、ポルフィリン誘導体、アセン系化合物(テトラセン、ペンタセンなど)などのp型半導体特性を示す低分子有機化合物、グラフェンや酸化グラフェンなどの炭素化合物、MoOなどの酸化モリブデン(MoO)、WOなどの酸化タングステン(WO)、NiOなどの酸化ニッケル(NiO)、Vなどの酸化バナジウム(VO)、ZrOなどの酸化ジルコニウム(ZrO)、CuOなどの酸化銅(CuO)、ヨウ化銅、RuO4などの酸化ルテニウム(RuOx)、Re27などの酸化レニウム(ReO)などの無機化合物が好ましく用いられる。特に、酸化モリブデン、酸化バナジウム、酸化タングステンが好ましく用いられる。 In the case of the reverse configuration, a hole transport material may be used for the second buffer layer 4. Examples of hole transport materials include polythiophene polymers, poly-p-phenylene vinylene polymers, polyfluorene polymers, polypyrrole polymers, polyaniline polymers, polyfuran polymers, polypyridine polymers, and polycarbazole polymers. Conductive polymers, phthalocyanine derivatives (H 2 Pc, CuPc, ZnPc, etc.), porphyrin derivatives, low molecular organic compounds exhibiting p-type semiconductor properties such as acene compounds (tetracene, pentacene, etc.), graphene, graphene oxide, etc. Carbon compounds, molybdenum oxide such as MoO 3 (MoO x ), tungsten oxide such as WO 3 (WO x ), nickel oxide such as NiO (NiO x ), vanadium oxide such as V 2 O 5 (VO x ), ZrO 2 zirconium oxide, such as (ZrO x), Cu 2 O Which copper oxide (CuO x), copper iodide, ruthenium oxide, such as RuO 4 (RuO x), inorganic compounds such as rhenium oxide (ReO x), such as Re 2 O 7 is preferably used. In particular, molybdenum oxide, vanadium oxide, and tungsten oxide are preferably used.

上記電子輸送材料および正孔輸送材料は単一の材料を用いてもよいし、2種以上の材料を混合して用いてもよい。第二のバッファ層4の膜厚は1nmから600nmの厚さが好ましい   A single material may be used for the electron transport material and the hole transport material, or two or more materials may be mixed and used. The thickness of the second buffer layer 4 is preferably 1 nm to 600 nm.

(背面電極5)
背面電極5は導電性を有するものであれば特に限定されない。背面電極は不透明な金属を用いることで反射などにより入射光を有効利用できるので、光マネージメント上好ましい。背面電極を透明または半透明にすることで、シースルーな光電変換素子を作製することも可能である。また、背面電極側から光を取り込むために、背面電極を透明または半透明の導電性を有する材料により形成させることもできる。
(Back electrode 5)
The back electrode 5 is not particularly limited as long as it has conductivity. The back electrode is preferable in terms of light management because it can effectively use incident light by reflection or the like by using an opaque metal. By making the back electrode transparent or semi-transparent, it is also possible to produce a see-through photoelectric conversion element. Moreover, in order to take in light from the back electrode side, the back electrode can be formed of a transparent or translucent conductive material.

不透明な金属電極の材料としては、例えば、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫などの金属、またはそれらを含む合金が挙げられる。合金の例としては、リチウム−アルミニウム合金、リチウム−マグネシウム合金、リチウム−インジウム合金、マグネシウム−銀合金、カルシウム−インジウム合金、マグネシウム−アルミニウム合金、インジウム−銀合金、カルシウム−アルミニウム合金等が挙げられる。また、透明または半透明の電極材料としては、例えば導電性の金属酸化物、半透明の金属等が挙げられる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ(NESA)、およびそれらの複合体であるインジウム・スズ・オキサイド(ITO)、フッ素ドープ酸化スズ(FTO)、インジウム・亜鉛・オキサイド(IZO)等が用いられる。さらには導電性ポリマーなどの有機物を用いることもできる。   Examples of the material for the opaque metal electrode include metals such as gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, and tin, or alloys containing them. Examples of the alloy include a lithium-aluminum alloy, a lithium-magnesium alloy, a lithium-indium alloy, a magnesium-silver alloy, a calcium-indium alloy, a magnesium-aluminum alloy, an indium-silver alloy, and a calcium-aluminum alloy. Examples of the transparent or translucent electrode material include conductive metal oxides and translucent metals. Specifically, indium oxide, zinc oxide, tin oxide (NESA), and their composites such as indium tin oxide (ITO), fluorine-doped tin oxide (FTO), indium zinc oxide (IZO), etc. Is used. Furthermore, organic substances such as a conductive polymer can also be used.

背面電極は、例えば真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法、塗布法等で成膜することができる。それぞれの膜厚は特に規定しないが、不透明な金属電極を用いた場合、光学マネージメントの観点から最小膜厚が100nm以上であることが好ましい。透明電極の場合はITOまたはFTOが好ましい。また、電極材料として、有機系の導電性ポリマーであるポリアニリンおよびその誘導体、ポリチオフェンおよびその誘導体等を用いてもよい。膜厚は、例えばITOを用いる場合、最小膜厚が30〜300nmであることが好ましい。最小膜厚を30nm以上とすることにより高い導電性を維持することができ、光電変換効率を改良することができる。また最小膜厚が300nm以下とすることにより、ITO膜が十分な可撓性を有するものとなり、応力が作用してもひび割れなどが怒りにくいので好ましい。シート抵抗は可能な限り低いことが好ましく、具体的には10Ω/□以下であることが好ましい。背面電極は、単層からなるものであってもよいが、異なる仕事関数の材料で構成される層を積層したものであってもよい。   The back electrode can be formed by, for example, a vacuum deposition method, a sputtering method, an ion plating method, a plating method, a coating method, or the like. Each film thickness is not particularly defined, but when an opaque metal electrode is used, the minimum film thickness is preferably 100 nm or more from the viewpoint of optical management. In the case of a transparent electrode, ITO or FTO is preferable. Further, as an electrode material, polyaniline and a derivative thereof, which is an organic conductive polymer, polythiophene and a derivative thereof, or the like may be used. For example, when ITO is used, the minimum film thickness is preferably 30 to 300 nm. By setting the minimum film thickness to 30 nm or more, high conductivity can be maintained, and photoelectric conversion efficiency can be improved. In addition, it is preferable that the minimum film thickness be 300 nm or less because the ITO film has sufficient flexibility, and cracks and the like are less likely to get angry even when stress is applied. The sheet resistance is preferably as low as possible, specifically 10Ω / □ or less. The back electrode may be a single layer or may be a laminate of layers made of materials having different work functions.

[光電変換素子の応用]
実施形態による光電変換素子は、従来知られている任意の装置などに応用することができる。典型的には太陽電池、特に有機薄膜太陽電池やペロブスカイト型太陽電池に用いることができる。また実施形態による光電変換素子は、光センサーや撮像素子などにも応用できる。撮像素子は、実施形態による光電変換素子を二次元に配列することで形成させることができる。また光電変換素子を一次元に配列させてスキャナなどに利用することもできる。
[Application of photoelectric conversion elements]
The photoelectric conversion element according to the embodiment can be applied to any conventionally known device. Typically, it can be used for solar cells, particularly organic thin film solar cells and perovskite solar cells. The photoelectric conversion element according to the embodiment can also be applied to an optical sensor, an imaging element, and the like. The image sensor can be formed by two-dimensionally arranging the photoelectric conversion elements according to the embodiment. In addition, photoelectric conversion elements can be arranged in one dimension and used for a scanner or the like.

本実施形態を諸例により具体的に説明すると以下の通りである。但し、本実施形態がこれらの例に限定されるものではない。   The present embodiment will be specifically described with reference to various examples. However, the present embodiment is not limited to these examples.

