[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2017048468A - Manufacturing method of printed circuit board - Google Patents

Manufacturing method of printed circuit board Download PDF

Info

Publication number
JP2017048468A
JP2017048468A JP2016234627A JP2016234627A JP2017048468A JP 2017048468 A JP2017048468 A JP 2017048468A JP 2016234627 A JP2016234627 A JP 2016234627A JP 2016234627 A JP2016234627 A JP 2016234627A JP 2017048468 A JP2017048468 A JP 2017048468A
Authority
JP
Japan
Prior art keywords
oxide film
anodic oxide
film
thickness
microporous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016234627A
Other languages
Japanese (ja)
Other versions
JP6250773B2 (en
Inventor
麗子 鳥居
Reiko Torii
麗子 鳥居
山口 恵太郎
Keitaro Yamaguchi
恵太郎 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2016234627A priority Critical patent/JP6250773B2/en
Publication of JP2017048468A publication Critical patent/JP2017048468A/en
Application granted granted Critical
Publication of JP6250773B2 publication Critical patent/JP6250773B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Insulated Metal Substrates For Printed Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To secure good heat release property by using an aluminum material for a base sheet, enhance adhesiveness between the base sheet and a circuit layer and enhance durability.SOLUTION: In a method for manufacturing a printed substrate, a fine porous anodic oxide film 3 having porosity of over 5% and 30% or less with a thickness of 0.03 to 2.0 μm is formed on at least a part of surface of a base sheet 2 made of pure aluminum or an aluminum alloy, and a circuit layer 5 made of copper or a copper alloy is formed on the fine porous anodic oxide film 3 via a thermal conductive adhesive layer 4 containing an inorganic filler of 50 to 95 mass%, and the fine porous anodic oxide film is formed by two-step electrolytic treatment.SELECTED DRAWING: Figure 1

Description

本発明は、電子部品が搭載されるプリント基板の製造方法に係り、特にアルミニウム材をベースにしたプリント基板の製造方法に関する。   The present invention relates to a method for manufacturing a printed circuit board on which electronic components are mounted, and more particularly to a method for manufacturing a printed circuit board based on an aluminum material.

電子部品の高密度実装化が進むにつれて、プリント基板には、高い放熱性が求められてきた。特に、近年、プリント基板にLEDが実装されるようになると、LEDの極めて大きな発熱に対して、速やかに放熱できるプリント基板が求められるようになった。この要求に応えるために、金属をベースとすることが必要になってきた。   As electronic components have been mounted with higher density, printed circuit boards have been required to have high heat dissipation. In particular, in recent years, when an LED is mounted on a printed circuit board, a printed circuit board that can quickly dissipate heat with respect to extremely large heat generation of the LED has been demanded. In order to meet this demand, it has become necessary to be based on metal.

ベース板として特にアルミニウム材を用いる場合は、アルミニウム材は軽量なために、板厚を増して放熱性を高めることができ、放熱性を重視するプリント基板の使用に適している。
しかしながら、アルミニウムと銅箔を接着している接着剤は、熱伝導性が低い。このため、熱伝導性を高めるために、接着層に無機系のフィラーが添加されるようになったが、このフィラーの添加により、接着剤の接着力が低下し、アルミニウム材料との界面で剥離する不具合が増えてきた。
In particular, when an aluminum material is used as the base plate, since the aluminum material is lightweight, the plate thickness can be increased to improve heat dissipation, which is suitable for use on a printed circuit board that places importance on heat dissipation.
However, the adhesive bonding aluminum and copper foil has low thermal conductivity. For this reason, inorganic fillers have been added to the adhesive layer in order to increase thermal conductivity. However, the addition of this filler reduces the adhesive strength of the adhesive and causes peeling at the interface with the aluminum material. The number of bugs to be increased has increased.

一方、プリント基板の使用環境は厳しさを増している。特に、実装工程時間を短縮するためのリフロー炉温度の高温化により、アルミニウムとの接着が低下する場合が増えてきた。
更に、自動車で使用されるプリント基板では、車内やエンジンルームの高温や高湿の環境により、アルミニウムと接着剤が剥離するトラブルが増えた。
これらのトラブルを防止するために、アルミニウムにはクロメート処理、あるいは硫酸やリン酸により陽極酸化処理等の表面処理が施された表面処理材が使用されるようになった。
特許文献1には、アルミニウム板にリン酸により陽極酸化処理することが開示されており、その酸化皮膜に対して、150〜300℃の温度で0.5時間以上加熱して乾燥させている。
On the other hand, the usage environment of printed circuit boards is becoming more severe. In particular, there has been an increase in the case where adhesion to aluminum is lowered due to the increase in the temperature of the reflow furnace for shortening the mounting process time.
Furthermore, in the printed circuit boards used in automobiles, troubles in which the aluminum and the adhesive peel off due to the high temperature and high humidity environment in the vehicle and engine room have increased.
In order to prevent these problems, aluminum has been used with a surface treatment material that has been subjected to a chromate treatment or a surface treatment such as anodization with sulfuric acid or phosphoric acid.
Patent Document 1 discloses that an aluminum plate is anodized with phosphoric acid, and the oxide film is heated and dried at a temperature of 150 to 300 ° C. for 0.5 hours or more.

特開2006−24906号公報JP 2006-24906 A

しかしながら、特許文献1記載のように陽極酸化処理するだけでは、十分な耐熱性、耐湿性、放熱性が得られない場合があり、小型化かつ高電流タイプのベース板への適用には、従来より更に高い密着性と放熱性が求められている。   However, there is a case where sufficient heat resistance, moisture resistance, and heat dissipation may not be obtained only by anodizing treatment as described in Patent Document 1, and for application to a base plate of a small and high current type, there is a conventional case. Higher adhesion and heat dissipation are required.

本発明は、前記事情に鑑みてなされたもので、ベース板にアルミニウム材を用いることで良好な放熱性を確保するとともに、このベース板と回路層との密着性を高めて、耐久性を向上させたプリント基板の製造方法の提供を目的とする。   The present invention has been made in view of the above circumstances, and by using an aluminum material for the base plate, it ensures good heat dissipation and improves the adhesion between the base plate and the circuit layer, thereby improving durability. An object of the present invention is to provide a method for manufacturing a printed circuit board.

本発明のプリント基板の製造方法は、純アルミニウム又はアルミニウム合金からなるベース板の少なくとも一部の表面に、有孔率5%を超え30%以下の微孔質陽極酸化皮膜が0.03〜2.0μmの厚さに形成され、この微孔質陽極酸化皮膜の上に、無機系フィラーを50〜95質量%含有する熱伝導性接着層を介して銅又は銅合金からなる回路層が形成されてなるプリント基板の製造方法であって、前記微孔質陽極酸化皮膜を、その膜厚が0.15μmまでは、硫酸、リン酸、クロム酸、シュウ酸の1種又は2種以上からなる電解液を用いた電解処理によって形成し、膜厚が0.15μm〜2.0μmまでは、リン酸塩もしくは珪酸塩の水溶液からなる電解液を用いた電解処理によって形成することを特徴とする。   In the method for producing a printed board according to the present invention, a microporous anodic oxide film having a porosity of more than 5% and not more than 30% is formed on 0.03 to 2 on the surface of at least a part of a base plate made of pure aluminum or an aluminum alloy. A circuit layer made of copper or a copper alloy is formed on the microporous anodic oxide film with a thickness of 0.0 μm through a heat conductive adhesive layer containing 50 to 95% by mass of an inorganic filler. A method for producing a printed circuit board, wherein the microporous anodic oxide film is an electrolysis comprising one or more of sulfuric acid, phosphoric acid, chromic acid and oxalic acid up to a thickness of 0.15 μm. The film is formed by electrolytic treatment using a liquid, and the film thickness is from 0.15 μm to 2.0 μm by electrolytic treatment using an electrolytic solution made of an aqueous solution of phosphate or silicate.

ベース板としては、純度99.0%以上の純アルミニウム、又は1000系、3000系(Al−Mn系)、5000系(Al−Mg系)の種々のアルミニウム合金を用いることができるが、本発明においては、その組成は限定されるものではない。
微孔質陽極酸化皮膜とは、皮膜が均一に形成された部位の断面観察において、皮膜表面からアルミニウム素地に向けて、規則的に形成される孔(通常開口部は1〜10nmで皮膜厚さに対して60%以上の深さを有する)が5%を超え30%以下(表面から見た孔の総面積の比率)の皮膜である。
一般的な陽極酸化皮膜(多孔質皮膜)では数%〜十数%の水分や電解質を含んで形成されるため、接着剤の乾燥工程やリフロー炉での加熱時に、これらの水分等が放出されて密着性低下の原因になる。また、リン酸による陽極酸化皮膜は立体網目構造を呈しており、形状効果で密着性が良好であるが、皮膜中に水分が含まれるため、特許文献1のように後処理として加熱乾燥工程が必要となる。
有孔率5%を超え30%以下の微孔質陽極酸化皮膜は、一般的な多孔質陽極酸化皮膜あるいはリン酸陽極酸化皮膜と比べ、含有水分が少ないため密着性の低下がなく、加熱乾燥工程も不要である。また、湿潤環境においても十分な耐久性を有している。
有孔率5%以下の無孔質皮膜に比べ、微孔質皮膜は表面が粗面化しているため、接着表面積が増加し、形状効果により密着性及び放熱性の両特性において優れている。特に無機系フィラーを高濃度で含有する熱伝導性接着層との密着性において有効である。
As the base plate, pure aluminum having a purity of 99.0% or more, or various aluminum alloys of 1000 series, 3000 series (Al-Mn series), 5000 series (Al-Mg series) can be used. In, the composition is not limited.
A microporous anodic oxide film refers to pores that are regularly formed from the surface of the film toward the aluminum substrate in the cross-sectional observation of the part where the film is uniformly formed (usually the opening is 1 to 10 nm in thickness of the film) Is a film having a depth of more than 60% and exceeding 5% and not more than 30% (ratio of the total area of the holes as viewed from the surface).
In general anodic oxide coatings (porous coatings) are formed containing several to tens of percent of moisture and electrolytes, so these moisture and the like are released during the drying process of the adhesive and heating in a reflow furnace. Cause deterioration of adhesion. Moreover, although the anodized film by phosphoric acid has a three-dimensional network structure and has good adhesion due to the shape effect, since the film contains moisture, a heat drying step is performed as a post-treatment as in Patent Document 1. Necessary.
A microporous anodic oxide film having a porosity of more than 5% and not more than 30% has less water content compared to a general porous anodic oxide film or phosphoric acid anodic oxide film, so there is no decrease in adhesion and heat drying. A process is also unnecessary. Moreover, it has sufficient durability even in a humid environment.
Compared with a non-porous film having a porosity of 5% or less, the surface of the microporous film is roughened, so that the adhesion surface area is increased, and both the adhesion and heat dissipation properties are excellent due to the shape effect. In particular, it is effective in adhesion to a thermally conductive adhesive layer containing an inorganic filler at a high concentration.

ただし、この微孔質陽極酸化皮膜は熱伝導性の観点からはできるだけ薄いものがよく、2.0μm以下が好ましい。一方、薄過ぎると、均一な皮膜形成が難しく、湿潤環境等において樹脂との密着性が低下するため、0.03μm以上の膜厚であることが好ましい。
熱伝導性接着層は、無機系フィラーを含有していることにより、熱伝導性が高いものとなっている。この無機系フィラーの含有量が50質量%未満では熱伝導性が不十分であり、95質量%を超えると、密着性が損なわれるおそれがある。前述したように、微孔質陽極酸化皮膜は、無機系フィラーを高濃度(例えば70〜95質量%含有)に有する接着層との接着に有効である。
この製造方法において、前記リン酸塩は、リン酸アンモニウム、リン酸水素アンモニウム、リン酸二水素アンモニウムから選択され、前記珪酸塩は、珪酸ナトリウム、珪酸カリウム、珪酸リチウムから選択されるとよい。
However, this microporous anodic oxide film should be as thin as possible from the viewpoint of thermal conductivity, and is preferably 2.0 μm or less. On the other hand, if it is too thin, it is difficult to form a uniform film, and the adhesiveness with the resin is lowered in a wet environment or the like. Therefore, the film thickness is preferably 0.03 μm or more.
The heat conductive adhesive layer has high heat conductivity by containing an inorganic filler. If the content of the inorganic filler is less than 50% by mass, the thermal conductivity is insufficient, and if it exceeds 95% by mass, the adhesion may be impaired. As described above, the microporous anodic oxide film is effective for adhesion to an adhesive layer having an inorganic filler at a high concentration (for example, 70 to 95% by mass).
In this production method, the phosphate may be selected from ammonium phosphate, ammonium hydrogen phosphate, and ammonium dihydrogen phosphate, and the silicate may be selected from sodium silicate, potassium silicate, and lithium silicate.

本発明で製造されるプリント基板において、前記無機系フィラーは酸化アルミニウムであるとよい。
酸化アルミニウム(アルミナ)は、熱伝導性が高いので、回路層からベース板への放熱を促進するとともに、密着性も良好である。また、電気絶縁性にも優れており、回路層とベース板との間の電気絶縁性も良好となる。
In the printed circuit board manufactured according to the present invention, the inorganic filler may be aluminum oxide.
Since aluminum oxide (alumina) has high thermal conductivity, it promotes heat dissipation from the circuit layer to the base plate and also has good adhesion. Moreover, it is excellent also in electrical insulation, and electrical insulation between the circuit layer and the base plate is also good.

