JP2017052717A - Method for producing aromatic compounds - Google Patents
Method for producing aromatic compounds Download PDFInfo
- Publication number
- JP2017052717A JP2017052717A JP2015177078A JP2015177078A JP2017052717A JP 2017052717 A JP2017052717 A JP 2017052717A JP 2015177078 A JP2015177078 A JP 2015177078A JP 2015177078 A JP2015177078 A JP 2015177078A JP 2017052717 A JP2017052717 A JP 2017052717A
- Authority
- JP
- Japan
- Prior art keywords
- lignin
- catalyst
- aromatic compound
- reactor
- cedar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 150000001491 aromatic compounds Chemical class 0.000 title claims abstract description 75
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 54
- 239000003054 catalyst Substances 0.000 claims abstract description 77
- 229920005610 lignin Polymers 0.000 claims abstract description 74
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 68
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 50
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims abstract description 34
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 34
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 33
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 23
- 239000000463 material Substances 0.000 claims abstract description 22
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 21
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims abstract description 14
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000006227 byproduct Substances 0.000 claims abstract description 10
- 239000006229 carbon black Substances 0.000 claims abstract description 8
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 8
- 239000010439 graphite Substances 0.000 claims abstract description 8
- 239000002028 Biomass Substances 0.000 claims description 19
- 150000005846 sugar alcohols Chemical class 0.000 claims description 17
- 238000007327 hydrogenolysis reaction Methods 0.000 claims description 8
- 150000001875 compounds Chemical class 0.000 claims description 3
- 239000003205 fragrance Substances 0.000 claims 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 abstract description 6
- 229910052799 carbon Inorganic materials 0.000 abstract description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 abstract description 3
- 239000001569 carbon dioxide Substances 0.000 abstract description 3
- 239000002803 fossil fuel Substances 0.000 abstract description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 abstract 1
- 150000001720 carbohydrates Chemical class 0.000 abstract 1
- 238000004517 catalytic hydrocracking Methods 0.000 abstract 1
- 239000003610 charcoal Substances 0.000 abstract 1
- 241000218645 Cedrus Species 0.000 description 36
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 27
- 239000001913 cellulose Substances 0.000 description 24
- 229920002678 cellulose Polymers 0.000 description 24
- 229920002488 Hemicellulose Polymers 0.000 description 22
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 21
- 241000609240 Ambelania acida Species 0.000 description 19
- 239000010905 bagasse Substances 0.000 description 19
- 239000007787 solid Substances 0.000 description 17
- 239000000047 product Substances 0.000 description 15
- 239000000126 substance Substances 0.000 description 15
- HMNKTRSOROOSPP-UHFFFAOYSA-N 3-Ethylphenol Chemical compound CCC1=CC=CC(O)=C1 HMNKTRSOROOSPP-UHFFFAOYSA-N 0.000 description 14
- HXDOZKJGKXYMEW-UHFFFAOYSA-N 4-ethylphenol Chemical compound CCC1=CC=C(O)C=C1 HXDOZKJGKXYMEW-UHFFFAOYSA-N 0.000 description 14
- RLSSMJSEOOYNOY-UHFFFAOYSA-N m-cresol Chemical compound CC1=CC=CC(O)=C1 RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.000 description 14
- 239000002994 raw material Substances 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 13
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 12
- IWDCLRJOBJJRNH-UHFFFAOYSA-N p-cresol Chemical compound CC1=CC=C(O)C=C1 IWDCLRJOBJJRNH-UHFFFAOYSA-N 0.000 description 12
- ODLMAHJVESYWTB-UHFFFAOYSA-N propylbenzene Chemical compound CCCC1=CC=CC=C1 ODLMAHJVESYWTB-UHFFFAOYSA-N 0.000 description 12
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 10
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 239000001257 hydrogen Substances 0.000 description 9
- 229910052739 hydrogen Inorganic materials 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 239000002002 slurry Substances 0.000 description 8
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000000354 decomposition reaction Methods 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000000600 sorbitol Substances 0.000 description 6
- QWUWMCYKGHVNAV-UHFFFAOYSA-N 1,2-dihydrostilbene Chemical group C=1C=CC=CC=1CCC1=CC=CC=C1 QWUWMCYKGHVNAV-UHFFFAOYSA-N 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 229910052786 argon Inorganic materials 0.000 description 5
- 239000000571 coke Substances 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- 238000000769 gas chromatography-flame ionisation detection Methods 0.000 description 5
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 5
- 238000004817 gas chromatography Methods 0.000 description 4
- 150000002989 phenols Chemical class 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 2
- IXQGCWUGDFDQMF-UHFFFAOYSA-N o-Hydroxyethylbenzene Natural products CCC1=CC=CC=C1O IXQGCWUGDFDQMF-UHFFFAOYSA-N 0.000 description 2
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000811 xylitol Substances 0.000 description 2
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 2
- 229960002675 xylitol Drugs 0.000 description 2
- 235000010447 xylitol Nutrition 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- -1 -cresol Chemical class 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- 244000301850 Cupressus sempervirens Species 0.000 description 1
- 244000166124 Eucalyptus globulus Species 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- NSNVGCNCRLAWOJ-UHFFFAOYSA-N [N+](=O)([O-])[O-].N(=O)[Ru+2].[N+](=O)([O-])[O-] Chemical compound [N+](=O)([O-])[O-].N(=O)[Ru+2].[N+](=O)([O-])[O-] NSNVGCNCRLAWOJ-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000013064 chemical raw material Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- UKVIEHSSVKSQBA-UHFFFAOYSA-N methane;palladium Chemical compound C.[Pd] UKVIEHSSVKSQBA-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- CLSUSRZJUQMOHH-UHFFFAOYSA-L platinum dichloride Chemical compound Cl[Pt]Cl CLSUSRZJUQMOHH-UHFFFAOYSA-L 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- GTCKPGDAPXUISX-UHFFFAOYSA-N ruthenium(3+);trinitrate Chemical compound [Ru+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O GTCKPGDAPXUISX-UHFFFAOYSA-N 0.000 description 1
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- FBEIPJNQGITEBL-UHFFFAOYSA-J tetrachloroplatinum Chemical compound Cl[Pt](Cl)(Cl)Cl FBEIPJNQGITEBL-UHFFFAOYSA-J 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/54—Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
本発明は、リグニン含有物中のリグニンを分解する芳香族化合物の製造方法に関するものであり、より詳しくは、超臨界状態の水を溶媒として用い、パラジウム、白金、ルテニウム、およびニッケルから選ばれる少なくとも一種を含む触媒によって、リグニン含有物から効率良く芳香族化合物を製造する方法に関するものである。 The present invention relates to a method for producing an aromatic compound that decomposes lignin in a lignin-containing material, and more specifically, using supercritical water as a solvent and at least selected from palladium, platinum, ruthenium, and nickel. The present invention relates to a method for efficiently producing an aromatic compound from a lignin-containing material using a catalyst containing one kind.
二酸化炭素排出量の削減、化石燃料資源の枯渇や価格の高騰に対応する脱化石燃料社会の実現および炭素資源の多様化のために、再生可能資源から有用物質の製造が世界的に求められている。現在石油から作られているプラスチックの代替化学品が製造できることから、炭素資源であるバイオマスの利活用技術の開発が求められている。植物バイオマスは、主にセルロース、ヘミセルロース、およびリグニンから構成されている。草本系バイオマスや木質系バイオマスに含まれるセルロースやヘミセルロースの化学品原料への変換反応は多く報告されている。 In order to reduce carbon dioxide emissions, realize a defossil fuel society that responds to depletion of fossil fuel resources and soaring prices, and diversification of carbon resources, there is a global demand for the production of useful materials from renewable resources. Yes. Since it is possible to produce chemical substitutes for plastics currently made from petroleum, it is required to develop technologies for utilizing biomass, which is a carbon resource. Plant biomass is mainly composed of cellulose, hemicellulose, and lignin. Many conversion reactions of cellulose and hemicellulose contained in herbaceous biomass and woody biomass into chemical raw materials have been reported.
非特許文献1には、スギ木粉に含まれるセルロースやヘミセルロースからソルビトールやキシリトール等の糖アルコールを製造する方法が記載されている。しかしながら、リグニンは反応性に乏しく、化学品原料への変換が困難である。特許文献1には、金属を担持したゼオライトの存在下で、リグニンを熱処理してベンゼンやトルエン等の芳香族化合物を製造する方法が記載されている。しかしながら、特許文献1記載の芳香族化合物の製造方法では、大量のコークスが生成してしまう。 Non-Patent Document 1 describes a method for producing a sugar alcohol such as sorbitol or xylitol from cellulose or hemicellulose contained in cedar wood flour. However, lignin has poor reactivity and is difficult to convert into a chemical raw material. Patent Document 1 describes a method for producing an aromatic compound such as benzene or toluene by heat-treating lignin in the presence of a metal-supported zeolite. However, in the method for producing an aromatic compound described in Patent Document 1, a large amount of coke is generated.
特許文献2には、鉄含有触媒および水を用いて、リグニンを含有する材料を分解して得られるリグニン分解物を流通式反応器内で反応させてフェノール類を製造する方法が記載されている。しかしながら、特許文献2記載のフェノール類の製造方法では、原料が溶剤に溶解したリグニン分解物である。このため、固形状のリグニン含有物を原料としたフェノール類の製造は困難である。また、非特許文献2の記載によれば、特許文献2記載のフェノール類の製造方法では、触媒上にコークスが生成してしまう。 Patent Document 2 describes a method of producing phenols by reacting a lignin decomposition product obtained by decomposing a material containing lignin using an iron-containing catalyst and water in a flow reactor. . However, in the method for producing phenols described in Patent Document 2, the raw material is a lignin decomposition product dissolved in a solvent. For this reason, it is difficult to produce phenols using a solid lignin-containing material as a raw material. Further, according to the description of Non-Patent Document 2, in the method for producing phenols described in Patent Document 2, coke is generated on the catalyst.
本発明が解決する課題は、固形状または溶液中のリグニン含有物を原料とし、コークスがほとんど副生しない芳香族化合物の製造方法を提供することである。 The problem to be solved by the present invention is to provide a method for producing an aromatic compound which uses a lignin-containing material in a solid form or in a solution as a raw material and hardly produces coke as a byproduct.
本発明者らは、上述の課題を解決すべく鋭意研究を積み重ねた結果、パラジウム、白金、ルテニウム、およびニッケルから選ばれる少なくとも一種を含む触媒の存在下、コークスがほとんど副生することなく、超臨界水中でリグニン含有物から芳香族化合物が得られることを発見するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that coke is hardly produced as a by-product in the presence of a catalyst containing at least one selected from palladium, platinum, ruthenium, and nickel. It has been discovered that aromatic compounds can be obtained from lignin-containing materials in critical water.
上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)パラジウム、白金、ルテニウム、およびニッケルから選ばれる少なくとも一種を含む触媒の存在下、リグニン含有物中のリグニンを超臨界水中で分解する工程を有する芳香族化合物の製造方法。
(2)リグニン含有物が、バイオマスである(1)に記載の方法。
(3)リグニン含有物が、パルプ製造過程で得られる副生成物、糖化過程で得られる残渣、および水素化分解による糖アルコール製造過程で得られる残渣から選ばれる少なくとも一種である(2)に記載の方法。
(4)触媒が、活性炭、カーボンブラック、およびグラファイトから選ばれる少なくとも一種の担体をさらに含む(1)〜(3)に記載の方法。
(5)温度374℃〜500℃でリグニンを分解する(1)〜(4)に記載の方法。
(6)圧力22MPa〜60MPaでリグニンを分解する(1)〜(5)に記載の方法。
The present invention for solving the above-described problems comprises the following technical means.
(1) A method for producing an aromatic compound comprising a step of decomposing lignin in a lignin-containing product in supercritical water in the presence of a catalyst containing at least one selected from palladium, platinum, ruthenium, and nickel.
(2) The method according to (1), wherein the lignin-containing material is biomass.
(3) The lignin-containing material is at least one selected from a by-product obtained in the pulp production process, a residue obtained in the saccharification process, and a residue obtained in the sugar alcohol production process by hydrogenolysis. the method of.
(4) The method according to any one of (1) to (3), wherein the catalyst further comprises at least one carrier selected from activated carbon, carbon black, and graphite.
(5) The method according to (1) to (4), wherein lignin is decomposed at a temperature of 374 ° C to 500 ° C.
(6) The method according to (1) to (5), wherein lignin is decomposed at a pressure of 22 MPa to 60 MPa.
本発明によれば、コークスがほとんど副生することなく、リグニン含有物から芳香族化合物が得られる。 According to the present invention, an aromatic compound can be obtained from a lignin-containing material with almost no coke as a by-product.
以下、本発明の芳香族化合物の製造方法について、実施形態と実施例に基づいて詳細に説明する。重複説明は適宜省略する。なお、2つの数値の間に「〜」を記載して数値範囲を表す場合には、この2つの数値も数値範囲に含まれるものとする。 Hereinafter, the manufacturing method of the aromatic compound of this invention is demonstrated in detail based on embodiment and an Example. A duplicate description will be omitted as appropriate. In addition, when “to” is described between two numerical values to represent a numerical range, the two numerical values are also included in the numerical range.
本発明の実施形態に係る芳香族化合物の製造方法は、パラジウム、白金、ルテニウム、およびニッケルから選ばれる少なくとも一種を含む触媒の存在下、リグニン含有物中のリグニンを超臨界水中で分解する工程を有する。パラジウム、白金、ルテニウム、またはニッケルは、担体に担持されていてもよい。担体に担持されるパラジウム、白金、ルテニウム、またはニッケルは、金属以外に、酸化物や水酸化物等であってもよい。 The method for producing an aromatic compound according to an embodiment of the present invention includes a step of decomposing lignin in a lignin-containing material in supercritical water in the presence of a catalyst containing at least one selected from palladium, platinum, ruthenium, and nickel. Have. Palladium, platinum, ruthenium, or nickel may be supported on the carrier. Palladium, platinum, ruthenium, or nickel supported on the carrier may be an oxide or hydroxide in addition to the metal.
担体は反応条件下で安定なものであれば無機系または有機系のいずれでもよく、例えば、活性炭、カーボンブラック、グラファイト、ジルコニア、アルミナ、シリカ、ゼオライト、金属酸化物、および複合金属酸化物等が担体として使用できる。これらの中でも、比表面積が大きく、超臨界水中でのリグニン含有物の反応条件で極めて安定である活性炭、カーボンブラック、およびグラファイトから選ばれる少なくとも一種が好ましい。触媒は、パラジウム、白金、ルテニウム、およびニッケルから選ばれる少なくとも一種の金属微粒子を担体に担持したもの、またはこれらの金属が混合した微粒子を担体上に担持したものが好ましいが、これらの金属以外に、例えば、希土類元素、遷移金属、貴金属、アルカリ土類金属、アルカリ元素、ハロゲン元素等を触媒に含んでいてもよい。 The support may be either inorganic or organic as long as it is stable under the reaction conditions, such as activated carbon, carbon black, graphite, zirconia, alumina, silica, zeolite, metal oxide, and composite metal oxide. It can be used as a carrier. Among these, at least one selected from activated carbon, carbon black, and graphite, which has a large specific surface area and is extremely stable under the reaction conditions of the lignin-containing material in supercritical water, is preferable. The catalyst is preferably one in which at least one metal fine particle selected from palladium, platinum, ruthenium and nickel is supported on a carrier, or one in which fine particles mixed with these metals are supported on a carrier, but in addition to these metals For example, the catalyst may contain rare earth elements, transition metals, noble metals, alkaline earth metals, alkali elements, halogen elements and the like.
担体の質量に対するこれらの金属の質量の比は0.01%〜40%であることが好ましい。芳香族化合物の製造に高い活性を示すからである。担体の質量に対するこれらの金属の質量の比が0.01%より少ないと、十分な触媒活性が得られず芳香族化合物の生成量が少なくなり、40%より多いと、担体上の金属粒子が大きくなり金属原子あたりの活性が低下する。本実施形態の触媒の形状は特に限定されず、粉末や成形品等いずれの形状でもよい。 The ratio of the mass of these metals to the mass of the support is preferably 0.01% to 40%. This is because it exhibits high activity in the production of aromatic compounds. If the ratio of the mass of these metals to the mass of the support is less than 0.01%, sufficient catalytic activity cannot be obtained, and the amount of aromatic compounds produced is reduced. It becomes larger and the activity per metal atom decreases. The shape of the catalyst of the present embodiment is not particularly limited, and may be any shape such as powder or molded product.
本実施形態の製造方法に用いられる触媒は、例えば以下のようにして調製できる。まず、塩化パラジウム、ジニトロジアンミンパラジウム、酢酸パラジウム等のパラジウム含有溶液、ジニトロジアミン白金、塩化白金、テトラクロロ白金等の白金含有溶液、硝酸ニトロシルルテニウム、塩化ルテニウム等のルテニウム含有溶液、または塩化ニッケル、硝酸ニッケル等のニッケル含有溶液を担体に含浸する。この含浸に代えて、これらの溶液を担体上に噴霧してもよい。これらの金属を混合した触媒を調製するときは、金属の混合溶液を含浸もしくは噴霧、または逐次的に含浸もしくは噴霧する。つぎに、得られた金属含有担体を、順次乾燥、焼成、および還元して、金属が担持された触媒が得られる。なお、焼成工程や還元工程は省略してもよい。 The catalyst used in the production method of the present embodiment can be prepared, for example, as follows. First, palladium-containing solutions such as palladium chloride, dinitrodiammine palladium and palladium acetate, platinum-containing solutions such as dinitrodiamine platinum, platinum chloride and tetrachloroplatin, ruthenium-containing solutions such as nitrosylruthenium nitrate and ruthenium chloride, or nickel chloride and nitric acid The support is impregnated with a nickel-containing solution such as nickel. Instead of this impregnation, these solutions may be sprayed onto the support. When preparing a catalyst in which these metals are mixed, the mixed solution of metals is impregnated or sprayed, or sequentially impregnated or sprayed. Next, the obtained metal-containing support is sequentially dried, calcined, and reduced to obtain a metal-supported catalyst. Note that the firing step and the reduction step may be omitted.
超臨界水は、臨界温度を超えた温度、および臨界圧力を超えた圧力の状態の水である。なお、水の臨界温度は374℃で、水の臨界圧力は22MPaである。本実施形態の製造方法に用いられるリグニン含有物としては、スギ、ヒノキ、ユーカリ、アカシア等の木質系バイオマスのチップ、またはバガス、稲わら、エンプティフルーツバンチ、トウモロコシ等の植物系バイオマスのチップが挙げられる。これらのバイオマスには、セルロースとヘミセルロースが含まれており、セルロースとヘミセルロースを有効利用するために、リグニン含有物は、これらのバイオマスを処理して副生される物質であってもよい。 Supercritical water is water at a temperature above the critical temperature and at a pressure above the critical pressure. The critical temperature of water is 374 ° C., and the critical pressure of water is 22 MPa. Examples of the lignin-containing material used in the production method of the present embodiment include woody biomass chips such as cedar, cypress, eucalyptus, and acacia, or plant biomass chips such as bagasse, rice straw, empty fruit bunches, and corn. It is done. These biomass contains cellulose and hemicellulose. In order to effectively use cellulose and hemicellulose, the lignin-containing material may be a substance produced as a by-product by processing these biomasses.
バイオマスを処理して副生される物質としては、パルプ製造過程で得られる副生成物、すなわち例えば木質系バイオマスのセルロースをパルプとして使用するためのパルプ製造過程で得られるリグニンを主成分とする副生成物、セルロースを含むバイオマスの糖化過程で得られるリグニンを主成分とする残渣、およびバイオマス中のセルロースやヘミセルロースの水素化分解によるソルビトールやキシリトール等の糖アルコール製造過程で得られるリグニンを主成分とする残渣が挙げられる。本実施形態の製造方法に用いられる反応器としては、回分式、固定床流通式、および流動床流通式などの反応器が挙げられるが、特に制限はない。 Substances produced as a by-product of processing biomass include by-products obtained in the pulp production process, that is, by-products mainly composed of lignin obtained in the pulp production process for using, for example, cellulose of woody biomass as pulp. The product, the residue mainly composed of lignin obtained in the saccharification process of biomass containing cellulose, and the lignin obtained in the sugar alcohol production process such as sorbitol and xylitol by hydrogenolysis of cellulose and hemicellulose in the biomass Residue. Examples of the reactor used in the production method of the present embodiment include a batch type, a fixed bed flow type, and a fluid bed flow type reactor, but there is no particular limitation.
本実施形態の製造方法は、以下の手順で行われる。まず、反応器に触媒、水、および原料のリグニン含有物を入れる。このとき、窒素、ヘリウム、アルゴン、メタン、または二酸化炭素等で反応器内を充填してもよい。つぎに、反応器内が所定の温度および圧力となるように加熱および加圧する。そして、反応器内をこの所定の温度および圧力に維持することによって、リグニン含有物中のリグニンが分解して芳香族化合物が生成する。この所定の温度は、例えば374℃〜500℃であり、374℃〜420℃であることが好ましい。500℃を超える温度下でリグニンを分解しても芳香族化合物が得られるが、エネルギー消費量が多くなってしまう。 The manufacturing method of this embodiment is performed in the following procedures. First, a catalyst, water, and a raw material lignin-containing material are placed in a reactor. At this time, the inside of the reactor may be filled with nitrogen, helium, argon, methane, carbon dioxide or the like. Next, it heats and pressurizes so that the inside of a reactor may become predetermined temperature and pressure. And the lignin in a lignin containing material decomposes | disassembles and an aromatic compound produces | generates by maintaining the inside of a reactor at this predetermined temperature and pressure. The predetermined temperature is, for example, 374 ° C. to 500 ° C., and preferably 374 ° C. to 420 ° C. Even if lignin is decomposed at a temperature exceeding 500 ° C., an aromatic compound is obtained, but energy consumption increases.
また、この所定の圧力は、例えば22MPa〜60MPaであり、22MPa〜40MPaであることが好ましい。60MPaを超える圧力下でリグニンを分解しても芳香族化合物が得られるが、反応器の製造コストが上がってしまう。リグニンを分解して得られる芳香族化合物としては、ベンゼン、フェノール、エチルベンゼン、プロピルベンゼン、ジベンジル、p−クレゾール、m−クレゾール、4−エチルフェノール、または3−エチルフェノールなどが挙げられる。 Further, the predetermined pressure is, for example, 22 MPa to 60 MPa, and preferably 22 MPa to 40 MPa. Even if lignin is decomposed under a pressure exceeding 60 MPa, an aromatic compound can be obtained, but the production cost of the reactor increases. Examples of the aromatic compound obtained by decomposing lignin include benzene, phenol, ethylbenzene, propylbenzene, dibenzyl, p-cresol, m-cresol, 4-ethylphenol, and 3-ethylphenol.
以下の実施例に基づいて本発明を具体的に説明するが、本発明はこれら実施例のみに限定されない。なお、特に断りがない限り「%」は「質量%」である。 The present invention will be specifically described based on the following examples, but the present invention is not limited to these examples. Note that “%” is “mass%” unless otherwise specified.
実施例1(4%Pt/C触媒の調製)
白金担持量が触媒の4%となるように、ジニトロジアミン白金水溶液(フルヤ金属社製)とカーボンブラック(BP2000、Cabot Corporation社製)を混合してスラリーを得た。このスラリーを12時間撹拌し、ロータリーエバポレーターで水分を蒸発させた後、100℃の乾燥機で10時間乾燥して粉末を得た。水素流通下、400℃、2時間の条件でこの粉末を還元処理して、4%Pt/C触媒を得た。
Example 1 (Preparation of 4% Pt / C catalyst)
A dinitrodiamine platinum aqueous solution (manufactured by Furuya Metal Co., Ltd.) and carbon black (BP2000, manufactured by Cabot Corporation) were mixed to obtain a slurry so that the amount of platinum supported was 4% of the catalyst. This slurry was stirred for 12 hours, water was evaporated by a rotary evaporator, and then dried by a dryer at 100 ° C. for 10 hours to obtain a powder. This powder was subjected to reduction treatment under conditions of 400 ° C. for 2 hours under flowing hydrogen to obtain a 4% Pt / C catalyst.
実施例2(3%Ru・1%Pt/C触媒の調製)
ルテニウム担持量が触媒の3%で、白金担持量が触媒の1%となるように、硝酸ルテニウム水溶液(Strem Chemicals社製)とジニトロジアミン白金水溶液(フルヤ金属社製)の混合溶液と、カーボンブラック(BP2000、Cabot Corporation社製)を混合してスラリーを得た。このスラリーを12時間撹拌し、ロータリーエバポレーターで水分を蒸発させた後、100℃の乾燥機で10時間乾燥して粉末を得た。水素流通下、400℃、2時間の条件でこの粉末を還元処理して、3%Ru・1%Pt/C触媒を得た。
Example 2 (Preparation of 3% Ru · 1% Pt / C catalyst)
A mixed solution of a ruthenium nitrate aqueous solution (manufactured by Strem Chemicals) and a dinitrodiamine platinum aqueous solution (manufactured by Furuya Metal Co., Ltd.), carbon black, so that the ruthenium loading is 3% of the catalyst and the platinum loading is 1% of the catalyst. (BP2000, manufactured by Cabot Corporation) was mixed to obtain a slurry. This slurry was stirred for 12 hours, water was evaporated by a rotary evaporator, and then dried by a dryer at 100 ° C. for 10 hours to obtain a powder. This powder was subjected to reduction treatment under conditions of 400 ° C. for 2 hours under a hydrogen flow to obtain a 3% Ru · 1% Pt / C catalyst.
実施例3(2.5Pt・2.5%Pd/C触媒の調製)
ルテニウム担持量が触媒の2.5%で、パラジウム担持量が触媒の2.5%となるように、ジニトロジアミン白金水溶液(フルヤ金属社製)と塩化パラジウム(和光純薬工業株式会社製)の混合溶液と、高表面積グラファイト(HSAG300、TIMCAL社製)または活性炭(和光純薬工業製)を混合してスラリーを得た。このスラリーを12時間撹拌し、ロータリーエバポレーターで水分を蒸発させた後、100℃の乾燥機で10時間乾して粉末を得た。水素流通下、400℃、2時間の条件でこの粉末を還元処理して、2.5%Pt・2.5%Pd/グラファイトおよび2.5%Pt・2.5%Pd/活性炭を得た。
Example 3 (Preparation of 2.5 Pt · 2.5% Pd / C catalyst)
A dinitrodiamine platinum aqueous solution (Fluya Metal Co., Ltd.) and palladium chloride (Wako Pure Chemical Industries, Ltd.) were used so that the ruthenium loading was 2.5% of the catalyst and the palladium loading was 2.5% of the catalyst. The mixed solution was mixed with high surface area graphite (HSAG300, manufactured by TIMCAL) or activated carbon (manufactured by Wako Pure Chemical Industries) to obtain a slurry. This slurry was stirred for 12 hours, water was evaporated by a rotary evaporator, and then dried by a dryer at 100 ° C. for 10 hours to obtain a powder. This powder was reduced under conditions of 400 ° C. for 2 hours under hydrogen flow to obtain 2.5% Pt · 2.5% Pd / graphite and 2.5% Pt · 2.5% Pd / activated carbon. .
実施例4(20%Ni/C触媒の調製)
ニッケル担持量が触媒の20%になるように、塩化ニッケル(和光純薬工業株式会社製)水溶液とカーボンブラック(BP2000、Cabot Corporation社製)を混合してスラリーを得た。このスラリーを12時間撹拌し、ロータリーエバポレーターで水分を蒸発させた後、100℃の乾燥機で10時間乾燥して粉末を得た。水素流通下、400℃、2時間の条件でこの粉末を還元処理して、20%Ni/C触媒を得た。
Example 4 (Preparation of 20% Ni / C catalyst)
A nickel chloride (manufactured by Wako Pure Chemical Industries, Ltd.) aqueous solution and carbon black (BP2000, manufactured by Cabot Corporation) were mixed to obtain a slurry so that the amount of nickel supported was 20% of the catalyst. This slurry was stirred for 12 hours, water was evaporated by a rotary evaporator, and then dried by a dryer at 100 ° C. for 10 hours to obtain a powder. This powder was reduced under conditions of 400 ° C. for 2 hours under hydrogen flow to obtain a 20% Ni / C catalyst.
実施例5(スギからの芳香族化合物製造、4%Pt/C触媒)
まず、内容積100cm3のステンレス製反応器内に、4%Pt/C触媒0.3g、スギ0.324g、および水40mLを入れ、反応器内の空気を水素に置換した後、水素5MPaを導入した。なお、このスギは、セルロース41%、ヘミセルロース25%、リグニン33%から構成されており、ボールミルによって48時間粉砕したものを用いた。つぎに、反応器を190℃で16時間加熱して、スギの水素化分解による糖アルコール製造を行った。
Example 5 (Aromatic compound production from cedar, 4% Pt / C catalyst)
First, in a stainless steel reactor having an internal volume of 100 cm 3 , 0.3 g of 4% Pt / C catalyst, 0.324 g of cedar and 40 mL of water were placed, and the air in the reactor was replaced with hydrogen. Introduced. This cedar was composed of 41% cellulose, 25% hemicellulose, and 33% lignin, and was pulverized by a ball mill for 48 hours. Next, the reactor was heated at 190 ° C. for 16 hours to produce sugar alcohol by hydrogenolysis of cedar.
そして、反応器を冷却した後、ろ過により、水溶性生成物を含む液体と、触媒とスギの未反応物を主に含む固形物に分離した。この反応により、スギ中のセルロースおよびヘミセルロースが反応して、表1に示す糖アルコールが生成した。また、この固形物に含まれるスギの未反応物、すなわちセルロースおよびヘミセルロースの水素化分解による糖アルコール製造過程で得られた残渣は、主成分がリグニンであった。 Then, after cooling the reactor, it was separated into a liquid containing a water-soluble product and a solid containing mainly unreacted catalyst and cedar by filtration. By this reaction, cellulose and hemicellulose in cedar reacted to produce sugar alcohols shown in Table 1. The main component of the unreacted cedar contained in the solid, that is, the residue obtained in the sugar alcohol production process by hydrogenolysis of cellulose and hemicellulose was lignin.
つぎに、内容積6cm3のステンレス製バッチ式反応器内にこの固形物を入れ、固形物に含まれる水分と合わせて水の量が3mLとなるように反応器内に水を導入し、反応器内の空気をアルゴンに置換した。そして、溶融塩浴を用いてこの反応器を400℃に昇温した。このときの反応器内の圧力は37MPaであった。そして、反応器を400℃で1時間加熱し、この残渣中のリグニンを分解して芳香族化合物を製造した。そして、反応器を水冷した後、反応器内の生成物および固形物をテトラヒドロフランにより回収し、ろ過によって、テトラヒドロフラン可溶性生成物を含む液体と、触媒を主成分とする固形物とに分離した。 Next, this solid substance is put into a stainless steel batch reactor having an internal volume of 6 cm 3 , and water is introduced into the reactor so that the amount of water is 3 mL together with the moisture contained in the solid substance. The air in the vessel was replaced with argon. And this reactor was heated up to 400 degreeC using the molten salt bath. The pressure in the reactor at this time was 37 MPa. And the reactor was heated at 400 degreeC for 1 hour, the lignin in this residue was decomposed | disassembled, and the aromatic compound was manufactured. Then, after the reactor was cooled with water, the product and solids in the reactor were recovered with tetrahydrofuran, and separated into a liquid containing a tetrahydrofuran-soluble product and a solid containing a catalyst as a main component by filtration.
つぎに、この液体をガスクロマトグラフィー(GC−FID)により分析した。その結果を表1に示す。表1の数値は、原料のバイオマスであるスギ1gから得られた糖アルコールまたは芳香族化合物の質量(mg)である。セルロースおよびヘミセルロースの水素化分解による糖アルコール製造過程で得られた残渣から、芳香族化合物であるフェノール、ベンゼン、エチルベンゼン、プロピルベンゼン、およびジベンジル等が得られた。なお、この触媒を主成分とする固形物は、乾燥させて下記の実施例6で再使用した。 Next, this liquid was analyzed by gas chromatography (GC-FID). The results are shown in Table 1. The numerical values in Table 1 are the mass (mg) of sugar alcohol or aromatic compound obtained from 1 g of cedar which is raw material biomass. Aromatic compounds such as phenol, benzene, ethylbenzene, propylbenzene, and dibenzyl were obtained from the residue obtained during the sugar alcohol production process by hydrogenolysis of cellulose and hemicellulose. The solid containing the catalyst as a main component was dried and reused in Example 6 below.
表1の実施例5に示すように、スギと4%Pt/Cを水素存在下で190℃、16時間処理することにより、スギ中のセルロースおよびヘミセルロースからソルビトール等の糖アルコールが生成した。4%Pt/C触媒の存在下、残存するリグニンを400℃の超臨界水中で分解することにより、ベンゼン、フェノール、エチルベンゼン、プロピルベンゼン、およびジベンジル等の芳香族化合物が生成した。 As shown in Example 5 of Table 1, by treating cedar and 4% Pt / C in the presence of hydrogen at 190 ° C. for 16 hours, sugar alcohols such as sorbitol were produced from cellulose and hemicellulose in cedar. Aromatic compounds such as benzene, phenol, ethylbenzene, propylbenzene, and dibenzyl were produced by decomposing the remaining lignin in supercritical water at 400 ° C. in the presence of 4% Pt / C catalyst.
実施例6(スギからの芳香族化合物製造、4%Pt/C触媒の再使用)
セルロースおよびヘミセルロースの水素化分解による糖アルコール製造反応、ならびにリグニンの分解反応の触媒として、実施例5で回収した触媒を主成分とする固形物を用いた点を除いて、実施例5と同様にして、スギから芳香族化合物を製造した。その結果を表1に示す。表1の実施例6に示すように、この触媒は、新たなスギを原料として加えることにより、繰り返し使用可能であった。スギの全成分であるセルロース、ヘミセルロース、およびリグニンから有用化学物質が製造可能であることがわかった。
Example 6 (Aromatic compound production from cedar, reuse of 4% Pt / C catalyst)
As in Example 5, except that a solid substance mainly composed of the catalyst recovered in Example 5 was used as a catalyst for sugar alcohol production reaction by hydrogenolysis of cellulose and hemicellulose and decomposition reaction of lignin. An aromatic compound was produced from cedar. The results are shown in Table 1. As shown in Example 6 of Table 1, this catalyst could be used repeatedly by adding new cedar as a raw material. It has been found that useful chemicals can be produced from cellulose, hemicellulose, and lignin, which are all components of cedar.
実施例7(バガスからの芳香族化合物製造、4%Pt/C触媒)
実施例5のスギをバガスに変更した点を除いて、実施例5と同様にして、バガスから芳香族化合物を製造した。なお、このバガスは、セルロース37%、ヘミセルロース31%、およびリグニン22%から構成されており、ボールミルによって48時間粉砕したものを用いた。その結果を表2に示す。
Example 7 (Aromatic compound production from bagasse, 4% Pt / C catalyst)
An aromatic compound was produced from bagasse in the same manner as in Example 5 except that the cedar of Example 5 was changed to bagasse. This bagasse was composed of 37% cellulose, 31% hemicellulose, and 22% lignin, and was crushed by a ball mill for 48 hours. The results are shown in Table 2.
表2の実施例7に示すように、バガスと4%Pt/Cを水素存在下で190℃、16時間処理することにより、バガス中のセルロースおよびヘミセルロースからソルビトール等の糖アルコールが生成した。4%Pt/C触媒の存在下、残存するリグニンを400℃の超臨界水中で分解することにより、ベンゼン、フェノール、エチルベンゼン、プロピルベンゼン、およびジベンジル等の芳香族化合物が生成した。 As shown in Example 7 of Table 2, bagasse and 4% Pt / C were treated in the presence of hydrogen at 190 ° C. for 16 hours to produce sugar alcohols such as sorbitol from cellulose and hemicellulose in the bagasse. Aromatic compounds such as benzene, phenol, ethylbenzene, propylbenzene, and dibenzyl were produced by decomposing the remaining lignin in supercritical water at 400 ° C. in the presence of 4% Pt / C catalyst.
実施例8(バガスからの芳香族化合物製造、4%Pt/C触媒の再使用)
セルロースおよびヘミセルロースの水素化分解による糖アルコール製造反応、ならびにリグニンの分解反応の触媒として、実施例7で回収した触媒を主成分とする固形物を用いた点を除いて、実施例7と同様にして、バガスから芳香族化合物を製造した。その結果を表2に示す。
Example 8 (Aromatic compound production from bagasse, reuse of 4% Pt / C catalyst)
As in Example 7, except that the solids mainly composed of the catalyst recovered in Example 7 were used as the catalyst for the sugar alcohol production reaction by hydrogenolysis of cellulose and hemicellulose and the decomposition reaction of lignin. An aromatic compound was produced from bagasse. The results are shown in Table 2.
実施例9(バガスからの芳香族化合物製造、触媒の再使用)
セルロースおよびヘミセルロースの糖化反応、ならびにリグニンの分解反応の触媒として、実施例8で回収した触媒を主成分とする固形物を用いた点を除いて、実施例7と同様にして、バガスから芳香族化合物を製造した。その結果を表2に示す。表2の実施例8および実施例9に示すように、この触媒は、新たなバガスを原料として加えることにより、繰り返し使用可能であった。また、木質系バイオマスであるスギと同様に、草本系バイオマスであるバガスの全成分であるセルロース、ヘミセルロース、およびリグニンから有用化学物質が製造可能であることがわかった。
Example 9 (Aromatic compound production from bagasse, reuse of catalyst)
As a catalyst for the saccharification reaction of cellulose and hemicellulose, and the decomposition reaction of lignin, a solid material mainly composed of the catalyst recovered in Example 8 was used as in Example 7 to produce aromatics from bagasse. The compound was prepared. The results are shown in Table 2. As shown in Example 8 and Example 9 in Table 2, this catalyst could be used repeatedly by adding new bagasse as a raw material. Moreover, it turned out that a useful chemical substance can be manufactured from cellulose, hemicellulose, and lignin which are all the components of bagasse which is herbaceous biomass similarly to cedar which is woody biomass.
実施例10(スギからの芳香族化合物製造、3%Ru・1%Pt/C触媒)
実施例5の4%Pt/C触媒0.3gを、3%Ru・1%Pt/C触媒0.2gに変更に変更した点を除いて、実施例5と同様にして、スギから芳香族化合物を製造した。その結果を表3に示す。
Example 10 (Aromatic compound production from cedar, 3% Ru · 1% Pt / C catalyst)
Similar to Example 5, except that 0.3 g of the 4% Pt / C catalyst in Example 5 was changed to 0.2 g of 3% Ru · 1% Pt / C catalyst. The compound was prepared. The results are shown in Table 3.
表3の実施例10に示すように、スギと3%Ru・1%Pt/Cを水素存在下で190℃、16時間処理することにより、スギ中のセルロースおよびヘミセルロースからソルビトール等の糖アルコールが生成した。実施例10では、実施例5と比べて多くの糖アルコールが生成した。3%Ru・1%Pt/Cの存在下、残存するリグニンを400℃の超臨界水中で分解することにより、ベンゼン、フェノール、エチルベンゼン、プロピルベンゼン、およびジベンジル等の芳香族化合物が生成した。 As shown in Example 10 of Table 3, by treating cedar and 3% Ru · 1% Pt / C in the presence of hydrogen at 190 ° C. for 16 hours, sugar alcohols such as sorbitol are converted from cellulose and hemicellulose in cedar. Generated. In Example 10, compared with Example 5, many sugar alcohols produced | generated. Aromatic compounds such as benzene, phenol, ethylbenzene, propylbenzene, and dibenzyl were produced by decomposing the remaining lignin in supercritical water at 400 ° C. in the presence of 3% Ru · 1% Pt / C.
実施例11(スギからの芳香族化合物製造、20%Ni/C触媒)
実施例5の4%Pt/C触媒0.3gを、20%Ni/C触媒0.3gに変更した点を除いて、実施例5と同様にして、スギから芳香族化合物を製造した。その結果を表3に示す。表3の実施例11に示すように、スギと20%Ni/Cを水素存在下で190℃、16時間処理することにより、スギ中のセルロースおよびヘミセルロースからソルビトール等の糖アルコールが生成した。20%Ni/Cの存在下、残存するリグニンを400℃の超臨界水中で分解することにより、フェノール、p−クレゾール、m−クレゾール、4−エチルフェノール、および3−エチルフェノール等の芳香族化合物が生成した。20%Ni/C触媒を用いたときは、フェノール等のフェノール性水酸基を有する芳香族化合物が多く得られた。
Example 11 (Aromatic compound production from cedar, 20% Ni / C catalyst)
An aromatic compound was produced from cedar in the same manner as in Example 5 except that 0.3 g of the 4% Pt / C catalyst in Example 5 was changed to 0.3 g of 20% Ni / C catalyst. The results are shown in Table 3. As shown in Example 11 in Table 3, cedar and 20% Ni / C were treated in the presence of hydrogen at 190 ° C. for 16 hours to produce sugar alcohols such as sorbitol from cellulose and hemicellulose in the cedar. Aromatic compounds such as phenol, p-cresol, m-cresol, 4-ethylphenol, and 3-ethylphenol are decomposed in supercritical water at 400 ° C. in the presence of 20% Ni / C. Generated. When a 20% Ni / C catalyst was used, many aromatic compounds having a phenolic hydroxyl group such as phenol were obtained.
実施例12(スギからの直接芳香族化合物製造、4%Pt/C触媒)
まず、内容積6cm3のステンレス製バッチ式反応器内に、4%Pt/C触媒0.2g、スギ0.2g、およびに水3mLを入れ、反応器内の空気をアルゴンに置換した。なお、原料のリグニン含有物であるこのスギは、セルロース41%、ヘミセルロース25%、リグニン33%から構成されており、ボールミルによって48時間粉砕したものを用いた。つぎに、溶融塩浴を用いてこの反応器を400℃に昇温した。このときの反応器内の圧力は37MPaであった。
Example 12 (Production of direct aromatic compound from cedar, 4% Pt / C catalyst)
First, 0.2 g of 4% Pt / C catalyst, 0.2 g of cedar, and 3 mL of water were placed in a stainless batch reactor having an internal volume of 6 cm 3 , and the air in the reactor was replaced with argon. The cedar, which is a raw material containing lignin, was composed of 41% cellulose, 25% hemicellulose, and 33% lignin, and was pulverized by a ball mill for 48 hours. The reactor was then heated to 400 ° C. using a molten salt bath. The pressure in the reactor at this time was 37 MPa.
そして、反応器を400℃で1時間加熱し、スギ中のリグニンを分解して芳香族化合物を製造した。つぎに、反応器を水冷した後、反応器内の生成物および固形物をテトラヒドロフランにより回収し、ろ過によって、テトラヒドロフラン可溶性生成物を含む液体と固形物とに分離した。そして、この液体をガスクロマトグラフィー(GC−FID)により分析した。その結果を表4に示す。スギからフェノール、ベンゼン、エチルベンゼン、およびプロピルベンゼン等の芳香族化合物が得られた。 And the reactor was heated at 400 degreeC for 1 hour, the lignin in cedar was decomposed | disassembled, and the aromatic compound was manufactured. Next, after the reactor was cooled with water, the product and solids in the reactor were collected with tetrahydrofuran, and separated into a liquid and a solid containing a tetrahydrofuran-soluble product by filtration. And this liquid was analyzed by gas chromatography (GC-FID). The results are shown in Table 4. Aromatic compounds such as phenol, benzene, ethylbenzene, and propylbenzene were obtained from cedar.
表4の実施例12に示すように、4%Pt/C触媒の存在下、スギを400℃の超臨界水中で処理することにより、フェノール、p−クレゾール、m−クレゾール、4−エチルフェノール、および3−エチルフェノール等の芳香族化合物が生成した。スギを原料とすることにより、実施例5と比べてフェノールの生成量が増大した。また、クレゾールやエチルフェノールなどフェノール性水酸基を有する芳香族化合物が多く生成した。 As shown in Example 12 of Table 4, phenol, p-cresol, m-cresol, 4-ethylphenol, by treating cedar in supercritical water at 400 ° C. in the presence of 4% Pt / C catalyst, And aromatic compounds such as 3-ethylphenol were produced. By using cedar as a raw material, the amount of phenol produced was increased compared to Example 5. In addition, many aromatic compounds having a phenolic hydroxyl group such as cresol and ethylphenol were produced.
実施例13(スギからの直接芳香族化合物製造、3%Ru・1%Pt/C触媒)
実施例12の4%Pt/C触媒を3%Ru・1%Pt/C触媒に変更した点を除いて、実施例12と同様にしてスギから芳香族化合物を製造した。その結果を表4に示す。表4の実施例13に示すように、3%Ru・1%Pt/C触媒の存在下、スギから芳香族化合物が生成することが分かった。
Example 13 (Production of direct aromatic compound from cedar, 3% Ru · 1% Pt / C catalyst)
An aromatic compound was produced from cedar in the same manner as in Example 12, except that the 4% Pt / C catalyst in Example 12 was changed to a 3% Ru · 1% Pt / C catalyst. The results are shown in Table 4. As shown in Example 13 of Table 4, it was found that an aromatic compound was produced from cedar in the presence of 3% Ru · 1% Pt / C catalyst.
実施例14(バガスからの直接芳香族化合物製造、4%Pt/C触媒)
実施例12のスギをバガスに変更した点を除いて、実施例12と同様にしてバガスから芳香族化合物を製造した。その結果を表4に示す。
Example 14 (Production of aromatic compounds directly from bagasse, 4% Pt / C catalyst)
An aromatic compound was produced from bagasse in the same manner as in Example 12, except that the cedar of Example 12 was changed to bagasse. The results are shown in Table 4.
実施例15(バガスからの直接芳香族化合物製造、3%Ru1%Pt/C触媒)
実施例14の4%Pt/C触媒を3%Ru・1%Pt/C触媒に変更した点を除いて、実施例14と同様にしてバガスから芳香族化合物を製造した。その結果を表4に示す。表4の実施例14および実施例15に示すように、原料がバガスの場合でも芳香族化合物が生成することが分かった。
Example 15 (Production of aromatic compounds directly from bagasse, 3% Ru1% Pt / C catalyst)
An aromatic compound was produced from bagasse in the same manner as in Example 14 except that the 4% Pt / C catalyst in Example 14 was changed to a 3% Ru · 1% Pt / C catalyst. The results are shown in Table 4. As shown in Example 14 and Example 15 in Table 4, it was found that an aromatic compound was produced even when the raw material was bagasse.
実施例16〜実施例20、比較例1(オルガノソルブリグニンからの芳香族化合物製造)
まず、内容積6cm3のステンレス製バッチ式反応器内に、表5に示す触媒、オルガノソルブリグニン(アルドリッチ社製)0.1g、および水3mLを入れ、反応器内の空気をアルゴンに置換した。つぎに、溶融塩浴を用いてこの反応器を400℃に昇温した。このときの反応器内の圧力は37MPaであった。そして、反応器を400℃で1時間加熱して、オルガノソルブリグニンを分解して芳香族化合物を製造した。
Examples 16 to 20 and Comparative Example 1 (Aromatic compound production from organosolv lignin)
First, a stainless steel batch reactor having an internal volume of 6 cm 3 was charged with 0.1 g of the catalyst shown in Table 5, organosolv lignin (manufactured by Aldrich), and 3 mL of water, and the air in the reactor was replaced with argon. . The reactor was then heated to 400 ° C. using a molten salt bath. The pressure in the reactor at this time was 37 MPa. And the reactor was heated at 400 degreeC for 1 hour, the organosolv lignin was decomposed | disassembled and the aromatic compound was manufactured.
つぎに、反応器を水冷した後、反応器内の生成物および固形物をテトラヒドロフランにより回収し、ろ過によって、テトラヒドロフラン可溶性生成物を含む液体と固形物に分離した。そして、この液体をガスクロマトグラフィー(GC−FID)により分析した。その結果を表5に示す。オルガノソルブリグニンから芳香族化合物であるフェノール、p−クレゾール、m−クレゾール、4−エチルフェノール、および3−エチルフェノール等が得られた。 Next, after the reactor was cooled with water, the product and solids in the reactor were collected with tetrahydrofuran, and separated into a liquid and a solid containing a tetrahydrofuran-soluble product by filtration. And this liquid was analyzed by gas chromatography (GC-FID). The results are shown in Table 5. From organosolv lignin, aromatic compounds such as phenol, p-cresol, m-cresol, 4-ethylphenol, and 3-ethylphenol were obtained.
表5の実施例16〜実施例20に示すように、パラジウム、白金、およびルテニウムの少なくとも一種を含む触媒の存在下、オルガノソルブリグニンを400℃の超臨界水中で分解することにより、フェノール、p−クレゾール、m−クレゾール、4−エチルフェノール、および3−エチルフェノール等の芳香族化合物が生成した。比較例1では触媒を用いずに芳香族化合物を製造したが、得られた芳香族化合物は顕著に少なかった。表5の実施例18で示すように、2.5%Pt・2.5%Pd/グラファイトを使用したとき、フェノールが最も多く生成した。 As shown in Example 16 to Example 20 in Table 5, by decomposing organosolv lignin in supercritical water at 400 ° C. in the presence of a catalyst containing at least one of palladium, platinum, and ruthenium, phenol, p Aromatic compounds such as -cresol, m-cresol, 4-ethylphenol, and 3-ethylphenol were produced. In Comparative Example 1, an aromatic compound was produced without using a catalyst, but the obtained aromatic compound was remarkably few. As shown in Example 18 of Table 5, the most phenol was produced when 2.5% Pt · 2.5% Pd / graphite was used.
実施例20〜実施例23、比較例1〜比較例4(原料のリグニンの種類と分解時間)
まず、内容積6cm3のステンレス製バッチ式反応器内に、5%Pd/C(和光純薬工業株式会社製)触媒0.15g、オルガノソルブリグニン(アルドリッチ社製)または脱アルカリリグニン(東京化成工業株式会社製)0.1g、および水3mLを入れ、反応器内の空気をアルゴンに置換した。つぎに、溶融塩浴を用いてこの反応器を400℃に昇温した。このときの反応器内の圧力は37MPaであった。そして、反応器を400℃で1時間または2時間加熱して、リグニンを分解して芳香族化合物を製造した。
Examples 20 to 23, Comparative Examples 1 to 4 (type of raw material lignin and decomposition time)
First, 0.15 g of 5% Pd / C (manufactured by Wako Pure Chemical Industries, Ltd.) catalyst, organosolv lignin (manufactured by Aldrich) or dealkalized lignin (Tokyo Kasei) in a stainless steel batch reactor having an internal volume of 6 cm 3. 0.1 g of Kogyo Co., Ltd. and 3 mL of water were added, and the air in the reactor was replaced with argon. The reactor was then heated to 400 ° C. using a molten salt bath. The pressure in the reactor at this time was 37 MPa. The reactor was heated at 400 ° C. for 1 hour or 2 hours to decompose lignin and produce an aromatic compound.
つぎに、反応器を水冷した後、反応器内の生成物および固形物をテトラヒドロフランにより回収し、ろ過によって、テトラヒドロフラン可溶性生成物を含む液体と固形物に分離した。そして、この液体をガスクロマトグラフィー(GC−FID)により分析した。その結果を表6の実施例20〜実施例23に示す。各種リグニンから芳香族化合物であるフェノール、p−クレゾール、m−クレゾール、4−エチルフェノール、および3−エチルフェノール等が得られた。また、実施例20〜実施例23で用いた5%Pd/C触媒を用いずに芳香族化合物を製造した実験を、それぞれ比較例1〜比較例4とし、テトラヒドロフラン可溶性生成物を含む液体をガスクロマトグラフィー(GC−FID)により分析した。その結果を表6の比較例1〜比較例4に示す。 Next, after the reactor was cooled with water, the product and solids in the reactor were collected with tetrahydrofuran, and separated into a liquid and a solid containing a tetrahydrofuran-soluble product by filtration. And this liquid was analyzed by gas chromatography (GC-FID). The results are shown in Example 20 to Example 23 in Table 6. A variety of aromatic compounds such as phenol, p-cresol, m-cresol, 4-ethylphenol, and 3-ethylphenol were obtained from various lignins. Moreover, the experiment which manufactured the aromatic compound without using the 5% Pd / C catalyst used in Example 20- Example 23 was made into Comparative Example 1- Comparative Example 4, respectively, and the liquid containing a tetrahydrofuran soluble product was gas. Analyzed by chromatography (GC-FID). The results are shown in Comparative Examples 1 to 4 in Table 6.
表6の実施例20〜実施例23に示すように、5%Pd/C触媒存在下、オルガノソルブリグニンまたは脱アルカリリグニンを400℃の超臨界水中で分解することにより、フェノール、p−クレゾール、m−クレゾール、4−エチルフェノール、および3−エチルフェノール等の芳香族化合物が生成した。実施例20と実施例22より、原料としてオルガノソルブリグニンを用いた場合、反応時間が2時間のときは1時間のときと比べて、芳香族化合物の生成量が増大した。また、実施例21と実施例23より、原料として脱アルカリリグニンを用いた場合、反応時間が1時間と2時間とでは、芳香族化合物の生成量がほとんど変化しなかった。さらに、表6の比較例1〜比較例4に示すように、触媒を用いずに芳香族化合物を製造した場合、実施例20〜実施例23の5%Pd/C触媒を用いた場合と比べて、得られた芳香族化合物は顕著に少なかった。 As shown in Example 20 to Example 23 of Table 6, by decomposing organosolv lignin or dealkalized lignin in supercritical water at 400 ° C. in the presence of 5% Pd / C catalyst, phenol, p-cresol, Aromatic compounds such as m-cresol, 4-ethylphenol, and 3-ethylphenol were produced. From Example 20 and Example 22, when organosolv lignin was used as a raw material, the amount of aromatic compounds produced increased when the reaction time was 2 hours compared to when the reaction time was 1 hour. Moreover, from Example 21 and Example 23, when dealkal lignin was used as a raw material, the production amount of the aromatic compound hardly changed between the reaction time of 1 hour and 2 hours. Furthermore, as shown in Comparative Example 1 to Comparative Example 4 in Table 6, when the aromatic compound was produced without using the catalyst, compared with the case where the 5% Pd / C catalyst of Example 20 to Example 23 was used. Thus, the obtained aromatic compound was remarkably small.
本発明の芳香族化合物の製造方法によれば、リグニン含有物から効率良く芳香族化合物が得られる。また、木質系バイオマスおよび草本系バイオマスに含まれるセルロースおよびヘミセルロースから糖アルコールが製造でき、残渣に含まれるリグニンから芳香族化合物が製造できる。さらに、本発明の芳香族化合物の製造方法によれば、触媒の再利用が可能である。本発明の芳香族化合物の製造方法は、芳香族化合物を利用する化学産業、石油化学産業、および医薬品産業や、バイオマスの有効利用等の種々の分野において、極めて有用な技術として利用することができる。 According to the method for producing an aromatic compound of the present invention, an aromatic compound can be efficiently obtained from a lignin-containing material. In addition, sugar alcohol can be produced from cellulose and hemicellulose contained in woody biomass and herbaceous biomass, and an aromatic compound can be produced from lignin contained in the residue. Furthermore, according to the method for producing an aromatic compound of the present invention, the catalyst can be reused. The method for producing an aromatic compound of the present invention can be used as a very useful technique in various fields such as the chemical industry, the petrochemical industry, the pharmaceutical industry, and the effective use of biomass. .
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015177078A JP6710824B2 (en) | 2015-09-08 | 2015-09-08 | Method for producing aromatic compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015177078A JP6710824B2 (en) | 2015-09-08 | 2015-09-08 | Method for producing aromatic compound |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017052717A true JP2017052717A (en) | 2017-03-16 |
JP6710824B2 JP6710824B2 (en) | 2020-06-17 |
Family
ID=58320201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015177078A Active JP6710824B2 (en) | 2015-09-08 | 2015-09-08 | Method for producing aromatic compound |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6710824B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101900444B1 (en) * | 2017-04-18 | 2018-09-19 | 한국과학기술연구원 | Catalyst for depolymerizing lignin and method for preparing hydrocarbon compounds using the same |
KR20190027646A (en) * | 2017-09-07 | 2019-03-15 | 한국과학기술연구원 | Catalyst for decomposition reaction of lignin and method for decomposition of lignin using the same |
KR20190111264A (en) * | 2018-03-22 | 2019-10-02 | 한국과학기술연구원 | Method for producing cyclic and/or aromatic chemicals using biomass |
CN110935481A (en) * | 2018-09-25 | 2020-03-31 | 中国科学院大连化学物理研究所 | Catalyst for selective hydrogenolysis of aromatic ether bond, preparation and application thereof |
CN113277930A (en) * | 2021-06-01 | 2021-08-20 | 中国科学技术大学 | Method for preparing cresol by utilizing lignocellulose biomass |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011127022A (en) * | 2009-12-18 | 2011-06-30 | Tosoh Corp | Method for producing aromatic compound from lignin |
JP2014037354A (en) * | 2012-08-10 | 2014-02-27 | Idemitsu Kosan Co Ltd | Method for manufacturing phenol |
JP2014518215A (en) * | 2011-06-17 | 2014-07-28 | バイオケムテックス エス・ピー・エー | Lignin conversion method |
-
2015
- 2015-09-08 JP JP2015177078A patent/JP6710824B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011127022A (en) * | 2009-12-18 | 2011-06-30 | Tosoh Corp | Method for producing aromatic compound from lignin |
JP2014518215A (en) * | 2011-06-17 | 2014-07-28 | バイオケムテックス エス・ピー・エー | Lignin conversion method |
JP2014037354A (en) * | 2012-08-10 | 2014-02-27 | Idemitsu Kosan Co Ltd | Method for manufacturing phenol |
Non-Patent Citations (2)
Title |
---|
JOHNSON D K ET AL.: "Lignin liquefaction in supercritical water", RESEARCH IN THERMOCHEMICAL BIOMASS CONVERSION, JPN6019021841, 1988, GB, pages 485 - 496, ISSN: 0004172629 * |
白井誠之,外: "担持金属触媒による超臨界水中でのリグニンのガス化反応", 触媒, vol. 49, no. 4, JPN6014004534, 10 June 2007 (2007-06-10), pages 260 - 264, ISSN: 0004172628 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101900444B1 (en) * | 2017-04-18 | 2018-09-19 | 한국과학기술연구원 | Catalyst for depolymerizing lignin and method for preparing hydrocarbon compounds using the same |
KR20190027646A (en) * | 2017-09-07 | 2019-03-15 | 한국과학기술연구원 | Catalyst for decomposition reaction of lignin and method for decomposition of lignin using the same |
KR101985175B1 (en) | 2017-09-07 | 2019-06-04 | 한국과학기술연구원 | Catalyst for decomposition reaction of lignin and method for decomposition of lignin using the same |
KR20190111264A (en) * | 2018-03-22 | 2019-10-02 | 한국과학기술연구원 | Method for producing cyclic and/or aromatic chemicals using biomass |
KR102110466B1 (en) | 2018-03-22 | 2020-05-13 | 한국과학기술연구원 | Method for producing cyclic and/or aromatic chemicals using biomass |
CN110935481A (en) * | 2018-09-25 | 2020-03-31 | 中国科学院大连化学物理研究所 | Catalyst for selective hydrogenolysis of aromatic ether bond, preparation and application thereof |
CN110935481B (en) * | 2018-09-25 | 2022-02-22 | 中国科学院大连化学物理研究所 | Catalyst for selective hydrogenolysis of aromatic ether bond, preparation and application thereof |
CN113277930A (en) * | 2021-06-01 | 2021-08-20 | 中国科学技术大学 | Method for preparing cresol by utilizing lignocellulose biomass |
CN113277930B (en) * | 2021-06-01 | 2023-08-29 | 中国科学技术大学 | Method for preparing cresol by utilizing lignocellulose biomass |
Also Published As
Publication number | Publication date |
---|---|
JP6710824B2 (en) | 2020-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104689857B (en) | The preparation method of nitrogen-doped porous carbon material and the catalyst containing the material and purposes | |
JP6710824B2 (en) | Method for producing aromatic compound | |
Villa et al. | Glycerol oxidation using gold-containing catalysts | |
Zhao et al. | Palladium nanoparticles anchored on sustainable chitin for phenol hydrogenation to cyclohexanone | |
Chen et al. | Lignin valorizations with Ni catalysts for renewable chemicals and fuels productions | |
CN109999880A (en) | N doping porous carbon supported bimetal catalyst as well as preparation method and application thereof | |
Bhanushali et al. | Catalytic hydrogenation of benzaldehyde for selective synthesis of benzyl alcohol: a review | |
CN103736487B (en) | A kind of solvent-free mechanical mixture prepares the method for load type metal catalyst | |
CN103508857A (en) | Method for depolymerizing lignin into aromatic compounds under conditions of no additional hydrogen | |
Li et al. | Efficient Catalytic Hydrodeoxygenation of Aromatic Carbonyls over a Nitrogen‐Doped Hierarchical Porous Carbon Supported Nickel Catalyst | |
Ning et al. | Selective upgrading of biomass-derived benzylic ketones by (formic acid)–Pd/HPC–NH2 system with high efficiency under ambient conditions | |
CN109647441A (en) | A kind of monatomic catalyst adds the application in hydrogen aromatic compound in catalytic lignin | |
Zhang et al. | Efficient one-pot conversion of cellulose to sorbitol over Ni-based carbon catalysts with embedment structure | |
CN111511682B (en) | Activated carbon, metal-supported activated carbon using same, and hydrogenation catalyst | |
Zhang et al. | Catalytic Upgrading of Bio‐Based 5‐Hydroxymethylfurfural to 2, 5‐Dimethylfuran with Non‐Noble Metals | |
Yamada et al. | Development of Carbon‐Neutral Cellulose‐Supported Heterogeneous Palladium Catalysts for Chemoselective Hydrogenation | |
KR20170011272A (en) | Non-noble metal/zirconium phosphate cayalyst for cyclic-hydrocarbon production and Method for cyclic-hydrocarbon using the same | |
Zou et al. | High-performance depolymerization of lignin by bimetallic Cu-Ni@ C catalysts prepared with MOF as a carrier under mild conditions | |
Danielis et al. | Mechanochemistry: a green and fast method to prepare a new generation of metal supported catalysts | |
Unglaube et al. | Development and Application of Efficient Ag‐based Hydrogenation Catalysts Prepared from Rice Husk Waste | |
JP2016033129A (en) | Method for producing hexanol/pentanol | |
CN113976131B (en) | Heterogeneous catalyst and method for preparing 2, 5-furandimethylamine from 5-hydroxymethylfurfural | |
CN108623436A (en) | A kind of one kettle way conversion cellulose is the method for bio-ethanol | |
Qin et al. | Selective depolymerization of lignin into phenolic products over Ni x Zn1− x/ZrO2-MgO | |
Beine et al. | Ru on N‐doped Carbon for the Selective Hydrogenolysis of Sugars and Sugar Alcohols |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190606 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190617 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190807 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191211 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200207 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200226 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200227 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6710824 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |