[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2017044875A - 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物 - Google Patents

感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物 Download PDF

Info

Publication number
JP2017044875A
JP2017044875A JP2015167291A JP2015167291A JP2017044875A JP 2017044875 A JP2017044875 A JP 2017044875A JP 2015167291 A JP2015167291 A JP 2015167291A JP 2015167291 A JP2015167291 A JP 2015167291A JP 2017044875 A JP2017044875 A JP 2017044875A
Authority
JP
Japan
Prior art keywords
group
structural unit
preferable
polymer
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015167291A
Other languages
English (en)
Other versions
JP6555011B2 (ja
Inventor
克聡 錦織
Katsutoshi Nishigori
克聡 錦織
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2015167291A priority Critical patent/JP6555011B2/ja
Publication of JP2017044875A publication Critical patent/JP2017044875A/ja
Application granted granted Critical
Publication of JP6555011B2 publication Critical patent/JP6555011B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Materials For Photolithography (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

【課題】PEB温度依存性に優れる感放射線性樹脂組成物の提供。【解決手段】下記式(1)で表される基を含む第1構造単位を有する重合体、感放射線性酸発生体、及び溶媒を含有する感放射線性樹脂組成物。下記式(1)中、R1は、置換又は非置換の炭素数1〜20の3価の炭化水素基である。*は、上記第1構造単位における下記式(1)で表される基以外の部分と結合する部位を示す。【選択図】なし

Description

本発明は、感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物に関する。
半導体デバイス、液晶デバイス等の各種電子デバイス構造の微細化に伴って、リソグラフィー工程におけるレジストパターンのさらなる微細化が要求されており、そのため、種々の感放射線性樹脂組成物が検討されている。このような感放射線性樹脂組成物は、ArFエキシマレーザー等の遠紫外線、極端紫外線(EUV)、電子線などの露光光の照射により、露光部に酸を生成させ、この酸の触媒作用により露光部と未露光部の現像液に対する溶解速度に差を生じさせ、基板上にレジストパターンを形成させる。
かかる感放射線性樹脂組成物には、解像性等の種々のリソグラフィー性能に優れ、高精度なパターンを高い歩留りで得られることが求められている。特に、露光後加熱(ポストエクスポージャーベーク(PEB))の温度によるレジストパターンのサイズの変動が小さいこと、すなわち、PEB温度依存性に優れることが要求される。このような要求に対しては、感放射線性樹脂組成物に含有される重合体の構造が種々検討されている(特開平11−212265号公報、特開2003−5375号公報及び特開2008−83370号公報参照)。
しかし、上記従来の感放射線性樹脂組成物では、このような要求を満足させることはできていない。
特開平11−212265号公報 特開2003−5375号公報 特開2008−83370号公報
本発明は以上のような事情に基づいてなされたものであり、その目的は、PEB温度依存性に優れる感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物を提供することにある。
上記課題を解決するためになされた発明は、下記式(1)で表される基(以下、「基(1)」ともいう)を含む第1構造単位(以下、「構造単位(I)」ともいう)を有する重合体(以下、「[A]重合体」ともいう)、感放射線性酸発生体(以下、「[B]酸発生体」ともいう)、及び溶媒(以下、「[C]溶媒」ともいう)を含有する感放射線性樹脂組成物である。
Figure 2017044875
(式(1)中、Rは、置換又は非置換の炭素数1〜20の3価の炭化水素基である。*は、上記第1構造単位における上記式(1)で表される基以外の部分と結合する部位を示す。)
上記課題を解決するためになされた別の発明は、レジスト膜を形成する工程、上記レジスト膜を露光する工程、及び上記露光されたレジスト膜を現像する工程を備え、上記レジスト膜を当該感放射線性樹脂組成物により形成するレジストパターン形成方法である。
上記課題を解決するためになされたさらに別の発明は、下記式(2)で表される構造単位を有する重合体である。
Figure 2017044875
(式(2)中、Rは、水素原子、フッ素原子又は炭素数1〜20の1価の有機基である。Lは、単結合又は炭素数1〜20の2価の有機基である。Rは、上記式(1)と同義である。)
上記課題を解決するためになされたさらに別の発明は、下記式(3)で表される化合物である。
Figure 2017044875
(式(3)中、Rは、水素原子、フッ素原子又は炭素数1〜20の1価の有機基である。Lは、単結合又は炭素数1〜20の2価の有機基である。Rは、置換又は非置換の炭素数1〜20の3価の炭化水素基である。)
ここで、「炭化水素基」とは、鎖状炭化水素基、脂環式炭化水素基又は芳香族炭化水素基を含む基をいう。この「炭化水素基」は、飽和炭化水素基でも不飽和炭化水素基でもよい。「鎖状炭化水素基」とは、環状構造を含まず、鎖状構造のみで構成された炭化水素基をいい、直鎖状炭化水素基及び分岐状炭化水素基の両方を含む。「脂環式炭化水素基」とは、環構造としては脂環構造のみを含み、芳香環構造を含まない炭化水素基をいい、単環の脂環式炭化水素基及び多環の脂環式炭化水素基の両方を含む。但し、脂環構造のみで構成されている必要はなく、その一部に鎖状構造を含んでいてもよい。「芳香族炭化水素基」とは、環構造として芳香環構造を含む炭化水素基をいう。但し、芳香環構造のみで構成されている必要はなく、その一部に鎖状構造や脂環構造を含んでいてもよい。「有機基」とは、少なくとも1個の炭素原子を含む基をいう。
本発明の感放射線性樹脂組成物及びレジストパターン形成方法によれば、優れたPEB温度依存性を発揮してレジストパターンを形成することができる。本発明の重合体は、当該感放射線性樹脂組成物の重合体成分として好適に用いることができる。本発明の化合物は、当該重合体の単量体として好適に用いることができる。従って、これらは、今後さらに微細化が進行すると予想される半導体デバイス製造用に好適に用いることができる。
<感放射線性樹脂組成物>
当該感放射線性樹脂組成物は、[A]重合体、[B]酸発生体及び[C]溶媒を含有する。当該感放射線性樹脂組成物は、好適成分として、[D]酸拡散制御体、[A]重合体以外のフッ素原子含有重合体(以下、「[E]重合体」ともいう)及び/又は[F]偏在化促進剤を含有してもよく、本発明の効果を損なわない範囲において、その他の任意成分を含有していてもよい。当該感放射線性樹脂組成物は、上記成分をそれぞれ1種又は2種以上含有していてもよい。以下、各成分について説明する。
<[A]重合体>
[A]重合体は、構造単位(I)を有する。当該感放射線性樹脂組成物は、[A]重合体が構造単位(I)を有することで、PEB温度依存性に優れる。当該感放射線性樹脂組成物が上記構成を有することで、上記効果を奏する理由については必ずしも明確ではないが、例えば以下のように推察することができる。すなわち、[A]重合体の構造単位(I)に含まれる−O−C(S)−O−は、酸素原子に比べて塩基性に優れる硫黄原子を有するため、−O−C(O)−O−を有する構造単位と比べて塩基性に優れる。そのため、[A]重合体は、適度な極性を有することにより、より酸の拡散を抑えると考えられる。その結果、当該感放射線性樹脂組成物はPEB温度依存性に優れると考えられる。
[A]重合体は、酸解離性基を含む第2構造単位(以下、「構造単位(II)」ともいう)、ラクトン構造、環状カーボネート構造、スルトン構造若しくはこれらの組み合わせを含む構造単位(以下、「構造単位(III)」ともいう)及び/又はヒドロキシ基を含む構造単位(以下、「構造単位(IV)」ともいう)を有することが好ましく、構造単位(I)〜(IV)以外のその他の構造単位を有していてもよい。[A]重合体は、上記構造単位をそれぞれ1種又は2種以上有していてもよい。以下、各構造単位について説明する。
[構造単位(I)]
構造単位(I)は、基(1)を含む構造単位である。基(1)は、下記式(1)で表される。
Figure 2017044875
上記式(1)中、Rは、置換又は非置換の炭素数1〜20の3価の炭化水素基である。*は、上記第1構造単位における上記式(1)で表される基以外の部分と結合する部位を示す。
で表される炭素数1〜20の3価の炭化水素基としては、例えば炭素数1〜20の3価の鎖状炭化水素基、炭素数3〜20の3価の脂環式炭化水素基、炭素数6〜20の3価の芳香族炭化水素基等が挙げられる。
炭素数1〜20の3価の鎖状炭化水素基としては、例えば
メタントリイル基、エタントリイル基、n−プロパントリイル基、i−プロパントリイル基等のアルカントリイル基;
エテントリイル基、プロペントリイル基、ブテントリイル基等のアルケントリイル基;
プロピントリイル基、ブチントリイル基等のアルキントリイル基などが挙げられる。
炭素数3〜20の3価の脂環式炭化水素基としては、例えば
シクロペンタントリイル基、シクロヘキサントリイル基等の単環のシクロアルカントリイル基;
シクロペンテントリイル基、シクロヘキセントリイル基等の単環のシクロアルケントリイル基;
ノルボルナントリイル基、アダマンタントリイル基、トリシクロデカントリイル基等の多環のシクロアルカントリイル基;
ノルボルネントリイル基、トリシクロデセントリイル基等の多環のシクロアルケントリイル基などが挙げられる。
炭素数6〜20の3価の芳香族炭化水素基としては、例えば
ベンゼントリイル基、トルエントリイル基、ナフタレントリイル基等のアレーントリイル基;
ベンゼントリイルベンゼントリイルメタントリイル基、ナフタレントリイルナフタレントリイルメタントリイル基等のアレーントリイルアレーントリイルアルカントリイル基;
ベンゼントリイルメタントリイルメタントリイル基、ナフタレントリイルメタントリイルメタントリイル基等のアレーントリイルアルカントリイルアルカントリイル基等が挙げられる。
上記Rが有する置換基としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、アルコキシ基、シクロアルキルオキシ基、アシル基、アシロキシ基、ヒドロキシ基、カルボニル基、シアノ基、アミノ基、スルファニル基、これらのうちの
2つ以上を組み合わせた基などが挙げられる。
の炭化水素基としては、PEB温度依存性をより向上させる観点から、鎖状炭化水素基及び脂環式炭化水素基が好ましく、アルカントリイル基及びシクロアルカントリイル基がより好ましく、エタントリイル基、プロパントリイル基、ブタントリイル基、ペンタントリイル基、ヘプタントリイル基、シクロペンタントリイル基及びシクロヘキサントリイル基がさらに好ましい。
の炭化水素基が有する置換基としては、PEB温度依存性をより向上させる観点から、ヒドロキシ基、シアノ基、アルキルオキシ基、アルコキシカルボニル基及びシクロアルキルオキシ基が好ましい。
基(1)としては、例えば下記式(a1)〜(a18)で表される基(以下、「基(a1)〜(a18)」ともいう)等が挙げられる。
Figure 2017044875
上記式(a1)〜(a18)中、*は、構造単位(I)における基(1)以外の部分に結合する部位を示す。
これらの中で、基(a1)〜(a14)が好ましい。
構造単位(I)としては、例えば下記式(2)で表される構造単位(以下、「構造単位(I−1)」ともいう)等が挙げられる。
Figure 2017044875
上記式(2)中、Rは、水素原子、フッ素原子又は炭素数1〜20の1価の有機基である。Lは、単結合又は炭素数1〜20の2価の有機基である。Rは、上記式(1)と同義である。
で表される炭素数1〜20の1価の有機基としては、例えば炭素数1〜20の1価の炭化水素基、この炭化水素基の炭素−炭素間又は結合手側の末端に2価のヘテロ原子含有基を含む基(β)、上記炭化水素基及び基(β)が有する水素原子の一部又は全部を1価のヘテロ原子含有基で置換した基等が挙げられる。
炭素数1〜20の1価の炭化水素基としては、炭素数1〜20の1価の鎖状炭化水素基、炭素数3〜20の1価の脂環式炭化水素基、炭素数6〜20の1価の芳香族炭化水素基等が挙げられる。
炭素数1〜20の1価の鎖状炭化水素基としては、例えば
メチル基、エチル基、n−プロピル基、i−プロピル基等のアルキル基;
エテニル基、プロペニル基、ブテニル基等のアルケニル基;
エチニル基、プロピニル基、ブチニル基等のアルキニル基などが挙げられる。
炭素数3〜20の1価の脂環式炭化水素基としては、例えば
シクロペンチル基、シクロヘキシル基等の単環のシクロアルキル基;
シクロペンテニル基、シクロヘキセニル基等の単環のシクロアルケニル基;
ノルボルニル基、アダマンチル基、トリシクロデシル基等の多環のシクロアルキル基;
ノルボルネニル基、トリシクロデセニル基等の多環のシクロアルケニル基などが挙げられる。
炭素数6〜20の1価の芳香族炭化水素基としては、例えば
フェニル基、トリル基、キシリル基、ナフチル基、アントリル基等のアリール基;
ベンジル基、フェネチル基、ナフチルメチル基、アントリルメチル基等のアラルキル基などが挙げられる。
1価及び2価のヘテロ原子含有基を構成するヘテロ原子としては、例えば酸素原子、窒素原子、硫黄原子、リン原子、ケイ素原子、ハロゲン原子等が挙げられる。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
2価のヘテロ原子含有基としては、例えば−O−、−CO−、−S−、−CS−、−NR’−、これらのうちの2つ以上を組み合わせた基等が挙げられる。R’は、水素原子又は1価の有機基である。
1価のヘテロ原子含有基としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシ基、カルボキシ基、シアノ基、アミノ基、スルファニル基(−SH)等が挙げられる。
としては、構造単位(I)を与える単量体の共重合性の観点から、水素原子、鎖状炭化水素基及び鎖状炭化水素基の炭素−炭素間に−O−を含む基が好ましく、鎖状炭化水素基及び鎖状炭化水素基の炭素−炭素間に−O−を含む基がより好ましく、アルキル基及びアルキルオキシアルキル基がさらに好ましく、メチル基及びメチルオキシメチル基が特に好ましい。
Lで表される炭素数1〜20の2価の有機基としては、例えば上記Rの1価の有機基として例示したものから1個の水素原子を除いた基等が挙げられる。
Lとしては、鎖状炭化水素基、鎖状炭化水素基の結合手側の末端に−O−を含む基、鎖状炭化水素基の結合手側の末端に−CO−を含む基、鎖状炭化水素基の結合手側の末端に−CO−O−を含む基が好ましく、アルカンジイル基、オキシアルカンジイル基、カルボニルアルカンジイル基及びアルキルオキシカルボニルアルカンジイル基がより好ましく、メタンジイル基、n−プロパンジイル基、i−プロパンジイル基、ブタンジル基、オキシエタンジイル基、カルボニルメタンジイル基及びメタンジイルオキシカルボニルメタンジイル基がさらに好ましい。
構造単位(I−1)としては、例えば下記式(I−1−1)〜(I−1−30)で表される化合物(以下、「化合物(I−1−1)〜(I−1−30)」ともいう)等が挙げられる。
Figure 2017044875
Figure 2017044875
構造単位(I−1)としては、これらの中で、構造単位(I−1−1)〜(I−1−21)が好ましい。
構造単位(I)の含有割合の下限としては、[A]重合体を構成する全構造単位に対して、1モル%が好ましく、2モル%がより好ましく、3モル%がさらに好ましく、7モル%が特に好ましい。構造単位(I)の含有割合の上限としては、80モル%が好ましく、50モル%がより好ましく、30モル%がさらに好ましく、20モル%が特に好ましい。上記含有割合を上記範囲とすることで、PEB温度依存性をより向上させることができる。
構造単位(I)を与える化合物(以下、「化合物(i)」ともいう)は、基(1)を含む。
化合物(i)としては、例えば下記式(3)で表される化合物(以下、「化合物(i−1)」ともいう)等が挙げられる。
Figure 2017044875
上記式(3)中、Rは、水素原子、フッ素原子又は炭素数1〜20の1価の有機基である。Lは、単結合又は炭素数1〜20の2価の有機基である。Rは、置換又は非置換の炭素数1〜20の3価の炭化水素基である。
化合物(i)の合成スキームとしては、例えば化合物(i)が下記式(i’−1)で表される化合物(以下、「化合物(i’−1)」ともいう)の場合、以下が挙げられる。
Figure 2017044875
上記スキーム中、R及びLは、上記式(3)と同義である。
上記式(i−1−a)で表されるジオール化合物と、上記式(i−1−b)で表されるチオホスゲンとを、ジメチルアミノピリジン等の塩基の存在下、テトラヒドロフラン(THF)等の溶媒中で反応させることにより、化合物(i’−1)を合成し、カラムクロマトグラフィー、再結晶、蒸留等により適切に精製することにより、化合物(i’−1)を単離することができる。
上記合成方法によれば化合物(i’−1)を簡便かつ収率よく製造することができる。
化合物(i’−1)以外の化合物(i)についても、上記同様の方法により合成することができる。
[構造単位(II)]
構造単位(II)は、酸解離性基を含む構造単位である。「酸解離性基」とは、ヒドロキシ基、カルボキシ基等の水素原子を置換する基であって、酸の作用により解離する基をいう。[A]重合体が構造単位(II)を有することで、露光部と未露光部との溶解コントラストを適度なものに調整することができ、その結果、当該感放射線性樹脂組成物のリソグラフィー性能を向上させることができる。
構造単位(II)としては、例えば下記式(a−1)で表される構造単位(以下、「構造単位(II−1)」ともいう)、下記式(a−2)で表される構造単位(以下、「構造単位(II−2)」ともいう)等が挙げられる。
Figure 2017044875
上記式(a−1)中、RA1は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。RA2は、炭素数1〜20の1価の炭化水素基である。RA3及びRA4は、それぞれ独立して炭素数1〜20の1価の炭化水素基であるか、又はこれらの基が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3〜20の脂環構造を表す。
上式(a−2)中、RA5は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。RA6は、水素原子又は炭素数1〜20の1価の炭化水素基である。RA7及びRA8は、それぞれ独立して、炭素数1〜20の1価の炭化水素基又は炭素数1〜20の1価のオキシ炭化水素基である。Lは、単結合、−O−、−COO−又は−CONH−である。
ここで、「環員数」とは、脂環構造及び脂肪族複素環構造の環を構成する原子数をいい、多環の脂環構造及び多環の脂肪族複素環構造の場合は、この多環を構成する原子数をいう。
上記RA1としては、構造単位(II)を与える単量体の共重合性の観点から、水素原子及びメチル基が好ましく、メチル基がより好ましい。
上記RA2、RA3、RA4、RA6、RA7及びRA8で表される炭素数1〜20の1価の炭化水素基としては、例えば上記式(2)のRの炭化水素基として例示した基と同様の基等が挙げられる。
上記これらの基が互いに合わせられこれらが結合する炭素原子と共に構成される炭素数3〜20の脂環構造としては、例えば
シクロプロパン構造、シクロブタン構造、シクロペンタン構造、シクロヘキサン構造、シクロヘプタン構造、シクロオクタン構造等の単環のシクロアルカン構造;
ノルボルナン構造、アダマンタン構造、トリシクロデカン構造、テトラシクロドデカン構造等の多環のシクロアルカン構造などが挙げられる。
上記RA2としては、鎖状炭化水素基及び脂環式炭化水素基が好ましく、アルキル基及びシクロアルキル基がより好ましく、メチル基、エチル基、プロピル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基及びアダマンチル基がさらに好ましい。
上記RA3及びRA4としては、アルキル基、上記これらの基が互いに合わせられ単環のシクロアルカン構造を形成した基、上記これらの基が互いに合わせられノルボルナン構造を形成した基及び上記これらの基が互いに合わせられアダマンタン構造を形成した基が好ましく、メチル基、エチル基、シクロペンタン構造、上記これらの基が互いに合わせられシクロヘキサン構造を形成した基及び上記これらの基が互いに合わせられアダマンタン構造を形成した基がより好ましい。
上記RA5としては、構造単位(II)を与える単量体の共重合性の観点から水素原子及びメチル基が好ましく、水素原子がより好ましい。
A6としては、鎖状炭化水素基が好ましい。
上記RA7及びRA8で表される炭素数1〜20の1価のオキシ炭化水素基としては、例えば上記式(2)のRの炭化水素基として例示したものの炭素−炭素間又は結合手側の末端に酸素原子を含むもの等が挙げられる。
A7及びRA8としては、鎖状炭化水素基及び酸素原子を含む脂環式炭化水素基が好ましい。
上記Lとしては、単結合及び−COO−が好ましく、単結合がより好ましい。
構造単位(II−1)としては、例えば下記式(a−1−a)〜(a−1−d)で表される構造単位(以下、「構造単位(II−1−a)〜(II−1−d)」ともいう)等が挙げられる。
構造単位(II−2)としては、例えば下記式(a−2−a)で表される構造単位(以下、「(II−2−a)」ともいう)等が挙げられる。
Figure 2017044875
上記式(a−1−a)〜(a−1−d)中、RA1〜RA4は、上記式(a−1)と同義である。nは、1〜4の整数である。上記式(a−2−a)中、RA5〜RA8は、上記式(a−2)と同義である。
としては、1、2及び4が好ましく、1がより好ましい。
構造単位(II−1−a)〜(II−1−d)としては、例えば下記式で表される構造単位等が挙げられる。
Figure 2017044875
Figure 2017044875
上記式中、RA1は上記式(a−1)と同義である。
構造単位(II−2−a)としては、例えば下記式で表される構造単位などが挙げられる。
Figure 2017044875
上記式中、RA5は上記式(a−2)と同義である。
構造単位(II)としては、構造単位(II−1)が好ましく、構造単位(II−1−a)、(II−1−b)及び(II−1−d)がより好ましく、1−アルキル−1−シクロアルキル(メタ)アクリレートに由来する構造単位、2−シクロアルカン−1−イル)アルカン−2−イル(メタ)アクリレートに由来する構造単位及び2−アルキル−2−アダマンチル(メタ)アクリレートに由来する構造単位がさらに好ましい。
[A]重合体が構造単位(II)を有する場合、構造単位(II)の含有割合の下限としては、[A]重合体を構成する全構造単位に対して10モル%が好ましく、15モル%がより好ましく、20モル%がさらに好ましい。上記含有割合の上限としては、80モル%が好ましく、70モル%がより好ましく、60モル%がさらに好ましい。上記含有割合を上記範囲とすることで、露光部と未露光部との溶解コントラストを適度なものに調整することができ、その結果、当該感放射線性樹脂組成物のリソグラフィー性能を向上させることができる。
[構造単位(III)]
構造単位(III)は、ラクトン構造、環状カーボネート構造、スルトン構造又はこれらの組み合わせを含む構造単位である。[A]重合体は、構造単位(III)をさらに有することで、現像液への溶解性を適度なものに調整することができ、その結果、当該感放射線性樹脂組成物のリソグラフィー性能を向上させることができる。また、形成されるレジストパターンと基板との密着性を向上させることができる。
構造単位(III)としては、例えば下記式で表される構造単位等が挙げられる。
Figure 2017044875
Figure 2017044875
Figure 2017044875
上記式中、RL1は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
構造単位(III)としては、これらの中で、γ−ブチロラクトン構造を含む構造単位、ノルボルナンラクトン構造を含む構造単位、オキサノルボルナンラクトン構造を含む構造単位及びノルボルナンスルトン構造を含む構造単位が好ましく、γ−ブチロラクトン−イル(メタ)アクリレートに由来する構造単位、ノルボルナンラクトン−イル(メタ)アクリレートに由来する構造単位、シアノ置換ノルボルナンラクトン−イル(メタ)アクリレートに由来する構造単位、オキサノルボルナンラクトン−イル(メタ)アクリレートに由来する構造単位及びノルボルナンスルトン−イル(メタ)アクリレートに由来する構造単位がより好ましい。
[A]重合体が構造単位(III)を有する場合、構造単位(III)の含有割合の下限としては、[A]重合体を構成する全構造単位に対して、10モル%が好ましく、15モル%がより好ましく、20モル%がさらに好ましい。上記含有割合の上限としては、70モル%が好ましく、60モル%がより好ましく、55モル%がさらに好ましい。上記含有割合を上記範囲とすることで、リソグラフィー性能をより向上させることができる。また、形成されるレジストパターンの基板への密着性をより向上させることができる。
[構造単位(IV)]
構造単位(IV)は、ヒドロキシ基を含む構造単位である。[A]重合体は、構造単位(IV)を有することで、現像液への溶解性をより適度に調整することができ、その結果、リソグラフィー性能を向上させることができる。また、形成されるレジストパターンと基板との密着性を向上させることができる。
ヒドロキシ基としては、アルコール性ヒドロキシ基、フェノール性ヒドロキシ基等が挙げられる。
構造単位(IV)としては、例えば下記式で表される構造単位等が挙げられる。
Figure 2017044875
上記式中、RAHは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
これらの中で、ヒドロキシアダマンチル基を有する構造単位が好ましく、3−ヒドロキシアダマンチル(メタ)アクリレートに由来する構造単位がより好ましい。
[A]重合体が構造単位(IV)を有する場合、構造単位(IV)の含有割合の下限としては、[A]重合体を構成する全構造単位に対して3モル%が好ましく、5モル%がより好ましい。上記含有割合の上限としては、35モル%が好ましく、30モル%が好ましく、25モル%がさらに好ましい。
[その他の構造単位]
[A]重合体は、上記構造単位(I)〜(IV)以外のその他の構造単位を有していてもよい。上記その他の構造単位としては、例えばカルボキシ基、シアノ基、ニトロ基、スルホンアミド基等を有する構造単位などが挙げられる。[A]重合体がその他の構造単位を有する場合、その他の構造単位の含有割合の上限としては、[A]重合体を構成する全構造単位に対して60モル%が好ましく、50モル%がより好ましい。
[A]重合体の含有量の下限としては、当該感放射線性樹脂組成物の全固形分(溶媒以外の成分の総和)に対して、70質量%が好ましく、80質量%がより好ましく、85質量%がさらに好ましい。
<[A]重合体の合成方法>
[A]重合体は、例えば各構造単位を与える単量体を、ラジカル重合開始剤等を用い、適当な溶媒中で重合することにより合成できる。
ラジカル重合開始剤としては、例えば
アゾビスイソブチロニトリル(AIBN)、2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2−シクロプロピルプロピオニトリル)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、ジメチル2,2’−アゾビスイソブチレート等のアゾ系ラジカル開始剤;
ベンゾイルパーオキサイド、t−ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等の過酸化物系ラジカル開始剤などが挙げられる。これらの中で、AIBN及びジメチル2,2’−アゾビスイソブチレートが好ましく、AIBNがより好ましい。これらのラジカル重合開始剤は1種単独で又は2種以上を混合して用いることができる。
重合に使用される溶媒としては、例えば
n−ペンタン、n−ヘキサン、n−ヘプタン、n−オクタン、n−ノナン、n−デカン等のアルカン類;
シクロヘキサン、シクロヘプタン、シクロオクタン、デカリン、ノルボルナン等のシクロアルカン類;
ベンゼン、トルエン、キシレン、エチルベンゼン、クメン等の芳香族炭化水素類;
クロロブタン類、ブロモヘキサン類、ジクロロエタン類、ヘキサメチレンジブロミド、クロロベンゼン等のハロゲン化炭化水素類;
酢酸エチル、酢酸n−ブチル、酢酸i−ブチル、プロピオン酸メチル等の飽和カルボン酸エステル類;
アセトン、ブタノン、4−メチル−2−ペンタノン、2−ヘプタノン等のケトン類;
テトラヒドロフラン、ジメトキシエタン類、ジエトキシエタン類等のエーテル類;
メタノール、エタノール、1−プロパノール、2−プロパノール、4−メチル−2−ペンタノール等のアルコール類などが挙げられる。これらの重合に使用される溶媒は、1種単独で又は2種以上を併用してもよい。
重合における反応温度の下限としては、40℃が好ましく、50℃がより好ましい。上記反応温度の上限としては、150℃が好ましく、120℃がより好ましい。重合における反応時間の下限としては、1時間が好ましく、2時間がより好ましい。上記反応時間の上限としては、48時間が好ましく、24時間がより好ましい。
[A]重合体のゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算重量平均分子量(Mw)の下限としては、1,000が好ましく、2,000がより好ましく、3,000がさらに好ましく、5,000が特に好ましい。上記Mwの上限としては、50,000が好ましく、30,000がより好ましく、20,000がさらに好ましく、15,000が特に好ましい。[A]重合体のMwを上記範囲とすることで、当該感放射線性樹脂組成物の塗布性を向上させることができる。
[A]重合体のGPCによるポリスチレン換算数平均分子量(Mn)に対するMwの比(Mw/Mn)の上限としては、5が好ましく、3がより好ましく、2がさらに好ましく、1.7が特に好ましい。上記比の下限としては、通常1であり、1.1が好ましい。
本明細書における重合体のMw及びMnは、以下の条件によるゲルパーミエーションクロマトグラフィー(GPC)を用いて測定される値である。
GPCカラム:例えば東ソー社の「G2000HXL」2本、「G3000HXL」1本及び「G4000HXL」1本
カラム温度:40℃
溶出溶媒:テトラヒドロフラン
流速:1.0mL/分
試料濃度:1.0質量%
試料注入量:100μL
検出器:示差屈折計
標準物質:単分散ポリスチレン
<[B]酸発生体>
[B]酸発生体は、露光により酸を発生する物質である。この発生した酸により[A]重合体等が有する酸解離性基が解離してカルボキシ基、ヒドロキシ基等が生じ、[A]重合体の現像液への溶解性が変化するため、当該感放射線性樹脂組成物からレジストパターンを形成することができる。当該感放射線性樹脂組成物における[B]酸発生体の含有形態としては、後述するような低分子化合物の形態(以下、適宜「[B]酸発生剤」ともいう)でも、重合体の一部として組み込まれた酸発生基の形態でも、これらの両方の形態でもよい。
[B]酸発生剤としては、例えばオニウム塩化合物、N−スルホニルオキシイミド化合物、スルホンイミド化合物、ハロゲン含有化合物、ジアゾケトン化合物等が挙げられる。
オニウム塩化合物としては、例えばスルホニウム塩、テトラヒドロチオフェニウム塩、ヨードニウム塩、ホスホニウム塩、ジアゾニウム塩、ピリジニウム塩等が挙げられる。
[B]酸発生剤の具体例としては、例えば特開2009−134088号公報の段落[0080]〜[0113]に記載されている化合物等が挙げられる。
[B]酸発生剤としては、下記式(b)で表される酸発生剤が好ましい。[B]酸発生剤が下記構造を有することで、[A]重合体の構造単位(I)又は構造単位(II)との相互作用等により、露光により発生する酸のレジスト膜中の拡散長がより適度に短くなると考えられ、その結果、当該感放射線性樹脂組成物のリソグラフィー性能をより向上させることができる。
Figure 2017044875
上記式(b)中、Rp1は、環員数6以上の環構造を含む1価の基である。Rp2は、2価の連結基である。Rp3及びRp4は、それぞれ独立して、水素原子、フッ素原子、炭素数1〜20の1価の炭化水素基又は炭素数1〜20の1価のフッ素化炭化水素基である。Rp5及びRp6は、それぞれ独立して、フッ素原子又は炭素数1〜20の1価のフッ素化炭化水素基である。np1は、0〜10の整数である。np2は、0〜10の整数である。np3は、1〜10の整数である。np1が2以上の場合、複数のRp2は同一でも異なっていてもよい。np2が2以上の場合、複数のRp3は同一でも異なっていてもよく、複数のRp4は同一でも異なっていてもよい。np3が2以上の場合、複数のRp5は同一でも異なっていてもよく、複数のRp6は同一でも異なっていてもよい。Xは、1価の感放射線性オニウムカチオンである。
p1で表される環員数6以上の環構造を含む1価の基としては、例えば環員数6以上の脂環構造を含む1価の基、環員数6以上の脂肪族複素環構造を含む1価の基、環員数6以上の芳香環構造を含む1価の基、環員数6以上の芳香族複素環構造を含む1価の基等が挙げられる。
上記環員数6以上の脂環構造としては、例えば
シクロヘキサン構造、シクロヘプタン構造、シクロオクタン構造、シクロノナン構造、シクロデカン構造、シクロドデカン構造等の単環のシクロアルカン構造;
シクロヘキセン構造、シクロヘプテン構造、シクロオクテン構造、シクロデセン構造等の単環のシクロアルケン構造;
ノルボルナン構造、アダマンタン構造、トリシクロデカン構造、テトラシクロドデカン構造等の多環のシクロアルカン構造;
ノルボルネン構造、トリシクロデセン構造等の多環のシクロアルケン構造などが挙げられる。
上記環員数6以上の脂肪族複素環構造としては、例えば
ヘキサノラクトン構造、ノルボルナンラクトン構造等のラクトン構造;
ヘキサノスルトン構造、ノルボルナンスルトン構造等のスルトン構造;
オキサシクロヘプタン構造、オキサノルボルナン構造等の酸素原子含有複素環構造;
アザシクロヘキサン構造、ジアザビシクロオクタン構造等の窒素原子含有複素環構造;
チアシクロヘキサン構造、チアノルボルナン構造のイオウ原子含有複素環構造などが挙げられる。
上記環員数6以上の芳香環構造としては、例えば
ベンゼン構造、ナフタレン構造、フェナントレン構造、アントラセン構造等が挙げられる。
上記環員数6以上の芳香族複素環構造としては、例えばフラン構造、ピラン構造、ベンゾピラン構造等の酸素原子含有複素環構造、ピリジン構造、ピリミジン構造、インドール構造等の窒素原子含有複素環構造などが挙げられる。
p1の環構造の環員数の下限としては、7が好ましく、8がより好ましく、9がさらに好ましく、10が特に好ましい。一方、上記環員数の上限としては、15が好ましく、14がより好ましく、13がさらに好ましく、12が特に好ましい。上記環員数を上記範囲とすることで、上述の酸の拡散長をさらに適度に短くすることができ、その結果リソグラフィー性能をより向上させることができる。
p1の環構造が有する水素原子の一部又は全部は、置換基で置換されていてもよい。上記置換基としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシ基、カルボキシ基、シアノ基、ニトロ基、アルコキシ基、アルコキシカルボニル基、アルコキシカルボニルオキシ基、アシル基、アシロキシ基等が挙げられる。これらの中でヒドロキシ基が好ましい。
p1としては、これらの中で、環員数6以上の脂環構造を含む1価の基及び環員数6以上の脂肪族複素環構造を含む1価の基が好ましく、環員数9以上の脂環構造を含む1価の基及び環員数9以上の脂肪族複素環構造を含む1価の基がより好ましく、アダマンチル基、ヒドロキシアダマンチル基、ノルボルナンラクトン−イル基、ノルボルナンスルトン−イル基及び5−オキソ−4−オキサトリシクロ[4.3.1.13,8]ウンデカン−イル基がさらに好ましく、アダマンチル基が特に好ましい。
p2で表される2価の連結基としては、例えばカルボニル基、エーテル基、カルボニルオキシ基、スルフィド基、チオカルボニル基、スルホニル基、2価の炭化水素基等が挙げられる。Rp2で表される2価の連結基としては、カルボニルオキシ基、スルホニル基、アルカンジイル基及びシクロアルカンジイル基が好ましく、カルボニルオキシ基及びシクロアルカンジイル基がより好ましく、カルボニルオキシ基及びノルボルナンジイル基がさらに好ましく、カルボニルオキシ基が特に好ましい。
p3及びRp4で表される炭素数1〜20の1価の炭化水素基としては、例えば炭素数1〜20のアルキル基等が挙げられる。Rp3及びRp4で表される炭素数1〜20の1価のフッ素化炭化水素基としては、例えば炭素数1〜20のフッ素化アルキル基等が挙げられる。Rp3及びRp4としては、水素原子、フッ素原子及びフッ素化アルキル基が好ましく、フッ素原子及びパーフルオロアルキル基がより好ましく、フッ素原子及びトリフルオロメチル基がさらに好ましい。
p5及びRp6で表される炭素数1〜20の1価のフッ素化炭化水素基としては、例えば炭素数1〜20のフッ素化アルキル基等が挙げられる。Rp5及びRp6としては、フッ素原子及びフッ素化アルキル基が好ましく、フッ素原子及びパーフルオロアルキル基がより好ましく、フッ素原子及びトリフルオロメチル基がさらに好ましく、フッ素原子が特に好ましい。
p1としては、0〜5の整数が好ましく、0〜3の整数がより好ましく、0〜2の整数がさらに好ましく、0及び1が特に好ましい。
p2としては、0〜5の整数が好ましく、0〜2の整数がより好ましく、0及び1がさらに好ましく、0が特に好ましい。
p3としては、1〜5の整数が好ましく、1〜4の整数がより好ましく、1〜3の整数がさらに好ましく、1及び2が特に好ましい。
で表される1価の感放射線性オニウムカチオンは、露光光の照射により分解するカチオンである。露光部では、この光分解性オニウムカチオンの分解により生成するプロトンと、スルホネートアニオンとからスルホン酸を生じる。上記Xで表される1価の感放射線性オニウムカチオンとしては、例えば下記式(b−a)で表されるカチオン(以下、「カチオン(b−a)」ともいう)、下記式(b−b)で表されるカチオン(以下、「カチオン(b−b)」ともいう)、下記式(b−c)で表されるカチオン(以下、「カチオン(b−c)」ともいう)等が挙げられる。
Figure 2017044875
上記式(b−a)中、RB3、RB4及びRB5は、それぞれ独立して、置換若しくは非置換の炭素数1〜12の直鎖状若しくは分岐状のアルキル基、置換若しくは非置換の炭素数6〜12の芳香族炭化水素基、−OSO−RBB1若しくは−SO−RBB2であるか、又はこれらの基のうちの2つ以上が互いに合わせられ構成される環構造を表す。RBB1及びRBB2は、それぞれ独立して、置換若しくは非置換の炭素数1〜12の直鎖状若しくは分岐状のアルキル基、置換若しくは非置換の炭素数5〜25の脂環式炭化水素基又は置換若しくは非置換の炭素数6〜12の芳香族炭化水素基である。b1、b2及びb3は、それぞれ独立して0〜5の整数である。RB3〜RB5並びにRBB1及びRBB2がそれぞれ複数の場合、複数のRB3〜RB5並びにRBB1及びRBB2はそれぞれ同一でも異なっていてもよい。
上記式(b−b)中、RB6は、置換若しくは非置換の炭素数1〜8の直鎖状若しくは分岐状のアルキル基又は置換若しくは非置換の炭素数6〜8の芳香族炭化水素基である。b4は0〜7の整数である。RB6が複数の場合、複数のRB6は同一でも異なっていてもよく、また、複数のRB6は、互いに合わせられ構成される環構造を表してもよい。
B7は、置換若しくは非置換の炭素数1〜7の直鎖状若しくは分岐状のアルキル基又は置換若しくは非置換の炭素数6若しくは7の芳香族炭化水素基である。b5は、0〜6の整数である。RB7が複数の場合、複数のRB7は同一でも異なっていてもよく、また、複数のRB7は互いに合わせられ構成される環構造を表してもよい。nb2は、0〜3の整数である。RB8は、単結合又は炭素数1〜20の2価の有機基である。nb1は、0〜2の整数である。
上記式(b−c)中、RB9及びRB10は、それぞれ独立して、置換若しくは非置換の炭素数1〜12の直鎖状若しくは分岐状のアルキル基、置換若しくは非置換の炭素数6〜12の芳香族炭化水素基、−OSO−RBB3若しくは−SO−RBB4であるか、又はこれらの基のうちの2つ以上が互いに合わせられ構成される環構造を表す。RBB3及びRBB4は、それぞれ独立して、置換若しくは非置換の炭素数1〜12の直鎖状若しくは分岐状のアルキル基、置換若しくは非置換の炭素数5〜25の脂環式炭化水素基又は置換若しくは非置換の炭素数6〜12の芳香族炭化水素基である。b6及びb7は、それぞれ独立して0〜5の整数である。RB9、RB10、RBB3及びRBB4がそれぞれ複数の場合、複数のRB9、RB10、RBB3及びRBB4はそれぞれ同一でも異なっていてもよい。
B3、RB4、RB5、RB6、RB7、RB9及びRB10で表される非置換の直鎖状のアルキル基としては、例えばメチル基、エチル基、n−プロピル基、n−ブチル基等が挙げられる。
B3、RB4、RB5、RB6、RB7、RB9及びRB10で表される非置換の分岐状のアルキル基としては、例えばi−プロピル基、i−ブチル基、sec−ブチル基、t−ブチル基等が挙げられる。
B3、RB4、RB5、RB9及びRB10で表される非置換の芳香族炭化水素基としては、例えばフェニル基、トリル基、キシリル基、メシチル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基等が挙げられる。
B6及びRB7で表される非置換の芳香族炭化水素基としては、例えばフェニル基、トリル基、ベンジル基等が挙げられる。
B8で表される2価の有機基としては、例えば上記式(2)のLの2価の有機基として例示したものと同様の基等が挙げられる。
アルキル基及び芳香族炭化水素基が有する水素原子を置換していてもよい置換基としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシ基、カルボキシ基、シアノ基、ニトロ基、アルコキシ基、アルコキシカルボニル基、アルコキシカルボニルオキシ基、アシル基、アシロキシ基等が挙げられる。これらの中で、ハロゲン原子が好ましく、フッ素原子がより好ましい。
B3、RB4、RB5、RB6、RB7、RB9及びRB10としては、非置換の直鎖状又は分岐状のアルキル基、フッ素化アルキル基、非置換の1価の芳香族炭化水素基、−OSO−RBB5及び−SO−RBB5が好ましく、フッ素化アルキル基及び非置換の1価の芳香族炭化水素基がより好ましく、フッ素化アルキル基がさらに好ましい。RBB5は非置換の1価の脂環式炭化水素基又は非置換の1価の芳香族炭化水素基である。
式(b−a)におけるb1、b2及びb3としては、0〜2の整数が好ましく、0及び1がより好ましく、0がさらに好ましい。式(b−b)におけるb4としては、0〜2の整数が好ましく、0及び1がより好ましく、1がさらに好ましい。b5としては、0〜2の整数が好ましく、0及び1がより好ましく、0がさらに好ましい。nb2としては、2及び3が好ましく、2がより好ましい。nb1としては、0及び1が好ましく、0がより好ましい。式(b−c)におけるb6及びb7としては、0〜2の整数が好ましく、0及び1がより好ましく、0がさらに好ましい。
としては、これらの中で、カチオン(b−a)及びカチオン(b−b)が好ましく、トリフェニルスルホニウムカチオン及び1−[2−(4−シクロヘキシルフェニルカルボニル)プロパン−2−イル]テトラヒドロチオフェニウムカチオンがより好ましい。
上記式(b)で表される酸発生剤としては例えば下記式(b−1)〜(b−15)で表される化合物(以下、「化合物(b−1)〜(b−15)」ともいう)等が挙げられる。
Figure 2017044875
上記式(b−1)〜(b−15)中、Xは、1価の感放射線性オニウムカチオンである。
[B]酸発生剤としては、オニウム塩化合物が好ましく、化合物(b−1)、(b−2)、(b−11)及び(b−12)がさらに好ましい。
[B]酸発生体が[B]酸発生剤の場合、[B]酸発生剤の含有量の下限としては、[A]重合体100質量部に対して、0.1質量部が好ましく、0.5質量部がより好ましく、1質量部がさらに好ましい。上記含有量の上限としては、30質量部が好ましく、20質量部がより好ましく、15質量部がさらに好ましい。[B]酸発生剤の含有量を上記範囲とすることで、当該感放射線性樹脂組成物の感度及び現像性を向上させることができる。
<[C]溶媒>
[C]溶媒は、少なくとも[A]重合体、[B]酸発生体、所望により含有される[D]酸拡散制御体等を溶解又は分散可能な溶媒であれば、特に限定されない。
[C]溶媒としては、例えばアルコール系溶媒、エーテル系溶媒、ケトン系溶媒、アミド系溶媒、エステル系溶媒、炭化水素系溶媒等が挙げられる。
アルコール系溶媒としては、例えば
メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、iso−ブタノール、sec−ブタノール、tert−ブタノール、n−ペンタノール、iso−ペンタノール、2−メチルブタノール、sec−ペンタノール、tert−ペンタノール、3−メトキシブタノール、n−ヘキサノール、2−メチルペンタノール、sec−ヘキサノール、2−エチルブタノール、sec−ヘプタノール、3−ヘプタノール、n−オクタノール、2−エチルヘキサノール、sec−オクタノール、n−ノニルアルコール、2,6−ジメチル−4−ヘプタノール、n−デカノール、sec−ウンデシルアルコール、トリメチルノニルアルコール、sec−テトラデシルアルコール、sec−ヘプタデシルアルコール、フルフリルアルコール、フェノール、シクロヘキサノール、メチルシクロヘキサノール、3,3,5−トリメチルシクロヘキサノール、ベンジルアルコール、ジアセトンアルコール等のモノアルコール系溶媒;
エチレングリコール、1,2−プロピレングリコール、1,3−ブチレングリコール、2,4−ペンタンジオール、2−メチル−2,4−ペンタンジオール、2,5−ヘキサンジオール、2,4−ヘプタンジオール、2−エチル−1,3−ヘキサンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等の多価アルコール系溶媒;
エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノフェニルエーテル、エチレングリコールモノ−2−エチルブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノヘキシルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル等の多価アルコール部分エーテル系溶媒などが挙げられる。
エーテル系溶媒としては、例えば
ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル等のジアルキルエーテル系溶媒;
テトラヒドロフラン、テトラヒドロピラン等の環状エーテル系溶媒;
ジフェニルエーテル、アニソール(メチルフェニルエーテル)等の芳香環含有エーテル系溶媒などが挙げられる。
ケトン系溶媒としては、例えば
アセトン、ブタノン、メチル−n−プロピルケトン、メチル−n−ブチルケトン、ジエチルケトン、メチル−iso−ブチルケトン、2−ヘプタノン(メチル−n−ペンチルケトン)、エチル−n−ブチルケトン、メチル−n−ヘキシルケトン、ジ−iso−ブチルケトン、トリメチルノナノン等の鎖状ケトン系溶媒;
シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、メチルシクロヘキサノン等の環状ケトン系溶媒;
2,4−ペンタンジオン、アセトニルアセトン、アセトフェノンなどが挙げられる。
アミド系溶媒としては、例えば
N,N’−ジメチルイミダゾリジノン、N−メチルピロリドン等の環状アミド系溶媒;
N−メチルホルムアミド、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−メチルプロピオンアミド等の鎖状アミド系溶媒などが挙げられる。
エステル系溶媒としては、例えば
酢酸メチル、酢酸エチル、酢酸n−プロピル、酢酸iso−プロピル、酢酸n−ブチル、酢酸iso−ブチル、酢酸sec−ブチル、酢酸n−ペンチル、酢酸i−ペンチル、酢酸sec−ペンチル、酢酸3−メトキシブチル、酢酸メチルペンチル、酢酸2−エチルブチル、酢酸2−エチルヘキシル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸n−ノニル等の酢酸エステル系溶媒;
エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノ−n−ブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテルアセテート等の多価アルコール部分エーテルアセテート系溶媒;
ジメチルカーボネート、ジエチルカーボネート等のカーボネート系溶媒;
ジ酢酸グリコール、酢酸メトキシトリグリコール、プロピオン酸エチル、プロピオン酸n−ブチル、プロピオン酸iso−アミル、シュウ酸ジエチル、シュウ酸ジ−n−ブチル、アセト酢酸メチル、アセト酢酸エチル、乳酸メチル、乳酸エチル、乳酸n−ブチル、乳酸n−アミル、マロン酸ジエチル、フタル酸ジメチル、フタル酸ジエチルなどが挙げられる。
炭化水素系溶媒としては、例えば
n−ペンタン、iso−ペンタン、n−ヘキサン、iso−ヘキサン、n−ヘプタン、iso−ヘプタン、2,2,4−トリメチルペンタン、n−オクタン、iso−オクタン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素系溶媒;
ベンゼン、トルエン、キシレン、メシチレン、エチルベンゼン、トリメチルベンゼン、メチルエチルベンゼン、n−プロピルベンゼン、iso−プロピルベンゼン、ジエチルベンゼン、iso−ブチルベンゼン、トリエチルベンゼン、ジ−iso−プロピルベンセン、n−アミルナフタレン等の芳香族炭化水素系溶媒などが挙げられる。
これらの中で、エステル系溶媒及びケトン系溶媒が好ましく、多価アルコール部分エーテルアセテート系溶媒、ラクトン系溶媒及び環状ケトン系溶媒がより好ましく、プロピレングリコールモノメチルエーテルアセテート及びシクロヘキサノンがさらに好ましい。
<[D]酸拡散制御体>
当該感放射線性樹脂組成物は、必要に応じて、[D]酸拡散制御体を含有していてもよい。[D]酸拡散制御体は、露光により[B]酸発生体から生じる酸のレジスト膜中における拡散現象を制御し、非露光領域における好ましくない化学反応を抑制する効果を奏する。また、感放射線性樹脂組成物の貯蔵安定性が向上する。さらに、露光から現像処理までの引き置き時間の変動によるレジストパターンのサイズ変化を抑えることができ、プロセス安定性に優れた感放射線性樹脂組成物が得られる。[D]酸拡散制御体の当該感放射線性樹脂組成物における含有形態としては、遊離の化合物(以下、適宜「[D]酸拡散制御剤」という)の形態でも、重合体の一部として組み込まれた形態でも、これらの両方の形態でもよい。
[D]酸拡散制御剤としては、例えば下記式(c−1)で表される化合物(以下、「含窒素化合物(I)」ともいう)、同一分子内に窒素原子を2個有する化合物(以下、「含窒素化合物(II)」ともいう)、窒素原子を3個有する化合物(以下、「含窒素化合物(III)」ともいう)、アミド基含有化合物、ウレア化合物、含窒素複素環化合物等が挙げられる。
Figure 2017044875
上記式(c−1)中、RC1、RC2及びRC3は、それぞれ独立して、水素原子、置換されていてもよい直鎖状、分岐状若しくは環状のアルキル基、アリール基又はアラルキル基であるか、又はこれらのうちの2つ以上が互いに合わせられこれらが結合する窒素原子と共に構成される環構造を表す。
含窒素化合物(I)としては、例えば
トリn−ペンチルアミン等のモノアルキルアミン類;
ジ−n−ブチルアミン等のジアルキルアミン類;
トリエチルアミン、トリエタノールアミン、トリアセチルトリエタノールアミン等のトリアルキルアミン類;
アニリン、2,6−ジ−i−プロピルアニリン、N,N−ジ−n−ブチルアニリン等の芳香族アミン類;
N−t−アシルオキシカルボルニル−4−ヒドロキシピペリジンなどが挙げられる。
これらの中で、含窒素化合物(I)としては、モノアルキルアミン類及び芳香族アミン類が好ましく、トリn−ペンチルアミン及び2,6−ジ−i−プロピルアニリンがより好ましい。
含窒素化合物(II)としては、例えばエチレンジアミン、N,N,N’,N’−テトラメチルエチレンジアミン等が挙げられる。
含窒素化合物(III)としては、例えば
ポリエチレンイミン、ポリアリルアミン等のポリアミン化合物;
ジメチルアミノエチルアクリルアミド等の重合体などが挙げられる。
アミド基含有化合物としては、例えばホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、プロピオンアミド、ベンズアミド、ピロリドン、N−メチルピロリドン等が挙げられる。
ウレア化合物としては、例えば尿素、メチルウレア、1,1−ジメチルウレア、1,3−ジメチルウレア、1,1,3,3−テトラメチルウレア、1,3−ジフェニルウレア、トリブチルチオウレア等が挙げられる。
含窒素複素環化合物としては、例えば
ピリジン、2−メチルピリジン等のピリジン類;
N−プロピルモルホリン、N−(ウンデシルカルボニルオキシエチル)モルホリン等のモルホリン類;
ピラジン、ピラゾールなどが挙げられる。
これらの中で、含窒素複素環化合物としては、モルホリン類が好ましく、N−(ウンデシルカルボニルオキシエチル)モルホリンがより好ましい。
また、[D]酸拡散制御剤として、酸解離性基を有する含窒素有機化合物を用いることもできる。このような酸解離性基を有する含窒素有機化合物としては、例えばN−t−ブトキシカルボニルピペリジン、N−t−ブトキシカルボニルイミダゾール、N−t−ブトキシカルボニルベンズイミダゾール、N−t−ブトキシカルボニル−2−フェニルベンズイミダゾール、N−(t−ブトキシカルボニル)ジ−n−オクチルアミン、N−(t−ブトキシカルボニル)ジエタノールアミン、N−(t−ブトキシカルボニル)ジシクロヘキシルアミン、N−(t−ブトキシカルボニル)ジフェニルアミン、N−t−ブトキシカルボニル−4−ヒドロキシピペリジン、N−t−アミルオキシカルボニル−4−ヒドロキシピペリジン等が挙げられる。
また、[D]酸拡散制御剤として、露光により感光し弱酸を発生する光崩壊性塩基を用いることもできる。光崩壊性塩基としては、例えば露光により分解して酸拡散制御性を失うオニウム塩化合物等が挙げられる。オニウム塩化合物としては、例えば下記式(c−2)で表されるスルホニウム塩化合物、下記式(c−3)で表されるヨードニウム塩化合物等が挙げられる。
Figure 2017044875
上記式(c−2)及び式(c−3)中、RC4〜RC8は、それぞれ独立して、水素原子、アルキル基、アルコキシ基、ヒドロキシ基又はハロゲン原子である。E及びQは、それぞれ独立して、OH、RCC1−COO、RCC1−SO 又は下記式(c−4)で表されるアニオンである。但し、RCC1は、アルキル基、アリール基又はアラルキル基である。
Figure 2017044875
上記式(c−4)中、RC9は、炭素数1〜12の直鎖状若しくは分岐状のアルキル基、炭素数1〜12の直鎖状若しくは分岐状のフッ素化アルキル基又は炭素数1〜12の直鎖状若しくは分岐状のアルコキシ基である。nは、0〜2の整数である。nが2の場合、2つのRC9は同一でも異なっていてもよい。
上記光崩壊性塩基としては、より具体的には、例えば下記式で表される化合物等が挙げられる。
Figure 2017044875
これらの中で、光崩壊性塩基としては、スルホニウム塩が好ましく、トリアリールスルホニウム塩がより好ましく、トリフェニルスルホニウムサリチレート及びトリフェニルスルホニウム10−カンファースルホネートがさらに好ましい。
当該感放射線性樹脂組成物が[D]酸拡散制御体として[D]酸拡散制御剤を含有する場合、[D]酸拡散制御剤の含有量の下限としては、[A]重合体100質量部に対して、0.1質量部が好ましく、0.3質量部がより好ましく、1質量部がさらに好ましい。上記含有量の上限としては、20質量部が好ましく、15質量部がより好ましく、10質量部がさらに好ましい。
<[E]重合体>
当該感放射線性樹脂組成物は、必要に応じて、[E]重合体を含有していてもよい。[E]重合体は、[A]重合体とは異なる重合体であって、フッ素原子含有重合体である。当該感放射線性樹脂組成物が[E]重合体を含有することで、レジスト膜を形成した際に、膜中の含フッ素重合体の撥油性的特徴により、その分布がレジスト膜表面近傍で偏在化する傾向がある。そのため、液浸露光時における酸発生剤や酸拡散制御剤等が液浸媒体に溶出することを抑制することができる。また、この[E]重合体の撥水性的特徴により、レジスト膜と液浸媒体との前進接触角が所望の範囲に制御でき、バブル欠陥の発生を抑制できる。さらに、レジスト膜と液浸媒体との後退接触角が高くなり、水滴が残らずに高速でのスキャン露光が可能となる。このように当該感放射線性樹脂組成物が[E]重合体を含有することにより、液浸露光法に好適なレジスト膜を形成することができる。
[E]重合体としては、フッ素原子を有する重合体である限り、特に限定されないが、当該感放射線性樹脂組成物中の[A]重合体よりも、フッ素原子含有率(質量%)が高いことが好ましい。[A]重合体よりもフッ素原子含有率が高いことで、上述の偏在化の度合いがより高くなり、得られるレジスト膜の撥水性及び溶出抑制性等の特性が向上する。
[E]重合体のフッ素原子含有率の下限としては、1質量%が好ましく、2質量%がより好ましく、4質量%がさらに好ましく、7質量%が特に好ましい。上記フッ素原子含有率の上限としては、60質量%が好ましく、40質量%がより好ましく、30質量%がさらに好ましい。[E]重合体のフッ素原子含有率が上記下限未満であると、レジスト膜表面の疎水性が低下する場合がある。重合体のフッ素原子含有率(質量%)は、13C−NMRスペクトル測定等により重合体の構造を求め、その構造から算出することができる。
[E]重合体としては、下記構造単位(Ea)、下記構造単位(Eb)又はこれらの組み合わせを有することが好ましい。[E]重合体は、構造単位(Ea)及び構造単位(Eb)をそれぞれ1種又は2種以上有していてもよい。
[構造単位(Ea)]
構造単位(Ea)は、下記式(ff1)で表される構造単位である。[E]重合体は、構造単位(Ea)を有することでフッ素原子含有率を調整することができる。
Figure 2017044875
上記式(ff1)中、RF1は、水素原子、メチル基又はトリフルオロメチル基である。LF1は、単結合、酸素原子、硫黄原子、−CO−O−、−SO−O−NH−、−CO−NH−又は−O−CO−NH−である。RF2は、炭素数1〜6の1価のフッ素化鎖状炭化水素基又は炭素数4〜20の1価のフッ素化脂環式炭化水素基である。
F2で表される炭素数1〜6の1価のフッ素化鎖状炭化水素基としては、例えばトリフルオロメチル基、2,2,2−トリフルオロエチル基、パーフルオロエチル基、2,2,3,3,3−ペンタフルオロプロピル基、1,1,1,3,3,3−ヘキサフルオロプロピル基、パーフルオロn−プロピル基、パーフルオロi−プロピル基、パーフルオロn−ブチル基、パーフルオロi−ブチル基、パーフルオロt−ブチル基、2,2,3,3,4,4,5,5−オクタフルオロペンチル基、パーフルオロヘキシル基等が挙げられる。
F2で表される炭素数4〜20の1価のフッ素化脂環式炭化水素基としては、例えばモノフルオロシクロペンチル基、ジフルオロシクロペンチル基、パーフルオロシクロペンチル基、モノフルオロシクロヘキシル基、ジフルオロシクロペンチル基、パーフルオロシクロヘキシルメチル基、フルオロノルボルニル基、フルオロアダマンチル基、フルオロボルニル基、フルオロイソボルニル基、フルオロトリシクロデシル基、フルオロテトラシクロデシル基等が挙げられる。
構造単位(Ea)を与える単量体としては、例えばトリフルオロメチル(メタ)アクリル酸エステル、2,2,2−トリフルオロエチル(メタ)アクリル酸エステル、2,2,2−トリフルオロエチルオキシカルボニルメチル(メタ)アクリル酸エステル、パーフルオロエチル(メタ)アクリル酸エステル、パーフルオロn−プロピル(メタ)アクリル酸エステル、パーフルオロi−プロピル(メタ)アクリル酸エステル、パーフルオロn−ブチル(メタ)アクリル酸エステル、パーフルオロi−ブチル(メタ)アクリル酸エステル、パーフルオロt−ブチル(メタ)アクリル酸エステル、2−(1,1,1,3,3,3−ヘキサフルオロプロピル)(メタ)アクリル酸エステル、1−(2,2,3,3,4,4,5,5−オクタフルオロペンチル)(メタ)アクリル酸エステル、パーフルオロシクロヘキシルメチル(メタ)アクリル酸エステル、1−(2,2,3,3,3−ペンタフルオロプロピル)(メタ)アクリル酸エステル、モノフルオロシクロペンチル(メタ)アクリル酸エステル、ジフルオロシクロペンチル(メタ)アクリル酸エステル、パーフルオロシクロペンチル(メタ)アクリル酸エステル、モノフルオロシクロヘキシル(メタ)アクリル酸エステル、ジフルオロシクロペンチル(メタ)アクリル酸エステル、パーフルオロシクロヘキシルメチル(メタ)アクリル酸エステル、フルオロノルボルニル(メタ)アクリル酸エステル、フルオロアダマンチル(メタ)アクリル酸エステル、フルオロボルニル(メタ)アクリル酸エステル、フルオロイソボルニル(メタ)アクリル酸エステル、フルオロトリシクロデシル(メタ)アクリル酸エステル、フルオロテトラシクロデシル(メタ)アクリル酸エステル等が挙げられる。これらの中で、2,2,2−トリフルオロエチルオキシカルボニルメチル(メタ)アクリル酸エステルが好ましい。
[E]重合体が構造単位(Ea)を有する場合、構造単位(Ea)の含有割合の下限としては、[E]重合体を構成する全構造単位に対して、5モル%が好ましく、10モル%がより好ましく、20モル%がさらに好ましい。上記含有割合の上限としては、100モル%でもよく、95モル%が好ましく、85モル%がより好ましく、80モル%がさらに好ましい。上記含有割合を上記範囲とすることにより、液浸露光時においてレジスト膜表面のより高い動的接触角を発現させることができる。
[構造単位(Eb)]
構造単位(Eb)は、下記式(ff2)で表される構造単位である。[E]重合体は、構造単位(Eb)を有することで疎水性が上がるため、当該感放射線性樹脂組成物から形成されるレジスト膜表面の動的接触角をさらに向上させることができる。
Figure 2017044875
上記式(ff2)中、RF3は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。RF4は、炭素数1〜20の(u+1)価の炭化水素基であり、RF4のRF5側の末端に酸素原子、硫黄原子、−NR’−、カルボニル基、−CO−O−又は−CO−NH−が結合された構造のものも含む。R’は、水素原子又は1価の有機基である。RF5は、単結合、炭素数1〜10の2価の鎖状炭化水素基又は炭素数4〜20の2価の脂環式炭化水素基である。LF2は、炭素数1〜20の2価のフッ素化鎖状炭化水素基である。LF3は、酸素原子、−NR”−、−CO−O−*又は−SO−O−*である。R”は、水素原子又は1価の有機基である。*は、RF6に結合する結合部位を示す。RF6は、水素原子又は1価の有機基である。uは、1〜3の整数である。但し、uが2又は3の場合、複数のRF5、LF2、LF3及びRF6はそれぞれ同一でも異なっていてもよい。
F6が水素原子である場合には、[E]重合体のアルカリ現像液に対する溶解性を向上させることができる点で好ましい。
F6で表される1価の有機基としては、例えば酸解離性基、アルカリ解離性基、置換基を有していてもよい炭素数1〜30の炭化水素基等が挙げられる。
構造単位(Eb)としては、例えば下記式(ff2−1)〜(ff2−3)で表される構造単位等が挙げられる。
Figure 2017044875
上記式(ff2−1)〜(ff2−3)中、RF4’は、炭素数1〜20の2価の直鎖状、分岐状若しくは環状の飽和若しくは不飽和の炭化水素基である。RF3、LF2、RF6及びuは、上記式(ff2)と同義である。uが2又は3である場合、複数のLF2及びRF6はそれぞれ同一でも異なっていてもよい。
[E]重合体が構造単位(ff2)を有する場合、構造単位(ff2)の含有割合の下限としては、[E]重合体を構成する全構造単位に対して、5モル%が好ましく、10モル%がより好ましく、15モル%がさらに好ましい。上記含有割合の上限としては、90モル%が好ましく、85モル%がより好ましく、80モル%がさらに好ましい。上記含有割合を上記範囲とすることにより、当該感放射線性樹脂組成物から形成されるレジスト膜表面は、アルカリ現像において動的接触角の低下度を向上させることができる。
[構造単位(Ec)]
[E]重合体は、構造単位(Ea)及び(Eb)以外にも、酸解離性基を含む構造単位(以下、「構造単位(Ec)」ともいう)を有していてもよい(但し、構造単位(Eb)に該当するものを除く)。[E]重合体が構造単位(Ec)を有することで、得られるレジストパターンの形状がより良好になる。構造単位(Ec)としては、上述の[A]重合体における構造単位(II)等が挙げられる。
[E]重合体が構造単位(Ec)を有する場合、構造単位(Ec)の含有割合の下限としては、[E]重合体を構成する全構造単位に対し、5モル%が好ましく、25モル%がより好ましく、60モル%がさらに好ましい。上記含有割合の上限としては、90モル%が好ましく、85モル%がより好ましく、80モル%がさらに好ましい。
[他の構造単位]
また、[E]重合体は、上記構造単位以外にも、例えばアルカリ可溶性基を含む構造単位、ラクトン構造、環状カーボネート構造、スルトン構造又はこれらの組み合わせを含む構造単位、脂環式基を含む構造単位等の他の構造単位を有していてもよい。上記アルカリ可溶性基としては、例えばカルボキシ基、スルホンアミド基、スルホ基等が挙げられる。ラクトン構造、環状カーボネート構造、スルトン構造又はこれらの組み合わせを含む構造単位としては、上述の[A]重合体における構造単位(III)等が挙げられる。
他の構造単位の含有割合の上限としては、[E]重合体を構成する全構造単位に対して、30モル%が好ましく、20モル%がより好ましい。
当該感放射線性樹脂組成物が[E]重合体を含有する場合、[E]重合体の含有量の下限としては、[A]重合体の100質量部に対して、0.5質量部が好ましく、1質量部がより好ましく、2質量部がさらに好ましい。上記含有量の上限としては、20質量部が好ましく、15質量部がより好ましく、10質量部がさらに好ましい。
[[F]偏在化促進剤]
[F]偏在化促進剤は、当該感放射線性樹脂組成物が[F]偏在化促進剤を含有する場合等に、[E]重合体を、より効率的にレジスト膜表面に偏析させる効果を有するものである。当該感放射線性樹脂組成物にこの[F]偏在化促進剤を含有させることで、[E]重合体の添加量を従来よりも少なくすることができる。従って、ジスト膜から液浸液への成分の溶出をさらに抑制することや、高速スキャンにより液浸露光をより高速に行うことが可能になり、結果としてウォーターマーク欠陥等の液浸由来欠陥を抑制するレジスト膜表面の疎水性を向上させることができる。このような[F]偏在化促進剤として用いることができるものとしては、比誘電率が30以上200以下で、1気圧における沸点が100℃以上の低分子化合物を挙げることができる。このような化合物としては、具体的には、ラクトン化合物、カーボネート化合物、ニトリル化合物、多価アルコール等が挙げられる。
ラクトン化合物としては、例えばγ−ブチロラクトン、バレロラクトン、メバロニックラクトン、ノルボルナンラクトン等が挙げられる。カーボネート化合物としては、例えばプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等が挙げられる。ニトリル化合物としては、例えばスクシノニトリル等が挙げられる。多価アルコールとしては、例えばグリセリン等が挙げられる。
[F]偏在化促進剤としては、ラクトン化合物が好ましく、γ−ブチロラクトンがより好ましい。
当該感放射線性樹脂組成物が[F]偏在化促進剤を含有する場合、[F]偏在化促進剤の含有量の下限としては、当該感放射線性樹脂組成物における重合体の総量100質量部に対して、10質量部が好ましく、15質量部がより好ましく、20質量部がさらに好ましく、25質量部が特に好ましい。上記含有量の上限としては、500質量部が好ましく、300質量部がより好ましく、200質量部がさらに好ましく、100質量部が特に好ましい。
<その他の任意成分>
当該感放射線性樹脂組成物は、上記[A]〜[F]成分以外にも、その他の任意成分を含有していてもよい。上記その他の任意成分としては、例えば界面活性剤、脂環式骨格含有化合物、増感剤等が挙げられる。これらのその他の任意成分は、それぞれ1種又は2種以上を併用してもよい。
[界面活性剤]
界面活性剤は、当該感放射線性樹脂組成物が界面活性剤を含有する場合等に、塗布性、ストリエーション、現像性等を改良する効果を奏するものである。界面活性剤としては、例えばポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンn−オクチルフェニルエーテル、ポリオキシエチレンn−ノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のノニオン系界面活性剤などが挙げられる。界面活性剤の市販品としては、例えばKP341(信越化学工業社)、ポリフローNo.75、同No.95(以上、共栄社化学社)、エフトップEF301、同EF303、同EF352(以上、トーケムプロダクツ社)、メガファックF171、同F173(以上、DIC社)、フロラードFC430、同FC431(以上、住友スリーエム社)、アサヒガードAG710、サーフロンS−382、同SC−101、同SC−102、同SC−103、同SC−104、同SC−105、同SC−106(以上、旭硝子工業社)等が挙げられる。当該感放射線性樹脂組成物が界面活性剤を含有する場合、界面活性剤の含有量の上限としては、[A]重合体100質量部に対して、2質量部が好ましい。
[脂環式骨格含有化合物]
脂環式骨格含有化合物は、当該感放射線性樹脂組成物が脂環式骨格含有化合物を含有する場合等に、ドライエッチング耐性、パターン形状、基板との接着性等を改善する効果を奏するものである。
脂環式骨格含有化合物としては、例えば
1−アダマンタンカルボン酸、2−アダマンタノン、1−アダマンタンカルボン酸t−ブチル等のアダマンタン誘導体類;
デオキシコール酸t−ブチル、デオキシコール酸t−ブトキシカルボニルメチル、デオキシコール酸2−エトキシエチル等のデオキシコール酸エステル類;
リトコール酸t−ブチル、リトコール酸t−ブトキシカルボニルメチル、リトコール酸2−エトキシエチル等のリトコール酸エステル類;
3−〔2−ヒドロキシ−2,2−ビス(トリフルオロメチル)エチル〕テトラシクロ[4.4.0.12,5.17,10]ドデカン、2−ヒドロキシ−9−メトキシカルボニル−5−オキソ−4−オキサ−トリシクロ[4.2.1.03,7]ノナンなどが挙げられる。当該感放射線性樹脂組成物が脂環式骨格含有化合物を含有する場合、脂環式骨格含有化合物の含有量の上限としては、[A]重合体100質量部に対して、5質量部が好ましい。
[増感剤]
増感剤は、当該感放射線性樹脂組成物が増感剤を含有する場合等に、[B]酸発生体等からの酸の生成量を増加する作用を示すものであり、当該感放射線性樹脂組成物の「みかけの感度」を向上させる効果を奏するものである。
増感剤としては、例えばカルバゾール類、アセトフェノン類、ベンゾフェノン類、ナフタレン類、フェノール類、ビアセチル、エオシン、ローズベンガル、ピレン類、アントラセン類、フェノチアジン類等が挙げられる。当該感放射線性樹脂組成物が増感剤を含有する場合、増感剤の含有量の上限としては、[A]重合体100質量部に対して、2質量部が好ましい。
<感放射線性樹脂組成物の調製方法>
当該感放射線性樹脂組成物は、例えば[A]重合体、[B]酸発生体、[C]溶媒、必要に応じて含有される[D]酸拡散制御体等を所定の割合で混合することにより調製できる。当該感放射線性樹脂組成物は、混合後に、例えば孔径0.2μm程度のフィルター等でろ過することが好ましい。当該感放射線性樹脂組成物の固形分濃度の下限としては、0.1質量%が好ましく、0.5質量%がより好ましく、1質量%がさらに好ましい。上記固形分濃度の上限としては、50質量%が好ましく、30質量%がより好ましく、10質量%がさらに好ましい。
<レジストパターン形成方法>
当該レジストパターン形成方法は、レジスト膜を形成する工程(以下、「レジスト膜形成工程」ともいう)、上記レジスト膜を露光する工程(以下、「露光工程」ともいう)、及び上記露光されたレジスト膜を現像する工程(以下、「現像工程」ともいう)を備える。当該レジストパターン形成方法においては、上記レジスト膜を上述の当該感放射線性樹脂組成物により形成する。
当該レジストパターン形成方法によれば、上述の当該感放射線性樹脂組成物を用いているので、優れたPEB温度依存性を発揮してレジストパターンを形成することができる。以下、各工程について説明する。
[レジスト膜形成工程]
本工程では、当該感放射線性樹脂組成物を用い、レジスト膜を形成する。このレジスト膜を形成する基板としては、例えばシリコンウェハ、二酸化シリコン、アルミニウムで被覆されたウェハ等の従来公知のもの等が挙げられる。また、例えば特公平6−12452号公報や特開昭59−93448号公報等に開示されている有機系又は無機系の反射防止膜を基板上に形成してもよい。塗布方法としては、例えば回転塗布(スピンコーティング)、流延塗布、ロール塗布等が挙げられる。塗布した後に、必要に応じて、塗膜中の溶媒を揮発させるため、プレベーク(PB)を行ってもよい。PBの温度の下限としては、60℃が好ましく、80℃がより好ましい。上記温度の上限としては、140℃が好ましく、120℃がより好ましい。PBの時間の下限としては、5秒が好ましく、10秒がより好ましい。上記時間の上限としては、600秒が好ましく、300秒がより好ましい。形成されるレジスト膜の平均厚みの下限としては、10nmが好ましく、20nmがより好ましい。上記平均厚みの上限としては、1,000nmが好ましく、500nmがより好ましい。
液浸露光を行う場合で、当該感放射線性樹脂組成物が[E]重合体等の撥水性重合体添加剤を含有していない場合等には、上記形成したレジスト膜上に、液浸液とレジスト膜との直接の接触を避ける目的で、液浸液に不溶性の液浸用保護膜を設けてもよい。液浸用保護膜としては、現像工程の前に溶媒により剥離する溶媒剥離型保護膜(特開2006−227632号公報参照)、現像工程の現像と同時に剥離する現像液剥離型保護膜(国際公開第2005/069076号及び国際公開第2006/035790号参照)のいずれを用いてもよい。但し、スループットの観点からは、現像液剥離型液浸用保護膜を用いることが好ましい。
[露光工程]
本工程では、レジスト膜形成工程で形成されたレジスト膜に、フォトマスクを介して(場合によっては、水等の液浸媒体を介して)露光光を照射し、露光する。露光光としては、目的とするパターンのサイズに応じて、例えば可視光線、紫外線、遠紫外線、極端紫外線(EUV)、X線、γ線等の電磁波;電子線、α線等の荷電粒子線などが挙げられる。これらの中でも、遠紫外線、EUV及び電子線が好ましく、ArFエキシマレーザー光(波長193nm)、KrFエキシマレーザー光(波長248nm)、EUV及び電子線がより好ましく、ArFエキシマレーザー光、EUV及び電子線がさらに好ましく、ArFエキシマレーザー光が特に好ましい。
露光を液浸露光により行う場合、用いる液浸液としては、例えば水、フッ素系不活性液体等が挙げられる。液浸液は、露光波長に対して透明であり、かつ膜上に投影される光学像の歪みを最小限に留めるよう屈折率の温度係数ができる限り小さい液体が好ましいが、特に露光光源がArFエキシマレーザー光(波長193nm)である場合、上述の観点に加えて、入手の容易さ、取り扱いのし易さといった点から水を用いるのが好ましい。水を用いる場合、水の表面張力を減少させるとともに、界面活性力を増大させる添加剤をわずかな割合で添加しても良い。この添加剤は、ウェハ上のレジスト膜を溶解させず、かつレンズの下面の光学コートに対する影響が無視できるものが好ましい。使用する水としては蒸留水が好ましい。
上記露光の後、ポストエクスポージャーベークを行い、レジスト膜の露光された部分において、露光により[B]酸発生体等から発生した酸による[A]重合体等が有する酸解離性基の解離を促進させることが好ましい。このPEBによって、露光部と未露光部とで現像液に対する溶解性の差を増大させることができる。PEBの温度の下限としては、50℃が好ましく、80℃がより好ましい。上記温度の上限としては、180℃が好ましく、130℃がより好ましい。PEBの時間の下限としては、5秒が好ましく、10秒がより好ましい。上記時間の上限としては、600秒が好ましく、300秒がより好ましい。
[現像工程]
本工程では、露光工程で露光されたレジスト膜を現像する。これにより、所定のレジストパターンを形成することができる。現像後は、水、アルコール等のリンス液で洗浄し、乾燥することが一般的である。現像工程における現像方法は、アルカリ現像であっても、有機溶媒現像であってもよい。
アルカリ現像の場合、現像に用いる現像液としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、けい酸ナトリウム、メタけい酸ナトリウム、アンモニア水、エチルアミン、n−プロピルアミン、ジエチルアミン、ジ−n−プロピルアミン、トリエチルアミン、メチルジエチルアミン、エチルジメチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(TMAH)、ピロール、ピペリジン、コリン、1,8−ジアザビシクロ−[5.4.0]−7−ウンデセン、1,5−ジアザビシクロ−[4.3.0]−5−ノネン等のアルカリ性化合物の少なくとも1種を溶解したアルカリ水溶液などが挙げられる。これらの中でも、TMAH水溶液が好ましく、2.38質量%TMAH水溶液がより好ましい。
有機溶媒現像の場合、現像液としては、炭化水素系溶媒、エーテル系溶媒、エステル系溶媒、ケトン系溶媒、アルコール系溶媒等の有機溶媒、上記有機溶媒を含有する溶媒等が挙げられる。上記有機溶媒としては、例えば上述の感放射線性樹脂組成物の[C]溶媒として列挙した溶媒の1種又は2種以上等が挙げられる。これらの中でも、エステル系溶媒及びケトン系溶媒が好ましい。エステル系溶媒としては、酢酸エステル系溶媒が好ましく、酢酸n−ブチルがより好ましい。ケトン系溶媒としては、鎖状ケトンが好ましく、2−ヘプタノンがより好ましい。現像液中の有機溶媒の含有量の下限としては、80質量%が好ましく、90質量%がより好ましく、95質量%がさらに好ましく、99質量%が特に好ましい。現像液中の有機溶媒以外の成分としては、例えば水、シリコンオイル等が挙げられる。
現像方法としては、有機溶媒現像が好ましい。
また、現像方法としては、例えば現像液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面に現像液を表面張力によって盛り上げて一定時間静止することで現像する方法(パドル法)、基板表面に現像液を噴霧する方法(スプレー法)、一定速度で回転している基板上に一定速度で現像液塗出ノズルをスキャンしながら現像液を塗出しつづける方法(ダイナミックディスペンス法)等が挙げられる。
<重合体>
当該重合体は、構造単位(I−1)を有する重合体である。当該重合体は、上述の性質を有するので、当該感放射線性樹脂組成物の重合体成分として好適に用いることができ、これを含有する感放射線性樹脂組成物はPEB温度依存性に優れる。
<化合物>
当該化合物は、化合物(i−1)である。当該化合物は、上述の性質を有するので、当該重合体の原料単量体として好適に用いることができる。
当該重合体及び当該化合物については、上記[A]重合体の項で説明している。
以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。実施例における各測定は下記方法により行った。
[Mw、Mn及びMw/Mn]
Mw及びMnは、東ソー社のGPCカラム(G2000HXL:2本、G3000HXL:1本、G4000HXL:1本)を用い、流量:1.0mL/分、溶出溶媒:テトラヒドロフラン、試料濃度:1.0質量%、試料注入量:100μL、カラム温度:40℃、検出器:示差屈折計の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィ(GPC)により測定した。また、分散度(Mw/Mn)は、Mw及びMnの測定結果より算出した。
13C−NMR分析]
日本電子社の「JNM−ECX400」を用い、測定溶媒として重クロロホルムを使用して、各重合体における各構造単位の含有割合(モル%)を求める分析を行った。
<化合物の合成>
[実施例1](化合物(M−1)の合成)
500mLの丸底フラスコに(m−1)12.71g(79mmol)、ピリジン13.86g(175mmol)、ジメチルアミノピリジン0.97g(7.9mmol)及び塩化メチレン140mLを加え0℃で撹拌を開始した。そこへ、チオホスゲン10.05g(87.4mmol)をゆっくりと滴下した。滴下終了後、室温で2時間撹拌した後、1Mの塩酸水溶液を加え有機層を抽出した。得られた有機層について、水洗を2回した後、無水硫酸ナトリウムで乾燥した。溶媒を留去した後、カラムクロマトグラフィーで精製することにより、(M−1)を9.41g(収率59%)得た。
Figure 2017044875
[実施例2〜21](化合物(M−2)〜(M−21)の合成)
前駆体を適宜選択し、実施例1と同様の操作を行うことによって、下記式(M−2)〜(M−21)で表される化合物を合成した。
Figure 2017044875
化合物(M−1)〜(M−21)は構造単位(I)を与える。
<[A]重合体及び[E]重合体の合成>
各実施例及び比較合成例における各重合体の合成で用いた単量体を以下に示す。
Figure 2017044875
化合物(M’−1)〜(M’−4)は構造単位(II)を与え、化合物(M’−5)〜(M’−10)及び(M’−12)は構造単位(III)を与え、化合物(M’−11)は構造単位(IV)を与え、化合物(M’−14)は構造単位(Ea)を与える。
[[A]重合体の合成]
[実施例22](重合体(A−1)の合成)
化合物(M’−1)9.47g(50モル%)、化合物(M’−6)8.58g(40モル%)及び化合物(M−1)1.95g(10モル%)を2−ブタノン40gに溶解し、開始剤としてのAIBN0.79g(全単量体に対して5モル%)を添加して単量体溶液を調製した。次いで20gの2−ブタノンを入れた100mLの三口フラスコを30分窒素パージした後、攪拌しながら80℃に加熱し、上記調製した単量体溶液を滴下漏斗にて3時間かけて滴下した。滴下開始を重合反応の開始時間とし、重合反応を6時間実施した。重合反応終了後、重合溶液を水冷して30℃以下に冷却した。400gのメタノール中に冷却した重合溶液を投入し、析出した白色粉末をろ別した。ろ別した白色粉末を80gのメタノールで2回洗浄した後、ろ別し、50℃で17時間乾燥させて白色粉末状の重合体(A−1)を得た(15.7g、収率79%)。重合体(A−1)のMwは7,400であり、Mw/Mnは1.54であった。13C−NMR分析の結果、(M’−1)、(M’−6)及び(M−1)に由来する各構造単位の含有割合は、それぞれ50.1モル%、40.1モル%及び9.8モル%であった。
[実施例23〜53及び比較合成例1〜3](重合体(A−2)〜(A−32)及び(CA−1)〜(CA−3)の合成)
下記表1又は表2に示す種類及び使用量の単量体を用いた以外は、実施例22と同様の操作を行うことにより、重合体(A−2)〜(A−32)及び(CA−1)〜(CA−3)を合成した。
Figure 2017044875
Figure 2017044875
上記表2中、「−」は該当する成分を使用しなかったことを示す。
[[E]重合体の合成]
[合成例1](重合体(E−1)の合成)
化合物(M’−2)71.67g(70モル%)及び化合物(M’−14)28.33g(30モル%)を100gの2−ブタノンに溶解し、開始剤としてのジメチル2,2’−アゾビスイソブチレート6.47g(全単量体に対して5モル%)を溶解させて単量体溶液を調製した。次いで100gの2−ブタノンを入れた1,000mLの三口フラスコを30分窒素パージした後、攪拌しながら80℃に加熱し、上記調製した単量体溶液を滴下漏斗にて3時間かけて滴下した。滴下開始を重合反応の開始時間とし、重合反応を6時間実施した。重合反応終了後、重合溶液を水冷して30℃以下に冷却した。反応溶液を2L分液漏斗に移液した後、150gのn−ヘキサンで上記重合溶液を均一に希釈し、600gのメタノールを投入して混合した。次いで30gの蒸留水を投入し、さらに攪拌して30分静置した。その後、下層を回収し、固形分である重合体(E−1)を含むプロピレングリコールモノメチルエーテルアセテート溶液を得た(収率60%)。重合体(E−1)のMwは7,200であり、Mw/Mnは2.00であった。13C−NMR分析の結果、(M’−2)及び(M’−4)に由来する各構造単位の含有割合は、それぞれ71.1モル%及び28.9モル%であった。
<感放射線性樹脂組成物の調製>
下記実施例54〜89及び比較例1〜3の感放射線性樹脂組成物の調製に用いた[B]酸発生剤、[C]溶媒、[D]酸拡散制御剤及び[F]偏在化促進剤を以下に示す。
[[B]酸発生剤]
各構造式を以下に示す。
B−1:トリフェニルスルホニウム2−(アダマンタン−1−イルカルボニルオキシ)−1,1,3,3,3−ペンタフルオロプロパン−1−スルホネート
B−2:トリフェニルスルホニウムノルボルナンスルトン−2−イルオキシカルボニルジフルオロメタンスルホネート
B−3:トリフェニルスルホニウム3−(ピペリジン−1−イルスルホニル)−1,1,2,2,3,3−ヘキサフルオロプロパン−1−スルホネート
B−4:トリフェニルスルホニウムアダマンタン−1−イルオキシカルボニルジフルオロメタンスルホネート
Figure 2017044875
[[C]溶媒]
C−1:プロピレングリコールモノメチルエーテルアセテート
C−2:シクロヘキサノン
[[D]酸拡散制御剤]
各構造式を以下に示す。
D−1:トリフェニルスルホニウムサリチレート
D−2:トリフェニルスルホニウム10−カンファースルホネート
D−3:N−(n−ウンデカン−1−イルカルボニルオキシエチル)モルホリン
D−4:2,6−ジ−i−プロピルアニリン
D−5:トリn−ペンチルアミン
Figure 2017044875
[[F]偏在化促進剤]
F−1:γ−ブチロラクトン
[ArF露光用感放射線性樹脂組成物の調製]
[実施例54]
[A]重合体としての(A−1)100質量部、[B]酸発生剤としての(B−1)8.5質量部、[C]溶媒としての(C−1)2,240質量部及び(C−2)960質量部、[D]酸拡散制御剤としての(D−1)2.3質量部、[E]重合体としての(E−1)3質量部並びに[F]偏在化促進剤としての(F−1)30質量部を配合し、孔径0.2μmのメンブランフィルターでろ過することにより感放射線性樹脂組成物(J−1)を調製した。
[実施例55〜89及び比較例1〜3]
下記表3又は4に示す種類及び配合量の各成分を用いた以外は、実施例54と同様に操作して、各感放射線性樹脂組成物を調製した。
Figure 2017044875
Figure 2017044875
<レジストパターンの形成>
12インチのシリコンウェハの表面に、スピンコーター(東京エレクトロン社の「CLEAN TRACK ACT12」)を使用して、下層反射防止膜形成用組成物(ブルワーサイエンス社の「ARC66」)を塗布した後、205℃で60秒間加熱することにより平均厚み105nmの下層反射防止膜を形成した。この下層反射防止膜上に、上記スピンコーターを使用して上記調製した各感放射線性樹脂組成物を塗布し、90℃で60秒間PBを行った。その後、23℃で30秒間冷却し、平均厚み90nmのレジスト膜を形成した。次に、このレジスト膜を、ArFエキシマレーザー液浸露光装置(NIKON社の「NSR−S610C」)を用い、NA=1.3、ダイポールの光学条件にて、ベストフォーカスの条件で露光した。露光後、90℃で60秒間PEBを行った。その後、有機溶媒現像液として酢酸n−ブチルを用いて有機溶媒現像し、乾燥してネガ型のレジストパターンを形成した。この際、ホールパターンの直径が0.060μm、ピッチが0.225μmのホールサイズとなるレジストパターンを形成した。
<評価>
上記形成したレジストパターンについて、下記方法に従って測定することにより、各感放射線性樹脂組成物を評価した。なお、レジストパターンの測長には走査型電子顕微鏡(日立ハイテクノロジーズ社の「CG−4100」)を用いた。
[PEB温度依存性]
PEB温度をそれぞれ89℃、90℃、91℃と変更した以外は、レジストパターンの形成と同様の操作を行うことにより、レジストパターンをそれぞれ形成した。走査型電子顕微鏡を用い、各PEB温度によるホールパターンの直径を測定した。横軸をPEB温度(℃)、縦軸をホールパターンの直径(nm)として、得られた測定値をプロットし、最小二乗法により算出した近似直線の傾きを求め、この傾きをPEB温度依存性(nm/℃)とした。この傾きが小さいほどPEB温度依存性に優れることを示す。PEB温度依存性は、6.00nm/℃以下である場合は「良好」と、6.00nm/℃を超える場合は「不良」と判断した。
Figure 2017044875
表5の結果から明らかなように、実施例では有機溶媒現像においてPEB温度依存性が良好であったのに対し、比較例では不良であった。
本発明の感放射線性樹脂組成物及びレジストパターン形成方法によれば、優れたPEB温度依存性を発揮してレジストパターンを形成することができる。本発明の重合体は、当該感放射線性樹脂組成物の重合体成分として好適に用いることができる。本発明の化合物は、当該重合体の単量体として好適に用いることができる。従って、これらは、今後さらに微細化が進行すると予想される半導体デバイス製造用に好適に用いることができる。

Claims (7)

  1. 下記式(1)で表される基を含む第1構造単位を有する重合体、
    感放射線性酸発生体、及び
    溶媒
    を含有する感放射線性樹脂組成物。
    Figure 2017044875
    (式(1)中、Rは、置換又は非置換の炭素数1〜20の3価の炭化水素基である。*は、上記第1構造単位における上記式(1)で表される基以外の部分と結合する部位を示す。)
  2. 上記第1構造単位が下記式(2)で表される請求項1に記載の感放射線性樹脂組成物。
    Figure 2017044875
    (式(2)中、Rは、水素原子、フッ素原子又は炭素数1〜20の1価の有機基である。Lは、単結合又は炭素数1〜20の2価の有機基である。Rは、上記式(1)と同義である。)
  3. 上記重合体が酸解離性基を含む第2構造単位をさらに有する請求項1又は請求項2に記載の感放射線性樹脂組成物。
  4. 上記重合体が、ラクトン構造、環状カーボネート構造、スルトン構造又はこれらの組み合わせを含む第3構造単位をさらに有する請求項1、請求項2又は請求項3に記載の感放射線性樹脂組成物。
  5. レジスト膜を形成する工程、
    上記レジスト膜を露光する工程、及び
    上記露光されたレジスト膜を現像する工程
    を備え、
    上記レジスト膜を請求項1から請求項4のいずれか1項に記載の感放射線性樹脂組成物により形成するレジストパターン形成方法。
  6. 下記式(2)で表される構造単位を有する重合体。
    Figure 2017044875
    (式(2)中、Rは、水素原子、フッ素原子又は炭素数1〜20の1価の有機基である。Lは、単結合又は炭素数1〜20の2価の有機基である。Rは、置換又は非置換の炭素数1〜20の3価の炭化水素基である。)
  7. 下記式(3)で表される化合物。
    Figure 2017044875
    (式(3)中、Rは、水素原子、フッ素原子又は炭素数1〜20の1価の有機基である。Lは、単結合又は炭素数1〜20の2価の有機基である。Rは、置換又は非置換の炭素数1〜20の3価の炭化水素基である。)
JP2015167291A 2015-08-26 2015-08-26 感放射線性樹脂組成物及びレジストパターン形成方法 Active JP6555011B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015167291A JP6555011B2 (ja) 2015-08-26 2015-08-26 感放射線性樹脂組成物及びレジストパターン形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015167291A JP6555011B2 (ja) 2015-08-26 2015-08-26 感放射線性樹脂組成物及びレジストパターン形成方法

Publications (2)

Publication Number Publication Date
JP2017044875A true JP2017044875A (ja) 2017-03-02
JP6555011B2 JP6555011B2 (ja) 2019-08-07

Family

ID=58211285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015167291A Active JP6555011B2 (ja) 2015-08-26 2015-08-26 感放射線性樹脂組成物及びレジストパターン形成方法

Country Status (1)

Country Link
JP (1) JP6555011B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017058421A (ja) * 2015-09-14 2017-03-23 Jsr株式会社 感放射線性樹脂組成物及びレジストパターン形成方法
CN114933574A (zh) * 2022-04-26 2022-08-23 上海如鲲新材料股份有限公司 一种2-羧基-4-降冰片内酯-5-乙酰氧基甲基丙烯酸酯的制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177410A (ja) * 1989-12-05 1991-08-01 Fuji Photo Film Co Ltd 高分子固体電解質
JPH08211531A (ja) * 1994-11-18 1996-08-20 Minnesota Mining & Mfg Co <3M> ハロゲン化銀エマルジョンの化学増感
JPH0959324A (ja) * 1995-06-14 1997-03-04 Kyowa Hakko Kogyo Co Ltd チオカーボネート基含有コポリマー及びそれを含む樹脂組成物
JP2002206020A (ja) * 2000-11-13 2002-07-26 Sanyo Chem Ind Ltd 湿気硬化型エポキシ樹脂組成物
JP2004323702A (ja) * 2003-04-25 2004-11-18 Hitachi Chem Co Ltd 光学用樹脂及びそれを用いた用途
JP2006291038A (ja) * 2005-04-11 2006-10-26 Hitachi Chem Co Ltd 封止用エポキシ樹脂成形材料及び電子部品装置
US20090068589A1 (en) * 2007-09-06 2009-03-12 Massachusetts Institute Of Technology Multi-tone resist compositions
JP2010134380A (ja) * 2008-12-08 2010-06-17 Jsr Corp 感放射線性樹脂組成物
JP2010276624A (ja) * 2009-04-28 2010-12-09 Jsr Corp 感放射線性樹脂組成物
JP2013003167A (ja) * 2011-06-10 2013-01-07 Shin Etsu Chem Co Ltd パターン形成方法
JP2014053115A (ja) * 2012-09-06 2014-03-20 Toyo Ink Sc Holdings Co Ltd 電池用組成物およびそれを用いたリチウム二次電池

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177410A (ja) * 1989-12-05 1991-08-01 Fuji Photo Film Co Ltd 高分子固体電解質
JPH08211531A (ja) * 1994-11-18 1996-08-20 Minnesota Mining & Mfg Co <3M> ハロゲン化銀エマルジョンの化学増感
JPH0959324A (ja) * 1995-06-14 1997-03-04 Kyowa Hakko Kogyo Co Ltd チオカーボネート基含有コポリマー及びそれを含む樹脂組成物
JP2002206020A (ja) * 2000-11-13 2002-07-26 Sanyo Chem Ind Ltd 湿気硬化型エポキシ樹脂組成物
JP2004323702A (ja) * 2003-04-25 2004-11-18 Hitachi Chem Co Ltd 光学用樹脂及びそれを用いた用途
JP2006291038A (ja) * 2005-04-11 2006-10-26 Hitachi Chem Co Ltd 封止用エポキシ樹脂成形材料及び電子部品装置
US20090068589A1 (en) * 2007-09-06 2009-03-12 Massachusetts Institute Of Technology Multi-tone resist compositions
JP2010134380A (ja) * 2008-12-08 2010-06-17 Jsr Corp 感放射線性樹脂組成物
JP2010276624A (ja) * 2009-04-28 2010-12-09 Jsr Corp 感放射線性樹脂組成物
JP2013003167A (ja) * 2011-06-10 2013-01-07 Shin Etsu Chem Co Ltd パターン形成方法
JP2014053115A (ja) * 2012-09-06 2014-03-20 Toyo Ink Sc Holdings Co Ltd 電池用組成物およびそれを用いたリチウム二次電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017058421A (ja) * 2015-09-14 2017-03-23 Jsr株式会社 感放射線性樹脂組成物及びレジストパターン形成方法
CN114933574A (zh) * 2022-04-26 2022-08-23 上海如鲲新材料股份有限公司 一种2-羧基-4-降冰片内酯-5-乙酰氧基甲基丙烯酸酯的制备方法

Also Published As

Publication number Publication date
JP6555011B2 (ja) 2019-08-07

Similar Documents

Publication Publication Date Title
JP6115377B2 (ja) 樹脂組成物及びレジストパターン形成方法
WO2018070327A1 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP6319001B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
WO2014148241A1 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物の製造方法
JP6648452B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP6152804B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物
JP2017122780A (ja) 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物
JP6561731B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、酸拡散制御剤及び化合物
JP2017227810A (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP2017181697A (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP2017156649A (ja) 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物
JP6668825B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP6273689B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、重合体、化合物及びその製造方法
JP6485240B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP6555011B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JPWO2013129266A1 (ja) フォトレジスト組成物、レジストパターン形成方法、化合物、酸発生剤及び光崩壊性塩基
JP6241226B2 (ja) フォトレジスト組成物、レジストパターン形成方法、重合体及び化合物
JP2017016068A (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP2017156650A (ja) 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤及び化合物
JP6528692B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物
JP6036545B2 (ja) フォトレジスト組成物、レジストパターン形成方法、重合体及び化合物
JP5915486B2 (ja) フォトレジスト組成物、レジストパターン形成方法及び重合体
JP2018049177A (ja) 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤、化合物及び化合物の製造方法
JP2017181696A (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP6304347B2 (ja) 樹脂組成物及びレジストパターン形成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190624

R150 Certificate of patent or registration of utility model

Ref document number: 6555011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250