[シリルアセチレン基を側鎖として有するポリマーの合成]
(実施例1)
ポリマー[P1]の合成
アルゴン気流下、三方コックをつけた3つ口フラスコに、422.3g(0.5mmol)の4,8−ビス−[(トリイソプロピルシラニル)−エチニル]−2,6−ビス−トリメチルスタンナニル−ベンゾ[1,2−b;4,5−b’]ジフラン、236.1g(0.5mmol)の4,6−ジブロモ−3−フルオロ−チエノ−[3,4−b]チオフェン−2−カルボキシリックアシッドオクチルエステルと、0.025gのテトラキス(トリフェニルフォスフィン)パラジウム(触媒)を秤量し、真空脱気を3回行った。その後、別の容器で真空脱気したトルエン12mlとジメチルホルムアミド3mlを三方コックから添加し、さらに真空脱気を3回行った後、120℃にて12時間加熱還流を行った。室温に冷却後、361.4g(1.5mmol)のトリメチルフェニルスズを、脱気したトルエン2.5mLに溶解し先程と同様に三方コックから加え、2時間加熱還流を行った。さらに室温に冷却後、314.0g(2.0mmol)のブロモベンゼンを脱気したトルエン2.5mLに溶解し先程と同様に三方コックから加え、加熱還流を2時間行った。室温に冷却後、この反応液をメタノール500mL中に撹梓しながら滴下して、ポリマーを沈殿させた。その後、この沈殿をガラスルフィルタでろ過した後、クロロホルムに溶解させ、セライトカラムで触媒を除去した。さらにエバポレータで溶媒を濃縮した後、メタノールを加え、ポリマーを沈殿させ、ガラスフィルタを用いてろ過して固体を得た。この固体を80℃で4時間真空乾燥し金属光沢のある下記式に示される繰り返し単位を含むポリマー393gを得た。

Figure 2017057264
ソックスレー抽出で、酢酸エチル、ヘキサン、トルエンの順で精製した。以後、トルエン抽出成分を使用した。
H−NMR(270MHz,CDCl ) ∂:7.6(broad),−7.2(broad)、4.4(broad)、1.8−0.9(broad)]
Mw=32,000、Mn=15,000(GPC)
実施例1〜6のモノマーは文献 Dyes and Pigments 2014,109,81−89および特許第5482973号を参考に合成した。 [Synthesis of polymer having silylacetylene group as side chain]
Example 1
Synthesis of Polymer [P1] In a three-necked flask equipped with a three-way cock under a stream of argon, 422.3 g (0.5 mmol) of 4,8-bis-[(triisopropylsilanyl) -ethynyl] -2,6 -Bis-trimethylstannanyl-benzo [1,2-b; 4,5-b '] difuran, 236.1 g (0.5 mmol) of 4,6-dibromo-3-fluoro-thieno- [3,4 b] Thiophene-2-carboxylic acid octyl ester and 0.025 g of tetrakis (triphenylphosphine) palladium (catalyst) were weighed and subjected to vacuum degassing three times. Thereafter, 12 ml of toluene deaerated in a separate container and 3 ml of dimethylformamide were added from a three-way cock, and vacuum deaeration was further performed three times, followed by heating and refluxing at 120 ° C. for 12 hours. After cooling to room temperature, 361.4 g (1.5 mmol) of trimethylphenyltin was dissolved in 2.5 mL of degassed toluene, added from the three-way cock in the same manner as above, and heated under reflux for 2 hours. Further, after cooling to room temperature, 314.0 g (2.0 mmol) of bromobenzene was dissolved in 2.5 mL of degassed toluene and added from the three-way cock in the same manner as described above, followed by heating under reflux for 2 hours. After cooling to room temperature, the reaction solution was added dropwise to 500 mL of methanol while stirring to precipitate the polymer. Thereafter, the precipitate was filtered with a glass filter, dissolved in chloroform, and the catalyst was removed with a celite column. Furthermore, after concentrating a solvent with an evaporator, methanol was added, the polymer was precipitated, and it filtered using the glass filter, and obtained solid. This solid was vacuum-dried at 80 ° C. for 4 hours to obtain 393 g of a polymer having a metallic luster and having a repeating unit represented by the following formula.
Figure 2017057264
Purification was performed in the order of ethyl acetate, hexane, and toluene by Soxhlet extraction. Thereafter, toluene extracted components were used.
[ 1 H-NMR (270 MHz, CDCl 3 ) ∂: 7.6 (broad), −7.2 (broad), 4.4 (broad), 1.8-0.9 (broad)]
Mw = 32,000, Mn = 15,000 (GPC)
The monomers of Examples 1 to 6 were synthesized with reference to documents Dyes and Pigments 2014, 109, 81-89 and Japanese Patent No. 5482973.

(実施例2)
ポリマー[P2]の合成
実施例1の4,6−ジブロモ−3−フルオロ−チエノ−[3,4−b]チオフェン−2−カルボキシリックアシッドオクチルエステルに代えて、4,6−ジブロモ−3−フルオロ−チエノ−[3,4−b]チオフェン−2−カルボキシリックアシッド 2−エチル−ヘキシルエステルを用いる以外は実施例1と同様の条件で合成を行い、下記式に示される繰り返し単位を含むポリマーを471g得た。

Figure 2017057264
ソックスレー抽出で、酢酸エチル、ヘキサン、トルエンの順で精製した。以後、トルエン抽出成分を使用した。
H−NMR(270MHz,CDCl ) ∂:7.6(broad),7.2(broad)、4.4(broad)、1.8−0.9(broad)]
Mw=53,000、Mn=20,000(GPC) (Example 2)
Synthesis of polymer [P2] In place of 4,6-dibromo-3-fluoro-thieno- [3,4-b] thiophene-2-carboxylic acid octyl ester of Example 1, 4,6-dibromo-3- Fluoro-thieno- [3,4-b] thiophene-2-carboxylic acid A polymer containing a repeating unit represented by the following formula, which was synthesized under the same conditions as in Example 1 except that 2-ethyl-hexyl ester was used. 471 g was obtained.
Figure 2017057264
Purification was performed in the order of ethyl acetate, hexane, and toluene by Soxhlet extraction. Thereafter, toluene extracted components were used.
[ 1 H-NMR (270 MHz, CDCl 3 ) ∂: 7.6 (broad), 7.2 (broad), 4.4 (broad), 1.8-0.9 (broad)]
Mw = 53,000, Mn = 20,000 (GPC)

(実施例3)
ポリマー[P3]の合成
実施例1の4,6−ジブロモ−3−フルオロ−チエノ−[3,4−b]チオフェン−2−カルボキシリックアシッドオクチルエステルに代えて、4,6−ジブロモ−3−フルオロ−チエノ−[3,4−b]チオフェン−2−カルボキシリックアシッド4−オクチルフェニルエステルを用いる以外は実施例1と同様の条件で合成を行い、下記式に示される繰り返し単位を含むポリマーを527g得た。

Figure 2017057264
ソックスレー抽出で、酢酸エチル、ヘキサン、トルエンの順で精製した。以後、トルエン抽出成分を使用した。
H−NMR(270MHz,CDCl ) ∂:7.6(broad),7.2(broad)、2.3(broad)、1.8−0.9(broad)]
Mw=50,000、Mn=18,000(GPC) (Example 3)
Synthesis of polymer [P3] In place of 4,6-dibromo-3-fluoro-thieno- [3,4-b] thiophene-2-carboxylic acid octyl ester of Example 1, 4,6-dibromo-3- Synthesis was carried out under the same conditions as in Example 1 except that fluoro-thieno- [3,4-b] thiophene-2-carboxylic acid 4-octylphenyl ester was used, and a polymer containing a repeating unit represented by the following formula was obtained. 527 g was obtained.
Figure 2017057264
Purification was performed in the order of ethyl acetate, hexane, and toluene by Soxhlet extraction. Thereafter, toluene extracted components were used.
[ 1 H-NMR (270 MHz, CDCl 3 ) ∂: 7.6 (broad), 7.2 (broad), 2.3 (broad), 1.8-0.9 (broad)]
Mw = 50,000, Mn = 18,000 (GPC)

(実施例4)
ポリマー[P4]の合成
実施例1の4,6−ジブロモ−3−フルオロ−チエノ−[3,4−b]チオフェン−2−カルボキシリックアシッドオクチルエステルに代えて、4,6−ジブロモ−3−フルオロ−チエノ−[3,4−b]フラン−2−カルボキシリックアシッドオクチルエステルを用いる以外は実施例1と同様の条件で合成を行い、下記式に示される繰り返し単位を含むポリマーを427g得た。

Figure 2017057264
ソックスレー抽出で、酢酸エチル、ヘキサン、トルエンの順で精製した。以後、トルエン抽出成分を使用した。
H−NMR(270MHz,CDCl ) ∂:7.6(broad),−7.2(broad)、4.4(broad)、1.8−0.9(broad)]
Mw=43,000、Mn=24,000(GPC) Example 4
Synthesis of polymer [P4] In place of 4,6-dibromo-3-fluoro-thieno- [3,4-b] thiophene-2-carboxylic acid octyl ester of Example 1, 4,6-dibromo-3- The synthesis was performed under the same conditions as in Example 1 except that fluoro-thieno- [3,4-b] furan-2-carboxylic acid octyl ester was used, and 427 g of a polymer containing a repeating unit represented by the following formula was obtained. .
Figure 2017057264
Purification was performed in the order of ethyl acetate, hexane, and toluene by Soxhlet extraction. Thereafter, toluene extracted components were used.
[ 1 H-NMR (270 MHz, CDCl 3 ) ∂: 7.6 (broad), −7.2 (broad), 4.4 (broad), 1.8-0.9 (broad)]
Mw = 43,000, Mn = 24,000 (GPC)

(実施例5)
ポリマー[P5]の合成
実施例1の4,6−ジブロモ−3−フルオロ−チエノ−[3,4−b]チオフェン−2−カルボキシリックアシッドオクチルエステルに代えて、4,6−ジブロモ−3−フルオロ−チエノ−[3,4−b]フラン−2−カルボキシリックアシッド2−エチル−ヘキシルエステルを用いる以外は実施例1と同様の条件で合成を行い、下記式に示される繰り返し単位を含むポリマーを412g得た。

Figure 2017057264
ソックスレー抽出で、酢酸エチル、ヘキサン、トルエンの順で精製した。以後、トルエン抽出成分を使用した。
H−NMR(270MHz,CDCl ) ∂:7.6(broad),7.2(broad)、4.4(broad)、1.8−0.9(broad)]
Mw=25,000、Mn=18,000(GPC) (Example 5)
Synthesis of polymer [P5] In place of 4,6-dibromo-3-fluoro-thieno- [3,4-b] thiophene-2-carboxylic acid octyl ester of Example 1, 4,6-dibromo-3- A polymer containing a repeating unit represented by the following formula, which was synthesized under the same conditions as in Example 1 except that fluoro-thieno- [3,4-b] furan-2-carboxylic acid 2-ethyl-hexyl ester was used. 412 g was obtained.
Figure 2017057264
Purification was performed in the order of ethyl acetate, hexane, and toluene by Soxhlet extraction. Thereafter, toluene extracted components were used.
[ 1 H-NMR (270 MHz, CDCl 3 ) ∂: 7.6 (broad), 7.2 (broad), 4.4 (broad), 1.8-0.9 (broad)]
Mw = 25,000, Mn = 18,000 (GPC)

(実施例6)
ポリマー[P6]の合成
実施例1の4,6−ジブロモ−3−フルオロ−チエノ−[3,4−b]チオフェン−2−カルボキシリックアシッドオクチルエステルに代えて、4,6−ジブロモ−3−フルオロ−チエノ−[3,4−b]フラン−2−カルボキシリックアシッド4−オクチル−フェニルエステルを用いる以外は実施例1と同様の条件で合成を行い、下記式に示される繰り返し単位を含むポリマーを522g得た。

Figure 2017057264
ソックスレー抽出で、酢酸エチル、ヘキサン、トルエンの順で精製した。以後、トルエン抽出成分を使用した。
H−NMR(270MHz,CDCl ) ∂:7.6(broad),7.2(broad)、2.2(broad)、1.8−0.9(broad)]
Mw=43,000、Mn=19,000(GPC) (Example 6)
Synthesis of polymer [P6]
Instead of 4,6-dibromo-3-fluoro-thieno- [3,4-b] thiophene-2-carboxylic acid octyl ester of Example 1, 4,6-dibromo-3-fluoro-thieno- [3 , 4-b] furan-2-carboxylic acid 4-octyl-phenyl ester was used under the same conditions as in Example 1 to obtain 522 g of a polymer containing a repeating unit represented by the following formula.
Figure 2017057264
Purification was performed in the order of ethyl acetate, hexane, and toluene by Soxhlet extraction. Thereafter, toluene extracted components were used.
[ 1 H-NMR (270 MHz, CDCl 3 ) ∂: 7.6 (broad), 7.2 (broad), 2.2 (broad), 1.8-0.9 (broad)]
Mw = 43,000, Mn = 19000 (GPC)

(実施例7)
ポリマー[P7]の合成
実施例1の4,6−ジブロモ−3−フルオロ−チエノ−[3,4−b]チオフェン−2−カルボキシリックアシッドオクチルエステルに代えて、1,3−ジブロモ−5−オクチル−2,7−ジチア−5−アザ−シクロペンタ[a]ペンタレン−4,6−ジオンを用いる以外は実施例1と同様の条件で合成を行い、下記式に示される繰り返し単位を含むポリマーを394g得た。
実施例7〜12のモノマーは文献 Macromolecules,2013,46(10),3861−3869を参考に合成した。

Figure 2017057264
ソックスレー抽出で、酢酸エチル、ヘキサン、トルエンの順で精製した。以後、トルエン抽出成分を使用した。
H−NMR(270MHz,CDCl ) ∂:7.6(broad),7.2(broad)、2.8(broad)、2.0−0.9(broad)]
Mw=63,000、Mn=34,000(GPC) (Example 7)
Synthesis of polymer [P7] In place of 4,6-dibromo-3-fluoro-thieno- [3,4-b] thiophene-2-carboxylic acid octyl ester of Example 1, 1,3-dibromo-5- Synthesis was performed under the same conditions as in Example 1 except that octyl-2,7-dithia-5-aza-cyclopenta [a] pentalene-4,6-dione was used, and a polymer containing a repeating unit represented by the following formula was used. 394 g was obtained.
The monomers of Examples 7 to 12 were synthesized with reference to the literature Macromolecules, 2013, 46 (10), 3861-3869.
Figure 2017057264
Purification was performed in the order of ethyl acetate, hexane, and toluene by Soxhlet extraction. Thereafter, toluene extracted components were used.
[ 1 H-NMR (270 MHz, CDCl 3 ) ∂: 7.6 (broad), 7.2 (broad), 2.8 (broad), 2.0-0.9 (broad)]
Mw = 63,000, Mn = 34,000 (GPC)

(実施例8)
ポリマー[P8]の合成
実施例1の4,6−ジブロモ−3−フルオロ−チエノ−[3,4−b]チオフェン−2−カルボキシリックアシッドオクチルエステルに代えて、1,3−ジブロモ−5−(4−エチル−ヘキシル)−2,7−ジチア−5−アザ−シクロペンタ[a]ペンタレン−4,6−ジオンを用いる以外は実施例1と同様の条件で合成を行い、下記式に示される繰り返し単位を含むポリマーを521g得た。

Figure 2017057264
ソックスレー抽出で、酢酸エチル、ヘキサン、トルエンの順で精製した。以後、トルエン抽出成分を使用した。
H−NMR(270MHz,CDCl ) ∂:7.6(broad),7.2(broad)、2.8(broad)、2.0−0.9(broad)]
Mw=54,000、Mn=19,000(GPC) (Example 8)
Synthesis of polymer [P8] In place of 4,6-dibromo-3-fluoro-thieno- [3,4-b] thiophene-2-carboxylic acid octyl ester of Example 1, 1,3-dibromo-5- Synthesis was performed under the same conditions as in Example 1 except that (4-ethyl-hexyl) -2,7-dithia-5-aza-cyclopenta [a] pentalene-4,6-dione was used. 521 g of a polymer containing repeating units was obtained.
Figure 2017057264
Purification was performed in the order of ethyl acetate, hexane, and toluene by Soxhlet extraction. Thereafter, toluene extracted components were used.
[ 1 H-NMR (270 MHz, CDCl 3 ) ∂: 7.6 (broad), 7.2 (broad), 2.8 (broad), 2.0-0.9 (broad)]
Mw = 54,000, Mn = 19000 (GPC)

(実施例9)
ポリマー[P9]の合成
実施例1の4,6−ジブロモ−3−フルオロ−チエノ−[3,4−b]チオフェン−2−カルボキシリックアシッドオクチルエステルに代えて、1,3−ジブロモ−5−(4−オクチル−フェニル)−2,7−ジチア−5−アザ−シクロペンタ[a]ペンタレン−4,6−ジオンを用いる以外は実施例1と同様の条件で合成を行い、下記式に示される繰り返し単位を含むポリマーを570g得た。

Figure 2017057264
ソックスレー抽出で、酢酸エチル、ヘキサン、トルエンの順で精製した。以後、トルエン抽出成分を使用した。
H−NMR(270MHz,CDCl ) ∂:7.6(broad),7.2(broad)、2.2(broad)、1.7−0.9(broad)]
Mw=31,000、Mn=13,000(GPC) Example 9
Synthesis of polymer [P9] In place of 4,6-dibromo-3-fluoro-thieno- [3,4-b] thiophene-2-carboxylic acid octyl ester of Example 1, 1,3-dibromo-5- Synthesis was carried out under the same conditions as in Example 1 except that (4-octyl-phenyl) -2,7-dithia-5-aza-cyclopenta [a] pentalene-4,6-dione was used, and it was represented by the following formula. 570 g of a polymer containing repeating units was obtained.
Figure 2017057264
Purification was performed in the order of ethyl acetate, hexane, and toluene by Soxhlet extraction. Thereafter, toluene extracted components were used.
[ 1 H-NMR (270 MHz, CDCl 3 ) ∂: 7.6 (broad), 7.2 (broad), 2.2 (broad), 1.7-0.9 (broad)]
Mw = 31,000, Mn = 13,000 (GPC)