本発明で製造されるプリント基板において、前記無孔質陽極酸化皮膜の上に0.1〜30mg/mの塗布量でシランカップリング剤が塗布されているとよい。
シランカップリング剤にはアミノ系、エポキシ系、アクリル系等を用いることができ、本発明としては特定のものに限定されるものではない。
シランカップリング剤の塗布量は、その機能を良好にするため適量が望ましい。少ないと密着性向上の効果は認められない。0.1mg/m以上が好ましく、1mg/mがより好ましい。一方、シランカップリング剤をあまりに多く塗布すると、シランカップリング剤自体の凝集力が低下する場合があり、塗膜が剥離しやすくなる。このため、30mg/m以下が好ましく、8mg/m以下がより好ましい。
In the printed board manufactured by the present invention, a silane coupling agent may be applied on the nonporous anodic oxide film at an application amount of 0.1 to 30 mg / m 2 .
As the silane coupling agent, amino-based, epoxy-based, acrylic-based and the like can be used, and the present invention is not limited to a specific one.
The application amount of the silane coupling agent is preferably an appropriate amount in order to improve its function. If it is less, the effect of improving the adhesion is not recognized. 0.1 mg / m 2 or more is preferable, and 1 mg / m 2 is more preferable. On the other hand, if too much silane coupling agent is applied, the cohesive strength of the silane coupling agent itself may be reduced, and the coating film is easily peeled off. For this reason, 30 mg / m 2 or less is preferable, and 8 mg / m 2 or less is more preferable.

本発明によれば、ベース板の表面の微孔質陽極酸化皮膜に無機系フィラーを含有する熱伝導性接着剤を介して回路層を形成したので、十分な耐熱性、耐湿性、放熱性を有するプリント基板を得ることができ、LED等の発熱量の大きい電子部品用のプリント基板として好適である。   According to the present invention, since the circuit layer is formed on the microporous anodic oxide film on the surface of the base plate via the heat conductive adhesive containing the inorganic filler, sufficient heat resistance, moisture resistance, and heat dissipation are provided. It is suitable as a printed circuit board for an electronic component having a large calorific value such as an LED.

本発明に係るプリント基板の実施形態を示す断面図である。It is sectional drawing which shows embodiment of the printed circuit board which concerns on this invention. 陽極酸化皮膜を形成する場合の膜厚と有孔率の関係を示すモデル図である。It is a model figure which shows the relationship between the film thickness in the case of forming an anodized film, and a porosity. 多孔質の陽極酸化皮膜の断面構造を示すモデル図である。It is a model figure which shows the cross-section of a porous anodic oxide film. 微孔質の陽極酸化皮膜の断面構造を示すモデル図である。It is a model figure which shows the cross-section of a microporous anodic oxide film.

以下、本発明に係るプリント基板の実施形態を図面を参照しながら説明する。
本実施形態のプリント基板1は、図1に示すように、純アルミニウム又はアルミニウム合金からなるベース板2の少なくとも一部の表面に、有孔率が5%を超え30%以下の微孔質陽極酸化皮膜3が0.03〜2.0μmの厚さに形成され、この微孔質陽極酸化皮膜3の上に、シランカップリング剤を介して熱伝導性接着層4が形成され、この熱伝導性接着層4の上に銅又は銅合金からなる回路層5が形成されている。
Embodiments of a printed circuit board according to the present invention will be described below with reference to the drawings.
As shown in FIG. 1, the printed circuit board 1 of the present embodiment has a microporous anode having a porosity of more than 5% and not more than 30% on at least a part of the surface of a base plate 2 made of pure aluminum or an aluminum alloy. An oxide film 3 is formed to a thickness of 0.03 to 2.0 μm, and a heat conductive adhesive layer 4 is formed on the microporous anodic oxide film 3 via a silane coupling agent. A circuit layer 5 made of copper or a copper alloy is formed on the adhesive layer 4.

[ベース板]
ベース板2を構成するアルミニウムとして、純度99.0%以上の純アルミニウム、1000系、3000系(Al−Mn系)、5000系(Al−Mg系)のアルミニウム合金が用いられる。このアルミニウム材は表面に微孔質陽極酸化皮膜3が形成される。
[Base plate]
As the aluminum constituting the base plate 2, pure aluminum having a purity of 99.0% or more, 1000 series, 3000 series (Al-Mn series), 5000 series (Al-Mg series) aluminum alloys are used. This aluminum material has a microporous anodic oxide film 3 formed on the surface.

[微孔質陽極酸化皮膜]
陽極酸化処理は、酸化皮膜の溶解力が低い電解液を用いて行い、電圧を調整することにより好適な厚さの微孔質陽極酸化皮膜3が形成される。
この微孔質陽極酸化処理に先立って前処理が行われる。前処理は特に限定されるものではない。例えば、アルカリ性の脱脂液で洗浄し、水酸化ナトリウム水溶液でアルカリエッチング、硝酸水溶液でデスマット処理を行う。
[Microporous anodic oxide film]
The anodizing treatment is performed using an electrolytic solution having a low dissolving power of the oxide film, and the microporous anodic oxide film 3 having a suitable thickness is formed by adjusting the voltage.
Pretreatment is performed prior to the microporous anodic oxidation treatment. The pretreatment is not particularly limited. For example, it is washed with an alkaline degreasing solution, alkali etched with an aqueous sodium hydroxide solution, and desmutted with an aqueous nitric acid solution.

微孔質陽極酸化皮膜3は、前記ベース板2を陽極酸化処理することで形成される。この陽極酸化処理(いわゆるアルマイト処理)は、基材を構成するアルミニウムあるいはアルミニウム合金を電解液に浸漬して陽極処理を行なう陽極酸化処理によって陽極酸化皮膜を形成するものである。このような陽極酸化処理により、有孔率5%を越えて、30%以下の微孔質陽極酸化皮膜(微孔質アルマイト皮膜)を形成することができる。ここで有孔率とは、陽極酸化皮膜表面の測定領域において孔の形成されている部分の面積を全測定面積で除算した値、即ち、有孔率=(孔のあいている面積)/(全測定面積)の関係式で示されるものである。微孔質陽極酸化皮膜としての有孔率は前述の5%を超え30%以下の範囲であるが、5%を超え10%以下程度の範囲がより好ましい。   The microporous anodic oxide film 3 is formed by anodizing the base plate 2. This anodizing treatment (so-called alumite treatment) is to form an anodized film by anodizing treatment in which aluminum or aluminum alloy constituting the base material is immersed in an electrolytic solution. By such anodizing treatment, a microporous anodic oxide film (microporous alumite film) having a porosity exceeding 5% and 30% or less can be formed. Here, the porosity is a value obtained by dividing the area of the portion where pores are formed in the measurement region on the surface of the anodized film by the total measurement area, that is, porosity = (area where holes are present) / ( It is shown by the relational expression of (total measurement area). The porosity of the microporous anodic oxide film is in the range of more than 5% and not more than 30%, more preferably in the range of more than 5% and not more than 10%.

次に、下地層として用いる有孔率5%を超え30%以下の微孔質陽極酸化皮膜3を製造する方法について以下に説明する。
微孔質陽極酸化皮膜3を製造するには、皮膜が多孔質化する前の段階で電解を停止することで多孔質皮膜が成長する前の段階の無孔質に近い状態の皮膜を得ることにより行う方法が好ましい。
ここで用いる電解液として、硫酸、リン酸、クロム酸、シュウ酸の1種又は2種以上の溶液を用いることができる。
これらの電解液を用いてアルミニウムまたはアルミニウム合金からなるベース板2を陽極酸化すると、電解の初期段階において、無孔質のバリア層と称されている陽極酸化皮膜が成長し、この無孔質の陽極酸化皮膜の成長が所定の段階まで進むと、多孔質層が急激に成長して多孔質の陽極酸化皮膜が生成される。ただし、本明細書において多孔質陽極酸化皮膜と称するのは、無孔質の薄いバリア層の上に多孔質層が成長したものを意味する。
Next, a method for producing a microporous anodic oxide film 3 having a porosity of more than 5% and not more than 30% used as an underlayer will be described below.
In order to produce the microporous anodic oxide coating 3, the electrolysis is stopped at a stage before the coating is made porous, thereby obtaining a coating that is almost nonporous at the stage before the porous coating grows. The method performed by is preferable.
As the electrolytic solution used here, a solution of one or more of sulfuric acid, phosphoric acid, chromic acid, and oxalic acid can be used.
When the base plate 2 made of aluminum or an aluminum alloy is anodized using these electrolytic solutions, an anodized film called a nonporous barrier layer grows in the initial stage of electrolysis, and this nonporous film is formed. When the growth of the anodized film proceeds to a predetermined stage, the porous layer grows rapidly and a porous anodized film is generated. However, in this specification, the term “porous anodic oxide film” means a porous layer grown on a nonporous thin barrier layer.

ここで、この種の陽極酸化皮膜の成長モデルを図2を基に説明する。
図2の横軸は陽極酸化皮膜の厚さ、縦軸は有孔率を示すが、通常、多孔質陽極酸化皮膜を製造すると、0.1〜0.2μm程度の膜厚の無孔質膜が生成した後、膜厚がほとんど増加しないまま急激な有孔率の上昇が起こり、有孔率が30%を越えるあたりから膜厚増加と有孔率増加の関係が比例関係に移るようになるような成長曲線を示す。図2に示す成長曲線は陽極酸化皮膜のモデル的な一例であるが、電解液の濃度や種類、印加電圧、印加電流密度を多少異なる条件としたとしても、ある膜厚の無孔質層が生成した後、有孔率が急激に上昇し、その後、有孔率30%を越えるあたりから膜厚増加と有孔率増加の関係が比例関係に移るようになって多孔質陽極酸化皮膜が生成する傾向は同様となる。
Here, a growth model of this type of anodized film will be described with reference to FIG.
The horizontal axis in FIG. 2 indicates the thickness of the anodic oxide film, and the vertical axis indicates the porosity. Normally, when a porous anodic oxide film is produced, a nonporous film having a thickness of about 0.1 to 0.2 μm is produced. After the formation of, a rapid increase in porosity occurs with almost no increase in film thickness, and the relationship between the increase in film thickness and the increase in porosity starts to shift to a proportional relationship when the porosity exceeds 30%. Such a growth curve is shown. The growth curve shown in FIG. 2 is a model example of an anodic oxide film, but a nonporous layer having a certain thickness can be obtained even if the concentration and type of electrolyte, applied voltage, and applied current density are slightly different. After the formation, the porosity rapidly increases, and after that, when the porosity exceeds 30%, the relationship between the increase in the film thickness and the increase in the porosity shifts to a proportional relationship, and a porous anodic oxide film is formed. The tendency to do is the same.

図2に示す陽極酸化皮膜の成長モデルから見ると、下地層として用いる有孔率5%を超え30%以下の微孔質の陽極酸化皮膜を得るためには、陽極酸化皮膜の成長過程で有孔率が低い状態において電解処理を停止すれば良いこととなる。なお、図2に示す成長モデルから見ると、電解の初期段階では有孔率5%以下の無孔質層陽極酸化皮膜も存在するので、先に説明した無孔質陽極酸化皮膜の製造条件ではなく、以下に説明する多孔質陽極酸化皮膜を製造する場合の陽極酸化処理の最初期段階において電解を停止することで無孔質陽極酸化皮膜を得るようにして下地層としても良い。   In view of the growth model of the anodic oxide film shown in FIG. 2, in order to obtain a microporous anodic oxide film having a porosity of more than 5% and not more than 30% used as an underlayer, there is It is only necessary to stop the electrolytic treatment in a state where the porosity is low. From the growth model shown in FIG. 2, there is a nonporous layer anodic oxide film having a porosity of 5% or less in the initial stage of electrolysis. Alternatively, the base layer may be formed so as to obtain a non-porous anodic oxide film by stopping electrolysis at the initial stage of the anodizing treatment when producing a porous anodic oxide film described below.

微孔質陽極酸化皮膜3を得るには、例えば膜厚0.03〜0.15μmの範囲、例えば有孔率30%以下になるような電解条件で電解処理を停止すれば良い。これらの条件において微孔質陽極酸化皮膜3のより好ましい範囲としては、膜厚0.05〜0.1μm、有孔率10%である。
ここで用いる電解液として、硫酸、リン酸、クロム酸、シュウ酸の1種又は2種以上を選択する場合、一般に陽極酸化皮膜のバリア層の膜厚は電解電圧(V)×(0.0010〜0.0016)(μm)の値で決まり、陽極酸化皮膜の膜厚が0.15μmを越えると、多孔質化を開始することがわかっている。
さらに、硫酸を電解液とする場合においては、電解電圧を高く設定すると表面皮膜欠陥を多量に形成し、いわゆる「焼け」と呼ばれる不良を発生させる虞があるため、電解電圧を25V以下に設定することが望ましい。この電解電圧における処理において、陽極酸化皮膜の膜厚が0.15μm以下になるようにコントロールして電解を停止することで微孔質皮膜が得られる。
In order to obtain the microporous anodic oxide coating 3, the electrolysis treatment may be stopped under electrolysis conditions such that the film thickness ranges from 0.03 to 0.15 μm, for example, the porosity is 30% or less. A more preferable range of the microporous anodic oxide film 3 under these conditions is a film thickness of 0.05 to 0.1 μm and a porosity of 10%.
When one or more of sulfuric acid, phosphoric acid, chromic acid, and oxalic acid is selected as the electrolytic solution used here, the thickness of the barrier layer of the anodized film is generally an electrolytic voltage (V) × (0.0010 ~ 0.0016) (μm), and it is known that when the thickness of the anodized film exceeds 0.15 μm, the porous structure is started.
Further, in the case of using sulfuric acid as the electrolytic solution, if the electrolytic voltage is set high, a large amount of surface film defects may be formed and a defect called so-called “burn” may occur, so the electrolytic voltage is set to 25 V or less. It is desirable. In the treatment at this electrolytic voltage, the microporous film is obtained by stopping the electrolysis by controlling the film thickness of the anodized film to be 0.15 μm or less.

微孔質の陽極酸化皮膜の膜厚において0.03μm未満では耐食性が得られ難く、0.15μmを越える膜厚では多孔質化が進行しやすい、好適な範囲としては、0.05〜0.1μmである。有孔率においては5〜30%の範囲内でも5%を越えて20%以下とすることが好ましく、有孔率5〜20%の陽極酸化皮膜では、有孔率20%〜30%の陽極酸化皮膜に対して水分の放出をより良く抑制でき、密着面積の低下を防止でき、皮膜破壊を防止できやすくなるとの利点がある。このような観点から微孔質陽極酸化皮膜3の有孔率においては5%を越えて10%以下が好ましい。   When the thickness of the microporous anodic oxide film is less than 0.03 μm, it is difficult to obtain corrosion resistance, and when the thickness exceeds 0.15 μm, the formation of porosity tends to proceed. 1 μm. In the range of 5 to 30%, the porosity is preferably more than 5% and not more than 20%. In the case of an anodized film having a porosity of 5 to 20%, the anode having a porosity of 20% to 30% There is an advantage that the release of moisture can be better suppressed with respect to the oxide film, the decrease in the adhesion area can be prevented, and the film breakage can be easily prevented. From such a viewpoint, the porosity of the microporous anodic oxide film 3 is preferably more than 5% and 10% or less.

以上のような背景から、前記微孔質の陽極酸化皮膜を製造する場合の電解浴中の電解質濃度は2質量%からその電解質の飽和濃度の範囲で選ばれる。電解浴の浴温は、5〜30℃の範囲で十分である。
このような電解液中においてアルミニウム素材は、連続あるいは断続的であっても陽極となるように電源に接続されて陽極電解される。陰極には、不溶性の導電材料例えばカーボン電極などが用いられる。電解電流は、直流電流などが用いられ、直流電解では直流密度0.5〜2.5A/dm2程度、電解時間数秒〜10分程度で電解が行われる。
さらに、硫酸を電解液とする場合においては、前述の理由により、電解電圧を25V以下に設定して電解が行われる。
From the background as described above, the electrolyte concentration in the electrolytic bath when producing the microporous anodic oxide film is selected in the range of 2% by mass to the saturated concentration of the electrolyte. The bath temperature of the electrolytic bath is sufficient in the range of 5 to 30 ° C.
In such an electrolytic solution, the aluminum material is anodic electrolyzed by being connected to a power source so as to be an anode even if it is continuous or intermittent. An insoluble conductive material such as a carbon electrode is used for the cathode. As the electrolytic current, a direct current or the like is used. In direct current electrolysis, electrolysis is performed with a direct current density of about 0.5 to 2.5 A / dm 2 and an electrolysis time of about several seconds to 10 minutes.
Further, in the case where sulfuric acid is used as the electrolytic solution, the electrolysis is performed with the electrolysis voltage set to 25 V or less for the reasons described above.

図3は図2に示す有孔率を高くして多孔質とした陽極酸化皮膜の断面構造のモデル図であり、図4は図2に示す有孔率を10%程度として得られる無孔質に近い微孔質の陽極酸化皮膜の断面構造のモデル図である。
図3に示す多孔質陽極酸化皮膜10は無孔質のバリア層10aとその上に成長形成された多孔質層10bとからなり、図4に示す無孔質に近い微孔質の陽極酸化皮膜11は孔が成長しないまま表面に多少の凹凸部が存在している断面構造を示す。なお、微孔質の陽極酸化皮膜11においても5〜30%の孔は存在するので、この割合の孔を有することとなるが、図4では明確な形の孔は記載を略している。
FIG. 3 is a model diagram of a cross-sectional structure of the anodized film made porous by increasing the porosity shown in FIG. 2, and FIG. 4 is a nonporous material obtained by setting the porosity shown in FIG. 2 to about 10%. It is a model figure of the cross-sectional structure of a microporous anodic oxide film close to.
A porous anodic oxide film 10 shown in FIG. 3 is composed of a nonporous barrier layer 10a and a porous layer 10b formed on the nonporous barrier layer 10a. 11 shows a cross-sectional structure in which some irregularities exist on the surface without holes growing. In the microporous anodic oxide film 11, 5-30% of the holes exist, and this ratio of holes is present. However, in FIG. 4, clear-shaped holes are not shown.

微孔質陽極酸化皮膜3の膜厚は、0.03〜2.0μmが好ましい。熱伝導性の観点からはできるだけ薄いものがよく、2.0μm以下が好ましいが、薄過ぎると、均一な皮膜形成が難しく、湿潤環境等において樹脂との密着性が低下するため、0.03μm以上の膜厚であることが好ましい。この熱伝導性、密着性等の観点からは、膜厚はより好ましくは0.1〜1.5μmである。
なお、前述したように、微孔質陽極酸化皮膜を得るためには、膜厚が0.15μmまでが好適であるが、膜厚が0.15〜2.0μmの場合、電解処理によって多孔質化が進むので、2段階の電解処理を行って、有孔率5〜30%となるように制御するとよい。
2段階電解処理で実施する陽極酸化の電解液は、リン酸アンモニウム、リン酸水素アンモニウム、リン酸二水素アンモニウム、リン酸アンモニウムといったリン酸塩、もしくは珪酸ナトリウム、珪酸カリウム、珪酸リチウムといった珪酸塩の水溶液であれば、酸化皮膜の溶解力が低く、有孔率低下が可能である。
The film thickness of the microporous anodic oxide film 3 is preferably 0.03 to 2.0 μm. From the viewpoint of thermal conductivity, it should be as thin as possible and is preferably 2.0 μm or less. However, if it is too thin, it is difficult to form a uniform film, and the adhesiveness to the resin is lowered in a wet environment. It is preferable that it is the film thickness. From the viewpoint of thermal conductivity, adhesion, etc., the film thickness is more preferably 0.1 to 1.5 μm.
As described above, in order to obtain a microporous anodic oxide film, the film thickness is preferably up to 0.15 μm, but when the film thickness is 0.15 to 2.0 μm, it is porous by electrolytic treatment. Therefore, it is preferable to control so that the porosity is 5 to 30% by performing two-stage electrolytic treatment.
The electrolytic solution for anodization performed in the two-stage electrolytic treatment is a phosphate such as ammonium phosphate, ammonium hydrogen phosphate, ammonium dihydrogen phosphate, or ammonium phosphate, or a silicate such as sodium silicate, potassium silicate, or lithium silicate. If it is an aqueous solution, the dissolving power of the oxide film is low, and the porosity can be reduced.

[シランカップリング剤]
微孔質陽極酸化皮膜3の表面に、アミノ系、エポキシ系、アクリル系等のシランカップリング剤を塗布することで、樹脂との密着性を向上させる。シランカップリング剤の塗布量は、好ましくは0.1mg/m以上、より好ましくは1mg/m以上とし、好ましくは30mg/m以下、より好ましくは8mg/m以下、とする。
[Silane coupling agent]
By applying an amino-based, epoxy-based, acrylic-based or other silane coupling agent to the surface of the microporous anodic oxide coating 3, the adhesion with the resin is improved. The coating amount of the silane coupling agent is preferably 0.1 mg / m 2 or more, more preferably 1 mg / m 2 or more, preferably 30 mg / m 2 or less, more preferably 8 mg / m 2 or less.

[熱伝導性接着層]
シランカップリング剤を塗布した微孔質陽極酸化皮膜3の表面に熱伝導性接着層4が設けられる。この熱伝導性接着層4は、エポキシ樹脂等の接着剤に無機系フィラーを50〜95質量%含有させたものである。無機系フィラーとしては、Al、MgO、BN、SiO、Si、AlN、カーボン等の熱伝導性を有する粉末を用いることができ、その中から一種又は二種以上を組み合わせて添加される。なかでも、Al(酸化アルミニウム)を添加したものは接着性が良く、好ましい。電気絶縁性にも優れている。添加量は、50〜95質量%が好ましく、50質量%未満では熱伝導性が不十分であり、95質量%を超えると、密着性が損なわれるおそれがある。より好ましくは60〜85質量%である。
この熱伝導性接着層4の厚さは、特に限定されるものではないが、30〜50μmとされる。
[Thermal conductive adhesive layer]
A heat conductive adhesive layer 4 is provided on the surface of the microporous anodic oxide film 3 coated with a silane coupling agent. This heat conductive adhesive layer 4 is made by containing 50 to 95% by mass of an inorganic filler in an adhesive such as an epoxy resin. As the inorganic filler, powders having thermal conductivity such as Al 2 O 3 , MgO, BN, SiO 2 , Si 3 N 4 , AlN, and carbon can be used, and one or a combination of two or more thereof can be used. Added. Among them, Al 2 O 3 is obtained by adding (aluminum oxide) good adhesion, preferred. Excellent electrical insulation. The addition amount is preferably 50 to 95% by mass, and if it is less than 50% by mass, the thermal conductivity is insufficient, and if it exceeds 95% by mass, the adhesion may be impaired. More preferably, it is 60-85 mass%.
Although the thickness of this heat conductive contact bonding layer 4 is not specifically limited, It shall be 30-50 micrometers.

[回路層]
熱伝導性接着層4の上には所定のパターンで回路層5が形成されている。この回路層5は、銅又は銅合金からなる箔を熱伝導性接着層4によりベース板2に貼り付けた後、所定のパターンにマスキングしてエッチング処理されるなどの方法で形成される。この回路層5の膜厚も特に限定されるものではなく、適宜の厚さに設定されるが、10〜100μmが適切である。
[Circuit layer]
A circuit layer 5 is formed on the heat conductive adhesive layer 4 in a predetermined pattern. The circuit layer 5 is formed by a method in which a foil made of copper or a copper alloy is attached to the base plate 2 by the heat conductive adhesive layer 4 and then masked into a predetermined pattern and etched. The film thickness of the circuit layer 5 is not particularly limited, and is set to an appropriate thickness, but 10 to 100 μm is appropriate.

以上により得られるプリント基板1は、ベース板2の微孔質陽極酸化皮膜3により、密着性が大幅に改善し、熱伝導性接着層4を介して接着された回路層5の剥離等の発生を防止することができる。
一般的な陽極酸化皮膜は、多孔質皮膜であるため、水分や電解質が数%から数十%と多く含まれており、接着層の乾燥工程やその後のリフロー炉での加熱時に、これら水分等が放出することにより、密着性を低下させる。また、クロメート処理では、その加熱により皮膜が変質して密着力が低下する。
これに対して、微孔質陽極酸化皮膜3は、水分を含まず、かつ、バリアー性が高いため、密着性の低下がなく、湿潤環境においても十分な耐久性を有している。
The printed circuit board 1 obtained as described above has a significantly improved adhesion due to the microporous anodic oxide film 3 of the base plate 2, and the occurrence of peeling or the like of the circuit layer 5 bonded via the heat conductive adhesive layer 4. Can be prevented.
Since a general anodized film is a porous film, it contains a large amount of moisture and electrolyte, such as several percent to several tens of percent. During the drying process of the adhesive layer and subsequent heating in a reflow furnace, these moisture and the like are contained. As a result of the release, adhesion is reduced. Further, in the chromate treatment, the film is denatured by the heating and the adhesion is reduced.
On the other hand, the microporous anodic oxide film 3 does not contain moisture and has a high barrier property, so that the adhesion is not lowered and has sufficient durability even in a wet environment.

例えば、湿潤環境に暴露し密着性の劣化をみる耐久試験で、通常の陽極酸化皮膜は劣化の進行が速く、剥離するのに対して、微孔質陽極酸化皮膜を用いると、耐久性は格段に向上する。理由は、通常の陽極酸化皮膜は多孔質膜であるため、腐食物質が皮膜からアルミニウム材に侵入して腐食が発生し易いためである。一方、微孔質陽極酸化皮膜は腐食物質の侵入が抑制される。   For example, in an endurance test in which the deterioration of adhesion is observed when exposed to a moist environment, the normal anodized film progresses rapidly and peels off, whereas the use of a microporous anodized film significantly improves the durability. To improve. The reason is that a normal anodic oxide film is a porous film, and therefore, corrosive substances easily enter the aluminum material from the film and corrosion is likely to occur. On the other hand, infiltration of corrosive substances is suppressed in the microporous anodic oxide film.

更に、微孔質陽極酸化皮膜は上記した耐食性に優れるため、膜厚を0.03〜2.0μmと薄くすることができ、2.0μmを超える通常の陽極酸化皮膜に対して放熱性も向上できる。
無機系フィラーは、前述した各種材料のうち、シリカ、カーボン、酸化アルミニウム(アルミナ)等が好適であるが、アルミナを用いた場合に接着性は特に優れている。
Furthermore, since the microporous anodic oxide film is excellent in the above-mentioned corrosion resistance, the film thickness can be made as thin as 0.03 to 2.0 μm, and the heat dissipation is also improved with respect to a normal anodic oxide film exceeding 2.0 μm. it can.
Of the various materials described above, silica, carbon, aluminum oxide (alumina), and the like are suitable as the inorganic filler, but adhesion is particularly excellent when alumina is used.

以下、実施例と比較例とにより本発明を具体的に説明する。
ベース板として、1.0mmまで圧延したAl−Mg系のJIS5052板を用いた。この素材を2%の界面活性剤を含む50℃の脱脂液に60秒間浸漬させた後、30秒間水洗した。次いで、10%NaOH水溶液で50℃で30秒間エッチングした後、30秒間水洗した。さらに引き続き、10%HNO溶液で30秒間洗浄した後、30秒間水洗した。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
As the base plate, an Al—Mg JIS 5052 plate rolled to 1.0 mm was used. This material was immersed in a 50 ° C. degreasing solution containing 2% of a surfactant for 60 seconds and then washed with water for 30 seconds. Next, the substrate was etched with a 10% NaOH aqueous solution at 50 ° C. for 30 seconds, and then washed with water for 30 seconds. Subsequently, the substrate was washed with a 10% HNO 3 solution for 30 seconds and then washed with water for 30 seconds.

次いで、硫酸を電解液として、上記アルミニウム合金を陽極にして電解処理を行った。電解液中の硫酸濃度は10〜20%、電解浴温度は15〜25℃、電解電圧は15〜25V、電流密度は1〜2A/dm2の範囲で適宜調整した。このようにしてアルミニウム合
金表面に表1に示す厚さの陽極酸化皮膜を形成した。また、下地処理を硫酸水溶液を電解液とした通常の陽極酸化処理により多孔質陽極酸化皮膜を形成したもの、及びリン酸クロメート処理としたものも作製した。
Next, electrolytic treatment was performed using sulfuric acid as an electrolytic solution and the aluminum alloy as an anode. The sulfuric acid concentration in the electrolytic solution was appropriately adjusted in the range of 10 to 20%, the electrolytic bath temperature was 15 to 25 ° C., the electrolytic voltage was 15 to 25 V, and the current density was 1 to 2 A / dm 2 . In this way, an anodized film having a thickness shown in Table 1 was formed on the aluminum alloy surface. Moreover, the thing which formed the porous anodic oxide film by the normal anodic oxidation process which used sulfuric acid aqueous solution as electrolyte solution, and the thing which carried out the phosphoric acid chromate process for the base treatment were also produced.

次いで、下地処理したベース板の表面に、シランカップリング剤を塗布した後、エポキシ樹脂に各種フィラーを添加した接着剤を介して銅箔を接着した。フィラーの種類及び添加量を表1に示す。()内の数値が添加量であり、質量%である。接着剤の厚さは40μm、銅箔の厚さは50μmとした。
このようにして得られたプリント基板(銅張り積層板)に対して、接着性、耐湿性、放熱性を評価した。
Next, a silane coupling agent was applied to the surface of the base plate subjected to the base treatment, and then a copper foil was bonded via an adhesive in which various fillers were added to an epoxy resin. Table 1 shows the type and amount of filler. The numerical value in () is the addition amount, which is mass%. The thickness of the adhesive was 40 μm, and the thickness of the copper foil was 50 μm.
The printed circuit board (copper-clad laminate) thus obtained was evaluated for adhesion, moisture resistance, and heat dissipation.

接着性評価:試料を180℃で15分間加熱した後に、JIS C6481「プリント配線板用銅張積層板試験方法」に準拠した引き剥がし試験により引き剥がし強さを測定した。引き剥がし強さが3.0kgf/cm(29.4N/cm)以上であったものを◎、2.5kgf/cm(24.5N/cm)以上3.0kgf/cm(29.4N/cm)未満であったものを○、2.5kgf/cm(24.5N/cm)未満であったものを×とした。   Adhesive evaluation: After the sample was heated at 180 ° C. for 15 minutes, the peel strength was measured by a peel test according to JIS C6481 “Test method for copper-clad laminate for printed wiring board”. Those having a peel strength of 3.0 kgf / cm (29.4 N / cm) or more, ◎, 2.5 kgf / cm (24.5 N / cm) or more, 3.0 kgf / cm (29.4 N / cm) What was less than (circle) and what was less than 2.5 kgf / cm (24.5 N / cm) was made into x.

湿潤性評価:試料を180℃で15分間加熱し、次いで、85℃で85%の湿潤環境に1000時間暴露した後に、JIS C6481「プリント配線板用銅張積層板試験方法」に準拠した引き剥がし試験により引き剥がし強さを測定した。引き剥がし強さが3.0kgf/cm(29.4N/cm)以上であったものを◎、2.5kgf/cm(24.5N/cm)以上3.0kgf/cm(29.4N/cm)未満であったものを○、2.5kgf/cm(24.5N/cm)未満であったものを×とした。   Wetability evaluation: The sample was heated at 180 ° C. for 15 minutes, then exposed to 85% wet environment at 85 ° C. for 1000 hours, and then peeled off in accordance with JIS C6481 “Testing method for copper-clad laminates for printed wiring boards” The peel strength was measured by the test. Those having a peel strength of 3.0 kgf / cm (29.4 N / cm) or more, ◎, 2.5 kgf / cm (24.5 N / cm) or more, 3.0 kgf / cm (29.4 N / cm) What was less than (circle) and what was less than 2.5 kgf / cm (24.5 N / cm) was made into x.

放熱性評価:20mm×20mmの正方形のプリント基板にLEDを実装し、30分間発光させた際の基板中心の温度を放射温度計で測定した。温度が50℃未満であったものを◎、50℃以上60℃未満であったものを○、60℃以上であったものを×とした。
これらの評価結果を表1に示す。総合評価は、接着性、耐湿性、放熱性のすべての評価が◎であったものを◎、接着性が◎で他の評価が○又は◎であったものを○、接着性が○で他の評価が○又は◎であったものを△、いずれかの評価が×であったものを×とした。
Evaluation of heat dissipation: LED was mounted on a square printed board of 20 mm × 20 mm, and the temperature at the center of the board when emitting light for 30 minutes was measured with a radiation thermometer. A sample having a temperature of less than 50 ° C. was evaluated as “◎”, a sample having a temperature of 50 ° C. or more and less than 60 ° C. was evaluated as “◯”, and a sample having a temperature of 60 ° C. or more was evaluated as “X”.
These evaluation results are shown in Table 1. Comprehensive evaluation: ◎ if all evaluations of adhesiveness, moisture resistance and heat dissipation were ◎, 接着 if adhesive was ◎ and other evaluation was 又 は or ◎, 他 if adhesiveness was 他The case where the evaluation was ○ or ◎ was Δ, and the case where any evaluation was × was ×.

Figure 2017048468
Figure 2017048468

この表1に示されるように、ベース板が微孔質陽極酸化処理され、有孔率5%を超え30%以下の微孔質陽極酸化皮膜の厚さが0.03〜2.0μmであり、この微孔質陽極酸化皮膜の上に、アルミナやシリカの無機系フィラーが50〜95質量%含有する熱伝導性接着層を介して銅箔が形成されたものは、総合評価が△〜◎とされ、接着性、耐湿性、放熱性に優れることがわかる。   As shown in Table 1, the base plate was microporous anodized and the thickness of the microporous anodized film having a porosity of more than 5% and not more than 30% was 0.03 to 2.0 μm. When the copper foil is formed on the microporous anodic oxide film via a heat conductive adhesive layer containing 50 to 95% by mass of an inorganic filler such as alumina or silica, the overall evaluation is Δ to ◎. It can be seen that it is excellent in adhesiveness, moisture resistance and heat dissipation.

なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
上記実施形態では、ベース板の全面に微孔質陽極酸化皮膜を形成して、銅箔を接着する例としたが、回路層が部分的に設けられる場合には、少なくとも回路層が設けられる部分に微孔質陽極酸化皮膜が形成されていればよい。
In addition, this invention is not limited to the said embodiment, A various change can be added in the range which does not deviate from the meaning of this invention.
In the above embodiment, the microporous anodic oxide film is formed on the entire surface of the base plate and the copper foil is adhered. However, when the circuit layer is partially provided, at least the part where the circuit layer is provided. A microporous anodic oxide film may be formed on the surface.

1 プリント基板
2 ベース板
3 微孔質陽極酸化皮膜
4 熱伝導性接着層
5 回路層
DESCRIPTION OF SYMBOLS 1 Printed circuit board 2 Base board 3 Microporous anodic oxide film 4 Thermal conductive adhesive layer 5 Circuit layer

Claims (2)

純アルミニウム又はアルミニウム合金からなるベース板の少なくとも一部の表面に、有孔率5%を超え30%以下の微孔質陽極酸化皮膜が0.03〜2.0μmの厚さに形成され、この微孔質陽極酸化皮膜の上に、無機系フィラーを50〜95質量%含有する熱伝導性接着層を介して銅又は銅合金からなる回路層が形成されてなるプリント基板の製造方法であって、
前記微孔質陽極酸化皮膜を、その膜厚が0.15μmまでは、硫酸、リン酸、クロム酸、シュウ酸の1種又は2種以上からなる電解液を用いた電解処理によって形成し、膜厚が0.15μm〜2.0μmまでは、リン酸塩もしくは珪酸塩の水溶液からなる電解液を用いた電解処理によって形成することを特徴とするプリント基板の製造方法。
A microporous anodic oxide film having a porosity of more than 5% and not more than 30% is formed on a surface of at least a part of a base plate made of pure aluminum or an aluminum alloy to a thickness of 0.03 to 2.0 μm. A method for producing a printed circuit board in which a circuit layer made of copper or a copper alloy is formed on a microporous anodic oxide film through a heat conductive adhesive layer containing 50 to 95% by mass of an inorganic filler. ,
The microporous anodic oxide film is formed by electrolytic treatment using an electrolytic solution composed of one or more of sulfuric acid, phosphoric acid, chromic acid, and oxalic acid until the film thickness reaches 0.15 μm. The method for producing a printed circuit board, wherein the thickness is 0.15 μm to 2.0 μm by electrolytic treatment using an electrolytic solution made of an aqueous solution of phosphate or silicate.
前記リン酸塩は、リン酸アンモニウム、リン酸水素アンモニウム、リン酸二水素アンモニウムから選択され、前記珪酸塩は、珪酸ナトリウム、珪酸カリウム、珪酸リチウムから選択されることを特徴とする請求項1記載のプリント基板の製造方法。   2. The phosphate according to claim 1, wherein the phosphate is selected from ammonium phosphate, ammonium hydrogen phosphate, and ammonium dihydrogen phosphate, and the silicate is selected from sodium silicate, potassium silicate, and lithium silicate. Manufacturing method for printed circuit boards.
JP2016234627A 2016-12-02 2016-12-02 Method for manufacturing printed circuit board Expired - Fee Related JP6250773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016234627A JP6250773B2 (en) 2016-12-02 2016-12-02 Method for manufacturing printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016234627A JP6250773B2 (en) 2016-12-02 2016-12-02 Method for manufacturing printed circuit board

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012127560A Division JP2013251515A (en) 2012-06-04 2012-06-04 Printed board

Publications (2)

Publication Number Publication Date
JP2017048468A true JP2017048468A (en) 2017-03-09
JP6250773B2 JP6250773B2 (en) 2017-12-20

Family

ID=58278937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016234627A Expired - Fee Related JP6250773B2 (en) 2016-12-02 2016-12-02 Method for manufacturing printed circuit board

Country Status (1)

Country Link
JP (1) JP6250773B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06334287A (en) * 1993-05-19 1994-12-02 Furukawa Electric Co Ltd:The Aluminum-based printed wiring board and manufacture thereof
JP2004131776A (en) * 2002-10-09 2004-04-30 Mitsubishi Alum Co Ltd Patch material for printed circuit board
JP2006100395A (en) * 2004-09-28 2006-04-13 Showa Denko Kk Aluminum substrate for printed circuits and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06334287A (en) * 1993-05-19 1994-12-02 Furukawa Electric Co Ltd:The Aluminum-based printed wiring board and manufacture thereof
JP2004131776A (en) * 2002-10-09 2004-04-30 Mitsubishi Alum Co Ltd Patch material for printed circuit board
JP2006100395A (en) * 2004-09-28 2006-04-13 Showa Denko Kk Aluminum substrate for printed circuits and its manufacturing method

Also Published As

Publication number Publication date
JP6250773B2 (en) 2017-12-20

Similar Documents

Publication Publication Date Title
JP5275701B2 (en) Aluminum material for printed wiring board and method for producing the same
US20100307800A1 (en) Anodised Aluminum, Dielectric, and Method
JP5252494B2 (en) Resin-coated aluminum material and electrolytic capacitor case using the same
JP5145092B2 (en) Aluminum material for printed wiring board and method for producing the same
TWI598005B (en) Thick copper layer and method for manufacturing the same
JP2013076118A (en) Electrical insulating cast article and manufacturing method thereof
JP2013251515A (en) Printed board
JP6250773B2 (en) Method for manufacturing printed circuit board
CN101298674B (en) Manufacturing method of insulation heat-conducting metal substrate
JP2008159647A (en) Manufacturing method of heat dissipation substrate for electric circuit
JP2630858B2 (en) Manufacturing method of printed wiring board
JP2008147208A (en) Manufacturing method of heat dissipation substrate for electric circuit
JP5912575B2 (en) Method for producing surface-treated aluminum plate with excellent workability
JP2012124389A (en) Printed circuit board
CN101298675B (en) Manufacturing method of insulation heat-conducting metal substrate
JP2008159827A (en) Heat dissipation substrate for electric circuit and its manufacturing method
JP2009123980A (en) Aluminum-based heat dissipation substrate for electric circuit and method for manufacturing the same
JP2008153556A (en) Manufacturing method of heatsink substrate for electric circuit
JP4757459B2 (en) Heat resistant aluminum material
CN103429009A (en) Manufacture method of printed circuit board comprising metal aluminium layer
JP4593331B2 (en) Multilayer circuit board and manufacturing method thereof
JP2006024906A (en) Aluminum substrate for printed circuit and manufacturing method of the substrate, and printed circuit board and manufacturing method of the board
JP2005008955A (en) Surface treatment method for copper foil
JP3980459B2 (en) Base material for printed circuit boards
JP2006100395A (en) Aluminum substrate for printed circuits and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171122

R150 Certificate of patent or registration of utility model

Ref document number: 6250773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees