[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2017051039A - Power supply device - Google Patents

Power supply device Download PDF

Info

Publication number
JP2017051039A
JP2017051039A JP2015174400A JP2015174400A JP2017051039A JP 2017051039 A JP2017051039 A JP 2017051039A JP 2015174400 A JP2015174400 A JP 2015174400A JP 2015174400 A JP2015174400 A JP 2015174400A JP 2017051039 A JP2017051039 A JP 2017051039A
Authority
JP
Japan
Prior art keywords
power supply
vehicle
storage battery
unit
supply source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015174400A
Other languages
Japanese (ja)
Other versions
JP6570063B2 (en
Inventor
浩之 炭村
Hiroyuki Sumimura
浩之 炭村
良輔 ▲高▼口
良輔 ▲高▼口
Ryosuke Takaguchi
雄貴 片山
Yuki Katayama
雄貴 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2015174400A priority Critical patent/JP6570063B2/en
Publication of JP2017051039A publication Critical patent/JP2017051039A/en
Application granted granted Critical
Publication of JP6570063B2 publication Critical patent/JP6570063B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power supply device which can continuously supply power to a load by changing over a power supply source.SOLUTION: A power supply device 100, including a plurality of vehicle connection units 1-1, 1-2, 1-3, a load connection unit 2 and a power supply unit 3, further includes a changeover control unit 14 which changes over a power supply source, on the basis of a storage battery voltage acquired from vehicles A, B, C having loaded storage batteries. The changeover control unit 14 calculates, at power supply, a difference between the battery voltage of a power supply vehicle A which is a power supply source, and the battery voltage of non-power supply vehicles B, C which are non-power supply sources, and if the difference ranges within in a preset first prescribed range, changes over the power supply source from the power supply vehicle A to the non-power supply vehicle B or the non-power supply vehicle C.SELECTED DRAWING: Figure 1

Description

本発明は、蓄電池搭載車両や可搬型蓄電池の電力を利用して負荷への給電を行う給電装置に関する。   The present invention relates to a power feeding apparatus that feeds power to a load by using electric power of a vehicle equipped with a storage battery or a portable storage battery.

蓄電池搭載車両の電力を利用して負荷への給電を行う給電装置としては、例えば、特許文献1に記載のものが知られている。特許文献1に記載の給電装置は、蓄電池搭載車両に搭載されているので、自宅において負荷(例えば、電化製品)への給電を行うだけでなく、キャンプ地などの自宅から離れた場所においても負荷への給電を行うことができる。   As a power supply device that supplies power to a load using the power of a vehicle equipped with a storage battery, for example, the one described in Patent Document 1 is known. Since the power supply device described in Patent Document 1 is mounted on a vehicle equipped with a storage battery, not only power is supplied to a load (for example, an electrical appliance) at home, but also at a place away from home such as a campsite. Can be powered.

特開2014−64457号公報JP 2014-64457 A

しかしながら、上記特許文献1に記載の給電装置は、給電元を切り替えることができないため、複数の蓄電池搭載車両が存在していても、負荷への給電を連続的に行うことができなかった。   However, since the power supply apparatus described in Patent Document 1 cannot switch the power supply source, even if there are a plurality of vehicles equipped with storage batteries, power cannot be continuously supplied to the load.

本発明は上記事情に鑑みてなされたものであって、その課題とするところは、給電元を切り替えて負荷への給電を連続的に行うことが可能な給電装置を提供することにある。   This invention is made | formed in view of the said situation, The place made into the subject is providing the electric power feeder which can supply electric power to a load by switching an electric power feeding source continuously.

上記課題を解決するために、本発明に係る給電装置は、
複数の蓄電池搭載車両に1対1で接続される複数の車両接続部と、
負荷が接続される負荷接続部と、
前記複数の蓄電池搭載車両のうちの給電元の車両の直流電圧に基づいて給電電力を生成し、前記給電電力により前記負荷への給電を行う給電部と、
を備えた給電装置であって、
前記複数の蓄電池搭載車両から蓄電池電圧を取得し、前記蓄電池電圧に基づいて前記給電元の切り替えを行う切替制御部を備え、
前記切替制御部は、給電時に、前記給電元である給電車両の蓄電池電圧と非給電元である非給電車両の蓄電池電圧との差分を算出し、前記差分が予め設定された第1規定範囲に含まれる場合に、前記給電元を前記給電車両から前記非給電車両に切り替える
ことを特徴とする。
In order to solve the above-described problem, a power supply device according to the present invention includes:
A plurality of vehicle connections connected to a plurality of storage battery-equipped vehicles on a one-to-one basis;
A load connection to which a load is connected; and
A power supply unit that generates power supply power based on a DC voltage of a power supply source vehicle among the plurality of storage battery mounted vehicles, and that supplies power to the load by the power supply power;
A power supply device comprising:
A storage control unit that acquires storage battery voltage from the plurality of storage battery-equipped vehicles and performs switching of the power supply source based on the storage battery voltage,
The switching control unit calculates a difference between the storage battery voltage of the power supply vehicle as the power supply source and the storage battery voltage of the non-power supply vehicle as the non-power supply source at the time of power supply, and the difference is within a first specified range set in advance. When included, the power supply source is switched from the power supply vehicle to the non-power supply vehicle.

この構成によれば、複数の蓄電池搭載車両に1対1で接続される複数の車両接続部を備えているので、給電元を切り替えて負荷への給電を連続的に行うことができる。さらに、この構成によれば、給電車両の蓄電池電圧と非給電車両の蓄電池電圧との差分が第1規定範囲に含まれる場合に給電元を切り替えるので、切り替え時における給電部への入力電圧の変動を抑制することができ、その結果、切り替え時における給電部や負荷への悪影響を軽減することができる。ここで、蓄電池搭載車両とは、車両駆動用電力を供給する蓄電池を搭載した車両に限らず、可搬型の蓄電池を搭載した車両を含む。   According to this configuration, since the plurality of vehicle connection portions connected to the plurality of storage battery-equipped vehicles on a one-to-one basis are provided, the power supply source can be switched to continuously supply power to the load. Further, according to this configuration, since the power supply source is switched when the difference between the storage battery voltage of the power supply vehicle and the storage battery voltage of the non-power supply vehicle is included in the first specified range, the fluctuation of the input voltage to the power supply unit at the time of switching As a result, adverse effects on the power feeding unit and the load at the time of switching can be reduced. Here, the vehicle equipped with a storage battery is not limited to a vehicle equipped with a storage battery that supplies vehicle driving power, but includes a vehicle equipped with a portable storage battery.