(実施例10)
ポリマー[P10]の合成
実施例1の4,6−ジブロモ−3−フルオロ−チエノ−[3,4−b]チオフェン−2−カルボキシリックアシッドオクチルエステルに代えて、1,3−ジブロモ−5−オクチル−7−オキサ−2−チア−5−アザ−シクロペンタ[a]ペンタレン−4,6−ジオンを用いる以外は実施例1と同様の条件で合成を行い、下記式に示される繰り返し単位を含むポリマーを453g得た。

Figure 2017057264
ソックスレー抽出で、酢酸エチル、ヘキサン、トルエンの順で精製した。以後、トルエン抽出成分を使用した。
H−NMR(270MHz,CDCl ) ∂:7.6(broad),7.2(broad)、2.7(broad)、1.7−0.9(broad)]
Mw=79,000、Mn=44,000(GPC) (Example 10)
Synthesis of polymer [P10] In place of 4,6-dibromo-3-fluoro-thieno- [3,4-b] thiophene-2-carboxylic acid octyl ester of Example 1, 1,3-dibromo-5- The synthesis is performed under the same conditions as in Example 1 except that octyl-7-oxa-2-thia-5-aza-cyclopenta [a] pentalene-4,6-dione is used, and includes a repeating unit represented by the following formula. 453 g of polymer was obtained.
Figure 2017057264
Purification was performed in the order of ethyl acetate, hexane, and toluene by Soxhlet extraction. Thereafter, toluene extracted components were used.
[ 1 H-NMR (270 MHz, CDCl 3 ) ∂: 7.6 (broad), 7.2 (broad), 2.7 (broad), 1.7-0.9 (broad)]
Mw = 79,000, Mn = 44,000 (GPC)

(実施例11)
ポリマー[P11]の合成
実施例1の4,6−ジブロモ−3−フルオロ−チエノ−[3,4−b]チオフェン−2−カルボキシリックアシッドオクチルエステルに代えて、1,3−ジブロモ−5−(2−エチル−ヘキシル)−7−オキサ−2−チア−5−アザ−シクロペンタ[a]ペンタレン−4,6−ジオンを用いる以外は実施例1と同様の条件で合成を行い、下記式に示される繰り返し単位を含むポリマーを453g得た。

Figure 2017057264
ソックスレー抽出で、酢酸エチル、ヘキサン、トルエンの順で精製した。以後、トルエン抽出成分を使用した。
H−NMR(270MHz,CDCl ) ∂:7.6(broad),7.2(broad)、2.8(broad)、1.7−1.0(broad)]
Mw=32,000、Mn=18,000(GPC) (Example 11)
Synthesis of polymer [P11] In place of 4,6-dibromo-3-fluoro-thieno- [3,4-b] thiophene-2-carboxylic acid octyl ester of Example 1, 1,3-dibromo-5- Synthesis was carried out under the same conditions as in Example 1 except that (2-ethyl-hexyl) -7-oxa-2-thia-5-aza-cyclopenta [a] pentalene-4,6-dione was used. 453 g of polymer containing the indicated repeating units were obtained.
Figure 2017057264
Purification was performed in the order of ethyl acetate, hexane, and toluene by Soxhlet extraction. Thereafter, toluene extracted components were used.
[ 1 H-NMR (270 MHz, CDCl 3 ) ∂: 7.6 (broad), 7.2 (broad), 2.8 (broad), 1.7-1.0 (broad)]
Mw = 32,000, Mn = 18,000 (GPC)

(実施例12)
ポリマー[P12]の合成
実施例1の4,6−ジブロモ−3−フルオロ−チエノ−[3,4−b]チオフェン−2−カルボキシリックアシッドオクチルエステルに代えて、1,3−ジブロモ−5−(4−オクチル−フェニル)−7−オキサ−2−チア−5−アザ−シクロペンタ[a]ペンタレン−4,6−ジオンを用いる以外は実施例1と同様の条件で合成を行い、下記式に示される繰り返し単位を含むポリマーを442g得た。

Figure 2017057264
ソックスレー抽出で、酢酸エチル、ヘキサン、トルエンの順で精製した。以後、トルエン抽出成分を使用した。
H−NMR(270MHz,CDCl ) ∂:7.6(broad),7.2(broad)、2.2(broad)、1.7−1.0(broad)]
Mw=48,000、Mn=18,000(GPC) (Example 12)
Synthesis of polymer [P12] In place of 4,6-dibromo-3-fluoro-thieno- [3,4-b] thiophene-2-carboxylic acid octyl ester of Example 1, 1,3-dibromo-5- Synthesis was carried out under the same conditions as in Example 1 except that (4-octyl-phenyl) -7-oxa-2-thia-5-aza-cyclopenta [a] pentalene-4,6-dione was used. 442 g of polymer containing the indicated repeating unit was obtained.
Figure 2017057264
Purification was performed in the order of ethyl acetate, hexane, and toluene by Soxhlet extraction. Thereafter, toluene extracted components were used.
[ 1 H-NMR (270 MHz, CDCl 3 ) ∂: 7.6 (broad), 7.2 (broad), 2.2 (broad), 1.7-1.0 (broad)]
Mw = 48,000, Mn = 18,000 (GPC)

(実施例13)
ポリマー[P13]の合成
実施例1の4,6−ジブロモ−3−フルオロ−チエノ−[3,4−b]チオフェン−2−カルボキシリックアシッドオクチルエステルに代えて、4,6−ジブロモ−2−(2−ヘキシル−デカン−1−スルフォニル)−チエノ[3,4−b]チオフェンを用いる以外は実施例1と同様の条件で合成を行い、下記式に示される繰り返し単位を含むポリマーを489g得た。
実施例13のモノマーは文献 Chemical Communications,2011,47,8904−8906を参考に合成した。

Figure 2017057264
ソックスレー抽出で、酢酸エチル、ヘキサン、トルエンの順で精製した。以後、トルエン抽出成分を使用した。
H−NMR(270MHz,CDCl ) ∂:7.7−7.5(broad),7.2(broad)、2.5(broad)、1.7−1.1(broad)]
Mw=58,000、Mn=30,000(GPC) (Example 13)
Synthesis of polymer [P13] In place of 4,6-dibromo-3-fluoro-thieno- [3,4-b] thiophene-2-carboxylic acid octyl ester of Example 1, 4,6-dibromo-2- Synthesis was performed under the same conditions as in Example 1 except that (2-hexyl-decane-1-sulfonyl) -thieno [3,4-b] thiophene was used, and 489 g of a polymer containing a repeating unit represented by the following formula was obtained. It was.
The monomer of Example 13 was synthesized with reference to the literature Chemical Communications, 2011, 47, 8904-8906.
Figure 2017057264
Purification was performed in the order of ethyl acetate, hexane, and toluene by Soxhlet extraction. Thereafter, toluene extracted components were used.
[ 1 H-NMR (270 MHz, CDCl 3 ) ∂: 7.7-7.5 (broad), 7.2 (broad), 2.5 (broad), 1.7-1.1 (broad)]
Mw = 58,000, Mn = 30,000 (GPC)

(実施例14)
ポリマー[P14]の合成
実施例1の4,6−ジブロモ−3−フルオロ−チエノ−[3,4−b]チオフェン−2−カルボキシリックアシッドオクチルエステルに代えて、1,3−ジブロモ−5−オクチル−チエノ[3,4−c]ピロール−4,6−ジオンを用いる以外は実施例1と同様の条件で合成を行い、下記式に示される繰り返し単位を含むポリマーを532g得た。
実施例14〜16のモノマーは文献CHEMISTRY OF MATERIALS 2014,26(7)、2299−2306を参考に合成した。

Figure 2017057264
ソックスレー抽出で、酢酸エチル、ヘキサン、トルエンの順で精製した。以後、トルエン抽出成分を使用した。
H−NMR(270MHz,CDCl ) ∂:7.6(broad),7.2(broad)、2.7(broad)、2.0−1.1(broad)]
Mw=42,000、Mn=16,000(GPC) (Example 14)
Synthesis of polymer [P14] Instead of 4,6-dibromo-3-fluoro-thieno- [3,4-b] thiophene-2-carboxylic acid octyl ester of Example 1, 1,3-dibromo-5- The synthesis was performed under the same conditions as in Example 1 except that octyl-thieno [3,4-c] pyrrole-4,6-dione was used, and 532 g of a polymer containing a repeating unit represented by the following formula was obtained.
The monomers of Examples 14 to 16 were synthesized with reference to the document CHEMISTRY OF MATERIALS 2014, 26 (7), 2299-2306.
Figure 2017057264
Purification was performed in the order of ethyl acetate, hexane, and toluene by Soxhlet extraction. Thereafter, toluene extracted components were used.
[ 1 H-NMR (270 MHz, CDCl 3 ) ∂: 7.6 (broad), 7.2 (broad), 2.7 (broad), 2.0-1.1 (broad)]
Mw = 42,000, Mn = 16,000 (GPC)

(実施例15)
ポリマー[P15]の合成
実施例1の4,6−ジブロモ−3−フルオロ−チエノ−[3,4−b]チオフェン−2−カルボキシリックアシッドオクチルエステルに代えて、1,3−ジブロモ−5−(2−エチル−ヘキシル)−チエノ[3,4−c]ピロール−4,6−ジオンを用いる以外は実施例1と同様の条件で合成を行い、下記式に示される繰り返し単位を含むポリマーを403g得た。

Figure 2017057264
ソックスレー抽出で、酢酸エチル、ヘキサン、トルエンの順で精製した。以後、トルエン抽出成分を使用した。
H−NMR(270MHz,CDCl ) ∂:7.6(broad),7.2(broad)、2.8(broad)、2.0−1.0(broad)]
Mw=62,000、Mn=23,000(GPC) (Example 15)
Synthesis of polymer [P15] In place of 4,6-dibromo-3-fluoro-thieno- [3,4-b] thiophene-2-carboxylic acid octyl ester of Example 1, 1,3-dibromo-5- Synthesis was performed under the same conditions as in Example 1 except that (2-ethyl-hexyl) -thieno [3,4-c] pyrrole-4,6-dione was used, and a polymer containing a repeating unit represented by the following formula was used. 403 g was obtained.
Figure 2017057264
Purification was performed in the order of ethyl acetate, hexane, and toluene by Soxhlet extraction. Thereafter, toluene extracted components were used.
[ 1 H-NMR (270 MHz, CDCl 3 ) ∂: 7.6 (broad), 7.2 (broad), 2.8 (broad), 2.0-1.0 (broad)]
Mw = 62,000, Mn = 23,000 (GPC)

(実施例16)
ポリマー[P16]の合成
実施例1の4,6−ジブロモ−3−フルオロ−チエノ−[3,4−b]チオフェン−2−カルボキシリックアシッドオクチルエステルに代えて、1,3−ジブロモ−5−(4−オクチル−フェニル)−チエノ[3,4−c]ピロール−4,6−ジオンを用いる以外は実施例1と同様の条件で合成を行い、下記式に示される繰り返し単位を含むポリマーを383g得た。

Figure 2017057264
ソックスレー抽出で、酢酸エチル、ヘキサン、トルエンの順で精製した。以後、トルエン抽出成分を使用した。
H−NMR(270MHz,CDCl ) ∂:7.6(broad),7.2(broad)、2.2(broad)、1.7−0.9(broad)]
Mw=69,000、Mn=39,000(GPC) (Example 16)
Synthesis of polymer [P16] In place of 4,6-dibromo-3-fluoro-thieno- [3,4-b] thiophene-2-carboxylic acid octyl ester of Example 1, 1,3-dibromo-5- Synthesis was performed under the same conditions as in Example 1 except that (4-octyl-phenyl) -thieno [3,4-c] pyrrole-4,6-dione was used, and a polymer containing a repeating unit represented by the following formula was used. 383 g was obtained.
Figure 2017057264
Purification was performed in the order of ethyl acetate, hexane, and toluene by Soxhlet extraction. Thereafter, toluene extracted components were used.
[ 1 H-NMR (270 MHz, CDCl 3 ) ∂: 7.6 (broad), 7.2 (broad), 2.2 (broad), 1.7-0.9 (broad)]
Mw = 69,000, Mn = 39,000 (GPC)

(比較例1)
ポリマー[CP1]の合成
実施例1の4,6−ジブロモ−3−フルオロ−チエノ−[3,4−b]チオフェン−2−カルボキシリックアシッドオクチルエステルに代えて、2,5−ジブロモ−3−ヘキシル−チオフェンを用いる以外は実施例1と同様の条件で合成を行い、下記式に示される繰り返し単位を含むポリマーを427g得た。

Figure 2017057264
ソックスレー抽出で、酢酸エチル、ヘキサン、トルエンの順で精製した。以後、トルエン抽出成分を使用した。
H−NMR(270MHz,CDCl ) ∂:7.6(broad),7.2(broad)、7.0(broad)、2.8(broad)、1.7−0.9(broad)]
Mw=57,000、Mn=28,000(GPC) (Comparative Example 1)
Synthesis of polymer [CP1]
Instead of 4,6-dibromo-3-fluoro-thieno- [3,4-b] thiophene-2-carboxylic acid octyl ester of Example 1, except using 2,5-dibromo-3-hexyl-thiophene Was synthesized under the same conditions as in Example 1 to obtain 427 g of a polymer containing a repeating unit represented by the following formula.
Figure 2017057264
Purification was performed in the order of ethyl acetate, hexane, and toluene by Soxhlet extraction. Thereafter, toluene extracted components were used.
[ 1 H-NMR (270 MHz, CDCl 3 ) ∂: 7.6 (broad), 7.2 (broad), 7.0 (broad), 2.8 (broad), 1.7-0.9 (broad ]]
Mw = 57,000, Mn = 28,000 (GPC)

(比較例2)
ポリマー[CP2]の合成
実施例1の4,8−ビス−[(トリイソプロピルシラニル)−エチニル]−2,6−ビス−トリメチルスタンナニル−ベンゾ[1,2−b;4,5−b’]ジフランに代えて、4,8−ビス−[(トリイソプロピルシラニル)−エチニル]−2,6−ビス−トリメチルスタンナニル−1,5−ジチア−s−インダセンを用い、4,6−ジブロモ−3−フルオロ−チエノ−[3,4−b]チオフェン−2−カルボキシリックアシッドオクチルエステルに代えて、4,6−ジブロモ−3−フルオロ−チエノ−[3,4−b]チオフェン−2−カルボキシリックアシッド 2−エチル−ヘキシルエステルを用いる以外は実施例1と同様の条件で合成を行い、下記式に示される繰り返し単位を含むポリマーを555g得た。
比較例2のモノマーは文献Jornarl of Materials Chemistry,2012,22,22224−22232を参考に合成した。

Figure 2017057264
ソックスレー抽出で、酢酸エチル、ヘキサン、トルエンの順で精製した。以後、トルエン抽出成分を使用した。
H−NMR(270MHz,CDCl ) ∂:8.0(broad),7.7(broad)、4.3(broad)、1.8−0.9(broad)]
Mw=36,000、Mn=22,000(GPC) (Comparative Example 2)
Synthesis of polymer [CP2] 4,8-bis-[(triisopropylsilanyl) -ethynyl] -2,6-bis-trimethylstannanyl-benzo [1,2-b; '] In place of difuran, 4,8-bis-[(triisopropylsilanyl) -ethynyl] -2,6-bis-trimethylstannanyl-1,5-dithia-s-indacene is used. Instead of dibromo-3-fluoro-thieno- [3,4-b] thiophene-2-carboxylic acid octyl ester, 4,6-dibromo-3-fluoro-thieno- [3,4-b] thiophene-2 -Carboxylic acid Synthesis was carried out under the same conditions as in Example 1 except that 2-ethyl-hexyl ester was used, and 555 g of a polymer containing a repeating unit represented by the following formula was obtained.
The monomer of Comparative Example 2 was synthesized with reference to the document “Jornar of Materials Chemistry, 2012, 22, 22224-22232”.
Figure 2017057264
Purification was performed in the order of ethyl acetate, hexane, and toluene by Soxhlet extraction. Thereafter, toluene extracted components were used.
[ 1 H-NMR (270 MHz, CDCl 3 ) ∂: 8.0 (broad), 7.7 (broad), 4.3 (broad), 1.8-0.9 (broad)]
Mw = 36,000, Mn = 22,000 (GPC)

(比較例3)
ポリマー[CP3]の合成
実施例1の4,8−ビス−[(トリイソプロピルシラニル)−エチニル]−2,6−ビス−トリメチルスタンナニル−ベンゾ[1,2−b;4,5−b’]ジフランに代えて、2,6−ビス(トリメチルチン)−4,8−ビス(2−エチルヘキシロキシ)ベンゾ[1,2−b;4,5−b’]ジフランを用い、4,6−ジブロモ−3−フルオロ−チエノ−[3,4−b]チオフェン−2−カルボキシリックアシッドオクチルエステルに代えて、4,6−ジブロモ−3−フルオロ−チエノ−[3,4−b]チオフェン−2−カルボキシリックアシッド 2−エチル−ヘキシルエステルを用いる以外は実施例1と同様の条件で合成を行い、下記式に示される繰り返し単位を含むポリマーを477g得た。式中、Rは2−エチルヘキシル基である。
比較例3,4のモノマーは文献Macromolecules,2012,45(17),6923−6929を参考に合成した。

Figure 2017057264
ソックスレー抽出で、酢酸エチル、ヘキサン、トルエンの順で精製した。以後、トルエン抽出成分を使用した。
H−NMR(270MHz,CDCl ) ∂:7.6(broad),7.2(broad)、4.3(broad)、2.5(broad)、1.8−0.9(broad)]
Mw=56,000、Mn=24,000(GPC) (Comparative Example 3)
Synthesis of polymer [CP3] 4,8-bis-[(triisopropylsilanyl) -ethynyl] -2,6-bis-trimethylstannanyl-benzo [1,2-b; '] In place of difuran, 2,6-bis (trimethyltin) -4,8-bis (2-ethylhexyloxy) benzo [1,2-b; 4,5-b'] difuran is used, Instead of 6-dibromo-3-fluoro-thieno- [3,4-b] thiophene-2-carboxylic acid octyl ester, 4,6-dibromo-3-fluoro-thieno- [3,4-b] thiophene 2-Carboxylic acid Synthesis was carried out under the same conditions as in Example 1 except that 2-ethyl-hexyl ester was used, and 477 g of a polymer containing a repeating unit represented by the following formula was obtained. In the formula, R is a 2-ethylhexyl group.
The monomers of Comparative Examples 3 and 4 were synthesized with reference to the literature Macromolecules, 2012, 45 (17), 6923-6929.
Figure 2017057264
Purification was performed in the order of ethyl acetate, hexane, and toluene by Soxhlet extraction. Thereafter, toluene extracted components were used.
[ 1 H-NMR (270 MHz, CDCl 3 ) ∂: 7.6 (broad), 7.2 (broad), 4.3 (broad), 2.5 (broad), 1.8-0.9 (broad ]]
Mw = 56,000, Mn = 24,000 (GPC)

(比較例4)
ポリマー[CP4]の合成
実施例1の4,8−ビス−[(トリイソプロピルシラニル)−エチニル]−2,6−ビス−トリメチルスタンナニル−ベンゾ[1,2−b;4,5−b’]ジフランに代えて、2,6−ビス(トリメチルチン)−4,8−ビス(5−(2−エチルヘキシル)チオフェン−2−イル)−ベンゾ[1,2−b;4,5−b’]ジフランを用い、4,6−ジブロモ−3−フルオロ−チエノ−[3,4−b]チオフェン−2−カルボキシリックアシッドオクチルエステルに代えて、4,6−ジブロモ−3−フルオロ−チエノ−[3,4−b]チオフェン−2−カルボキシリックアシッド 2−エチル−ヘキシルエステルを用いる以外は実施例1と同様の条件で合成を行い、下記式に示される繰り返し単位を含むポリマーを496g得た。式中、Rは2−エチルヘキシル基である。

Figure 2017057264
ソックスレー抽出で、酢酸エチル、ヘキサン、トルエンの順で精製した。以後、トルエン抽出成分を使用した。
H−NMR(270MHz,CDCl ) ∂:7.7−7.6(broad),7.2(broad)、6.8(broad)、4.3(broad)、2.8(broad)、1.8−0.9(broad)]
Mw=60,000、Mn=26,000(GPC) (Comparative Example 4)
Synthesis of polymer [CP4] 4,8-bis-[(triisopropylsilanyl) -ethynyl] -2,6-bis-trimethylstannanyl-benzo [1,2-b; '] In place of difuran, 2,6-bis (trimethyltin) -4,8-bis (5- (2-ethylhexyl) thiophen-2-yl) -benzo [1,2-b; 4,5-b '] Difuran, and instead of 4,6-dibromo-3-fluoro-thieno- [3,4-b] thiophene-2-carboxylic acid octyl ester, 4,6-dibromo-3-fluoro-thieno- [3,4-b] thiophene-2-carboxylic acid Except that 2-ethyl-hexyl ester is used, the synthesis is performed under the same conditions as in Example 1, and a polymer containing a repeating unit represented by the following formula is represented by 496. Obtained. In the formula, R is a 2-ethylhexyl group.
Figure 2017057264
Purification was performed in the order of ethyl acetate, hexane, and toluene by Soxhlet extraction. Thereafter, toluene extracted components were used.
[ 1 H-NMR (270 MHz, CDCl 3 ) ∂: 7.7-7.6 (broad), 7.2 (broad), 6.8 (broad), 4.3 (broad), 2.8 (broad) ), 1.8-0.9 (broad)]
Mw = 60,000, Mn = 26,000 (GPC)

[光電変換素子の作製]
上記実施例および比較例で得られたポリマーを用いて、光電変換素子を作成した(実施例17〜32、比較例5〜8)。まず、p型半導体材料である実施例1〜16のポリマー(P1〜P16)及び比較例1〜4のポリマー(CP1〜CP4)を、n型半導体材料である70PCBM([6,6]−フェニルC71酪酸メチルエステル)との質量比が1:2となるように混合した。次いで、混合物の濃度が16.0mg/mLとなるように、窒素雰囲気中で混合物を3体積%の割合になるように1,8−ジヨードオクタンを添加したクロロベンゼンに溶解させた。これをホットスターラーを用いて120℃の温度にて1時間撹拌混合し活性剤塗布溶液とした。
[Production of photoelectric conversion element]
Photoelectric conversion elements were prepared using the polymers obtained in the above Examples and Comparative Examples (Examples 17 to 32, Comparative Examples 5 to 8). First, the polymers (P1 to P16) of Examples 1 to 16 which are p-type semiconductor materials and the polymers (CP1 to CP4) of Comparative Examples 1 to 4 are converted into 70PCBM ([6,6] -phenyl which is an n-type semiconductor material. C71 butyric acid methyl ester) was mixed so that the mass ratio was 1: 2. Next, the mixture was dissolved in chlorobenzene to which 1,8-diiodooctane was added in a nitrogen atmosphere so that the concentration of the mixture was 16.0 mg / mL in a nitrogen atmosphere. This was stirred and mixed for 1 hour at a temperature of 120 ° C. using a hot stirrer to obtain an activator coating solution.

スパッタ法で形成したITO電極(第1の電極)を有するガラス基板を用意した。ガラス基板のITO電極の形成面に、ZnO前駆体溶液を窒素雰囲気中でスピンコートし、大気下で150℃×5分間の条件で乾燥させることによって、厚さ15nmのZnO膜(電子輸送層)を形成した。次に、上記のp型半導体材料とn型半導体材料を溶解させた活性剤塗布溶液を0.20μmのポリテトラフルオロエチレン(PTFE)フィルタを装着したシリンジを用いてスピンコートすることによって、厚さ約100nmのバルクヘテロ接合型の光電変換層を形成した。次いで、光電変換層上に厚さ2nmのV膜(正孔輸送層)と厚さ100nmのAg膜(第2の電極)とを蒸着法で形成することによって、発電面積が1cm角の光電変換素子を作製した。 A glass substrate having an ITO electrode (first electrode) formed by sputtering was prepared. A ZnO precursor solution is spin-coated in a nitrogen atmosphere on the ITO electrode forming surface of a glass substrate and dried under the condition of 150 ° C. × 5 minutes in the atmosphere to thereby form a ZnO film (electron transport layer) having a thickness of 15 nm. Formed. Next, the activator coating solution in which the p-type semiconductor material and the n-type semiconductor material are dissolved is spin-coated using a syringe equipped with a 0.20 μm polytetrafluoroethylene (PTFE) filter to thereby obtain a thickness. A bulk heterojunction photoelectric conversion layer of about 100 nm was formed. Next, a V 2 O 5 film (hole transport layer) having a thickness of 2 nm and an Ag film (second electrode) having a thickness of 100 nm are formed on the photoelectric conversion layer by a vapor deposition method, so that the power generation area is 1 cm square. A photoelectric conversion element was prepared.

このようにして作製した太陽電池素子に1cm角のメタルマスクを付け、照射光源としてエアマス(AM)1.5G、放射照度100mW/cmの朝日分光社製SPECTRソーラシミュレータ−IVP0605(商品名)を用いて、ITO電極と銀電極との間の電流−電圧特性を測定した。表1に測定結果として開放電圧(Voc)、短絡電流密度(Jsc)、フィルファクタ(FF)、及び変換効率を示す。 A 1 cm square metal mask is attached to the solar cell element thus manufactured, and SPECTR solar simulator-IVP0605 (trade name) manufactured by Asahi Spectroscopic Co., Ltd. with an air mass (AM) of 1.5 G and an irradiance of 100 mW / cm 2 is used as an irradiation light source. Using, the current-voltage characteristic between the ITO electrode and the silver electrode was measured. Table 1 shows open circuit voltage (Voc), short circuit current density (Jsc), fill factor (FF), and conversion efficiency as measurement results.

表1から明らかなように、実施例のポリマーを用いた光電変換素子は、比較例に比べて開放電圧が高い。従って、例えば小さなデバイスにこの光電変換素子を含む太陽電池を搭載する際に、少ない直列接合で、つまりより小さな設置面積でデバイスに必要な起電力を得ることができる。

Figure 2017057264
As is clear from Table 1, the photoelectric conversion element using the polymer of the example has a higher open circuit voltage than the comparative example. Therefore, for example, when a solar cell including this photoelectric conversion element is mounted on a small device, an electromotive force necessary for the device can be obtained with a small series junction, that is, with a smaller installation area.
Figure 2017057264

[ペロブスカイト型光電変換素子の作製]
実施例2、8および15のポリマーを正孔輸送層として、ペロブスカイト型光電変換素子を作製した(実施例33〜35)。
[Preparation of perovskite photoelectric conversion elements]
Using the polymers of Examples 2, 8 and 15 as hole transport layers, perovskite photoelectric conversion elements were prepared (Examples 33 to 35).

まず、ヨウ素化鉛(PbI)とヨウ素化メチルアンモニウム(CHNHI)とを1:1のモル比で混合し、この混合物を濃度が40質量%となるように窒素雰囲気中でジメチルホルムアミドに溶解させた。この溶液をホットスターラーを用いて120℃の温度にて1時間撹拌混合し、ペロブスカイト化合物の活性層塗布液を得た。 First, lead iodide (PbI 2 ) and methylammonium iodide (CH 3 NH 4 I) are mixed at a molar ratio of 1: 1, and this mixture is mixed with dimethyl in a nitrogen atmosphere so that the concentration becomes 40% by mass. Dissolved in formamide. This solution was stirred and mixed at a temperature of 120 ° C. for 1 hour using a hot stirrer to obtain an active layer coating solution of a perovskite compound.

p型半導体材料である実施例2、8および15のポリマー(P2、P8およびP15)を、濃度が16.0mg/mLとなるように、窒素雰囲気中でクロロベンゼンに溶解させた。これらの溶液をホットスターラーを用いて120℃の温度にて1時間撹拌混合した。撹拌混合後の溶液を室温に冷却した後、0.20μmのPTFEフィルタで濾過することによって、それぞれのポリマーを用いた正孔輸送層塗布液を得た。   The polymers of Examples 2, 8 and 15 (P2, P8 and P15), which are p-type semiconductor materials, were dissolved in chlorobenzene in a nitrogen atmosphere so as to have a concentration of 16.0 mg / mL. These solutions were stirred and mixed at a temperature of 120 ° C. for 1 hour using a hot stirrer. The solution after stirring and mixing was cooled to room temperature, and then filtered through a 0.20 μm PTFE filter to obtain a hole transport layer coating solution using each polymer.

フッ素ドープ酸化スズ(FTO)の透明導電膜がパターニングされたガラス基板を、界面活性剤による超音波洗浄、超純水による水洗、超純水による超音波洗浄の順で洗浄した後、窒素ブローで乾燥させ、120℃で大気中5分間加熱乾燥した。最後に、基板に対して紫外線オゾン洗浄を行った。この基板上に、チタンジイソプロポキシドビス(アセチルアセトン)のエタノール溶液をスピンコートし、450℃で30分加熱した後に冷却した。この基板を塩化チタン(TiCl)水溶液に70℃で30分浸漬した。水溶液から取り出した基板を洗浄し乾燥させた後、空気中にて500℃で20分加熱することによって、約20nmの厚さを有する電子輸送層を形成した。電子輸送層を成膜した基板に、窒素雰囲気下で上記調製したペロブスカイト化合物の活性層塗布液を0.45μmのポリテトラフルオロエチレン(PTFE)フィルタを装着したシリンジで濾過しながら600rpmの速度にてスピンコートし、70℃で約30分乾燥させることによって、約300nmの厚さを有する光電変換層を形成した。この光電変換層上に、上記調製したポリマーの正孔輸送層塗布液を2000rpmの速度でスピンコートして正孔輸送層を形成した。この後、電極層として100nmの厚さの金を、抵抗加熱型真空蒸着法により成膜した。こうして、1cm角のペロブスカイト型光電変換素子(有機/無機ハイブリット太陽電池素子)を作製した。 A glass substrate on which a fluorine-doped tin oxide (FTO) transparent conductive film is patterned is cleaned in the order of ultrasonic cleaning with a surfactant, water with ultrapure water, and ultrasonic cleaning with ultrapure water. It dried and heat-dried at 120 degreeC in air | atmosphere for 5 minutes. Finally, ultraviolet ozone cleaning was performed on the substrate. This substrate was spin-coated with an ethanol solution of titanium diisopropoxide bis (acetylacetone), heated at 450 ° C. for 30 minutes, and then cooled. This substrate was immersed in an aqueous solution of titanium chloride (TiCl 4 ) at 70 ° C. for 30 minutes. The substrate taken out of the aqueous solution was washed and dried, and then heated in air at 500 ° C. for 20 minutes to form an electron transport layer having a thickness of about 20 nm. The perovskite compound active layer coating solution prepared above was filtered on a substrate on which an electron transport layer was formed with a syringe equipped with a 0.45 μm polytetrafluoroethylene (PTFE) filter at a rate of 600 rpm in a nitrogen atmosphere. A photoelectric conversion layer having a thickness of about 300 nm was formed by spin coating and drying at 70 ° C. for about 30 minutes. On the photoelectric conversion layer, the hole transport layer was formed by spin-coating the prepared polymer hole transport layer coating solution at a speed of 2000 rpm. Thereafter, gold having a thickness of 100 nm was formed as an electrode layer by resistance heating vacuum deposition. Thus, a 1 cm square perovskite photoelectric conversion element (organic / inorganic hybrid solar cell element) was produced.

(比較例5)
正孔輸送層の形成材料として、ポリ(3−ヘキシルチオフェン−2,5−ジイル)(P3HT)を用いる以外は、実施例33と同様にして、ペロブスカイト型光電変換素子を作製した。
(Comparative Example 5)
A perovskite photoelectric conversion element was produced in the same manner as in Example 33 except that poly (3-hexylthiophene-2,5-diyl) (P3HT) was used as a material for forming the hole transport layer.

[ペロブスカイト型光電変換素子の評価]
ペロブスカイト型光電変換素子(有機/無機ハイブリット太陽電池素子)に1cm角のメタルマスクを付け、照射光源としてエアマス(AM)1.5G、放射照度100mW/cmの朝日分光社製SPECTRソーラシミュレータ−IVP0605(商品名)を用いて、FTO電極とAu電極との間の電流−電圧特性を測定した。表2に測定結果として開放電圧(Voc)、短絡電流密度(Jsc)、フィルファクタ(FF)、及び変換効率を示す。
[Evaluation of perovskite photoelectric conversion elements]
A 1 cm square metal mask is attached to a perovskite photoelectric conversion element (organic / inorganic hybrid solar cell element), SPECTR solar simulator-IVP0605 manufactured by Asahi Spectroscopic Co., Ltd. with an air mass (AM) of 1.5 G and an irradiance of 100 mW / cm 2 as an irradiation light source. Using (trade name), the current-voltage characteristics between the FTO electrode and the Au electrode were measured. Table 2 shows open circuit voltage (Voc), short circuit current density (Jsc), fill factor (FF), and conversion efficiency as measurement results.

さらに、ペロブスカイト型光電変換素子をガラスで封止した後、ホットプレート上で窒素雰囲気中にて90℃で15分間加熱した後、室温まで冷却した。加熱試験後に同様な特性を測定して劣化率を求めた。表2に加熱前後における特性の劣化率を示す。なお、正孔輸送層としてspiro-OMeTAD+Li-TFSIを使用した場合、劣化率が70%を超える結果となった。

Figure 2017057264
Further, the perovskite photoelectric conversion element was sealed with glass, heated on a hot plate in a nitrogen atmosphere at 90 ° C. for 15 minutes, and then cooled to room temperature. Similar characteristics were measured after the heating test to determine the deterioration rate. Table 2 shows the deterioration rate of the characteristics before and after heating. When spiro-OMeTAD + Li-TFSI was used as the hole transport layer, the deterioration rate exceeded 70%.
Figure 2017057264

Claims (12)

シリルアセチレン基を側鎖とするベンゾジフラン構造と縮合複素環構造とからなる、下記一般式(1)に示される繰り返し単位を含むことを特徴とする、ポリマー。
Figure 2017057264
[式中、Rは互いに独立して、水素、置換または非置換のアルキル基、芳香族基およびヘテロ芳香族基から選択される置換基であり、Arは置換または非置換の縮合複素環構造を示し、該縮合複素環構造における縮合複素環と前記ベンゾジフラン構造における縮合複素環とが直接結合している。]
A polymer comprising a repeating unit represented by the following general formula (1), comprising a benzodifuran structure having a silylacetylene group as a side chain and a condensed heterocyclic structure.
Figure 2017057264
[Wherein, R is independently of one another a substituent selected from hydrogen, a substituted or unsubstituted alkyl group, an aromatic group and a heteroaromatic group, and Ar is a substituted or unsubstituted condensed heterocyclic structure. As shown, the condensed heterocyclic ring in the condensed heterocyclic structure and the condensed heterocyclic ring in the benzodifuran structure are directly bonded. ]
前記Arが、下記式の縮合複素環構造から選択される、請求項1に記載のポリマー。
Figure 2017057264

[式中、R1は水素、置換または非置換のアルキル基、芳香族基およびヘテロ芳香族基から選択される置換基であり、R2は水素、ハロゲン、シアノ基および置換または非置換のアルキル基から選択される置換基であり、R3は置換または非置換のアルキル基、置換または非置換のアルコキシ基、および置換または非置換の芳香族基から選択される置換基であり、XはSまたはOから選択される元素である。]
The polymer of claim 1, wherein Ar is selected from a fused heterocyclic structure of the formula
Figure 2017057264

Wherein R 1 is a substituent selected from hydrogen, a substituted or unsubstituted alkyl group, an aromatic group and a heteroaromatic group, and R 2 is hydrogen, a halogen, a cyano group and a substituted or unsubstituted alkyl R 3 is a substituent selected from a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, and a substituted or unsubstituted aromatic group, and X is S Or it is an element selected from O. ]
下記の一般式(A−7)で示される繰り返し単位を含むことを特徴とする、請求項1または2に記載のポリマー。
Figure 2017057264
[式中、R2は水素、ハロゲン、シアノ基および置換または非置換のアルキル基から選択される置換基であり、R3は置換または非置換のアルキル基、置換または非置換のアルコキシ基、および置換または非置換の芳香族基から選択される置換基であり、XはSまたはOから選択される元素である。]
The polymer according to claim 1, comprising a repeating unit represented by the following general formula (A-7).
Figure 2017057264
[Wherein R 2 is a substituent selected from hydrogen, halogen, cyano group and substituted or unsubstituted alkyl group, R 3 is a substituted or unsubstituted alkyl group, substituted or unsubstituted alkoxy group, and A substituent selected from a substituted or unsubstituted aromatic group, and X is an element selected from S or O; ]
R2がフッ素であることを特徴とする、請求項3に記載のポリマー。 The polymer according to claim 3, wherein R 2 is fluorine. R3が、2−エチルヘキシルオキシ基であることを特徴とする、請求項3または4に記載のポリマー。 The polymer according to claim 3 or 4, wherein R 3 is a 2-ethylhexyloxy group. 下記式(A−7d)に示される繰り返し単位を含むことを特徴とする、請求項1に記載のポリマー。
Figure 2017057264
The polymer according to claim 1, comprising a repeating unit represented by the following formula (A-7d).
Figure 2017057264
前記ポリマーが架橋基を含む、請求項1〜6のいずれか一項に記載のポリマー。   The polymer according to any one of claims 1 to 6, wherein the polymer contains a crosslinking group. 前記繰り返し単位において、R1、R2およびR3の少なくとも1つは架橋基を有することを特徴とする請求項2に記載のポリマー。 The polymer according to claim 2, wherein in the repeating unit, at least one of R 1 , R 2 and R 3 has a crosslinking group. 請求項1〜8のいずれか一項に記載のポリマーを少なくとも1種含む光電変換層を有することを特徴とする、光電変換素子。   It has a photoelectric converting layer containing at least 1 sort (s) as described in any one of Claims 1-8, The photoelectric conversion element characterized by the above-mentioned. 光電変換層が、
請求項1〜8のいずれか一項に記載のポリマーの少なくとも1種と、
フラーレン誘導体と
を含んでなるバルクヘテロ層であることを特徴とする、光電変換素子。
The photoelectric conversion layer
At least one polymer according to any one of claims 1 to 8,
It is a bulk hetero layer containing a fullerene derivative, The photoelectric conversion element characterized by the above-mentioned.
光電変換層にペロブスカイト材料を用い、
正孔輸送層として請求項1〜8のいずれか一項に記載のポリマーを含むことを特徴とする、ペロブスカイト型光電変換素子。
Using a perovskite material for the photoelectric conversion layer,
A perovskite photoelectric conversion element comprising the polymer according to any one of claims 1 to 8 as a hole transport layer.
請求項9〜11のいずれか一項に記載の光電変換素子を含むことを特徴とする、太陽電池。   A solar cell comprising the photoelectric conversion element according to any one of claims 9 to 11.
JP2015182217A 2015-09-15 2015-09-15 Polymer having silylacetylene groups as side chains, and photoelectric conversion element and solar cell employing the same Abandoned JP2017057264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015182217A JP2017057264A (en) 2015-09-15 2015-09-15 Polymer having silylacetylene groups as side chains, and photoelectric conversion element and solar cell employing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015182217A JP2017057264A (en) 2015-09-15 2015-09-15 Polymer having silylacetylene groups as side chains, and photoelectric conversion element and solar cell employing the same

Publications (1)

Publication Number Publication Date
JP2017057264A true JP2017057264A (en) 2017-03-23

Family

ID=58391148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015182217A Abandoned JP2017057264A (en) 2015-09-15 2015-09-15 Polymer having silylacetylene groups as side chains, and photoelectric conversion element and solar cell employing the same

Country Status (1)

Country Link
JP (1) JP2017057264A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116199707A (en) * 2023-03-07 2023-06-02 南京邮电大学 Benzodithiophene derivatives, and preparation and application thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BIAN,L. ET AL: "A versatile strategy to directly synthesize 4,8-functionalized benzo[1,2-b:4,5-b']difurans for organ", JOURNAL OF MATERIALS CHEMISTRY A: MATERIALS FOR ENERGY AND SUSTAINABILITY, vol. 3, no. 5, JPN6018041835, 9 December 2014 (2014-12-09), pages 1920 - 1924, ISSN: 0003905627 *
HUO,L. ET AL: "Conjugated and Nonconjugated Substitution Effect on Photovoltaic Properties of Benzodifuran-Based Ph", MACROMOLECULES(WASHINGTON, DC, UNITED STATES), vol. 45, no. 17, JPN6018041837, 2012, pages 6923 - 6929, XP055233616, ISSN: 0003905628, DOI: 10.1021/ma301254x *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116199707A (en) * 2023-03-07 2023-06-02 南京邮电大学 Benzodithiophene derivatives, and preparation and application thereof

Similar Documents

Publication Publication Date Title
Kang et al. Bulk‐heterojunction organic solar cells: five core technologies for their commercialization
JP6007273B2 (en) Tandem photovoltaic cell
Jo et al. Polyviologen derivatives as an interfacial layer in polymer solar cells
JPWO2010041687A1 (en) Organic photoelectric conversion element, solar cell, and optical sensor array
JP6280208B2 (en) Polymer and solar cell using the same
JPWO2012111811A1 (en) Organic photoelectric conversion element and solar cell
JP2011119702A (en) Organic photoelectric conversion element
Chochos et al. Synthesis of a soluble n-type cyano substituted polythiophene derivative: A potential electron acceptor in polymeric solar cells
JP5920341B2 (en) ORGANIC PHOTOELECTRIC CONVERSION DEVICE, ITS MANUFACTURING METHOD, AND SOLAR CELL
JP5862189B2 (en) Organic photoelectric conversion device and solar cell using the same
JP2014034618A (en) Organic thin film, and photoelectric conversion element using the same
Mikroyannidis et al. Efficient bulk heterojunction solar cells based on a broadly absorbing phenylenevinylene copolymer containing thiophene and pyrrole rings
JPWO2012102066A1 (en) Organic photoelectric conversion layer material composition, organic photoelectric conversion element, method for producing organic photoelectric conversion element, and solar cell
JP2013042085A (en) Organic semiconductor composition and photoelectric conversion element using the same
JP2014053383A (en) Tandem organic photoelectric conversion element and solar cell using the same
JP6115885B2 (en) Photoelectric conversion element, solar cell, and solar cell module
US20110042665A1 (en) Organic photoelectric conversion element and manufacturing method therefor
JP5712769B2 (en) Organic photoelectric conversion element and solar cell
JPWO2010090123A1 (en) Organic photoelectric conversion element, solar cell using the same, and optical sensor array
JP5553728B2 (en) Organic photoelectric conversion element
JPWO2010137449A1 (en) Organic photoelectric conversion element, solar cell using the same, and optical sensor array
JP2013026483A (en) Organic photoelectric conversion element, method for manufacturing the same, and solar cell
JP2017057264A (en) Polymer having silylacetylene groups as side chains, and photoelectric conversion element and solar cell employing the same
JP2013077760A (en) Organic photoelectric conversion element and solar cell using the same
JP6690276B2 (en) Photoelectric conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181017

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181026

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20181121