[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2017054910A - Soft magnetic metal powder compact core - Google Patents

Soft magnetic metal powder compact core Download PDF

Info

Publication number
JP2017054910A
JP2017054910A JP2015177423A JP2015177423A JP2017054910A JP 2017054910 A JP2017054910 A JP 2017054910A JP 2015177423 A JP2015177423 A JP 2015177423A JP 2015177423 A JP2015177423 A JP 2015177423A JP 2017054910 A JP2017054910 A JP 2017054910A
Authority
JP
Japan
Prior art keywords
soft magnetic
magnetic metal
powder
concentration
metal powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015177423A
Other languages
Japanese (ja)
Other versions
JP6519418B2 (en
Inventor
修弘 奥田
Sanehiro Okuda
修弘 奥田
朋史 黒田
Tomofumi Kuroda
朋史 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2015177423A priority Critical patent/JP6519418B2/en
Publication of JP2017054910A publication Critical patent/JP2017054910A/en
Application granted granted Critical
Publication of JP6519418B2 publication Critical patent/JP6519418B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique for achieving a soft magnetic metal powder compact core which is superior in DC superposing characteristic.SOLUTION: A soft magnetic metal powder compact core comprises: Fe-Si based soft magnetic metal powder; and an insulating material. In the powder compact core, the sectional circularity of 80% or more of particles forming the soft magnetic metal powder is 0.75-1.0 on any section thereof. In the particles forming the soft magnetic metal powder, a coefficient of the variation in Si concentration near the center of each particle is 0.050-0.120; and the difference between the maximum and minimum of the Si concentration is within 6 times the standard deviation thereof.SELECTED DRAWING: Figure 2

Description

本発明は電源回路などに用いられるリアクトルやインダクタに関し、特に軟磁性金属圧粉コアのインダクタンスの直流重畳特性の改善に関する。 The present invention relates to a reactor and an inductor used for a power supply circuit and the like, and more particularly to improvement of DC superposition characteristics of inductance of a soft magnetic metal dust core.

大電流を印加する用途で使用されるリアクトルやインダクタ用の磁心材料として、フェライトコア、積層電磁鋼板、軟磁性金属圧粉コア(金型成形、射出成形、シート成形などで作られたコア)などが用いられる。積層電磁鋼板は飽和磁束密度が高いものの、電源回路の駆動周波数が数十kHzを超えるとコアロスが大きくなり、効率の低下を招くという問題があった。一方、フェライトコアは高周波損失の小さい磁心材料であるが、飽和磁束密度が低いことから、形状が大型化するという問題があった。それに対し、軟磁性金属圧粉コアは高周波のコアロスが積層電磁鋼板よりも小さく、飽和磁束密度がフェライトよりも大きいことから、広く用いられるようになっている。とはいえ、軟磁性金属圧粉コアのコアロスは十分に小さいとはいえず、低損失な軟磁性金属圧粉コアが求められている。 Ferrite cores, laminated electrical steel sheets, soft magnetic metal dust cores (cores made by mold molding, injection molding, sheet molding, etc.) as core materials for reactors and inductors used in applications where large currents are applied Is used. Although the laminated magnetic steel sheet has a high saturation magnetic flux density, there is a problem that when the driving frequency of the power supply circuit exceeds several tens of kHz, the core loss increases and the efficiency decreases. On the other hand, the ferrite core is a magnetic core material with a small high-frequency loss, but there is a problem that the shape is increased because the saturation magnetic flux density is low. On the other hand, soft magnetic metal dust cores are widely used because the high-frequency core loss is smaller than that of laminated electromagnetic steel sheets and the saturation magnetic flux density is larger than that of ferrite. However, the core loss of the soft magnetic metal dust core is not sufficiently small, and a low loss soft magnetic metal dust core is required.

リアクトルやインダクタに印加される電流波形は直流成分に交流成分が重畳した波形となっており、直流成分が大きくなるとリアクトルやインダクタのインダクタンスが低下するのが一般的である。リアクトルやインダクタに要求される特性として、直流重畳下でもインダクタンスの低下が小さいことが求められており、それに用いる磁心材料に対しても直流重畳特性が良好なこと、すなわち、直流電流重畳下でもインダクタンスの低下、ひいては透磁率の低下が小さいことが求められる。 The current waveform applied to the reactor and the inductor is a waveform in which an AC component is superimposed on the DC component, and when the DC component increases, the inductance of the reactor or the inductor generally decreases. As a characteristic required for reactors and inductors, a reduction in inductance is required to be small even under DC superposition, and the DC superposition characteristics are good even for the magnetic core material used therefor, that is, inductance under DC current superposition. Is required to be small, and hence the permeability is small.

特許文献1では、軟磁性金属圧粉コアの飽和磁束密度と鉄損を改善する技術として、Fe−3Si合金粒子と純鉄粒子が圧密され、焼成されてなる複合軟磁性材料であり、複数のFe−3Si合金粒子相と、少なくとも3つ以上の前記Fe−3Si合金粒子相に囲まれた粒界に存在する複数の純鉄粒子相とを有し、前記Fe−3Si合金粒子相の平均粒径が100〜145μmであり、前記純鉄粒子相の圧粉磁心全量に対する含有率が、3質量%以上10質量%未満であることを特徴とする複合軟磁性材料が開示されている。 In Patent Document 1, as a technique for improving the saturation magnetic flux density and iron loss of a soft magnetic metal dust core, a composite soft magnetic material in which Fe-3Si alloy particles and pure iron particles are consolidated and fired, An Fe-3Si alloy particle phase and a plurality of pure iron particle phases present at a grain boundary surrounded by at least three Fe-3Si alloy particle phases, and an average particle of the Fe-3Si alloy particle phase A composite soft magnetic material having a diameter of 100 to 145 μm and a content of the pure iron particle phase with respect to the total amount of the dust core of 3% by mass or more and less than 10% by mass is disclosed.

特許文献2では、軟磁性金属圧粉コアの飽和磁束密度と透磁率、鉄損を改善する技術として、絶縁処理された鉄粉末と2.5〜8質量%Si−残Fe合金粉末とバインダーが混合圧密され、焼成されてなり、前記鉄粉末と2.5〜8質量%Si−残Fe合金粉末が圧密され焼成された主相と、該主相の周囲に生成されたバインダーを主体とする粒界相とが具備されてなり、前記主相に占める2.5〜8質量%Si−残Fe合金の割合が10質量%以上、44質量%未満であり、磁場10kA/m時の飽和磁束密度1.1T以上、保磁力220A/m以下、鉄損(0.1T、10kHz時)20W/kg以下であることを特徴とする複合軟磁性材料を開示している。 In Patent Document 2, as a technique for improving the saturation magnetic flux density, magnetic permeability, and iron loss of a soft magnetic metal dust core, insulated iron powder, 2.5-8 mass% Si-residual Fe alloy powder, and binder are used. Mainly composed of a main phase in which the iron powder and the 2.5-8 mass% Si-residual Fe alloy powder are consolidated and fired, and a binder formed around the main phase. And a ratio of 2.5 to 8 mass% Si-residual Fe alloy in the main phase is 10 mass% or more and less than 44 mass%, and a saturation magnetic flux at a magnetic field of 10 kA / m. A composite soft magnetic material having a density of 1.1 T or more, a coercive force of 220 A / m or less, and an iron loss (at 0.1 T, 10 kHz) of 20 W / kg or less is disclosed.