上記給電装置では、
前記切替制御部は、前記差分が前記第1規定範囲に含まれない場合であっても、前記負荷接続部から出力される負荷電流が予め設定された第2規定範囲に含まれる場合には、前記給電元を前記非給電車両に切り替える
ことが好ましい。
In the above power supply device,
Even if the difference is not included in the first specified range, the switching control unit, when the load current output from the load connection unit is included in a preset second specified range, It is preferable to switch the power supply source to the non-powered vehicle.

この構成によれば、負荷電流が第2規定範囲に含まれる場合に給電元を切り替えるので、切り替え時の負荷電流の変動による負荷への悪影響を軽減することができる。また、この構成によれば、給電車両の蓄電池電圧と非給電車両の蓄電池電圧との差分が第1規定範囲に含まれない場合であっても、給電元の切り換えが可能になる。   According to this configuration, since the power supply source is switched when the load current is included in the second specified range, it is possible to reduce an adverse effect on the load due to a change in the load current at the time of switching. Further, according to this configuration, even when the difference between the storage battery voltage of the power supply vehicle and the storage battery voltage of the non-power supply vehicle is not included in the first specified range, the power supply source can be switched.

上記給電装置では、
前記非給電車両が複数の車両を含む場合、
前記切替制御部は、
前記非給電車両のそれぞれに対して前記差分を算出し、
少なくとも1つの前記差分が前記第1規定範囲に含まれる場合に、前記給電元を、前記差分が前記第1規定範囲に含まれる前記非給電車両のうち、蓄電池電圧が最も高い車両に切り替える一方、
全ての前記差分が前記第1規定範囲に含まれない場合であっても、前記負荷電流が前記第2規定範囲に含まれる場合には、前記給電元を前記非給電車両のうち蓄電池電圧が最も高い車両に切り替えるよう構成できる。
In the above power supply device,
When the non-powered vehicle includes a plurality of vehicles,
The switching control unit
Calculating the difference for each of the non-powered vehicles;
When at least one of the differences is included in the first specified range, the power supply source is switched to a vehicle having the highest storage battery voltage among the non-powered vehicles in which the difference is included in the first specified range.
Even when all the differences are not included in the first specified range, when the load current is included in the second specified range, the storage battery voltage is the highest among the non-powered vehicles. It can be configured to switch to a higher vehicle.

この構成によれば、給電元を蓄電池電圧が最も高い車両に切り替えることで、給電時間を長くすることができる。   According to this configuration, the power supply time can be extended by switching the power supply source to a vehicle having the highest storage battery voltage.

上記給電装置では、
前記切替制御部は、前記給電元の切り替えを行った場合、前記給電元の車両の蓄電池電圧が予め設定された電圧値以下になるまで、前記給電元の車両の蓄電池のSOCが予め設定された閾値以下になるまで、または前記給電元の切り替えから予め設定された時間が経過するまでは、前記給電元の切り替えを行わない
ことが好ましい。
In the above power supply device,
When switching the power supply source, the switching control unit presets the SOC of the storage battery of the power supply vehicle until the storage battery voltage of the power supply vehicle becomes equal to or lower than a preset voltage value. It is preferable that the power supply source not be switched until the threshold value is reached or until a preset time elapses after the power supply source is switched.

この構成によれば、給電元の切り替えの頻度を調整し、給電元の切り替えが過度に行われるのを防ぐことができる。   According to this configuration, it is possible to adjust the frequency of switching the power supply source and prevent the power supply source from being switched excessively.

上記給電装置では、
前記複数の車両接続部と前記給電部とを接続する電力線に介装された切替部を備え、
前記切替部は、前記切替制御部の制御下で、前記給電元の車両に接続された車両接続部と前記給電部とを導通状態にし、前記非給電元の車両に接続された車両接続部と前記給電部とを非導通状態にするよう構成できる。
In the above power supply device,
A switching unit interposed in a power line connecting the plurality of vehicle connection units and the power supply unit;
The switching unit, under the control of the switching control unit, brings a vehicle connection unit connected to the power supply source vehicle and the power supply unit into a conductive state, and a vehicle connection unit connected to the non-power supply source vehicle. The power feeding unit can be configured to be in a non-conducting state.

本発明によれば、給電元を切り替えて負荷への給電を連続的に行うことが可能な給電装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the electric power feeder which can supply electric power to a load by switching an electric power feeding source can be provided.

本発明の給電装置の構成を示すブロック図である。It is a block diagram which shows the structure of the electric power feeder of this invention. 本発明における給電元の切り替え制御のフローチャートである。3 is a flowchart of power source switching control according to the present invention.

以下、添付図面を参照して、本発明に係る給電装置の実施形態について説明する。   Hereinafter, an embodiment of a power feeding device according to the present invention will be described with reference to the accompanying drawings.

図1に、本発明の一実施形態に係る給電装置100を示す。図1において、給電装置100を構成する各要素間の実線は電力線を示し、各要素間の破線は通信線(例えば、CAN通信線)を示す。   FIG. 1 shows a power supply apparatus 100 according to an embodiment of the present invention. In FIG. 1, a solid line between elements constituting the power supply apparatus 100 indicates a power line, and a broken line between elements indicates a communication line (for example, a CAN communication line).

給電装置100は、複数(本実施形態では、3つ)の車両接続部1−1、1−2、1−3と、負荷接続部2と、給電部3と、切替部4と、制御部10とを備え、蓄電池搭載車両A〜Cの電力を利用して負荷接続部2に接続された負荷(図示略)への給電を行う。蓄電池搭載車両A〜Cは、例えば、充放電可能な蓄電池が搭載された電気自動車である。負荷は、例えば、電化製品である。   The power supply apparatus 100 includes a plurality (three in this embodiment) of vehicle connection units 1-1, 1-2, and 1-3, a load connection unit 2, a power supply unit 3, a switching unit 4, and a control unit. 10 and supplies power to a load (not shown) connected to the load connection unit 2 using the power of the storage battery-equipped vehicles A to C. The storage battery-equipped vehicles A to C are, for example, electric vehicles equipped with chargeable / dischargeable storage batteries. The load is, for example, an electric appliance.

車両接続部1−1、1−2、1−3は、蓄電池搭載車両A〜Cに1対1で接続されるよう構成されている。図1では、車両接続部1−1が蓄電池搭載車両Aに接続され、車両接続部1−2が蓄電池搭載車両Bに接続され、車両接続部1−3が蓄電池搭載車両Cに接続されている。車両接続部1−1、1−2、1−3は、単一の規格(例えば、CHAdeMO規格)に対応したコネクタで構成されていてもよいし、異なる規格(例えば、車両接続部1−1、1−2がCHAdeMO規格で、車両接続部1−3がSAE規格)に対応したコネクタで構成されていてもよい。   The vehicle connection units 1-1, 1-2, and 1-3 are configured to be connected to the storage battery-equipped vehicles A to C on a one-to-one basis. In FIG. 1, the vehicle connection unit 1-1 is connected to the storage battery mounted vehicle A, the vehicle connection unit 1-2 is connected to the storage battery mounted vehicle B, and the vehicle connection unit 1-3 is connected to the storage battery mounted vehicle C. . The vehicle connection units 1-1, 1-2, and 1-3 may be configured with connectors corresponding to a single standard (for example, the CHAdeMO standard), or different standards (for example, the vehicle connection unit 1-1). 1-2 may be configured by a connector corresponding to the CHAdeMO standard and the vehicle connection unit 1-3 is compatible with the SAE standard).

負荷接続部2は、少なくとも1つの負荷を接続することができるよう構成されている。具体的には、負荷接続部2は、負荷のプラグを差し込むための少なくとも1つのコンセントを備える。   The load connection unit 2 is configured to be able to connect at least one load. Specifically, the load connection unit 2 includes at least one outlet for inserting a plug of the load.

給電部3は、入力された直流電圧(例えば、DC150〜450[V])に基づいて交流電圧(例えば、AC200[V])を生成するDC/AC変換動作を行い、上記交流電圧により負荷への給電を行うよう構成されている。給電部3は、例えば、上記DC/AC変換動作を行うDC/ACインバータを備える。給電部3は、交流側が負荷接続部2に接続され、直流側が切替部4を介して車両接続部1−1、1−2、1−3に接続されている。なお、接続される負荷が直流で動作する機器である場合には、給電部3はDC/DCコンバータを備えたものとすることができる。   The power supply unit 3 performs a DC / AC conversion operation for generating an AC voltage (for example, AC 200 [V]) based on the input DC voltage (for example, DC 150 to 450 [V]), and supplies the AC voltage to the load with the AC voltage. It is comprised so that it may feed. The power feeding unit 3 includes, for example, a DC / AC inverter that performs the DC / AC conversion operation. As for the electric power feeding part 3, the alternating current side is connected to the load connection part 2, and the direct current | flow side is connected to the vehicle connection parts 1-1, 1-2, and 1-3 via the switching part 4. FIG. When the connected load is a device that operates with direct current, the power feeding unit 3 may include a DC / DC converter.

切替部4は、上記のとおり車両接続部1−1、1−2、1−3と給電部3とを接続する電力線に介装され、制御部10の制御下で、上記電力線を導通状態と非導通状態とに切り替えるよう構成されている。切替部4は、例えば、車両接続部1−1、1−2、1−3と給電部3とを接続する各電力線に介装された、制御部10の制御下で動作する3つのリレーにより構成される。制御部10が、給電元の車両として蓄電池搭載車両Aを選択し、非給電元の車両として蓄電池搭載車両B、Cを選択した場合、切替部4は、車両接続部1−1と給電部3とを接続する電力線を導通状態にし、車両接続部1−2、1−3と給電部3とを接続する各電力線を非導通状態にする。車両接続部1−1と給電部3とを接続する電力線が導通状態になることで、蓄電池搭載車両Aが給電元の車両(給電車両)となり、車両接続部1−2、1−3と給電部とを接続する各電力線が非導通状態になることで、蓄電池搭載車両B、Cが非給電元の車両(非給電車両)となる。   As described above, the switching unit 4 is interposed in the power line that connects the vehicle connection units 1-1, 1-2, 1-3 and the power feeding unit 3, and the power line is brought into a conductive state under the control of the control unit 10. It is comprised so that it may switch to a non-conduction state. The switching unit 4 includes, for example, three relays that operate under the control of the control unit 10 and are interposed in the power lines that connect the vehicle connection units 1-1, 1-2, 1-3 and the power feeding unit 3. Composed. When the control unit 10 selects the storage battery mounted vehicle A as the power supply source vehicle and selects the storage battery mounted vehicles B and C as the non-power supply source vehicle, the switching unit 4 includes the vehicle connection unit 1-1 and the power supply unit 3. Are connected to each other, and the power lines connecting the vehicle connecting units 1-2, 1-3 and the power feeding unit 3 are set to a non-conducting state. When the power line connecting the vehicle connection unit 1-1 and the power supply unit 3 is in a conductive state, the storage battery-equipped vehicle A becomes a power supply vehicle (power supply vehicle), and power is supplied to the vehicle connection units 1-2 and 1-3. When each power line connecting the units is in a non-conductive state, the storage battery-equipped vehicles B and C become non-power-feeding vehicles (non-power-feeding vehicles).

制御部10は、通信部11と、電流監視部12と、給電制御部13と、切替制御部14とを備える。制御部10は、例えばマイコンで構成される。制御部10は、車両接続部1−1、1−2、1−3、負荷接続部2、給電部3および切替部4との通信を行う。   The control unit 10 includes a communication unit 11, a current monitoring unit 12, a power supply control unit 13, and a switching control unit 14. The control unit 10 is configured by a microcomputer, for example. The control unit 10 communicates with the vehicle connection units 1-1, 1-2, 1-3, the load connection unit 2, the power feeding unit 3, and the switching unit 4.

通信部11は、車両接続部1−1、1−2、1−3を介して蓄電池搭載車両A〜Cと通信を行い、蓄電池搭載車両A〜Cから、搭載されている蓄電池に関する蓄電池情報や給電指令などの指令情報を取得する。蓄電池情報には、蓄電池電圧およびSOC(充電量)などの情報が含まれる。通信部11は、各蓄電池搭載車両A〜Cから取得した情報を給電制御部13および切替制御部14に出力する。   The communication unit 11 communicates with the storage battery-equipped vehicles A to C via the vehicle connection units 1-1, 1-2, and 1-3, and the storage battery information about the installed storage battery from the storage battery mounted vehicles A to C Obtain command information such as a power feed command. The storage battery information includes information such as storage battery voltage and SOC (charge amount). The communication unit 11 outputs information acquired from each of the storage battery mounted vehicles A to C to the power supply control unit 13 and the switching control unit 14.

電流監視部12は、負荷接続部2(負荷接続部2に設けられた電流センサ)と通信を行い、負荷に出力される電流(以下、「負荷電流」という。)に関する情報を取得する。電流監視部12は、取得した負荷電流に関する情報を、給電制御部13および切替制御部14に出力する。   The current monitoring unit 12 communicates with the load connection unit 2 (a current sensor provided in the load connection unit 2), and acquires information on a current output to the load (hereinafter referred to as “load current”). The current monitoring unit 12 outputs information about the acquired load current to the power supply control unit 13 and the switching control unit 14.

給電制御部13は、給電部3のDC/AC変換動作を制御する給電制御を行う。給電部3から出力される電流の最大値、すなわち負荷電流の最大値は、負荷接続部2に接続された負荷の数および種類などによって異なる。例えば、負荷接続部2に消費電力の大きい負荷(例えば、電子レンジや掃除機)が接続された場合、負荷電流の最大値は大きくなる。給電制御部13は、負荷電流の最大値が予め設定された閾値を超えた場合に、給電部3のDC/AC変換動作を停止させることで、給電部3を保護する。   The power supply control unit 13 performs power supply control for controlling the DC / AC conversion operation of the power supply unit 3. The maximum value of the current output from the power supply unit 3, that is, the maximum value of the load current varies depending on the number and type of loads connected to the load connection unit 2. For example, when a load with high power consumption (for example, a microwave oven or a vacuum cleaner) is connected to the load connection unit 2, the maximum value of the load current increases. The power supply control unit 13 protects the power supply unit 3 by stopping the DC / AC conversion operation of the power supply unit 3 when the maximum value of the load current exceeds a preset threshold value.

切替制御部14は、切替部4の制御を行う。具体的には、切替制御部14は、給電時に蓄電池搭載車両A〜Cの各蓄電池電圧または負荷電流に基づいて給電元の切り替え制御を行う。なお、切替制御部14は、給電元の車両が常に1台になるように、給電元の切り替え制御を行う。   The switching control unit 14 controls the switching unit 4. Specifically, the switching control unit 14 performs switching control of the power supply source based on each storage battery voltage or load current of the storage battery mounted vehicles A to C at the time of power supply. The switching control unit 14 performs power supply source switching control so that the power supply source vehicle is always one.

図2に、給電元の切り替え制御のフローチャートを示す。制御部10では、図2に示すフローチャートに従って給電切替先を決定する。給電制御部13が給電制御を開始して給電準備が完了すると、切替制御部14が給電元の切り替え制御を開始させる。なお、給電制御部13は、車両接続部1−1、1−2、1−3に接続された少なくとも1台の車両から給電指令を受けた場合に、給電制御を開始する。   FIG. 2 shows a flowchart of power source switching control. The control unit 10 determines the power supply switching destination according to the flowchart shown in FIG. When the power supply control unit 13 starts the power supply control and the power supply preparation is completed, the switching control unit 14 starts the power supply source switching control. The power supply control unit 13 starts power supply control when receiving a power supply command from at least one vehicle connected to the vehicle connection units 1-1, 1-2, and 1-3.

給電元の切り替え制御を開始させた切替制御部14は、通信部11から取得した情報に基づいて、車両接続部1−1、1−2、1−3に接続された車両が複数か否かの第1判定を行う(S1)。切替制御部14は、通信部11から2台以上の車両に関する情報を取得した場合、車両が複数であると判定する(S1でYES)。一方、切替制御部14は、通信部11から1台のみの車両に関する情報を取得した場合、車両が複数ではないと判定し(S1でNO)、再び第1判定を行う(S1)。なお、車両接続部1−1、1−2、1−3に接続されている車両が1台であっても当該1台の車両が給電可能な場合、給電部3は、当該1台の車両の電力を利用して負荷への給電を開始する。   Based on the information acquired from the communication unit 11, the switching control unit 14 that has started the power source switching control determines whether there are a plurality of vehicles connected to the vehicle connection units 1-1, 1-2, 1-3. The first determination is performed (S1). The switching control unit 14 determines that there are a plurality of vehicles when acquiring information about two or more vehicles from the communication unit 11 (YES in S1). On the other hand, when acquiring information related to only one vehicle from the communication unit 11, the switching control unit 14 determines that there are not a plurality of vehicles (NO in S1), and performs the first determination again (S1). In addition, even if there is one vehicle connected to the vehicle connection units 1-1, 1-2, and 1-3, when the one vehicle can supply power, the power supply unit 3 The power supply to the load is started using the power of.

第1判定において車両が複数であると判定した切替制御部14は(S1でYES)、通信部11から取得した蓄電池情報に基づいて、給電元の車両の蓄電池電圧に対する非給電元の車両の蓄電池電圧との差分を算出し、上記差分が0よりも大きいか否かの判定を行う(S2)。上記差分が0よりも大きい場合(S2でYES)、切替制御部14は、上記差分が予め設定された第1規定値以下か否かの第2判定を行う(S3)。   The switching control unit 14 that has determined that there are a plurality of vehicles in the first determination (YES in S1), based on the storage battery information acquired from the communication unit 11, the storage battery of the non-power supply source vehicle with respect to the storage battery voltage of the power supply source vehicle A difference from the voltage is calculated, and it is determined whether or not the difference is greater than 0 (S2). When the difference is larger than 0 (YES in S2), the switching control unit 14 performs a second determination as to whether or not the difference is equal to or less than a preset first specified value (S3).

例えば、給電開始前に車両接続部1−1が蓄電池搭載車両Aに接続され、給電開始後に車両接続部1−2、1−3が蓄電池搭載車両B、Cに接続された場合、蓄電池搭載車両Aは給電元の車両(給電車両)になり、蓄電池搭載車両B、Cは非給電元の車両(非給電車両)となる。この場合、切替制御部14は、蓄電池搭載車両Aの蓄電池電圧に対する蓄電池搭載車両Bの蓄電池電圧との差分(以下、「第1の差分」という。)を算出するとともに、蓄電池搭載車両Aの蓄電池電圧に対する蓄電池搭載車両Cの蓄電池電圧との差分(以下、「第2の差分」という。)を算出し、第1の差分および第2の差分のそれぞれに対して0よりも大きいか否かを判定し、0よりも大きい差分に対してのみ当該差分が第1規定値以下か否かを判定する。   For example, when the vehicle connection unit 1-1 is connected to the storage battery-equipped vehicle A before the start of power supply, and the vehicle connection units 1-2 and 1-3 are connected to the storage battery-equipped vehicles B and C after the start of power supply, the storage battery-equipped vehicle A is a power supply vehicle (power supply vehicle), and storage battery-equipped vehicles B and C are non-power supply vehicles (non-power supply vehicles). In this case, the switching control unit 14 calculates a difference between the storage battery voltage of the storage battery-equipped vehicle B and the storage battery voltage of the storage battery-equipped vehicle A (hereinafter referred to as “first difference”), and the storage battery of the storage battery-equipped vehicle A. The difference between the storage battery voltage of the storage battery-equipped vehicle C with respect to the voltage (hereinafter referred to as “second difference”) is calculated, and whether each of the first difference and the second difference is greater than 0 is determined. It is determined, and it is determined only for a difference larger than 0 whether or not the difference is equal to or less than the first specified value.

給電部3の入力電圧が所定の範囲を超えて変動すると、給電部3に負担がかかるだけでなく、負荷電流が変動して負荷に悪影響を与えてしまうおそれがある。そこで、本実施形態では、第1規定値を、負荷電流が変動しないような値、または、負荷電流の変動が負荷に悪影響を与えない範囲に収まるような値に設定している。また、切替制御部14が、非給電元の車両の蓄電池電圧から給電元の車両の蓄電池電圧を差し引くことにより上記差分を算出することから、給電元を蓄電池電圧の高い車両に切り替えるため、第1規定値を正の値に設定している。具体的には、第1規定値を、5〜10[V]に設定している。この実施形態では、0よりも大きく、かつ第1規定値以下の範囲が、本発明の「第1規定範囲」に相当する。   If the input voltage of the power feeding unit 3 fluctuates beyond a predetermined range, not only will the load be applied to the power feeding unit 3, but the load current may fluctuate and adversely affect the load. Therefore, in the present embodiment, the first specified value is set to a value that does not cause the load current to fluctuate, or a value that falls within a range in which fluctuation of the load current does not adversely affect the load. In addition, since the switching control unit 14 calculates the difference by subtracting the storage battery voltage of the power supply source vehicle from the storage battery voltage of the non-power supply source vehicle, the switch control unit 14 switches the power supply source to a vehicle with a high storage battery voltage. The specified value is set to a positive value. Specifically, the first specified value is set to 5 to 10 [V]. In this embodiment, a range that is greater than 0 and equal to or less than the first specified value corresponds to the “first specified range” of the present invention.

第1の差分または第2の差分の少なくとも一方が第1規定値以下の場合、すなわち、少なくとも1つの差分が第1規定値以下の場合(S3でYES)、切替制御部14は、給電元の切り換え処理を行う(S5)。一方、第1の差分および第2の差分の双方が第1規定値よりも大きい場合、すなわち、全ての差分が第1規定値よりも大きい場合(S3でNO)、切替制御部14は、電流監視部12から取得した負荷電流に関する情報に基づいて、負荷電流の最大値が予め設定された第2規定値以下か否かの第3判定を行う(S4)。   When at least one of the first difference or the second difference is equal to or less than the first specified value, that is, when at least one difference is equal to or less than the first specified value (YES in S3), the switching control unit 14 Switching processing is performed (S5). On the other hand, when both the first difference and the second difference are larger than the first specified value, that is, when all the differences are larger than the first specified value (NO in S3), the switching control unit 14 Based on the information regarding the load current acquired from the monitoring unit 12, a third determination is made as to whether or not the maximum value of the load current is equal to or less than a preset second specified value (S4).

負荷電流の最大値が第2規定値よりも大きい場合(S4でNO)、切替制御部14は、再び第1判定を行う(S1)。一方、負荷電流の最大値が第2規定値以下の場合(S4でYES)、切替制御部14は、給電元の切り換え処理を行う(S5)。   When the maximum value of the load current is larger than the second specified value (NO in S4), the switching control unit 14 performs the first determination again (S1). On the other hand, when the maximum value of the load current is equal to or less than the second specified value (YES in S4), the switching control unit 14 performs a power supply source switching process (S5).

ここで、第1の差分および第2の差分の双方が第1規定値よりも大きい場合(S3でNO)、給電元を蓄電池搭載車両Aから蓄電池搭載車両Bまたは蓄電池搭載車両Cに切り替えると、上記のとおり給電部3の出力電流が変動するおそれがある。しかしながら、負荷電流が小さい場合(S4でYES)、言い換えれば、負荷の消費電力が小さい場合、負荷電流が変動しても負荷にはほとんど影響を与えない。そこで、本実施形態では、変動しても負荷にほとんど影響を与えない範囲で、第2規定値を設定している。具体的には、第2規定値を、1[A]に設定している。なお、第2規定値を1[A]に設定することは、本発明の「第2規定範囲」を0〜1[A]に設定することと同義である。   Here, when both the first difference and the second difference are larger than the first specified value (NO in S3), when the power source is switched from the storage battery mounted vehicle A to the storage battery mounted vehicle B or the storage battery mounted vehicle C, As described above, the output current of the power feeding unit 3 may vary. However, when the load current is small (YES in S4), in other words, when the power consumption of the load is small, even if the load current fluctuates, the load is hardly affected. Therefore, in the present embodiment, the second specified value is set in a range that hardly affects the load even if it fluctuates. Specifically, the second specified value is set to 1 [A]. Note that setting the second specified value to 1 [A] is synonymous with setting the “second specified range” of the present invention to 0 to 1 [A].

切替制御部14は、給電元の切り換え処理(S5)を下記のとおり行う。
(1)第1の差分が第1規定値以下の場合(S3でYES)、切替制御部14は、給電元を蓄電池搭載車両Aから蓄電池搭載車両Bに切り替える(S5)。
(2)第2の差分が第1規定値以下の場合(S3でYES)、切替制御部14は、給電元を蓄電池搭載車両Aから蓄電池搭載車両Cに切り替える(S5)。
(3)第1の差分および第2の差分の双方が第1規定値以下の場合(S3でYES)、切替制御部14は、給電元を蓄電池搭載車両Aから蓄電池搭載車両B、Cのうち蓄電池電圧が高い方の車両に切り替える(S5)。
(4)第1の差分および第2の差分の双方が第1規定値よりも大きく(S3でNO)、かつ負荷電流の最大値が第2規定値以下の場合(S4でYES)、切替制御部14は、給電元を蓄電池搭載車両Aから蓄電池搭載車両B、Cのうち蓄電池電圧が高い方の車両に切り替える(S5)。
The switching control unit 14 performs the power source switching process (S5) as follows.
(1) When the first difference is equal to or less than the first specified value (YES in S3), the switching control unit 14 switches the power supply source from the storage battery mounted vehicle A to the storage battery mounted vehicle B (S5).
(2) When the second difference is equal to or less than the first specified value (YES in S3), the switching control unit 14 switches the power supply source from the storage battery mounted vehicle A to the storage battery mounted vehicle C (S5).
(3) When both the first difference and the second difference are equal to or less than the first specified value (YES in S3), the switching control unit 14 changes the power supply source from the storage battery mounted vehicle A to the storage battery mounted vehicles B and C. Switch to the vehicle with the higher storage battery voltage (S5).
(4) When both the first difference and the second difference are larger than the first specified value (NO in S3) and the maximum value of the load current is equal to or less than the second specified value (YES in S4), switching control The unit 14 switches the power supply source from the storage battery-equipped vehicle A to the vehicle having the higher storage battery voltage among the storage battery-equipped vehicles B and C (S5).

給電元の切り換え処理(S5)において、上記(3)および(4)では、給電時間を長くすることを優先して、給電元を蓄電池電圧が高い方の車両に切り替えているが、給電部3への入力電圧の変動を抑えて給電部3への負担を軽減することを優先する場合には、給電元を、蓄電池電圧が給電車両の蓄電池電圧に近い方の車両に切り替えてもよい。   In the power supply source switching process (S5), in (3) and (4) above, the power supply source is switched to the vehicle having the higher storage battery voltage in preference to increasing the power supply time. When priority is given to reducing the burden on the power supply unit 3 by suppressing fluctuations in the input voltage to the power supply, the power supply source may be switched to a vehicle whose storage battery voltage is closer to the storage battery voltage of the power supply vehicle.

2回目以降の給電元の切り換え処理(S5)においては、切替制御部14は、給電元の車両の蓄電池電圧が予め設定された設定電圧値以下になるまで、給電元の車両の蓄電池のSOCが予め設定された設定閾値以下になるまで、または給電元の切り替えから予め設定された設定時間が経過するまでは、給電元の切り替えを行わない。これにより、給電元の切り替えが過度に行われるのを防ぐことができる。また、上記の設定電圧値、設定閾値または設定時間を適宜調整することで、給電元の切り替えの頻度を調整することができる。   In the second and subsequent power supply source switching processing (S5), the switching control unit 14 determines that the SOC of the storage battery of the power supply source vehicle remains until the storage battery voltage of the power supply source vehicle is equal to or lower than a preset voltage value. The power supply source is not switched until it becomes equal to or less than a preset threshold value or until a preset set time elapses after the power supply source is switched. Thereby, it is possible to prevent excessive switching of the power supply source. Further, by appropriately adjusting the set voltage value, the set threshold value, or the set time, the frequency of switching the power supply source can be adjusted.

切替制御部14は、上記一連の給電元の切り替え制御(S1〜S5)を、給電制御部13が給電制御を停止させるまで繰り返し行う。   The switching control unit 14 repeatedly performs the series of power supply source switching control (S1 to S5) until the power supply control unit 13 stops the power supply control.

結局、本実施形態に係る給電装置100によれば、給電時に給電元を切り替えて負荷への給電を連続的に行うことができるだけでなく、切り替え時における給電部3への入力電圧の変動を抑制して給電部3や負荷への悪影響を軽減することができる。   As a result, according to the power supply device 100 according to the present embodiment, not only can the power supply source be switched during power supply to continuously supply power to the load, but also fluctuations in the input voltage to the power supply unit 3 during switching can be suppressed. Thus, adverse effects on the power feeding unit 3 and the load can be reduced.

以上、本発明に係る給電装置の実施形態について説明したが、本発明は上記実施形態に限定されるものではない。   As mentioned above, although embodiment of the electric power feeder which concerns on this invention was described, this invention is not limited to the said embodiment.

上記実施形態に係る給電装置100は、3つの車両接続部1−1、1−2、1−3を備えているが、本発明に係る給電装置は、少なくとも2つの車両接続部を備えていればよい。   The power supply apparatus 100 according to the embodiment includes the three vehicle connection units 1-1, 1-2, and 1-3. However, the power supply apparatus according to the present invention includes at least two vehicle connection units. That's fine.

給電部3は、DC/AC変換動作に加えて、外部(例えば、系統)から入力された交流電圧に基づいて直流電圧を生成するAC/DC変換動作を行うよう構成することができる。この構成によれば、負荷への給電に加えて、蓄電池搭載車両A〜Cに搭載された蓄電池を充電することが可能になる。また、負荷に直流電力を供給する場合は、給電部3は、DC/DC変換動作を行えばよい。すなわち、給電部3は、直流電圧に基づいて給電電力を生成できればよい。   In addition to the DC / AC conversion operation, the power supply unit 3 can be configured to perform an AC / DC conversion operation for generating a DC voltage based on an AC voltage input from the outside (for example, a system). According to this configuration, in addition to supplying power to the load, it is possible to charge the storage battery mounted on the storage battery mounted vehicles A to C. Moreover, when supplying direct-current power to load, the electric power feeding part 3 should just perform DC / DC conversion operation | movement. In other words, the power supply unit 3 only needs to be able to generate power supply based on the DC voltage.

上記実施形態に係る給電装置100は、切替部4を備えているが、例えば、車両接続部1−1、1−2、1−3において、給電元の車両と給電部3とを導通状態にし、非給電元の車両と給電部3とを非導通状態にすることができるのであれば、切替部4を省略することができる。   The power supply apparatus 100 according to the embodiment includes the switching unit 4. For example, in the vehicle connection units 1-1, 1-2, and 1-3, the power supply source vehicle and the power supply unit 3 are brought into conduction. If the non-power supply source vehicle and the power supply unit 3 can be brought into a non-conductive state, the switching unit 4 can be omitted.

上記実施形態の制御部10は、通信部11と、電流監視部12と、給電制御部13と、切替制御部14とで構成されているが、蓄電池搭載車両A〜Cから取得した蓄電池電圧に基づいて給電元の切り替え制御を行うのであれば、その構成は適宜変更することができる。例えば、切替制御部14が、通信部11、電流監視部12または給電制御部13の少なくとも1つの機能を有していてもよい。   The control unit 10 according to the above embodiment includes a communication unit 11, a current monitoring unit 12, a power supply control unit 13, and a switching control unit 14, but the storage battery voltage acquired from the storage battery mounted vehicles A to C is used. If the power supply source switching control is performed based on this, the configuration can be changed as appropriate. For example, the switching control unit 14 may have at least one function of the communication unit 11, the current monitoring unit 12, or the power supply control unit 13.

上記実施形態では、第1規定値を正の値に設定しているが、切替制御部14が給電元の車両の蓄電池電圧から非給電元の車両の蓄電池電圧を差し引くことにより差分を算出する場合、第1規定値を負の値に設定する。この場合、切替制御部14は、ステップS2の判定において、差分が0よりも小さいか否かを判定する。また、本発明では、第2判定(S3)として、給電元の車両の蓄電池電圧と非給電元の車両の蓄電池電圧との差分が予め設定された第1規定範囲に含まれるか否かの判定を行ってもよい。この場合、第1規定範囲は、例えば、−10〜10[V]に設定することができ、ステップS2の判定は省略することができる。   In the above embodiment, the first specified value is set to a positive value, but the switching control unit 14 calculates the difference by subtracting the storage battery voltage of the non-power supply source vehicle from the storage battery voltage of the power supply source vehicle. The first specified value is set to a negative value. In this case, the switching control unit 14 determines whether or not the difference is smaller than 0 in the determination in step S2. Further, in the present invention, as the second determination (S3), it is determined whether or not the difference between the storage battery voltage of the power supply source vehicle and the storage battery voltage of the non-power supply source vehicle is included in the preset first specified range. May be performed. In this case, the first specified range can be set to, for example, −10 to 10 [V], and the determination in step S2 can be omitted.

上記実施形態の切替制御部14は、負荷電流の最大値が第2規定値以下か否かの第3判定(S4)を行っているが、当該第3判定は省略してもよい。これにより、給電元の切り替え条件は狭くなるが、給電元の切り替え時における給電部3への入力電圧の変動を確実に抑制することができ、給電部3の負担をより一層軽減することができる。   Although the switching control unit 14 of the above embodiment performs the third determination (S4) as to whether or not the maximum value of the load current is equal to or less than the second specified value, the third determination may be omitted. Thereby, although the switching conditions of the power supply source are narrowed, fluctuations in the input voltage to the power supply unit 3 at the time of switching the power supply source can be reliably suppressed, and the burden on the power supply unit 3 can be further reduced. .

上記実施形態では、切替制御部14は、給電元の車両が常に1台になるように、給電元の切り替え制御を行っているが、給電元の車両は複数台になってもよい。   In the embodiment described above, the switching control unit 14 performs switching control of the power supply source so that the power supply source vehicle is always one, but the power supply source vehicle may be a plurality.

上記実施形態では、蓄電池搭載車両を切替部に接続しているが、可搬型の蓄電池を接続してもよい。   In the said embodiment, although the storage battery mounting vehicle is connected to the switch part, you may connect a portable storage battery.

1−1、1−2、1−3 車両接続部
2 負荷接続部
3 給電部
4 切替部
10 制御部
11 通信部
12 電流監視部
13 給電制御部
14 切替制御部
100 給電装置
1-1, 1-2, 1-3 Vehicle connection unit 2 Load connection unit 3 Power supply unit 4 Switching unit 10 Control unit 11 Communication unit 12 Current monitoring unit 13 Power supply control unit 14 Switching control unit 100 Power supply device

Claims (5)

複数の蓄電池搭載車両に1対1で接続される複数の車両接続部と、
負荷が接続される負荷接続部と、
前記複数の蓄電池搭載車両のうちの給電元の車両の直流電圧に基づいて給電電力を生成し、前記給電電力により前記負荷への給電を行う給電部と、
を備えた給電装置であって、
前記複数の蓄電池搭載車両から蓄電池電圧を取得し、前記蓄電池電圧に基づいて前記給電元の切り替えを行う切替制御部を備え、
前記切替制御部は、給電時に、前記給電元である給電車両の蓄電池電圧と非給電元である非給電車両の蓄電池電圧との差分を算出し、前記差分が予め設定された第1規定範囲に含まれる場合に、前記給電元を前記給電車両から前記非給電車両に切り替える
ことを特徴とする給電装置。
A plurality of vehicle connections connected to a plurality of storage battery-equipped vehicles on a one-to-one basis;
A load connection to which a load is connected; and
A power supply unit that generates power supply power based on a DC voltage of a power supply source vehicle among the plurality of storage battery mounted vehicles, and that supplies power to the load by the power supply power;
A power supply device comprising:
A storage control unit that acquires storage battery voltage from the plurality of storage battery-equipped vehicles and performs switching of the power supply source based on the storage battery voltage,
The switching control unit calculates a difference between the storage battery voltage of the power supply vehicle as the power supply source and the storage battery voltage of the non-power supply vehicle as the non-power supply source at the time of power supply, and the difference is within a first specified range set in advance. When included, the power supply device switches the power supply source from the power supply vehicle to the non-power supply vehicle.
前記切替制御部は、前記差分が前記第1規定範囲に含まれない場合であっても、前記負荷接続部から出力される負荷電流が予め設定された第2規定範囲に含まれる場合には、前記給電元を前記非給電車両に切り替える
ことを特徴とする請求項1に記載の給電装置。
Even if the difference is not included in the first specified range, the switching control unit, when the load current output from the load connection unit is included in a preset second specified range, The power supply apparatus according to claim 1, wherein the power supply source is switched to the non-powered vehicle.
前記非給電車両が複数の車両を含む場合、
前記切替制御部は、
前記非給電車両のそれぞれに対して前記差分を算出し、
少なくとも1つの前記差分が前記第1規定範囲に含まれる場合に、前記給電元を、前記差分が前記第1規定範囲に含まれる前記非給電車両のうち、蓄電池電圧が最も高い車両に切り替える一方、
全ての前記差分が前記第1規定範囲に含まれない場合であっても、前記負荷電流が前記第2規定範囲に含まれる場合には、前記給電元を前記非給電車両のうち蓄電池電圧が最も高い車両に切り替える
ことを特徴とする請求項2に記載の給電装置。
When the non-powered vehicle includes a plurality of vehicles,
The switching control unit
Calculating the difference for each of the non-powered vehicles;
When at least one of the differences is included in the first specified range, the power supply source is switched to a vehicle having the highest storage battery voltage among the non-powered vehicles in which the difference is included in the first specified range.
Even when all the differences are not included in the first specified range, when the load current is included in the second specified range, the storage battery voltage is the highest among the non-powered vehicles. The power feeding device according to claim 2, wherein the power feeding device is switched to a higher vehicle.
前記切替制御部は、前記給電元の切り替えを行った場合、前記給電元の車両の蓄電池電圧が予め設定された電圧値以下になるまで、前記給電元の車両の蓄電池のSOCが予め設定された閾値以下になるまで、または前記給電元の切り替えから予め設定された時間が経過するまでは、前記給電元の切り替えを行わない
ことを特徴とする請求項1〜3のいずれか一項に記載の給電装置。
When switching the power supply source, the switching control unit presets the SOC of the storage battery of the power supply vehicle until the storage battery voltage of the power supply vehicle becomes equal to or lower than a preset voltage value. The switching of the power supply source is not performed until the threshold value is reached or until a preset time elapses after the power supply source is switched. Power supply device.
前記複数の車両接続部と前記給電部とを接続する電力線に介装された切替部を備え、
前記切替部は、前記切替制御部の制御下で、前記給電元の車両に接続された車両接続部と前記給電部とを導通状態にし、前記非給電元の車両に接続された車両接続部と前記給電部とを非導通状態にする
ことを特徴とする請求項1〜4のいずれか一項に記載の給電装置。
A switching unit interposed in a power line connecting the plurality of vehicle connection units and the power supply unit;
The switching unit, under the control of the switching control unit, brings a vehicle connection unit connected to the power supply source vehicle and the power supply unit into a conductive state, and a vehicle connection unit connected to the non-power supply source vehicle. The power feeding device according to claim 1, wherein the power feeding unit is brought into a non-conductive state.
JP2015174400A 2015-09-04 2015-09-04 Power supply device Active JP6570063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015174400A JP6570063B2 (en) 2015-09-04 2015-09-04 Power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015174400A JP6570063B2 (en) 2015-09-04 2015-09-04 Power supply device

Publications (2)

Publication Number Publication Date
JP2017051039A true JP2017051039A (en) 2017-03-09
JP6570063B2 JP6570063B2 (en) 2019-09-04

Family

ID=58280528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015174400A Active JP6570063B2 (en) 2015-09-04 2015-09-04 Power supply device

Country Status (1)

Country Link
JP (1) JP6570063B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020246123A1 (en) * 2019-06-06 2020-12-10 ソニー株式会社 Power supply switching device, robot, method, and program
CN112671015A (en) * 2019-10-15 2021-04-16 丰田自动车株式会社 Power supply system
JP6995457B1 (en) 2021-03-30 2022-01-14 株式会社Yanekara Charge / discharge management system
JP2022148713A (en) * 2021-03-24 2022-10-06 本田技研工業株式会社 External power supply machine and external power supply system
JP7534926B2 (en) 2020-11-10 2024-08-15 トヨタホーム株式会社 Power supply device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011135727A (en) * 2009-12-25 2011-07-07 Mazda Motor Corp Method and system for charging of battery
JP2014073051A (en) * 2012-10-01 2014-04-21 Toyota Industries Corp Power supply device and battery module switching method
JP2014217220A (en) * 2013-04-26 2014-11-17 パナソニック株式会社 Power supply system
WO2017038753A1 (en) * 2015-08-31 2017-03-09 ニチコン株式会社 Electric power supply device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011135727A (en) * 2009-12-25 2011-07-07 Mazda Motor Corp Method and system for charging of battery
JP2014073051A (en) * 2012-10-01 2014-04-21 Toyota Industries Corp Power supply device and battery module switching method
JP2014217220A (en) * 2013-04-26 2014-11-17 パナソニック株式会社 Power supply system
WO2017038753A1 (en) * 2015-08-31 2017-03-09 ニチコン株式会社 Electric power supply device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020246123A1 (en) * 2019-06-06 2020-12-10 ソニー株式会社 Power supply switching device, robot, method, and program
CN112671015A (en) * 2019-10-15 2021-04-16 丰田自动车株式会社 Power supply system
JP2021065043A (en) * 2019-10-15 2021-04-22 トヨタ自動車株式会社 Power supply system
JP7251437B2 (en) 2019-10-15 2023-04-04 トヨタ自動車株式会社 power supply system
CN112671015B (en) * 2019-10-15 2024-05-28 丰田自动车株式会社 power supply system
JP7534926B2 (en) 2020-11-10 2024-08-15 トヨタホーム株式会社 Power supply device
JP2022148713A (en) * 2021-03-24 2022-10-06 本田技研工業株式会社 External power supply machine and external power supply system
JP7320548B2 (en) 2021-03-24 2023-08-03 本田技研工業株式会社 External power supply and external power supply system
US11757303B2 (en) 2021-03-24 2023-09-12 Honda Motor Co., Ltd. External power feeder and external power supply system
JP6995457B1 (en) 2021-03-30 2022-01-14 株式会社Yanekara Charge / discharge management system
JP2022155068A (en) * 2021-03-30 2022-10-13 株式会社Yanekara Charge/discharge management system

Also Published As

Publication number Publication date
JP6570063B2 (en) 2019-09-04

Similar Documents

Publication Publication Date Title
JP6570063B2 (en) Power supply device
US10523026B2 (en) Electric power supply system
WO2019155751A1 (en) Vehicle-mounted charging device and vehicle-mounted charging device control method
CN102574470B (en) Vehicle charging system and electric vehicle equipped with same
US20140320083A1 (en) Power converter
US11021062B2 (en) Vehicle power supply device
WO2017038753A1 (en) Electric power supply device
KR20170058291A (en) Battery system
CA2747493A1 (en) Rechargeable battery device, and power supplying system incorporating the same
CN109274088A (en) Energy control method, energy control device, energy management system and storage medium
JP6410299B2 (en) Uninterruptible power system
KR20150008767A (en) Energy storage system
US11336091B2 (en) Energy storage power supply, parallel control device for energy storage power supplies, and parallel control method for energy storage power supplies
US20220231535A1 (en) Offline uninterruptible power source and control method therefor
CN105453401B (en) Stand-by power supply controls
WO2016039212A1 (en) Charging device
JP2011163847A (en) Battery voltage monitoring apparatus
US10886744B2 (en) Power conversion system, power supply system and power conversion device
JP2019096565A (en) Fuel cell system and control method for fuel cell system
US20150073616A1 (en) Power supply device, power supply system, and electronic device
WO2014084002A1 (en) Charging device for electric tool
JP6389224B2 (en) Electric tool charging device
KR20160150474A (en) Apparatus and method for charging battery in electric vehicle having function of power failure
US20240372397A1 (en) Device and method for charging an intermediate circuit capacitor, energy supply network, and electrical drive system
CN113037091B (en) Voltage conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190801

R150 Certificate of patent or registration of utility model

Ref document number: 6570063

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250