[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2017042957A - Manufacturing method of pneumatic tire - Google Patents

Manufacturing method of pneumatic tire Download PDF

Info

Publication number
JP2017042957A
JP2017042957A JP2015165623A JP2015165623A JP2017042957A JP 2017042957 A JP2017042957 A JP 2017042957A JP 2015165623 A JP2015165623 A JP 2015165623A JP 2015165623 A JP2015165623 A JP 2015165623A JP 2017042957 A JP2017042957 A JP 2017042957A
Authority
JP
Japan
Prior art keywords
tire
reinforcing ring
rigidity
green tire
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015165623A
Other languages
Japanese (ja)
Inventor
健太 山村
Kenta Yamamura
健太 山村
元 佐藤
Hajime Sato
元 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2015165623A priority Critical patent/JP2017042957A/en
Publication of JP2017042957A publication Critical patent/JP2017042957A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a pneumatic tire, which is capable of shaping an inner face of a tire into a prescribed shape and capable of performing efficient shaping at the time of vulcanization in a vulcanization device having a bladder as an inner die.SOLUTION: When a green tire T is set inside a mold 1 and inserting and inflating a vulcanization bladder 2 to the inside of the green tire T to press the green tire T toward an outer side in a radial direction of the tire for vulcanization molding, a rigid reinforcing ring 3 having a recessed part 3A and a protruded part 3B on its outer peripheral surface is interposed between the green tire T and the vulcanization bladder 2 in a region corresponding to a tread part T1 of the green tire T to perform shaping of the inner face of the tire in the tread part T1 of the green tire T based on the recessed part 3A and the protruded part 3B of the rigid reinforcing ring 3.SELECTED DRAWING: Figure 3

Description

本発明は、空気入りタイヤの製造方法に関し、更に詳しくは、内型としてブラダーを備えた加硫装置において、タイヤ内面を所望の形状に型付けすることを可能にし、かつ加硫時に型付けを効率良く行うことを可能にした空気入りタイヤの製造方法に関する。   The present invention relates to a method for manufacturing a pneumatic tire, and more specifically, in a vulcanizing apparatus having a bladder as an inner mold, it is possible to mold a tire inner surface into a desired shape and efficiently mold during vulcanization. The present invention relates to a method of manufacturing a pneumatic tire that can be performed.

空気入りタイヤは、一般に、内型としてブラダーを備えた加硫装置により製造される。そのため、タイヤ内面はブラダーによって滑らかな形状に成形される。これに対して、タイヤ内面を所望の形状に型付けすることが求められている。例えば、走行時の直進安定性を高めるためにタイヤ内面にタイヤ周方向に延在するリブを形成したり、或いは、タイヤ内面に情報機器やセンサーデバイス等を設置する場合には、それらを設置するためのプラットホームをタイヤ内面に形成することが求められている。   A pneumatic tire is generally manufactured by a vulcanizing apparatus having a bladder as an inner mold. Therefore, the tire inner surface is molded into a smooth shape by the bladder. On the other hand, it is required to mold the tire inner surface into a desired shape. For example, in order to improve the straight running stability during running, ribs extending in the tire circumferential direction are formed on the tire inner surface, or when installing information equipment, sensor devices, etc. on the tire inner surface, install them. Therefore, it is required to form a platform for the tire on the inner surface.

タイヤ内面に型付けを行う手法として、ブラダーの外表面に凹凸を形成し、その凹凸形状をタイヤ内面に転写することが可能である(例えば、特許文献1参照)。しかしながら、ブラダーは収縮自在のゴム袋であるため、タイヤ内面を所望の形状に型付けすることが困難である。   As a method for performing molding on the tire inner surface, it is possible to form irregularities on the outer surface of the bladder and transfer the irregular shapes to the tire inner surface (see, for example, Patent Document 1). However, since the bladder is a shrinkable rubber bag, it is difficult to mold the tire inner surface into a desired shape.

また、タイヤ内面に型付けを行う他の手法として、内型として剛性中子を使用し、剛性中子の外表面に凹凸を形成し、その凹凸形状をタイヤ内面に転写することが可能である(例えば、特許文献2参照)。しかしながら、剛性中子を備えた加硫装置は汎用性が低く、設備コストが大きいという欠点がある。   In addition, as another method of performing molding on the tire inner surface, it is possible to use a rigid core as an inner mold, to form irregularities on the outer surface of the rigid core, and to transfer the irregular shape to the tire inner surface ( For example, see Patent Document 2). However, the vulcanizing apparatus provided with a rigid core has the disadvantages of low versatility and high equipment costs.

更に、タイヤ内面にデバイスを取付ける方法として、係合受け部の形状に対応する形状を有する型転写部材を生タイヤの内面に設置し、生タイヤを加硫成形した後に、加硫成形タイヤから型転写部材を取り除くことにより係合受け部を形成し、このような係合受け部を使用してデバイスを取り付けることが提案されている(例えば、特許文献3参照)。しかしながら、タイヤ内面において係合受け部毎に型転写部材を設置し、加硫後に型転写部材を取り外す作業は煩雑であり、タイヤ内面への型付け作業を効率良く行うことができない。   Further, as a method of attaching the device to the inner surface of the tire, a mold transfer member having a shape corresponding to the shape of the engagement receiving portion is installed on the inner surface of the raw tire, and after the raw tire is vulcanized and molded, the mold is formed from the vulcanized molded tire. It has been proposed to form an engagement receiving portion by removing the transfer member and attach a device using such an engagement receiving portion (see, for example, Patent Document 3). However, the operation of installing a mold transfer member for each engagement receiving portion on the inner surface of the tire and removing the mold transfer member after vulcanization is complicated, and it is not possible to efficiently perform the molding operation on the tire inner surface.

特開2015−20731号公報Japanese Patent Laying-Open No. 2015-20731 特開2006−224377号公報JP 2006-224377 A 特開2012−25319号公報JP 2012-25319 A

本発明の目的は、内型としてブラダーを備えた加硫設備において、タイヤ内面を所望の形状に型付けすることを可能にし、かつ加硫時にタイヤ内面の型付けを効率良く行うことを可能にした空気入りタイヤの製造方法を提供することにある。   An object of the present invention is to provide an air that enables a tire inner surface to be molded into a desired shape in a vulcanization facility provided with a bladder as an inner mold, and allows the tire inner surface to be efficiently molded during vulcanization. It is in providing the manufacturing method of a entering tire.

上記目的を達成するための本発明の空気入りタイヤの製造方法は、グリーンタイヤを金型内にセットし、前記グリーンタイヤの内側に加硫用ブラダーを挿入して膨張させることにより該グリーンタイヤをタイヤ径方向外側へ押し付けて加硫成形するとき、前記グリーンタイヤのトレッド部に相当する領域において前記グリーンタイヤと前記加硫用ブラダーとの間に、その外周面に凹部及び凸部を有する剛性強化環を介在させることで、該剛性強化環の凹部及び凸部に基づいて前記グリーンタイヤのトレッド部におけるタイヤ内面に型付けを行うことを特徴とするものである。   In order to achieve the above object, a method for producing a pneumatic tire according to the present invention comprises setting a green tire in a mold, inserting a vulcanizing bladder inside the green tire and inflating the green tire. When the vulcanization molding is performed by pressing toward the outer side in the tire radial direction, the rigid reinforcement having a recess and a protrusion on the outer peripheral surface between the green tire and the vulcanization bladder in a region corresponding to the tread portion of the green tire. By interposing the ring, the inner surface of the tire in the tread portion of the green tire is molded on the basis of the concave portion and the convex portion of the rigidity reinforcing ring.

本発明では、凹部及び凸部を有する剛性強化環を用いることによりタイヤ内面に様々な形状を型付けすることが可能となり、しかも、このような剛性強化環は内型としてブラダーを備えた加硫設備において使用することが可能であって汎用性が高い。また、上記剛性強化環を用いた場合、加硫時にタイヤ内面の型付けを効率良く行うことができる。   In the present invention, it becomes possible to mold various shapes on the inner surface of the tire by using a rigid reinforcing ring having a concave portion and a convex portion, and such a rigid reinforcing ring has a bladder as an inner mold. It is possible to use in and is highly versatile. Moreover, when the said rigidity reinforcement ring is used, the type | molding of a tire inner surface can be performed efficiently at the time of vulcanization | cure.

本発明において、剛性強化環は周方向に延在する補強線材を内包することが好ましい。剛性強化環が補強線材を内包することにより、剛性強化環の周方向の剛性が確保され、タイヤ内面の輪郭をしっかりと形成することができる。   In the present invention, the rigid reinforcing ring preferably includes a reinforcing wire extending in the circumferential direction. By including the reinforcing wire in the rigidity reinforcing ring, the rigidity in the circumferential direction of the rigidity reinforcing ring is secured, and the contour of the tire inner surface can be firmly formed.

剛性強化環の凹部及び凸部は周方向に沿って連続的に延在することが好ましい。これにより、剛性強化環の凹部及び凸部に対応する凸部及び凹部をタイヤ周方向に沿って連続的に形成することができる。   It is preferable that the concave portion and the convex portion of the rigid reinforcing ring extend continuously along the circumferential direction. Thereby, the convex part and recessed part corresponding to the recessed part and convex part of a rigidity reinforcement ring can be continuously formed along a tire circumferential direction.

また、剛性強化環の凹部に追加型として補助環を介在させることが好ましい。追加型は様々な型付けのバリエーションに対応できる柔軟性を有すると共に、追加型の使用によって部品やセンサーなどをタイヤ内面に取り付けるための形状加工を加硫時に行なうことが可能となる。   Moreover, it is preferable to interpose an auxiliary ring as an additional mold in the recess of the rigid reinforcing ring. The additional mold has flexibility to cope with various types of molding, and by using the additional mold, it is possible to perform shape processing for attaching components, sensors, and the like to the tire inner surface during vulcanization.

更には、剛性強化環の両端部が幅方向外側に向かって徐々に薄くなるように該両端部において加硫用ブラダーと当接する面に傾斜面を設けることが好ましい。また、剛性強化環は深さが異なる複数種類の凹部を有すると共に該凹部の深さに応じて厚さを変化させた厚肉部及び薄肉部を有する場合、これら厚肉部と薄肉部との段差部において加硫用ブラダーと当接する面に傾斜面を設けることが好ましい。このような剛性強化環に傾斜面を設けることにより、加硫用ブラダーが剛性強化環に対して段差なく当接するようになり、グリーンタイヤに対して圧力が均等に伝わるので、熱伝導の遅れが抑制されて加硫に要する時間を短縮することが可能となる。また、剛性強化環に凹部の深さに応じて厚さを変化させた厚肉部及び薄肉部を設けることにより、剛性強化環の厚さが全体的に薄くなるので、このことも加硫時間の短縮に寄与する。   Furthermore, it is preferable to provide an inclined surface on the surface that contacts the vulcanizing bladder at both ends so that both ends of the rigidity reinforcing ring gradually become thinner toward the outside in the width direction. Further, when the rigid reinforcing ring has a plurality of types of concave portions having different depths and has a thick portion and a thin portion whose thickness is changed according to the depth of the concave portion, It is preferable to provide an inclined surface on the surface that contacts the vulcanizing bladder at the stepped portion. By providing an inclined surface on such a rigid reinforcing ring, the vulcanizing bladder comes into contact with the rigid reinforcing ring without a step, and pressure is evenly transmitted to the green tire, so there is a delay in heat conduction. It is suppressed and the time required for vulcanization can be shortened. In addition, the thickness of the rigid reinforcing ring is reduced overall by providing the rigid reinforcing ring with a thick part and a thin part with the thickness changed in accordance with the depth of the concave portion. Contributes to shortening.

本発明の空気入りタイヤの製造方法に使用される加硫装置の一例を示す子午線断面図である。It is meridian sectional drawing which shows an example of the vulcanization | cure apparatus used for the manufacturing method of the pneumatic tire of this invention. 図1の加硫装置において加硫時に膨張した状態にある加硫用ブラダーを示す断面図である。It is sectional drawing which shows the vulcanization bladder in the state expanded at the time of vulcanization in the vulcanizer of FIG. 図1の加硫装置における剛性強化環を示す斜視図である。It is a perspective view which shows the rigidity reinforcement ring in the vulcanizer of FIG. 図3の剛性強化環を示す断面図である。It is sectional drawing which shows the rigidity reinforcement ring of FIG. 剛性強化環の変形例を示す断面図である。It is sectional drawing which shows the modification of a rigidity reinforcement ring. 剛性強化環の他の変形例を示す断面図である。It is sectional drawing which shows the other modification of a rigidity reinforcement ring. 剛性強化環の更に他の変形例を示す断面図である。It is sectional drawing which shows the further another modification of a rigidity reinforcement ring. 本発明の空気入りタイヤの製造方法で好適に使用される追加型の一例を示す斜視図である。It is a perspective view which shows an example of the additional type | mold suitably used with the manufacturing method of the pneumatic tire of this invention. 図8の追加型を示す断面図である。It is sectional drawing which shows the additional type | mold of FIG.

以下、本発明の構成について添付の図面を参照しながら詳細に説明する。図1は、加硫成形時の金型1、加硫用ブラダー2及びグリーンタイヤTを模式的に示している。図1では、加硫用ブラダー2が膨張することにより、グリーンタイヤTが金型1の内面に押し付けられた様子を示している。また、グリーンタイヤTは、トレッド部T1、サイド部T2及びビード部T3からなる。   Hereinafter, the configuration of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 schematically shows a mold 1, a vulcanizing bladder 2, and a green tire T during vulcanization molding. FIG. 1 shows a state in which the green tire T is pressed against the inner surface of the mold 1 by the expansion of the vulcanizing bladder 2. The green tire T includes a tread portion T1, a side portion T2, and a bead portion T3.

本発明では、グリーンタイヤTのトレッド部T1に相当する領域においてグリーンタイヤTと加硫用ブラダー2との間に剛性強化環3が配置される。剛性強化環3は円筒形の環であり、その周方向に所定量の引張り変形をさせるのに要する応力が、周方向に所定量の圧縮変形をさせるのに要する応力よりも大きいことが必要である。即ち、剛性強化環3は、タイヤ周方向に伸長し難く、かつ圧縮しやすい性質を有する。   In the present invention, the rigidity reinforcing ring 3 is disposed between the green tire T and the vulcanizing bladder 2 in a region corresponding to the tread portion T1 of the green tire T. The rigidity reinforcing ring 3 is a cylindrical ring, and it is necessary that the stress required for a predetermined amount of tensile deformation in the circumferential direction is greater than the stress required for a predetermined amount of compressive deformation in the circumferential direction. is there. That is, the rigidity reinforcing ring 3 has a property that it is difficult to extend in the tire circumferential direction and is easily compressed.

剛性強化環3を加硫用ブラダー2の外周に外嵌めすることにより、加硫成形時に加硫用ブラダー2が膨張するとき、剛性強化環3が周方向に伸長し難くその直径の変化を抑制するので、加硫用ブラダー2の外径、とりわけトレッド部T1が意に反して丸く膨らむのを抑制し、加硫用ブラダー2の外周形状を制限する。即ち、剛性強化環3を使用することにより、加硫成形時に加硫用ブラダー2が膨張するときのタイヤの内周面の形状を限定し、トレッド部T1に相当する領域におけるタイヤ径方向の厚さを調整し寸法精度を高くすることが可能となる。このため剛性強化環3は、そのタイヤ周方向の引張り剛性が、加硫用ブラダー2のタイヤ周方向の引張り剛性よりも大きいことが好ましい。   By fitting the rigid reinforcing ring 3 to the outer periphery of the vulcanizing bladder 2, when the vulcanizing bladder 2 expands during vulcanization molding, the rigid reinforcing ring 3 is difficult to extend in the circumferential direction and suppresses changes in its diameter. Therefore, the outer diameter of the vulcanizing bladder 2, in particular, the tread portion T <b> 1 is prevented from curling up unexpectedly and the outer peripheral shape of the vulcanizing bladder 2 is limited. That is, by using the rigidity reinforcing ring 3, the shape of the inner peripheral surface of the tire when the vulcanizing bladder 2 expands during vulcanization molding is limited, and the thickness in the tire radial direction in the region corresponding to the tread portion T1. It is possible to increase the dimensional accuracy by adjusting the height. For this reason, it is preferable that the rigidity reinforcement ring 3 has a larger tensile rigidity in the tire circumferential direction than that of the vulcanizing bladder 2 in the tire circumferential direction.

また、剛性強化環3に外嵌めされた加硫用ブラダー2は、タイヤ径方向への膨張が制限されるため、剛性強化環3の開口部、即ちタイヤ幅方向へ膨張しやすくなる。これにより従来、金型の内面へ接触するのが比較的遅く押付け力を十分に付与することが難しいため、加硫時間が長くなる原因の一つであったグリーンタイヤのショルダー領域に対して十分に加熱・加圧処理を施すことが可能となる。即ち、剛性強化環3を使用することにより、タイヤショルダー部の厚さを薄くして寸法精度を高くすると共に、加硫時間を短くすることが可能となる。   Further, since the vulcanizing bladder 2 fitted on the rigidity reinforcing ring 3 is restricted from expanding in the tire radial direction, it is easy to expand in the opening of the rigidity reinforcing ring 3, that is, in the tire width direction. As a result, it is relatively slow to make contact with the inner surface of the mold, and it is difficult to apply sufficient pressing force. Can be subjected to heating and pressure treatment. That is, by using the rigidity reinforcing ring 3, it is possible to reduce the thickness of the tire shoulder portion to increase the dimensional accuracy and to shorten the vulcanization time.

剛性強化環3は、その周方向の引張り応力が大きいことに加え、周方向の圧縮応力が小さいという特徴を有する。タイヤの加硫成形の初期段階では、タイヤ内面に近いカーカスやベルト層等のゴムの加硫が進行し、次の中期段階以降にタイヤ内部を含むタイヤ断面全体の加硫が進行する。未加硫ゴムの加硫が進行すると熱膨張によりゴムの体積が増大する。このため、中期段階以降にタイヤ断面全体の加硫が進行すると、熱膨張のために初期段階で加硫が進行したタイヤ内面に近い加硫ゴムは、タイヤ内腔の周長を縮小させる必要がある。本発明の剛性強化環3は、周方向の圧縮応力が小さいため、中期段階以降の加硫ゴムの挙動に追従することができ、バックリング等の故障が起きるのを防ぐことが可能となる。   The rigidity reinforcing ring 3 has a feature that in addition to a large tensile stress in the circumferential direction, a compressive stress in the circumferential direction is small. In the initial stage of tire vulcanization molding, vulcanization of rubber such as carcass and belt layer close to the tire inner surface proceeds, and vulcanization of the entire tire cross section including the inside of the tire proceeds after the next intermediate stage. As the vulcanization of the unvulcanized rubber proceeds, the volume of the rubber increases due to thermal expansion. For this reason, when vulcanization of the entire tire cross section proceeds after the middle stage, vulcanized rubber close to the tire inner surface where vulcanization has progressed in the initial stage due to thermal expansion needs to reduce the circumference of the tire lumen. is there. Since the rigidity-enhanced ring 3 of the present invention has a small circumferential compressive stress, it can follow the behavior of the vulcanized rubber after the middle stage, and can prevent a failure such as buckling from occurring.

剛性強化環3は円筒形の環であり、その寸法は特に限定されるものではないが、剛性強化環3の外径が加硫したタイヤの内径と略同等で、剛性強化環3の幅が加硫したグリーンタイヤTのトレッド部T1の幅と略同等であるとよい。これにより、グリーンタイヤTのトレッド部T1に相当する領域の径方向内側の形状を調整することが可能となる。   The rigidity reinforcing ring 3 is a cylindrical ring, and the dimensions thereof are not particularly limited. However, the outer diameter of the rigidity reinforcing ring 3 is substantially equal to the inner diameter of the vulcanized tire, and the width of the rigidity reinforcing ring 3 is It is preferable that the width of the tread portion T1 of the vulcanized green tire T is substantially equal. As a result, it is possible to adjust the radially inner shape of the region corresponding to the tread portion T1 of the green tire T.

剛性強化環3は周方向の引張り応力が圧縮応力より大きい特徴を有するものであれば、その構成が特に制限されるものではない。剛性強化環3を構成する材料としては例えば加硫ゴムや樹脂等がある。剛性強化環3の厚さは、特に制限されるものではないが、好ましくは、1〜10mm、より好ましくは2〜6mmであると良い。剛性強化環3の厚さが1mm未満であると、加硫成形時におけるタイヤ内周面の形状を調整する作用が十分に得られない虞がある。また、剛性強化環3の厚さが10mmを超えると、加硫成形の中期段階以降に周長を縮小させる作用が十分に得られない虞がある。さらに、加硫されるタイヤの形状や大きさ等に応じて剛性強化環3の最適な厚さは一律ではない。   The configuration of the rigid reinforcing ring 3 is not particularly limited as long as the tensile stress in the circumferential direction is greater than the compressive stress. Examples of the material constituting the rigidity reinforcing ring 3 include vulcanized rubber and resin. The thickness of the rigidity reinforcing ring 3 is not particularly limited, but is preferably 1 to 10 mm, more preferably 2 to 6 mm. If the thickness of the rigid reinforcing ring 3 is less than 1 mm, the effect of adjusting the shape of the tire inner peripheral surface during vulcanization molding may not be sufficiently obtained. On the other hand, if the thickness of the rigid reinforcing ring 3 exceeds 10 mm, there is a possibility that the effect of reducing the peripheral length after the middle stage of vulcanization molding cannot be obtained sufficiently. Furthermore, the optimal thickness of the rigid reinforcing ring 3 is not uniform depending on the shape and size of the tire to be vulcanized.

また、剛性強化環3は周方向に延在する補強線材4(図4〜図7参照)を内包することが好ましい。この補強線材4としては、有機繊維コード、スチールコードが挙げられる。有機繊維コードとしては、例えばポリエステル繊維コード、ポリアミド繊維コード、レーヨン繊維コード、アラミド繊維コード、ポリエチレンナフタレート繊維コード、ポリオレフィンケトン繊維コード、アクリル繊維コード等が例示される。これら繊維コードの撚り構造は、剛性強化環3にしたとき所定の引張り応力及び圧縮応力が得られるように適宜決めることが可能となる。また、補強線材4に適当な張力をかけながらタイヤ周方向に螺旋状に巻回することにより補強体を形成する。補強線材4の撚り構造及び巻回時の張力により、剛性強化環3の周方向の引張り応力を調整することが可能となる。   The rigid reinforcing ring 3 preferably includes a reinforcing wire 4 (see FIGS. 4 to 7) extending in the circumferential direction. Examples of the reinforcing wire 4 include an organic fiber cord and a steel cord. Examples of organic fiber cords include polyester fiber cords, polyamide fiber cords, rayon fiber cords, aramid fiber cords, polyethylene naphthalate fiber cords, polyolefin ketone fiber cords, and acrylic fiber cords. The twisted structure of these fiber cords can be appropriately determined so that a predetermined tensile stress and compressive stress can be obtained when the rigid reinforcing ring 3 is used. Further, a reinforcing body is formed by winding the reinforcing wire 4 in a spiral shape in the tire circumferential direction while applying an appropriate tension. The tensile stress in the circumferential direction of the rigid reinforcing ring 3 can be adjusted by the twisted structure of the reinforcing wire 4 and the tension at the time of winding.

図2は本発明の空気入りタイヤの製造方法に使用される加硫装置において加硫時に膨張した状態にある加硫用ブラダー2を示し、図3及び図4はその加硫装置における剛性強化環3を示すものである。グリーンタイヤTと加硫用ブラダー2との間に介在する剛性強化環3の外周面には凹部3A及び凸部3Bが形成されている。図3に示すように、剛性強化環3の凹部3A及び凸部3Bは周方向に沿って連続的に延在していることが好ましい。また、図示はしていないが、剛性強化環3は周方向に沿って断続的に凹部3A及び凸部3Bを形成することもできる。   FIG. 2 shows a vulcanizing bladder 2 that is in an expanded state during vulcanization in a vulcanizing apparatus used in the method for producing a pneumatic tire of the present invention, and FIGS. 3 and 4 show a rigid reinforcing ring in the vulcanizing apparatus. 3 is shown. Concave portions 3 </ b> A and convex portions 3 </ b> B are formed on the outer peripheral surface of the rigid reinforcing ring 3 interposed between the green tire T and the vulcanizing bladder 2. As shown in FIG. 3, it is preferable that the concave portion 3 </ b> A and the convex portion 3 </ b> B of the rigidity reinforcing ring 3 continuously extend along the circumferential direction. Moreover, although not shown in figure, the rigidity reinforcement ring 3 can also form the recessed part 3A and the convex part 3B intermittently along the circumferential direction.

図4に示すように、剛性強化環3には複数の補強線材4が埋設されている。これら補強線材4は凹部3Aの底面及び凸部3Bの頂面に沿って配置されている。また、図示はしていないが、別の実施形態として補強線材4を剛性強化環3の内面に沿って配置することもできる。   As shown in FIG. 4, a plurality of reinforcing wires 4 are embedded in the rigid reinforcing ring 3. These reinforcing wires 4 are disposed along the bottom surface of the recess 3A and the top surface of the projection 3B. Although not shown, the reinforcing wire 4 can be arranged along the inner surface of the rigid reinforcing ring 3 as another embodiment.

なお、剛性強化環3の凹部3Aの深さは特に限定されるものではないが、少なくとも凹部3Aの深さが0.5mm以上であり、好ましくは1mm〜5mmであると良い。また、剛性強化環3の凹部3Aの幅は、特に限定されるものではない。   The depth of the recess 3A of the rigidity reinforcing ring 3 is not particularly limited, but at least the depth of the recess 3A is 0.5 mm or more, and preferably 1 mm to 5 mm. Further, the width of the recess 3A of the rigidity reinforcing ring 3 is not particularly limited.

図5〜図7は剛性強化環3の変形例を示す断面図である。図5において、剛性強化環3には深さが異なる複数の種類の凹部3Aが形成されている。より具体的には、幅方向中央部に位置する凹部3Aが最も深くなっており、その両側の他の凹部3Aは相対的に浅くなっている。   5-7 is sectional drawing which shows the modification of the rigidity reinforcement ring 3. As shown in FIG. In FIG. 5, a plurality of types of recesses 3 </ b> A having different depths are formed in the rigidity reinforcing ring 3. More specifically, the recess 3A located at the center in the width direction is deepest, and the other recesses 3A on both sides thereof are relatively shallow.

図6においては、図5の例と同様に、剛性強化環3には深さが異なる複数の種類の凹部3Aが形成されている。また、それぞれの凹部3Aの深さに応じて剛性強化環3の厚さが変化している。つまり、凹部3Aが深い部分では厚さt1を有する厚肉部3Cを構成し、凹部3Aが浅い部位では厚さt2を有する薄肉部3Dを構成している。厚肉部3Cと薄肉部3Dとが隣接する箇所には段差部が形成されるが、この段差部において加硫用ブラダー2と当接する面には傾斜面3Eが形成されている。更に、剛性強化環3の幅方向断面において、剛性強化環3の両端部は幅方向外側に向かって徐々に薄くなっており、その両端部において加硫用ブラダー2と当接する面に傾斜面3Fが設けられている。なお、剛性強化環3の両端部における傾斜面3Fは図4や図5の例にも適用可能である。   In FIG. 6, as in the example of FIG. 5, a plurality of types of recesses 3 </ b> A having different depths are formed in the rigidity reinforcing ring 3. Further, the thickness of the rigid reinforcing ring 3 changes according to the depth of each recess 3A. That is, a thick portion 3C having a thickness t1 is formed in a portion where the recess 3A is deep, and a thin portion 3D having a thickness t2 is formed in a portion where the recess 3A is shallow. A step portion is formed at a location where the thick portion 3C and the thin portion 3D are adjacent to each other, and an inclined surface 3E is formed on a surface of the step portion that contacts the vulcanizing bladder 2. Further, in the cross section in the width direction of the rigidity reinforcing ring 3, both end portions of the rigidity reinforcing ring 3 are gradually thinner toward the outer side in the width direction, and inclined surfaces 3F are formed on the surfaces contacting the vulcanizing bladder 2 at the both end portions. Is provided. Note that the inclined surfaces 3F at both ends of the rigid reinforcing ring 3 can also be applied to the examples of FIGS.

様々な型付けのバリエーションに対応する方法として、剛性強化環3の凹部3Aに剛性強化環3に追加型6として補助環を介在させることも可能である。図7は、剛性強化環3に追加型6として補助環を介在させる場合の剛性強化環3の断面図である。追加型6の断面形状に応じて凹部3Aが形成されており、追加型6が剛性強化環3の凹部3Aに嵌合する。グリーンタイヤTの加硫成形時に、剛性強化環3の凹部3Aに追加型6を嵌合させて使用する。   As a method for dealing with various types of molds, it is possible to interpose an auxiliary ring as an additional mold 6 in the rigid reinforcing ring 3 in the recess 3A of the rigid reinforcing ring 3. FIG. 7 is a cross-sectional view of the rigidity reinforcing ring 3 when an auxiliary ring is interposed as the additional mold 6 in the rigidity reinforcing ring 3. A recess 3 </ b> A is formed according to the cross-sectional shape of the additional die 6, and the additional die 6 is fitted into the recess 3 </ b> A of the rigidity reinforcing ring 3. At the time of vulcanization molding of the green tire T, the additional die 6 is fitted into the recess 3A of the rigidity reinforcing ring 3 and used.

追加型6は、図8に示すように、周方向に沿って連続的に延在する凹部6A及び凸部6Bが形成されており、図示はしていないが、追加型6は周方向に沿って断続的に凹部6A及び凸部6Bを形成することもできる。図9に示すように、追加型6は周方向に延在する複数の補強線材4を内包することが好ましい。この補強線材4は追加型6の凹部6Aの底面及び凸部6Bの頂面に沿って配置されている。図示はしていないが、補強線材4は追加型6の内面に沿って配置することもできる。この追加型6を構成する補強線材4としては、剛性強化環3と同様の有機繊維コード、スチールコードを使用することが好ましい。   As shown in FIG. 8, the additional die 6 is formed with concave portions 6 </ b> A and convex portions 6 </ b> B that continuously extend in the circumferential direction. Although not illustrated, the additional die 6 is arranged along the circumferential direction. Thus, the recesses 6A and the protrusions 6B can be formed intermittently. As shown in FIG. 9, the additional die 6 preferably includes a plurality of reinforcing wire members 4 extending in the circumferential direction. The reinforcing wire 4 is disposed along the bottom surface of the concave portion 6A and the top surface of the convex portion 6B of the additional die 6. Although not shown, the reinforcing wire 4 can be disposed along the inner surface of the additional die 6. As the reinforcing wire 4 constituting the additional die 6, it is preferable to use the same organic fiber cord and steel cord as those of the rigid reinforcing ring 3.

なお、追加型6の厚さは、特に制限されるものではないが、剛性強化環3の厚さが10mmを超えると、加硫成形の中期段階以降に周長を縮小させる作用が十分に得られない虞があることから、剛性強化環3の凹部3Aに追加型6を介在させた状態での全体の厚さが10mmを超えない範囲で追加型6の厚さを規定し、好ましくは3〜8mmであると良い。   The thickness of the additional die 6 is not particularly limited. However, when the thickness of the rigid reinforcing ring 3 exceeds 10 mm, the effect of reducing the circumference after the middle stage of vulcanization molding is sufficiently obtained. Therefore, the thickness of the additional die 6 is defined in a range where the total thickness in the state where the additional die 6 is interposed in the recess 3A of the rigidity reinforcing ring 3 does not exceed 10 mm, preferably 3 It is good that it is ˜8 mm.

以下、剛性強化環3を使用した空気入りタイヤの製造方法について説明する。本発明の空気入りタイヤの製造方法におけるタイヤの加硫方法は、グリーンタイヤTのトレッド部T1に相当する領域においてグリーンタイヤTと加硫用ブラダー2との間に剛性強化環3を配置した状態で金型1内にセットする。   Hereinafter, the manufacturing method of the pneumatic tire which uses the rigidity reinforcement ring 3 is demonstrated. The tire vulcanizing method in the method for producing a pneumatic tire according to the present invention is a state in which the rigidity reinforcing ring 3 is disposed between the green tire T and the vulcanizing bladder 2 in a region corresponding to the tread portion T1 of the green tire T. Set in the mold 1.

また、追加型6として補助環を介在させる場合、剛性強化環3の凹部3Aに追加型6を嵌合させる。その状態で、剛性強化環3をグリーンタイヤTと加硫用ブラダー2との間に配置し、金型1内にセットすることも可能である。   Further, when the auxiliary ring is interposed as the additional mold 6, the additional mold 6 is fitted into the recess 3 </ b> A of the rigidity reinforcing ring 3. In this state, the rigid reinforcing ring 3 can be disposed between the green tire T and the vulcanizing bladder 2 and set in the mold 1.

次に、加硫用ブラダー2を膨張させることにより、金型1に対してグリーンタイヤTをタイヤ径方向外側へ押し付ける。加硫用ブラダー2が膨張した状態において、グリーンタイヤTのトレッド部T1に相当する領域では剛性強化環3の凹部3A及び凸部3Bに基づいて型が形成され、グリーンタイヤTのトレッド部T1におけるタイヤ内面に型付けを行う。このように、剛性強化環3の単体で又は剛性強化環3と追加型6を併せて使用してグリーンタイヤTの加硫成形を行う。   Next, the vulcanizing bladder 2 is expanded to press the green tire T against the mold 1 outward in the tire radial direction. In a state where the vulcanizing bladder 2 is inflated, a mold is formed in the region corresponding to the tread portion T1 of the green tire T based on the concave portion 3A and the convex portion 3B of the rigidity reinforcing ring 3, and in the tread portion T1 of the green tire T Mold the tire inner surface. Thus, the vulcanization molding of the green tire T is performed using the rigidity reinforcing ring 3 alone or in combination with the rigidity reinforcing ring 3 and the additional die 6.

上述した空気入りタイヤの製造方法において、グリーンタイヤTのトレッド部T1に相当する領域においてグリーンタイヤTと加硫用ブラダー2との間に、その外周面に凹部3A及び凸部3Bを有する剛性強化環3を介在させ、剛性強化環3の凹部3A及び凸部3Bに基づいてグリーンタイヤTのトレッド部T1におけるタイヤ内面に型付けを行うことにより、タイヤ内面に様々な形状を型付けすることが可能となる。しかも、このような剛性強化環3は内型としてブラダーを備えた加硫設備において使用することが可能であって汎用性が高い。また、上記剛性強化環3を用いた場合、加硫時にタイヤ内面の型付けを効率良く行うことができる。   In the method for manufacturing a pneumatic tire described above, rigidity enhancement having a concave portion 3A and a convex portion 3B on the outer circumferential surface between the green tire T and the vulcanizing bladder 2 in a region corresponding to the tread portion T1 of the green tire T. By interposing the ring 3 and molding the tire inner surface in the tread portion T1 of the green tire T based on the concave portion 3A and the convex portion 3B of the rigid reinforcing ring 3, it is possible to mold various shapes on the tire inner surface. Become. Moreover, such a rigidity-enhanced ring 3 can be used in a vulcanization facility having a bladder as an inner mold, and is highly versatile. Moreover, when the said rigidity reinforcement ring 3 is used, the type | molding of a tire inner surface can be performed efficiently at the time of a vulcanization | cure.

また、剛性強化環3は周方向に延在する補強線材4を内包することが好ましい。これにより、剛性強化環3の周方向の剛性が確保され、タイヤ内面の輪郭をしっかりと形成することができる。   The rigid reinforcing ring 3 preferably includes a reinforcing wire 4 extending in the circumferential direction. Thereby, the rigidity of the circumferential direction of the rigidity reinforcement ring 3 is ensured, and the outline of a tire inner surface can be formed firmly.

剛性強化環3の凹部3A及び凸部3Bは周方向に沿って連続的に延在することが好ましい。これにより、剛性強化環3の凹部3A及び凸部3Bに対応する凹部及び凸部をタイヤ周方向に沿って連続的に形成することができる。   It is preferable that the concave portion 3A and the convex portion 3B of the rigid reinforcing ring 3 continuously extend along the circumferential direction. Thereby, the recessed part and convex part corresponding to the recessed part 3A and convex part 3B of the rigidity reinforcement ring 3 can be continuously formed along a tire circumferential direction.

剛性強化環3の凹部3Aに追加型6として補助環を介在させることが好ましい。追加型6は様々な型付けのバリエーションに対応できる柔軟性を有すると共に、追加型6の使用によって部品やセンサーなどをタイヤ内面に取り付けるための形状加工を加硫時に行なうことが可能となる。   It is preferable to interpose an auxiliary ring as the additional die 6 in the recess 3A of the rigid reinforcing ring 3. The additional mold 6 has flexibility to cope with various types of molding, and by using the additional mold 6, it is possible to perform shape processing for attaching components, sensors, and the like to the tire inner surface during vulcanization.

更には、剛性強化環3の両端部が幅方向外側に向かって徐々に薄くなるように該両端部において加硫用ブラダー2と当接する面に傾斜面3Fを設けることが好ましい。また、剛性強化環3は深さが異なる複数種類の凹部3Aを有すると共に凹部3Aの深さに応じて厚さを変化させた厚肉部3C及び薄肉部3Dを有する場合、これら厚肉部3Cと薄肉部3Dとの段差部において加硫用ブラダー2と当接する面に傾斜面3Eを設けることが好ましい。このような剛性強化環3に傾斜面3E,3Fを設けることにより、加硫用ブラダー2が剛性強化環3に対して段差なく当接するようになり、グリーンタイヤTに対して圧力が均等に伝わるので、熱伝導の遅れが抑制されて加硫に要する時間を短縮することが可能となる。また、剛性強化環3に凹部3Aの深さに応じて厚さを変化させた厚肉部3C及び薄肉部3Dを設けることにより、剛性強化環3の厚さが全体的に薄くなるので、このことも加硫時間の短縮に寄与する。   Furthermore, it is preferable to provide the inclined surfaces 3F on the surfaces that come into contact with the vulcanizing bladder 2 at both ends so that both ends of the rigidity reinforcing ring 3 become gradually thinner toward the outside in the width direction. Further, when the rigid reinforcing ring 3 has a plurality of types of recesses 3A having different depths and has a thick portion 3C and a thin portion 3D whose thickness is changed according to the depth of the recess 3A, these thick portions 3C It is preferable to provide the inclined surface 3E on the surface that contacts the vulcanizing bladder 2 at the step between the thin portion 3D and the thin portion 3D. By providing the inclined surfaces 3E and 3F on such a rigid reinforcing ring 3, the vulcanizing bladder 2 comes into contact with the rigid reinforcing ring 3 without any step, and the pressure is uniformly transmitted to the green tire T. Therefore, the delay in heat conduction is suppressed, and the time required for vulcanization can be shortened. Further, by providing the rigid reinforcing ring 3 with the thick portion 3C and the thin portion 3D, the thickness of which is changed according to the depth of the recess 3A, the thickness of the rigid reinforcing ring 3 is reduced overall. This also contributes to shortening of the vulcanization time.

以下、実施例により本発明を更に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further, the scope of the present invention is not limited to these Examples.

同一仕様の空気入りタイヤ(タイヤサイズ205/55R16)の製造するとき、従来例1〜2においてはブラダー表面加工により又は剛性中子を使用して加硫成形を行い、実施例1〜2においては剛性強化環を使用して加硫成形を行って、従来例1〜2及び実施例1〜2の空気入りタイヤを製造した。   When manufacturing pneumatic tires of the same specification (tire size 205 / 55R16), vulcanization is performed by bladder surface processing or using a rigid core in the conventional examples 1 and 2, and in the examples 1 and 2. The pneumatic tires of Conventional Examples 1-2 and Examples 1-2 were manufactured by performing vulcanization molding using a rigid reinforcing ring.

なお、実施例1の剛性強化環においては、剛性強化環の両端部に傾斜面を設けていない(図5:段差大)。実施例2の剛性強化環においては、剛性強化環の凹部の深さに応じて厚さを変化させた厚肉部と薄肉部との段差部において加硫用ブラダーと当接する面に傾斜面を設けると共に、剛性強化環の両端部が幅方向外側に向かって徐々に薄くなるように該両端部において加硫用ブラダーと当接する面に傾斜面を設けた(図6:段差小)。   In addition, in the rigidity reinforcement ring of Example 1, the inclined surface is not provided in the both ends of the rigidity reinforcement ring (FIG. 5: level | step difference large). In the rigidity-enhanced ring of Example 2, an inclined surface is provided on the surface that contacts the vulcanizing bladder at the stepped portion between the thick-walled portion and the thin-walled portion whose thickness is changed according to the depth of the recess of the rigid-reinforced ring. At the same time, inclined surfaces were provided on the surfaces that contact the vulcanizing bladder at both ends so that the both ends of the rigid reinforcing ring gradually become thinner toward the outside in the width direction (FIG. 6: small step).

これら試験タイヤについて、型付け精度、製造コスト、加硫方法の汎用性、熱伝導の効率性の各項目に関して評価を行い、その結果を表1に示した。   These test tires were evaluated in terms of molding accuracy, manufacturing cost, versatility of the vulcanization method, and efficiency of heat conduction, and the results are shown in Table 1.

型付け精度、加硫方法の汎用性、熱伝導の効率性:
上記の各項目が優れている場合を「◎」で示し、良好である場合を「○」で示し、悪い場合を「×」で示した。
Molding accuracy, versatility of vulcanization method, efficiency of heat conduction:
The case where each of the above items is excellent is indicated by “◎”, the case where it is good is indicated by “◯”, and the case where it is bad is indicated by “X”.

製造コスト:
製造コストが非常に低く抑えられている場合を「◎」で示し、製造コストが低い場合を「○」で示し、高い場合を「×」で示した。
Manufacturing cost:
A case where the manufacturing cost is very low is indicated by “で”, a case where the manufacturing cost is low is indicated by “◯”, and a case where the manufacturing cost is high is indicated by “x”.

Figure 2017042957
Figure 2017042957

この表1から判るように、本発明の剛性強化環を使用して空気入りタイヤを製造することで、実施例1〜2のタイヤはタイヤ内面に精度の高い型付けがなされると共に、これらタイヤを低コストで製造することができた。また、このような空気入りタイヤの製造方法は汎用性が高いものである。   As can be seen from Table 1, by manufacturing a pneumatic tire using the rigidity-enhanced ring of the present invention, the tires of Examples 1 and 2 are accurately typed on the tire inner surface, and these tires are It was possible to manufacture at a low cost. Moreover, the manufacturing method of such a pneumatic tire is highly versatile.

1 金型
2 加硫用ブラダー
3 剛性補強環
3A 凹部
3B 凸部
3C 厚肉部
3D 薄肉部
3E,3F 傾斜面
4 補強線材
6 追加型
6A 凹部
6B 凸部
T グリーンタイヤ
T1 トレッド部
T2 サイド部
T3 ビード部
DESCRIPTION OF SYMBOLS 1 Mold | dye 2 Vulcanization bladder 3 Rigid reinforcement ring 3A Concave part 3B Convex part 3C Thick part 3D Thin part 3E, 3F Inclined surface 4 Reinforcement wire 6 Additional type 6A Concave part 6B Convex part T Green tire T1 Tread part T2 Side part T3 Bead part

Claims (6)

グリーンタイヤを金型内にセットし、前記グリーンタイヤの内側に加硫用ブラダーを挿入して膨張させることにより該グリーンタイヤをタイヤ径方向外側へ押し付けて加硫成形するとき、前記グリーンタイヤのトレッド部に相当する領域において前記グリーンタイヤと前記加硫用ブラダーとの間に、その外周面に凹部及び凸部を有する剛性強化環を介在させることで、該剛性強化環の凹部及び凸部に基づいて前記グリーンタイヤのトレッド部におけるタイヤ内面に型付けを行うことを特徴とする空気入りタイヤの製造方法。   When a green tire is set in a mold and a vulcanization bladder is inserted inside the green tire and inflated to press the green tire outward in the tire radial direction, the green tire tread A rigid reinforcing ring having a concave portion and a convex portion on its outer peripheral surface between the green tire and the vulcanizing bladder in a region corresponding to a portion, and based on the concave portion and the convex portion of the rigid reinforcing ring. A method for producing a pneumatic tire, comprising: molding a tire inner surface in a tread portion of the green tire. 前記剛性強化環は周方向に延在する補強線材を内包することを特徴とする請求項1に記載の空気入りタイヤの製造方法。   The method for manufacturing a pneumatic tire according to claim 1, wherein the rigidity reinforcing ring includes a reinforcing wire extending in a circumferential direction. 前記剛性強化環の凹部及び凸部が周方向に沿って連続的に延在することを特徴とする請求項1又は2に記載の空気入りタイヤの製造方法。   The method for manufacturing a pneumatic tire according to claim 1 or 2, wherein the concave portion and the convex portion of the rigid reinforcing ring extend continuously along a circumferential direction. 前記剛性強化環の凹部に追加型として補助環を介在させることを特徴とする請求項3に記載の空気入りタイヤの製造方法。   The method for manufacturing a pneumatic tire according to claim 3, wherein an auxiliary ring is interposed as an additional mold in the recess of the rigidity reinforcing ring. 前記剛性強化環の両端部が幅方向外側に向かって徐々に薄くなるように該両端部において前記加硫用ブラダーと当接する面に傾斜面を設けたことを特徴とする請求項1〜4のいずれかに記載の空気入りタイヤの製造方法。   The inclined surface is provided in the surface which contact | abuts the said vulcanization bladder in this both ends so that the both ends of the said rigidity reinforcement ring may become thin gradually toward the width direction outer side. The manufacturing method of the pneumatic tire in any one. 前記剛性強化環は深さが異なる複数種類の凹部を有すると共に該凹部の深さに応じて厚さを変化させた厚肉部及び薄肉部を有し、これら厚肉部と薄肉部との段差部において前記加硫用ブラダーと当接する面に傾斜面を設けたことを特徴とする請求項5に記載の空気入りタイヤの製造方法。   The rigidity reinforcing ring has a plurality of types of recesses having different depths, and has a thick portion and a thin portion whose thickness is changed according to the depth of the recess, and a step between the thick portion and the thin portion. The method for manufacturing a pneumatic tire according to claim 5, wherein an inclined surface is provided on a surface of the portion that contacts the vulcanizing bladder.
JP2015165623A 2015-08-25 2015-08-25 Manufacturing method of pneumatic tire Pending JP2017042957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015165623A JP2017042957A (en) 2015-08-25 2015-08-25 Manufacturing method of pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015165623A JP2017042957A (en) 2015-08-25 2015-08-25 Manufacturing method of pneumatic tire

Publications (1)

Publication Number Publication Date
JP2017042957A true JP2017042957A (en) 2017-03-02

Family

ID=58211119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015165623A Pending JP2017042957A (en) 2015-08-25 2015-08-25 Manufacturing method of pneumatic tire

Country Status (1)

Country Link
JP (1) JP2017042957A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220281197A1 (en) * 2019-12-19 2022-09-08 Compagnie Generale Des Etablissements Michelin Method of molding a container into a tire
JP7508475B2 (en) 2019-03-14 2024-07-01 サイベックス ゲーエムベーハー Stroller frames and strollers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7508475B2 (en) 2019-03-14 2024-07-01 サイベックス ゲーエムベーハー Stroller frames and strollers
US20220281197A1 (en) * 2019-12-19 2022-09-08 Compagnie Generale Des Etablissements Michelin Method of molding a container into a tire

Similar Documents

Publication Publication Date Title
KR101738392B1 (en) Method for producing tire-curing bladder
JP2007331295A (en) Manufacturing method of pneumatic tire
JP5050804B2 (en) Tire vulcanization method
JP2017042957A (en) Manufacturing method of pneumatic tire
JP2007083656A (en) Bladder for vulcanizing tire
JP5787732B2 (en) Tire vulcanizing bladder
JP5681685B2 (en) Rigid core and method for manufacturing pneumatic tire using the same
KR101413172B1 (en) tire vulcanization bladder for preventing eccentricity
JP4952925B2 (en) Pneumatic tire vulcanization molding method and apparatus
JP5026900B2 (en) Vulcanized bladder manufacturing method and vulcanized bladder
JP4626334B2 (en) Tire vulcanizing bladder and manufacturing method thereof
JP4604783B2 (en) Manufacturing method of rigid core for tire vulcanization and pneumatic tire
JP2016185637A (en) Tire vulcanization inner die
JP6464617B2 (en) Stiffening ring and tire vulcanizing method using the same
KR101323286B1 (en) Device for vulcanizing tire
JP2012101368A (en) Method of vulcanizing tire
KR20090019149A (en) Curing bladder for tire molding
KR101566183B1 (en) Bladder of Tire Vulcanizing
JP2011098533A (en) Method for manufacturing pneumatic tire and pneumatic tire
WO2016031670A1 (en) Rigidity reinforcement ring and tire vulcanizing method using same
JP2012250407A (en) Tire manufacturing device and tire manufacturing method as well as tire vulcanizing/molding bladder used for the same
JP4517625B2 (en) Tire vulcanization bladder
JP2009083440A (en) Device and method for manufacturing unvulcanized tire
JP5363897B2 (en) Tire manufacturing method
JP2006044339A (en) Pneumatic radial-ply tire