特許文献3では、軟磁性金属圧粉コアの磁束密度と保磁力を改善する技術として、鉄粉末と、鉄およびケイ素を含むFe−Si粉末との混合物を、圧粉成形することにより得られることを特徴とする、磁性材料を開示している。Fe−Si系合金におけるFeおよびSiの含有量は、特に制限されないが、Fe−Si系合金100質量部に対して、Feが、例えば、85〜99質量部、好ましくは、93〜99質量部であり、Siが、例えば、1〜10質量部、好ましくは、1〜7質量部である。鉄粉末と、Fe−Si粉末との配合割合は、鉄粉末とFe−Si粉末との総量100質量部に対して、鉄粉末が、例えば、20〜80質量部、好ましくは、40〜80質量部、より好ましくは、40〜60質量部であり、Fe−Si粉末が、例えば、20〜80質量部、好ましくは、20〜60質量部、より好ましくは、40〜60質量部である。 In Patent Document 3, as a technique for improving the magnetic flux density and the coercive force of a soft magnetic metal dust core, it can be obtained by compacting a mixture of iron powder and Fe-Si powder containing iron and silicon. A magnetic material is disclosed. The content of Fe and Si in the Fe—Si based alloy is not particularly limited, but Fe is, for example, 85 to 99 parts by weight, preferably 93 to 99 parts by weight with respect to 100 parts by weight of the Fe—Si based alloy. Si is, for example, 1 to 10 parts by mass, preferably 1 to 7 parts by mass. The mixing ratio of the iron powder and the Fe-Si powder is such that the iron powder is, for example, 20 to 80 parts by mass, preferably 40 to 80 parts by mass with respect to 100 parts by mass of the total amount of the iron powder and Fe-Si powder. Parts, more preferably 40-60 parts by mass, and the Fe-Si powder is, for example, 20-80 parts by mass, preferably 20-60 parts by mass, and more preferably 40-60 parts by mass.

特開2010−153638号公報JP 2010-153638 A 特開2010−185126号公報JP 2010-185126 A 特開2011−187634号公報JP 2011-187634 A

特許文献1〜3の技術では、Fe−Si合金粉末に純鉄粉末を混合することによって、圧粉コアの飽和磁束密度を高め、直流重畳特性を改善しようとしている。しかし、特許文献1〜3で好ましいとされている比率で純鉄粉末を混合しただけでは、圧粉コアの組成の均一性が損なわれるため、十分に良好な直流重畳特性を得ることはできない。 In the techniques of Patent Documents 1 to 3, an attempt is made to improve the DC superposition characteristics by increasing the saturation magnetic flux density of the dust core by mixing pure iron powder with Fe-Si alloy powder. However, by simply mixing pure iron powder in a ratio that is preferred in Patent Documents 1 to 3, the uniformity of the composition of the dust core is impaired, so that a sufficiently good DC superposition characteristic cannot be obtained.

このように従来の技術では、軟磁性金属圧粉コアの飽和磁束密度を高めようとして、Fe−Si合金粉末にFe粉末を混合しても、圧粉コアの組成の均一性が損なわれてしまい、十分に良好な直流重畳特性が得られないという問題があった。したがって、より直流重畳特性に優れた軟磁性金属圧粉コアを実現する技術が求められている。 Thus, in the conventional technology, even if Fe powder is mixed with Fe-Si alloy powder in an attempt to increase the saturation magnetic flux density of the soft magnetic metal dust core, the uniformity of the composition of the dust core is impaired. There is a problem that a sufficiently good DC superposition characteristic cannot be obtained. Therefore, there is a need for a technique for realizing a soft magnetic metal dust core having more excellent direct current superposition characteristics.

本発明では、上記の問題を解決するために案出されたものであって、軟磁性金属圧粉コアにおいて、優れた直流重畳特性を実現させることを課題とする。 The present invention has been devised in order to solve the above-described problems, and an object thereof is to realize excellent direct current superposition characteristics in a soft magnetic metal dust core.

本発明の軟磁性金属圧粉コアは、Fe−Si系軟磁性金属粉末および絶縁物から成ることを特徴とする圧粉コアであって、前記圧粉コアの任意の断面上において、前記軟磁性金属粉末を構成する80%以上の粒子の断面の円形度が0.75〜1.0であって、前記軟磁性金属粉末を構成する各粒子中央付近のSi濃度の変動係数が0.05以上、0.12以下であり、前記Si濃度の最大値と最小値の差が標準偏差の6倍以内であることを特徴とする。このようにすることで、直流重畳特性に優れた軟磁性金属圧粉コアとすることができる。 The soft magnetic metal dust core of the present invention is a dust core comprising an Fe-Si soft magnetic metal powder and an insulator, and the soft magnetic metal core is formed on any cross section of the dust core. The circularity of the cross section of 80% or more of the particles constituting the metal powder is 0.75 to 1.0, and the variation coefficient of the Si concentration near the center of each particle constituting the soft magnetic metal powder is 0.05 or more. 0.12 or less, and the difference between the maximum value and the minimum value of the Si concentration is within 6 times the standard deviation. By doing in this way, it can be set as the soft magnetic metal dust core excellent in the direct current superposition characteristic.

また、本発明の軟磁性金属圧粉コアは、前記絶縁物が、シリコン化合物を含むことを特徴とする。このようにすることで、渦電流損失を効果的に抑制することができる。 The soft magnetic metal dust core of the present invention is characterized in that the insulator includes a silicon compound. By doing in this way, eddy current loss can be suppressed effectively.

本発明によれば、軟磁性金属圧粉コアにおいて、直流磁場重畳下での透磁率の低下を抑えることによって、リアクトルやインダクタとして使用した場合に直流電流を重畳した時のインダクタンスの低下を改善することができる。 According to the present invention, in a soft magnetic metal dust core, by suppressing a decrease in permeability under a DC magnetic field superimposition, when used as a reactor or an inductor, an inductance decrease when a DC current is superimposed is improved. be able to.

図1は、本発明の一実施形態に係る軟磁性金属圧粉コアの構造を示す断面の模式図である。FIG. 1 is a schematic cross-sectional view showing the structure of a soft magnetic metal dust core according to an embodiment of the present invention. 図2は、本発明の軟磁性金属圧粉コアにおける、Si濃度の変動係数と、5kA/mの直流磁場印加時の透磁率μの関係を示したグラフである。FIG. 2 is a graph showing the relationship between the coefficient of variation of Si concentration and the magnetic permeability μ when a DC magnetic field of 5 kA / m is applied in the soft magnetic metal dust core of the present invention.

本発明は、Fe−Si系軟磁性金属粉末および絶縁物を含む圧粉コアであって、前記圧粉コアの任意の断面上において、前記軟磁性金属粉末を構成する80%以上の粒子の断面の円形度が0.75〜1.0であって、前記軟磁性金属粉末を構成する各粒子中央付近のSi濃度の変動係数が0.05以上、0.12以下であり、前記Si濃度の最大値と最小値の差が標準偏差の6倍以内であることを特徴とすることで、直流電流重畳下でのインダクタンスを向上させることを可能にしたものである。 The present invention is a dust core containing Fe-Si based soft magnetic metal powder and an insulator, wherein a cross section of 80% or more of the particles constituting the soft magnetic metal powder on an arbitrary cross section of the dust core. The circularity of 0.75 to 1.0 and the coefficient of variation of the Si concentration near the center of each particle constituting the soft magnetic metal powder is 0.05 or more and 0.12 or less, Since the difference between the maximum value and the minimum value is within 6 times the standard deviation, it is possible to improve the inductance under DC current superposition.

以下、図面を参照しながら、本発明の好ましい実施形態を説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

図1は、軟磁性金属圧粉コア10の断面を示す図である。軟磁性金属圧粉コア10は、軟磁性金属粉末11と、それを構成する大部分の粒子表面を被覆する絶縁層12で構成される。軟磁性金属粉末11は鉄を主成分とする軟磁性金属であり、Fe−Si系合金を用いることができる。 FIG. 1 is a view showing a cross section of a soft magnetic metal dust core 10. The soft magnetic metal dust core 10 is composed of a soft magnetic metal powder 11 and an insulating layer 12 that covers the surface of most of the particles constituting the soft magnetic metal powder 11. The soft magnetic metal powder 11 is a soft magnetic metal containing iron as a main component, and an Fe—Si alloy can be used.

軟磁性金属粉末11の原料粉末はガスアトマイズ法や水アトマイズ法などで作製することができる。一般にガスアトマイズ法を用いる方が、円形度の高い粒子が得られやすいが、水アトマイズ法を用いる場合であっても、噴霧条件などを適度に調整することによって円形度の高い粒子を得ることができる。
この原料粉末を分級することにより所定の粒径を有する軟磁性金属粉末11を得ることができる。分級には振動篩や風力分級器などを用いることができる。
The raw powder of the soft magnetic metal powder 11 can be produced by a gas atomization method, a water atomization method, or the like. Generally, it is easier to obtain particles with a high degree of circularity when using the gas atomization method, but even when using the water atomization method, particles with a high degree of circularity can be obtained by appropriately adjusting the spraying conditions and the like. .
By classifying the raw material powder, a soft magnetic metal powder 11 having a predetermined particle size can be obtained. For classification, a vibrating sieve or an air classifier can be used.

軟磁性金属圧粉コア10を樹脂に埋め込んで研磨し、その断面を観察し、軟磁性金属粉末11の円形度を測定した場合、構成する粒子のうち、80%以上の粒子の円形度が0.75〜1.0である。円形度の一例としてはWadellの円形度を用いることができ、粒子断面に外接する円の直径に対する粒子断面の投影面積に等しい円の直径の比で定義される。真円の場合にはWadellの円形度は1となり、1に近いほど真円度が高い。観察には光学顕微鏡や走査電子顕微鏡を用い、円形度の算出には画像解析を用いることができる。 When the soft magnetic metal powder core 10 is embedded and polished in a resin, the cross section is observed, and the circularity of the soft magnetic metal powder 11 is measured, the circularity of 80% or more of the constituent particles is 0. .75-1.0. As an example of circularity, Wadell's circularity can be used, which is defined by the ratio of the diameter of a circle equal to the projected area of the particle cross section to the diameter of the circle circumscribing the particle cross section. In the case of a perfect circle, Wadell's circularity is 1, and the closer to 1, the higher the roundness. An optical microscope or a scanning electron microscope can be used for observation, and image analysis can be used for calculating the circularity.

円形度が低い粒子は、粒子表面の曲率が一定ではないことから、成形時の応力のかかり方が不均一になる。したがって、円形度が低い粒子が多く含まれる場合には、塑性変形量が大きい部分とそうでない部分が生じるため、磁化過程が不均一となり、結果として直流重畳特性が悪化する。すなわち、80%以上の粒子の円形度が0.75〜1.0とすることにより、良好な直流重畳特性を得ることができる。 Particles with a low degree of circularity have a non-uniform curvature on the particle surface, so that the stress is not uniform during molding. Therefore, when many particles with low circularity are included, a portion with a large amount of plastic deformation and a portion with no plastic deformation are generated, so that the magnetization process becomes non-uniform, and as a result, the direct current superposition characteristics deteriorate. That is, when the circularity of 80% or more of the particles is 0.75 to 1.0, good direct current superposition characteristics can be obtained.

軟磁性金属粉末11のSi濃度は、圧粉コア10を樹脂に埋め込んで研磨し、その断面を走査電子顕微鏡のエネルギー分散型X線分光器(EDS)で分析するのが簡便であるが、例えば電子線マイクロアナライザ等、その他の分析手法を用いることもできる。
軟磁性金属粉末11のSi濃度のバラツキを定量的に表すためには、以下のようにすればよい。圧粉コア10の断面上で500μm程度の間隔で格子状に100点程度選び、各格子点に最も近い粒子中央付近においてエネルギー分散型X線分光器(EDS)にてスポット分析を行う。その結果得られたSi濃度のデータから、標準偏差と平均値を算出する。標準偏差を平均値で割ったものを変動係数と定義する。この変動係数により、Si濃度のバラツキを定量的に表すことができる。また、この一連のデータの最大値および最小値をもって、軟磁性金属粉末11のSi濃度の最大値および最小値とみなす。
The Si concentration of the soft magnetic metal powder 11 can be easily measured by embedding the powder core 10 in a resin and polishing it, and analyzing the cross section with an energy dispersive X-ray spectrometer (EDS) of a scanning electron microscope. Other analysis methods such as an electron beam microanalyzer can also be used.
In order to quantitatively represent the variation in the Si concentration of the soft magnetic metal powder 11, the following may be performed. About 100 points are selected in the form of a lattice at intervals of about 500 μm on the cross section of the dust core 10, and spot analysis is performed with an energy dispersive X-ray spectrometer (EDS) near the center of the particle closest to each lattice point. A standard deviation and an average value are calculated from the Si concentration data obtained as a result. The coefficient of variation is defined as the standard deviation divided by the mean value. The variation of the Si concentration can be quantitatively represented by this variation coefficient. Further, the maximum value and the minimum value of this series of data are regarded as the maximum value and the minimum value of the Si concentration of the soft magnetic metal powder 11.

軟磁性金属粉末11のSi濃度の変動係数を0.05〜0.12とし、前記Si濃度の最大値と最小値の差を標準偏差の6倍以内することにより、Si濃度が比較的低く軟らかい粒子が塑性変形して、Si濃度が比較的高く硬い粒子間の空隙を埋めるために、圧粉コア10の粒子間のギャップの均一性が向上し、直流磁場を印加していった時に各粒子にかかる反磁界が均一になるので、圧粉コア10全体が均一に磁化されるため、優れた直流重畳特性を実現することができる。また、軟磁性金属粉末11のSi濃度の変動係数を0.05〜0.12とすることにより、圧粉コア10の組成の均一性も保たれるため、保磁力が極端に大きかったり小さかったりする粒子がなく、直流磁場を印加していった時に圧粉コア10全体が均一に磁化されるため、優れた直流重畳特性を実現することができる。 By setting the coefficient of variation of the Si concentration of the soft magnetic metal powder 11 to 0.05 to 0.12, and making the difference between the maximum value and the minimum value of the Si concentration within 6 times the standard deviation, the Si concentration is relatively low and soft. Since the particles are plastically deformed to fill the gaps between the hard particles having a relatively high Si concentration, the uniformity of the gap between the particles of the dust core 10 is improved and each particle is applied when a DC magnetic field is applied. Since the demagnetizing field is uniform, the entire dust core 10 is uniformly magnetized, so that excellent DC superposition characteristics can be realized. Further, by setting the coefficient of variation of the Si concentration of the soft magnetic metal powder 11 to 0.05 to 0.12, uniformity of the composition of the powder core 10 can be maintained, so that the coercive force is extremely large or small. There is no particle to be applied, and when the DC magnetic field is applied, the entire dust core 10 is magnetized uniformly, so that excellent DC superposition characteristics can be realized.

以下、本発明の好適な実施形態について説明するが、本発明は下記実施形態に限定されるものではない。
軟磁性金属粉末11は、Si濃度が異なる軟磁性金属粉末11−aおよび11−bで構成される。軟磁性金属粉末11−aおよび11−bの粒径は1μm以上200μm以下であることが望ましい。粒径を1μm以上とすることにより、粉の保磁力を800A/m以下にすることができ、低周波数のコアロスが低減する。粒径を200μm以下とすることにより、渦電流損失が減少し、高周波数のコアロスが低減する。軟磁性金属粉末11−aおよび11−bのSi濃度は1wt%以上10wt%以下であることが望ましい。Si濃度を10wt%以下とすることにより、粉の飽和磁化が1.5T以上となり、直流重畳特性が向上する。Si濃度を1wt%以上とすることにより、粉の電気抵抗率が20μΩcm以上に増加し、コアロスが低減する。軟磁性金属粉末11−aおよび11−bのSi濃度と混合比率は、計算上Si濃度の変動係数が0.05〜0.12となるように調整する。ただし、軟磁性金属粉末11−aと11−bのSi濃度の最大値と最小値の差が、標準偏差の6倍以内となるようにする。
Hereinafter, preferred embodiments of the present invention will be described, but the present invention is not limited to the following embodiments.
The soft magnetic metal powder 11 is composed of soft magnetic metal powders 11-a and 11-b having different Si concentrations. The particle diameters of the soft magnetic metal powders 11-a and 11-b are desirably 1 μm or more and 200 μm or less. By setting the particle size to 1 μm or more, the coercive force of the powder can be 800 A / m or less, and the low-frequency core loss is reduced. By setting the particle size to 200 μm or less, eddy current loss is reduced, and high-frequency core loss is reduced. The Si concentration of the soft magnetic metal powders 11-a and 11-b is preferably 1 wt% or more and 10 wt% or less. By setting the Si concentration to 10 wt% or less, the saturation magnetization of the powder becomes 1.5 T or more, and the DC superposition characteristics are improved. By setting the Si concentration to 1 wt% or more, the electrical resistivity of the powder is increased to 20 μΩcm or more, and the core loss is reduced. The Si concentration and the mixing ratio of the soft magnetic metal powders 11-a and 11-b are adjusted so that the variation coefficient of the Si concentration is 0.05 to 0.12 in calculation. However, the difference between the maximum value and the minimum value of the Si concentration of the soft magnetic metal powders 11-a and 11-b is set to be within 6 times the standard deviation.

軟磁性金属粉末11−aおよび11−bを混合して成形した場合、Si濃度が高くて比較的硬い軟磁性金属粉末(図1では、11−a)の隙間を、Si濃度が低くて比較的軟らかい軟磁性金属粉末(図1では、11−b)が塑性変形して充填すると考えられる。Si濃度の変動係数が0.12より大きい場合、圧粉コアの充填率は上がりやすいが、組成の均一性が損なわれ、直流重畳特性は悪化する。一方、Si濃度の変動係数が0.05より小さい場合、組成の均一性は高いが、軟磁性金属粉末11−bがあまり塑性変形しないので隙間を十分に充填することができず、軟磁性金属粉末間のギャップの均一性が損なわれるため、直流重畳特性は悪化する。また、軟磁性金属粉末11−aと11−bのSi濃度の最大値と最小値の差が標準偏差の6倍よりも大きい場合、Si濃度の変動係数が0.05〜0.12である状態は、一方の混合比率が極端に少ない状態であり、圧粉コアの充填率を上げることができないため、直流重畳特性は悪化する。 When the soft magnetic metal powders 11-a and 11-b are mixed and molded, the gap between the soft magnetic metal powders having a high Si concentration and relatively hard (11-a in FIG. 1) is compared with a low Si concentration. Soft magnetic metal powder (11-b in FIG. 1) is considered to be plastically deformed and filled. When the variation coefficient of Si concentration is larger than 0.12, the filling rate of the dust core tends to increase, but the uniformity of the composition is impaired and the direct current superimposition characteristic is deteriorated. On the other hand, when the variation coefficient of the Si concentration is less than 0.05, the composition uniformity is high, but the soft magnetic metal powder 11-b does not undergo plastic deformation so much that the gap cannot be sufficiently filled. Since the uniformity of the gap between the powders is impaired, the direct current superposition characteristics are deteriorated. Further, when the difference between the maximum value and the minimum value of the Si concentration of the soft magnetic metal powders 11-a and 11-b is larger than 6 times the standard deviation, the coefficient of variation of the Si concentration is 0.05 to 0.12. The state is a state in which one of the mixing ratios is extremely small, and the packing ratio of the dust core cannot be increased, so that the direct current superimposition characteristics are deteriorated.

軟磁性金属粉末11−aと11−bのSi濃度の変動係数を0.05〜0.12とし、Si濃度の最大値と最小値の差が標準偏差の6倍以内とすることにより、圧粉コア10の組成とギャップの均一性を両立できるので、優れた直流重畳特性を実現させることができる。 The coefficient of variation of the Si concentration of the soft magnetic metal powders 11-a and 11-b is 0.05 to 0.12, and the difference between the maximum value and the minimum value of the Si concentration is within 6 times the standard deviation. Since the composition of the powder core 10 and the uniformity of the gap can be compatible, excellent direct current superposition characteristics can be realized.

軟磁性金属粉末11−aおよび11−bはその表面の大部分が絶縁層12で覆われている。絶縁層12は電気伝導率が小さい無機物、有機物のいずれを用いてもよく、それらの複合物であってもよい。絶縁層12にはシリコン化合物が含まれることが好ましい。シリコン化合物は均一な絶縁層を形成することができるため、高密度にしても渦電流の発生を抑制し、コアロスを低減することができる。 The surface of the soft magnetic metal powders 11-a and 11-b is covered with the insulating layer 12. The insulating layer 12 may use either an inorganic material or an organic material having a low electrical conductivity, or may be a composite thereof. The insulating layer 12 preferably contains a silicon compound. Since a silicon compound can form a uniform insulating layer, generation of eddy current can be suppressed and core loss can be reduced even when the density is high.

軟磁性金属粉末11−aおよび11−bを用いて軟磁性金属圧粉コア10を作製する方法は一般的な軟磁性金属圧粉コア10の作製方法に則ればよいが、一例を以下に示す。 A method for producing the soft magnetic metal powder core 10 using the soft magnetic metal powders 11-a and 11-b may be in accordance with a general method for producing the soft magnetic metal powder core 10, but an example is described below. Show.

軟磁性金属粉末に対して、絶縁物を被覆し、顆粒状の造粒物を得る。絶縁物としてはシリコーン樹脂やエポキシ樹脂などの樹脂を用いることができ、成形時の保形性と電気的な絶縁性を有するもので、軟磁性金属粉末表面に均一に塗布できるものが好ましい。これらの溶液を所定の量だけ軟磁性金属粉末11−aおよび11−bに添加し、ニーダーなどで混練したのち、乾燥して得られた凝集物を解砕して、顆粒を得ることができる。 An insulating material is coated on the soft magnetic metal powder to obtain a granular granulated product. As the insulator, a resin such as a silicone resin or an epoxy resin can be used, and it is preferable to have a shape-retaining property at the time of molding and an electrical insulating property and can be uniformly applied to the surface of the soft magnetic metal powder. A predetermined amount of these solutions is added to the soft magnetic metal powders 11-a and 11-b, and after kneading with a kneader or the like, the aggregate obtained by drying can be crushed to obtain granules. .

得られた顆粒を所望の形状の金型に充填し、加圧成形して成形体を得る。成形圧力は軟磁性金属粉末の組成や所望の成形密度により適宜選択することができるが、概ね600〜1600MPaの範囲である。必要に応じて潤滑剤を用いてもよい。得られた成形体は、熱硬化させて圧粉コアとする。あるいは成形時の歪を除去するために熱処理を行って、軟磁性金属圧粉コアとする。熱処理の温度は500〜800℃で、窒素雰囲気やアルゴン雰囲気などの非酸化性雰囲気中で行うことが望ましい。絶縁物としてシリコーン樹脂を用いた場合には、熱処理後にシリコン化合物を含む絶縁物を形成することができるので、より渦電流損失が抑制できるため好ましい。 The obtained granule is filled into a mold having a desired shape, and pressure-molded to obtain a molded body. The molding pressure can be appropriately selected depending on the composition of the soft magnetic metal powder and the desired molding density, but is generally in the range of 600 to 1600 MPa. A lubricant may be used as necessary. The obtained molded body is heat-cured to form a powder core. Or heat processing is performed in order to remove distortion at the time of fabrication, and it is set as a soft magnetic metal dust core. The heat treatment is preferably performed at a temperature of 500 to 800 ° C. in a non-oxidizing atmosphere such as a nitrogen atmosphere or an argon atmosphere. When a silicone resin is used as the insulator, an insulator containing a silicon compound can be formed after the heat treatment, which is preferable because eddy current loss can be further suppressed.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。例えば、軟磁性金属粉末11は、Si濃度が異なる3種類以上の軟磁性金属粉末で構成されていてもよい。 The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment. The present invention can be variously modified without departing from the gist thereof. For example, the soft magnetic metal powder 11 may be composed of three or more types of soft magnetic metal powders having different Si concentrations.

本発明の内容を実施例および比較例を用いて以下に詳細に説明するが、本発明は以下の実施例に限定されるものではない。 The content of the present invention will be described in detail below using examples and comparative examples, but the present invention is not limited to the following examples.

(実施例1)
原料粉末として、ガスアトマイズ法にて狙い組成Fe−4.0wt%SiおよびFe−3.0wt%Si合金粉末を作製した。Fe−4.0wt%SiおよびFe−3.0wt%Si合金粉末を20μm〜90μmに分級して粒度分布を調整した後、Fe−3.0wt%Si合金粉末の比率を20wt%となるように混合した。
Example 1
As a raw material powder, a target composition of Fe-4.0 wt% Si and Fe-3.0 wt% Si alloy powder was prepared by a gas atomization method. After adjusting the particle size distribution by classifying the Fe-4.0 wt% Si and Fe-3.0 wt% Si alloy powder to 20 μm to 90 μm, the ratio of the Fe-3.0 wt% Si alloy powder is 20 wt%. Mixed.

Fe−4.0wt%SiおよびFe−3.0wt%Siの混合粉末が100wt%に対し、シリコーン樹脂が1.5wt%となるようにキシレンにて希釈して添加し、ニーダーで混練し、乾燥して得られた凝集物を355μm以下となるように整粒して、顆粒を得た。これを外径17.5mm、内径11.0mmのトロイダル形状の金型に充填し、成形圧1180MPaで加圧し成形体を得た。コア重量は5gとした。得られた成形体をベルト炉にて750℃で30min、窒素雰囲気中で熱処理して軟磁性金属圧粉コアとした。 Fe-4.0 wt% Si and Fe-3.0 wt% Si mixed powder is added to 100 wt% diluted with xylene so that the silicone resin is 1.5 wt%, kneaded with kneader and dried The agglomerates thus obtained were sized so as to be 355 μm or less to obtain granules. This was filled in a toroidal mold having an outer diameter of 17.5 mm and an inner diameter of 11.0 mm, and pressed at a molding pressure of 1180 MPa to obtain a molded body. The core weight was 5 g. The obtained compact was heat treated in a belt furnace at 750 ° C. for 30 minutes in a nitrogen atmosphere to obtain a soft magnetic metal dust core.

LCRメータ(アジレント・テクノロジー社製4284A)と直流バイアス電源(アジレント・テクノロジー社製42841A)を用いて、軟磁性圧粉コアのインダクタンスを測定し、インダクタンスから軟磁性圧粉コアの透磁率を算出した。直流重畳磁界が0A/mの場合と5000A/mの場合について測定し、それぞれ90、55となった。 Using an LCR meter (Agilent Technology 4284A) and a DC bias power supply (Agilent Technology 42841A), the inductance of the soft magnetic dust core was measured, and the permeability of the soft magnetic dust core was calculated from the inductance. . The measurement was performed when the DC superimposed magnetic field was 0 A / m and 5000 A / m, which were 90 and 55, respectively.

また、直流重畳特性測定後の軟磁性金属圧粉コアを冷間埋め込み樹脂で固定し、断面を切り出し、鏡面研磨を行った。圧粉コアの断面上において500μmの間隔で格子状に100点選び、各格子点に最も近い粒子中央付近でエネルギー分散型X線分光器(EDS)にてスポット分析し、Si濃度を測定した。これらのSi濃度のデータから、平均値と標準偏差を求めると、3.7wt%、0.32wt%となり、さらに変動係数を算出したところ、0.089となった。また、これらのSi濃度のデータの中で、最大値は4.5wt%、最小値は2.7wt%であった。その差は1.8wt%であるため、標準偏差の6倍以内となっていた。 Further, the soft magnetic metal dust core after the DC superposition characteristics measurement was fixed with a cold embedding resin, the cross section was cut out, and mirror polishing was performed. 100 points were selected in a lattice pattern at intervals of 500 μm on the cross section of the powder core, spot analysis was performed with an energy dispersive X-ray spectrometer (EDS) near the center of the particle closest to each lattice point, and the Si concentration was measured. When the average value and the standard deviation were obtained from these Si concentration data, they were 3.7 wt% and 0.32 wt%, and the coefficient of variation was calculated to be 0.089. Of these Si concentration data, the maximum value was 4.5 wt% and the minimum value was 2.7 wt%. Since the difference was 1.8 wt%, it was within 6 times the standard deviation.

さらに、Si濃度を測定した各粒子のWadellの円形度を測定し、円形度が0.75以上である粒子の割合を算出したところ、85%となった。 Furthermore, the Wadell circularity of each particle whose Si concentration was measured was measured, and the ratio of the particles having a circularity of 0.75 or more was calculated to be 85%.

(実施例2)
原料粉末として、ガスアトマイズ法にて作製した狙い組成Fe−5.5wt%SiおよびFe−5.0wt%Si合金粉末を、20μm〜63μmに分級して粒度分布を調整した後、Fe−5.0wt%Si合金粉末の比率が30wt%となるように混合した以外は、実施例1と同様の方法で軟磁性圧粉コアを作製した。直流重畳磁界が0A/mの場合と5000A/mの場合の透磁率は、それぞれ69、51となった。Si濃度の変動係数は0.051、円形度が0.75以上である粒子の割合は89%となった。
(Example 2)
As a raw material powder, the target composition Fe-5.5 wt% Si and Fe-5.0 wt% Si alloy powder prepared by gas atomization method is classified into 20 μm to 63 μm to adjust the particle size distribution, and then Fe-5.0 wt. A soft magnetic dust core was produced in the same manner as in Example 1 except that the mixing was performed so that the ratio of the% Si alloy powder was 30 wt%. The magnetic permeability when the DC superimposed magnetic field was 0 A / m and 5000 A / m was 69 and 51, respectively. The variation coefficient of Si concentration was 0.051, and the proportion of particles having a circularity of 0.75 or more was 89%.

(実施例3)
原料粉末として、ガスアトマイズ法にて作製した狙い組成Fe−5.0Siwt%およびFe−4.0wt%Si合金粉末を、Fe−4.0wt%Si合金粉末の比率が30wt%となるように混合した以外は、実施例1と同様の方法で軟磁性圧粉コアを作製した。直流重畳磁界が0A/mの場合と5000A/mの場合の透磁率は、それぞれ69、54となった。Si濃度の変動係数は0.108、円形度が0.75以上である粒子の割合は83%となった。
(Example 3)
As raw material powder, target composition Fe-5.0Siwt% and Fe-4.0wt% Si alloy powder prepared by gas atomization method were mixed so that the ratio of Fe-4.0wt% Si alloy powder was 30wt%. A soft magnetic dust core was produced in the same manner as in Example 1 except for the above. The magnetic permeability when the DC superimposed magnetic field was 0 A / m and 5000 A / m was 69 and 54, respectively. The variation coefficient of Si concentration was 0.108, and the ratio of particles having a circularity of 0.75 or more was 83%.

(実施例4)
原料粉末として、ガスアトマイズ法にて作製した狙い組成Fe−6.5wt%SiおよびFe−5.0wt%Si合金粉末を、Fe−5.0wt%Si合金粉末の比率が35wt%となるように混合した以外は、実施例1と同様の方法で軟磁性圧粉コアを作製した。直流重畳磁界が0A/mの場合と5000A/mの場合の透磁率は、それぞれ63、50となった。Si濃度の変動係数は0.120、円形度が0.75以上である粒子の割合は80%となった。
Example 4
As a raw material powder, a target composition Fe-6.5 wt% Si and Fe-5.0 wt% Si alloy powder prepared by gas atomization method are mixed so that the ratio of Fe-5.0 wt% Si alloy powder is 35 wt% A soft magnetic powder core was produced in the same manner as in Example 1 except that. The magnetic permeability when the DC superimposed magnetic field was 0 A / m and 5000 A / m was 63 and 50, respectively. The variation coefficient of Si concentration was 0.120, and the ratio of particles having a circularity of 0.75 or more was 80%.

(実施例5)
原料粉末として、ガスアトマイズ法にて作製した狙い組成Fe−5.5wt%SiおよびFe−4.5wt%Si合金粉末を、20μm〜106μmに分級して粒度分布を調整した後、Fe−4.5wt%Si合金粉末の比率が25wt%となるように混合した以外は、実施例1と同様の方法で軟磁性圧粉コアを作製した。直流重畳磁界が0A/mの場合と5000A/mの場合の透磁率は、それぞれ79、55となった。Si濃度の変動係数は0.071、円形度が0.75以上である粒子の割合は85%となった。
(Example 5)
As a raw material powder, target composition Fe-5.5 wt% Si and Fe-4.5 wt% Si alloy powder produced by a gas atomization method is classified into 20 μm to 106 μm and the particle size distribution is adjusted, and then Fe-4.5 wt. A soft magnetic dust core was produced in the same manner as in Example 1 except that the mixing was performed so that the ratio of the% Si alloy powder was 25 wt%. The magnetic permeability when the DC superimposed magnetic field was 0 A / m and 5000 A / m was 79 and 55, respectively. The variation coefficient of the Si concentration was 0.071, and the proportion of particles having a circularity of 0.75 or more was 85%.

(実施例6)
原料粉末として、ガスアトマイズ法にて作製した狙い組成Fe−5.2wt%SiおよびFe−4.5wt%Si合金粉末を、Fe−4.5wSi合金粉末の比率が35wt%となるように混合した以外は、実施例1と同様の方法で軟磁性圧粉コアを作製した。直流重畳磁界が0A/mの場合と5000A/mの場合の透磁率は、それぞれ60、52となった。Si濃度の変動係数は0.066、円形度が0.75以上である粒子の割合は87%となった。
(Example 6)
Other than mixing the target composition Fe-5.2wt% Si and Fe-4.5wt% Si alloy powder prepared by gas atomization method as raw material powder so that the ratio of Fe-4.5wSi alloy powder is 35wt% Produced a soft magnetic dust core in the same manner as in Example 1. The magnetic permeability when the DC superimposed magnetic field was 0 A / m and 5000 A / m was 60 and 52, respectively. The variation coefficient of the Si concentration was 0.066, and the proportion of particles having a circularity of 0.75 or more was 87%.

(比較例1)
原料粉末として、水アトマイズ法にて作製した狙い組成Fe−5.0wt%SiおよびFe−4.0wt%Si合金粉末を、Fe−4.0wt%Si合金粉末の比率が25wt%となるように混合し、成形圧を1480MPaとした以外は、実施例1と同様の方法で軟磁性圧粉コアを作製した。直流重畳磁界が0A/mの場合と5000A/mの場合の透磁率は、それぞれ120、46となった。Si濃度の変動係数は0.101、円形度が0.75以上である粒子の割合は72%となった。
(Comparative Example 1)
As a raw material powder, target composition Fe-5.0 wt% Si and Fe-4.0 wt% Si alloy powder produced by water atomization method is used so that the ratio of Fe-4.0 wt% Si alloy powder is 25 wt%. A soft magnetic dust core was produced in the same manner as in Example 1 except that the mixing pressure was changed to 1480 MPa. The magnetic permeability when the DC superimposed magnetic field was 0 A / m and 5000 A / m was 120 and 46, respectively. The variation coefficient of Si concentration was 0.101, and the ratio of particles having a circularity of 0.75 or more was 72%.

(比較例2)
原料粉末として、ガスアトマイズ法にて作製した狙い組成Fe−4.0wt%SiおよびFe−2.5wt%Si合金粉末を、20μm〜53μmに分級して粒度分布を調整した後、Fe−2.5wt%Si合金粉末の比率が15wt%となるように混合した以外は、実施例1と同様の方法で軟磁性圧粉コアを作製した。直流重畳磁界が0A/mの場合と5000A/mの場合の透磁率は、それぞれ66、44となった。Si濃度の変動係数は0.152、円形度が0.75以上である粒子の割合は80%となった。
(Comparative Example 2)
The target composition Fe-4.0 wt% Si and Fe-2.5 wt% Si alloy powder prepared by gas atomization method as raw material powder is classified into 20 μm to 53 μm to adjust the particle size distribution, and then Fe-2.5 wt. A soft magnetic dust core was produced in the same manner as in Example 1 except that the mixing was performed so that the ratio of the% Si alloy powder was 15 wt%. The magnetic permeability when the DC superimposed magnetic field was 0 A / m and 5000 A / m was 66 and 44, respectively. The coefficient of variation of the Si concentration was 0.152, and the proportion of particles having a circularity of 0.75 or more was 80%.

(比較例3)
原料粉末として、ガスアトマイズ法にて作製した狙い組成Fe−5.0wt%SiおよびFe−3.5wt%Si合金粉末を、Fe−3.5wt%Si合金粉末の比率が20wt%となるように混合した以外は、実施例1と同様の方法で軟磁性圧粉コアを作製した。直流重畳磁界が0A/mの場合と5000A/mの場合の透磁率は、それぞれ92、47となった。Si濃度の変動係数は0.125、円形度が0.75以上である粒子の割合は82%となった。
(Comparative Example 3)
As a raw material powder, target composition Fe-5.0 wt% Si and Fe-3.5 wt% Si alloy powder prepared by gas atomization method are mixed so that the ratio of Fe-3.5 wt% Si alloy powder is 20 wt% A soft magnetic powder core was produced in the same manner as in Example 1 except that. The magnetic permeability when the DC superimposed magnetic field was 0 A / m and 5000 A / m was 92 and 47, respectively. The variation coefficient of Si concentration was 0.125, and the ratio of particles having a circularity of 0.75 or more was 82%.

(比較例4)
原料粉末として、ガスアトマイズ法にて作製した狙い組成Fe−5.0wt%SiおよびFe−3.0wt%Si合金粉末を、Fe−3.0wt%Si合金粉末の比率が20wt%となるように混合した以外は、実施例1と同様の方法で軟磁性圧粉コアを作製した。直流重畳磁界が0A/mの場合と5000A/mの場合の透磁率は、それぞれ146、40となった。Si濃度の変動係数は0.175、円形度が0.75以上である粒子の割合は80%となった。
(Comparative Example 4)
As raw material powder, target composition Fe-5.0wt% Si and Fe-3.0wt% Si alloy powder prepared by gas atomization method are mixed so that the ratio of Fe-3.0wt% Si alloy powder is 20wt% A soft magnetic powder core was produced in the same manner as in Example 1 except that. The magnetic permeability when the DC superimposed magnetic field was 0 A / m and 5000 A / m was 146 and 40, respectively. The variation coefficient of Si concentration was 0.175, and the ratio of particles having a circularity of 0.75 or more was 80%.

(比較例5)
原料粉末として、ガスアトマイズ法にて作製した狙い組成Fe−5.5wt%SiおよびFe−5.2wt%Si合金粉末を、20μm〜150μmに分級して粒度分布を調整した後、Fe−5.2wt%Si合金粉末の比率が50wt%となるように混合した以外は、実施例1と同様の方法で軟磁性圧粉コアを作製した。直流重畳磁界が0A/mの場合と5000A/mの場合の透磁率は、それぞれ69、48となった。Si濃度の変動係数は0.029、円形度が0.75以上である粒子の割合は88%となった。
(Comparative Example 5)
As a raw material powder, target composition Fe-5.5 wt% Si and Fe-5.2 wt% Si alloy powder prepared by gas atomization method is classified into 20 μm to 150 μm, and the particle size distribution is adjusted, and then Fe-5.2 wt. A soft magnetic dust core was produced in the same manner as in Example 1 except that the mixing was performed so that the ratio of the% Si alloy powder was 50 wt%. The magnetic permeability when the DC superimposed magnetic field was 0 A / m and 5000 A / m was 69 and 48, respectively. The variation coefficient of Si concentration was 0.029, and the proportion of particles having a circularity of 0.75 or more was 88%.

(比較例6)
原料粉末として、ガスアトマイズ法にて作製した狙い組成Fe−5.5wt%SiおよびFe−5.4wt%Si合金粉末を、Fe−5.4wt%Si合金粉末の比率が30wt%となるように混合した以外は、実施例1と同様の方法で軟磁性圧粉コアを作製した。直流重畳磁界が0A/mの場合と5000A/mの場合の透磁率は、それぞれ49、40となった。Si濃度の変動係数は0.008、円形度が0.75以上である粒子の割合は87%となった。
(Comparative Example 6)
As a raw material powder, target composition Fe-5.5 wt% Si and Fe-5.4 wt% Si alloy powder prepared by gas atomization method are mixed so that the ratio of Fe-5.4 wt% Si alloy powder is 30 wt% A soft magnetic powder core was produced in the same manner as in Example 1 except that. The magnetic permeability when the DC superimposed magnetic field was 0 A / m and 5000 A / m was 49 and 40, respectively. The variation coefficient of Si concentration was 0.008, and the proportion of particles having a circularity of 0.75 or more was 87%.

(比較例7)
原料粉末として、ガスアトマイズ法にて作製した狙い組成Fe−5.5wt%SiおよびFe−2.0wt%Si合金粉末を、Fe−2.0wt%Si合金粉末の比率が1wt%となるように混合した以外は、実施例1と同様の方法で軟磁性圧粉コアを作製した。直流重畳磁界が0A/mの場合と5000A/mの場合の透磁率は、それぞれ45、39となった。Si濃度の変動係数は0.064、円形度が0.75以上である粒子の割合は93%となった。
(Comparative Example 7)
As raw material powder, target composition Fe-5.5 wt% Si and Fe-2.0 wt% Si alloy powder prepared by gas atomization method are mixed so that the ratio of Fe-2.0 wt% Si alloy powder is 1 wt% A soft magnetic powder core was produced in the same manner as in Example 1 except that. The magnetic permeability when the DC superimposed magnetic field was 0 A / m and 5000 A / m was 45 and 39, respectively. The variation coefficient of the Si concentration was 0.064, and the proportion of particles having a circularity of 0.75 or more was 93%.

上記のようにして作製した軟磁性金属圧粉コアのSi濃度の平均値と標準偏差、変動係数、最大値、最小値、円形度が0.75以上である粒子の割合、コア密度、および直流重畳磁界が0A/mの場合と5000A/mの場合の透磁率をまとめた結果を表1に示す。 The average value and standard deviation of Si concentration of the soft magnetic metal dust core produced as described above, coefficient of variation, maximum value, minimum value, ratio of particles having a circularity of 0.75 or more, core density, and direct current Table 1 shows a summary of the magnetic permeability when the superposed magnetic field is 0 A / m and 5000 A / m.

Figure 2017054910
Figure 2017054910

また、Si濃度の変動係数を横軸にとり、直流重畳磁界が5000A/mの場合の透磁率を縦軸にとって、表1のデータをプロットしたグラフを図2に示す。図2より、軟磁性金属粉末を構成する80%以上の粒子の断面の円形度が0.75〜1.0であって、Si濃度の変動係数が0.05以上0.12以下の範囲内にある時、直流重畳磁界が5000A/mの透磁率が50以上となっており、優れた直流重畳特性を示すことが確認できる。 Further, FIG. 2 is a graph in which the data in Table 1 is plotted with the coefficient of variation of Si concentration on the horizontal axis and the magnetic permeability when the DC superimposed magnetic field is 5000 A / m on the vertical axis. From FIG. 2, the circularity of the cross section of 80% or more of the particles constituting the soft magnetic metal powder is 0.75 to 1.0, and the variation coefficient of Si concentration is in the range of 0.05 to 0.12. When the direct current superposition magnetic field is 5000 A / m, the magnetic permeability is 50 or more, and it can be confirmed that excellent direct current superposition characteristics are exhibited.

実施例1、実施例2、実施例3、実施例4、実施例5、実施例6は、比較的硬いFe−Si合金粉末の隙間に、比較的軟らかいFe−Si合金粉末が塑性変形して入り込むことによって充填率が上がり、圧粉コアのギャプの均一性が向上する。また、Si濃度の変動係数が0.089、0.051、0.108、0.120、0.071、0.066と適切な範囲内にあるため、圧粉コアの組成の均一性があまり損なわれることがなく、直流重畳磁界が5000A/mの透磁率が55、51、54、50、55、52と高い。 In Example 1, Example 2, Example 3, Example 4, Example 5, and Example 6, the relatively soft Fe-Si alloy powder was plastically deformed in the gaps between the relatively hard Fe-Si alloy powders. The filling rate is increased by entering, and the gap uniformity of the dust core is improved. In addition, since the variation coefficient of the Si concentration is within an appropriate range of 0.089, 0.051, 0.108, 0.120, 0.071, 0.066, the uniformity of the composition of the dust core is not so much The magnetic permeability with a DC superimposed magnetic field of 5000 A / m is as high as 55, 51, 54, 50, 55, and 52 without being damaged.

比較例1は、Si濃度の変動係数は0.101と適切な範囲内にあるが、円形度が0.75以上である粒子の割合は72%と低く、粒子表面の曲率が一定ではない粒子の割合が多い。このため、成形時の応力のかかり方が不均一になり、塑性変形量が大きい部分とそうでない部分が生じるため、磁化過程が不均一となり、結果として直流重畳磁界が5000A/mの透磁率が46と低い。 In Comparative Example 1, the coefficient of variation of the Si concentration is within an appropriate range of 0.101, but the proportion of particles having a circularity of 0.75 or more is as low as 72%, and the particle surface curvature is not constant. There are many ratios. For this reason, the stress applied at the time of molding becomes non-uniform, and a portion with a large amount of plastic deformation and a portion with no plastic deformation are generated, so the magnetization process becomes non-uniform, and as a result, the DC superimposition magnetic field has a permeability of 5000 A / m. 46 and low.

比較例2、比較例3、比較例4は、Si濃度の変動係数が0.152、0.125、0.175と高い。このため、圧粉コアの組成の均一性が損なわれ、直流重畳磁界が5000A/mの透磁率が44、47、40と低い。 In Comparative Example 2, Comparative Example 3, and Comparative Example 4, the coefficient of variation of the Si concentration is as high as 0.152, 0.125, and 0.175. For this reason, the uniformity of the composition of the dust core is impaired, and the magnetic permeability with a DC superimposed magnetic field of 5000 A / m is as low as 44, 47, and 40.

比較例5、比較例6は、Si濃度の変動係数が0.029、0.008と低い。このため、圧粉コアの組成の均一性は高いが、ギャプの均一性が損なわれ、直流重畳磁界が5000A/mの透磁率が48、40と低い。 In Comparative Examples 5 and 6, the coefficient of variation of the Si concentration is as low as 0.029 and 0.008. For this reason, the uniformity of the composition of the dust core is high, but the uniformity of the gap is impaired, and the magnetic permeability at a DC superimposed magnetic field of 5000 A / m is as low as 48 and 40.

比較例7は、Si濃度の変動係数は0.064と適切な範囲内にあるが、Fe−5.5Si粉末とFe−2.0Si粉末のSi濃度の最大値と最小値の差が、標準偏差の6倍を越えている。このため、圧粉コアの密度が低く、ギャプの均一性が損なわれ、直流重畳磁界が5000A/mの透磁率が39と低い。 In Comparative Example 7, the variation coefficient of the Si concentration is 0.064, which is within an appropriate range, but the difference between the maximum value and the minimum value of the Si concentration of the Fe-5.5Si powder and the Fe-2.0Si powder is the standard. It exceeds 6 times the deviation. For this reason, the density of the dust core is low, the gap uniformity is impaired, and the magnetic permeability with a DC superimposed magnetic field of 5000 A / m is as low as 39.

以上説明した通り、本発明の軟磁性金属圧粉コアは、直流電流重畳下でも高いインダクタンスを有することから、小型化を実現できるので、電源回路などのインダクタやリアクトルなどの電気・磁気デバイスに広く且つ有効に利用可能である。 As described above, the soft magnetic metal dust core of the present invention has a high inductance even under DC current superposition, and thus can be miniaturized. Therefore, it is widely used in electric and magnetic devices such as inductors and reactors such as power circuits. And can be used effectively.

10:軟磁性金属圧粉コア
11−a、11−b:軟磁性金属粉末
12:絶縁物
10: Soft magnetic metal powder core 11-a, 11-b: Soft magnetic metal powder 12: Insulator

Claims (4)

Fe−Si系軟磁性金属粉末および絶縁物を含む圧粉コアであって、前記圧粉コアの任意の断面上において、前記軟磁性金属粉末を構成する80%以上の粒子の断面の円形度が0.75〜1.0であって、前記軟磁性金属粉末を構成する各粒子中央付近のSi濃度の変動係数が0.050以上、0.120以下であり、前記Si濃度の最大値と最小値の差が標準偏差の6倍以内であることを特徴とする軟磁性金属圧粉コア。 A powder core including an Fe-Si soft magnetic metal powder and an insulator, wherein a circularity of a cross section of 80% or more of the particles constituting the soft magnetic metal powder on an arbitrary cross section of the powder core. The variation coefficient of Si concentration near the center of each particle constituting the soft magnetic metal powder is 0.75 to 1.0, and is 0.050 or more and 0.120 or less, and the maximum value and the minimum value of the Si concentration are A soft magnetic metal dust core characterized in that the difference in values is within 6 times the standard deviation. 前記軟磁性金属粉末の粒径が、1μm以上200μm以下であることを特徴とする、請求項1に記載の軟磁性金属圧粉コア。 2. The soft magnetic metal powder core according to claim 1, wherein a particle diameter of the soft magnetic metal powder is 1 μm or more and 200 μm or less. 前記軟磁性金属粉末のSi濃度が、1wt%以上10wt%以下であることを特徴とする、請求項1に記載の軟磁性金属圧粉コア。 The soft magnetic metal dust core according to claim 1, wherein the Si concentration of the soft magnetic metal powder is 1 wt% or more and 10 wt% or less. 前記絶縁物は、シリコン化合物を含むことを特徴とする請求項1に記載の軟磁性金属圧粉コア。 The soft magnetic metal dust core according to claim 1, wherein the insulator includes a silicon compound.
JP2015177423A 2015-09-09 2015-09-09 Soft magnetic metal dust core Active JP6519418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015177423A JP6519418B2 (en) 2015-09-09 2015-09-09 Soft magnetic metal dust core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015177423A JP6519418B2 (en) 2015-09-09 2015-09-09 Soft magnetic metal dust core

Publications (2)

Publication Number Publication Date
JP2017054910A true JP2017054910A (en) 2017-03-16
JP6519418B2 JP6519418B2 (en) 2019-05-29

Family

ID=58317227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015177423A Active JP6519418B2 (en) 2015-09-09 2015-09-09 Soft magnetic metal dust core

Country Status (1)

Country Link
JP (1) JP6519418B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018181888A (en) * 2017-04-03 2018-11-15 株式会社豊田中央研究所 Powder magnetic core, powder for magnetic core, and manufacturing method of the same
JP2020161695A (en) * 2019-03-27 2020-10-01 Tdk株式会社 Soft magnetic metal powder
JP2020205360A (en) * 2019-06-18 2020-12-24 大同特殊鋼株式会社 Manufacturing method of dust core and soft magnetic metal powder used therefor
CN113518676A (en) * 2019-03-06 2021-10-19 杰富意钢铁株式会社 Iron-based powder for dust core and dust core

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1187123A (en) * 1997-09-08 1999-03-30 Mitsubishi Materials Corp High-frequency soft magnetic powder
JP2005150381A (en) * 2003-11-14 2005-06-09 Daido Steel Co Ltd Dust core
JP2008192897A (en) * 2007-02-06 2008-08-21 Hitachi Metals Ltd Dust core and reactor
JP2013234339A (en) * 2012-05-07 2013-11-21 Sumitomo Electric Ind Ltd Method for manufacturing sintered material and sintered material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1187123A (en) * 1997-09-08 1999-03-30 Mitsubishi Materials Corp High-frequency soft magnetic powder
JP2005150381A (en) * 2003-11-14 2005-06-09 Daido Steel Co Ltd Dust core
JP2008192897A (en) * 2007-02-06 2008-08-21 Hitachi Metals Ltd Dust core and reactor
JP2013234339A (en) * 2012-05-07 2013-11-21 Sumitomo Electric Ind Ltd Method for manufacturing sintered material and sintered material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018181888A (en) * 2017-04-03 2018-11-15 株式会社豊田中央研究所 Powder magnetic core, powder for magnetic core, and manufacturing method of the same
US11328848B2 (en) 2017-04-03 2022-05-10 Denso Corporation Dust core, powder for magnetic cores, and methods of manufacturing them
CN113518676A (en) * 2019-03-06 2021-10-19 杰富意钢铁株式会社 Iron-based powder for dust core and dust core
JP2020161695A (en) * 2019-03-27 2020-10-01 Tdk株式会社 Soft magnetic metal powder
JP7177393B2 (en) 2019-03-27 2022-11-24 Tdk株式会社 soft magnetic metal powder
JP2020205360A (en) * 2019-06-18 2020-12-24 大同特殊鋼株式会社 Manufacturing method of dust core and soft magnetic metal powder used therefor
JP7423915B2 (en) 2019-06-18 2024-01-30 大同特殊鋼株式会社 Manufacturing method of powder magnetic core

Also Published As

Publication number Publication date
JP6519418B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
JP6471260B2 (en) Soft magnetic materials, dust cores using soft magnetic materials, reactors using dust cores
JP5958571B1 (en) Soft magnetic metal dust core
US10008324B2 (en) Method for manufacturing powder magnetic core, powder magnetic core, and coil component
JP5954481B1 (en) Soft magnetic metal dust core and reactor
WO2018179812A1 (en) Dust core
JP5924480B2 (en) Magnetic powder material, low-loss composite magnetic material including the magnetic powder material, and magnetic element including the low-loss composite magnetic material
CN107658090B (en) Soft magnetic metal powder magnetic core and reactor provided with same
JP2010272604A (en) Soft magnetic powder and dust core using the same, and inductor and method of manufacturing the same
JP2019151909A (en) Soft magnetic material, powder magnetic core, and manufacturing method of powder magnetic core
JP6519418B2 (en) Soft magnetic metal dust core
JP6229166B2 (en) Composite magnetic material for inductor and manufacturing method thereof
JP6314020B2 (en) Powder magnetic core using nanocrystalline soft magnetic alloy powder and manufacturing method thereof
WO2018052107A1 (en) Magnetic core and coil component
JP2012222062A (en) Composite magnetic material
JP4209614B2 (en) Ni-Fe alloy powder
JP2018073996A (en) Soft magnetic material, powder-compact magnetic core arranged by use thereof, and method for manufacturing powder-compact magnetic core
JP2006100292A (en) Dust core manufacturing method and dust core manufactured thereby
JP2007134591A (en) Composite magnetic material, dust core using the same and magnetic element
JP7254449B2 (en) Soft magnetic materials, dust cores, and inductors
JP2003347113A (en) Composite magnetic material and its manufacturing method
JP2004327762A (en) Composite soft magnetic material
JP2021093405A (en) Method of manufacturing dust core
JP2003049203A (en) Nickel - iron alloy powder, nickel - iron - molybdenum alloy powder, and method for manufacturing iron core
JPH11329821A (en) Dust core and manufacture thereof
WO2022070786A1 (en) Dust core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190408

R150 Certificate of patent or registration of utility model

Ref document number: 6519418

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150