[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2016505611A - Compound for organic optoelectronic device, organic light emitting device including the same, and display device including the organic light emitting device - Google Patents

Compound for organic optoelectronic device, organic light emitting device including the same, and display device including the organic light emitting device Download PDF

Info

Publication number
JP2016505611A
JP2016505611A JP2015551050A JP2015551050A JP2016505611A JP 2016505611 A JP2016505611 A JP 2016505611A JP 2015551050 A JP2015551050 A JP 2015551050A JP 2015551050 A JP2015551050 A JP 2015551050A JP 2016505611 A JP2016505611 A JP 2016505611A
Authority
JP
Japan
Prior art keywords
group
substituted
unsubstituted
organic
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015551050A
Other languages
Japanese (ja)
Inventor
リ,ハン−イル
チョン,スン−ヒョン
チェ,ミ−ヨン
カン,オイ−ス
キム,ヨン−ファン
キム,チョン−ソク
リュ,ドン−ワン
リュ,ドン−キョ
リ,ソン−チェ
チャン,ユ−ナ
チョ,ヨン−キョン
ホ,ダル−ホ
ホン,チン−ソク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cheil Industries Inc
Original Assignee
Cheil Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cheil Industries Inc filed Critical Cheil Industries Inc
Publication of JP2016505611A publication Critical patent/JP2016505611A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/12Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/32Stacked devices having two or more layers, each emitting at different wavelengths
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Furan Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Photovoltaic Devices (AREA)

Abstract

有機光電子素子用化合物、これを含む有機発光素子および前記有機発光素子を含む表示装置に関するものであって、化学式1で表される有機光電子素子用化合物を提供する。The present invention relates to a compound for an organic optoelectronic device, an organic light emitting device including the same, and a display device including the organic light emitting device, and provides a compound for an organic optoelectronic device represented by Chemical Formula 1.

Description

有機光電子素子用化合物、これを含む有機発光素子および前記有機発光素子を含む表示装置に関するものである。   The present invention relates to a compound for an organic optoelectronic device, an organic light emitting device including the compound, and a display device including the organic light emitting device.

有機光電子素子とは、正孔または電子を用いた電極と有機物との間での電荷交流を必要とする素子を意味する。   An organic optoelectronic device means a device that requires charge exchange between an electrode using holes or electrons and an organic substance.

有機光電子素子は、動作原理によって、下記のように大きく2種類に分けられる。第一は、外部の光源から素子に流入した光子によって有機物層で励起子が形成され、この励起子が電子と正孔に分離され、この電子と正孔がそれぞれ異なる電極に伝達されて電流源(電圧源)として使用される形態の電子素子である。第二は、2つ以上の電極に電圧または電流を加えて電極と界面をなす有機物半導体に正孔または電子を注入し、注入された電子と正孔によって動作する形態の電子素子である。   Organic optoelectronic devices are roughly classified into two types according to the principle of operation. First, excitons are formed in the organic material layer by photons flowing into the device from an external light source, and the excitons are separated into electrons and holes, which are transmitted to different electrodes, respectively. It is an electronic element of the form used as (voltage source). The second is an electronic device in which a voltage or current is applied to two or more electrodes to inject holes or electrons into an organic semiconductor that forms an interface with the electrodes, and the device operates by the injected electrons and holes.

有機光電子素子の例としては、有機光電素子、有機発光素子、有機太陽電池、有機感光体ドラム、有機トランジスタなどがあり、これらはいずれも、素子の駆動のために、正孔の注入または輸送物質、電子の注入または輸送物質、または発光物質を必要とする。   Examples of organic optoelectronic devices include organic photoelectric devices, organic light emitting devices, organic solar cells, organic photoreceptor drums, organic transistors, etc., all of which are used to inject or transport holes to drive the device. Requires an electron injection or transport material, or a luminescent material.

特に、有機発光素子(OLED)は、近年、フラットパネルディスプレイの需要増加に伴って注目されている。一般に、有機発光現象とは、有機物質を用いて電気エネルギーを光エネルギーに転換させる現象をいう。   In particular, organic light emitting devices (OLEDs) have recently attracted attention with increasing demand for flat panel displays. In general, the organic light emission phenomenon refers to a phenomenon in which electric energy is converted into light energy using an organic substance.

このような有機発光素子は、有機発光材料に電流を加えて電気エネルギーを光に転換させる素子であって、通常、陽極と陰極との間に機能性有機物層が挿入された構造からなる。ここで、有機物層は、有機発光素子の効率および安定性を高めるために、それぞれ異なる物質で構成された多層の構造からなる場合が多く、例えば、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層などからなってもよい。   Such an organic light-emitting element is an element that converts electric energy into light by applying an electric current to an organic light-emitting material, and usually has a structure in which a functional organic material layer is inserted between an anode and a cathode. Here, in order to increase the efficiency and stability of the organic light emitting device, the organic material layer often has a multilayer structure composed of different materials, for example, a hole injection layer, a hole transport layer, a light emitting layer. , An electron transport layer, an electron injection layer, and the like.

このような有機発光素子の構造において、2つの電極の間に電圧をかけると、陽極からは正孔、陰極からは電子が有機物層に注入され、注入された正孔と電子が会って再結合によってエネルギーの高い励起子を形成する。この時、形成された励起子が再び基底状態に移動しながら、特定の波長を有する光が発生する。   In such an organic light emitting device structure, when a voltage is applied between two electrodes, holes are injected from the anode and electrons are injected from the cathode into the organic material layer, and the injected holes and electrons meet to recombine. To form high-energy excitons. At this time, light having a specific wavelength is generated while the formed excitons move to the ground state again.

最近は、蛍光発光物質だけでなく、燐光発光物質も有機発光素子の発光物質として使用できることが知られており、このような燐光発光は、基底状態から励起状態に電子が遷移した後、系間交差によって、一重項励起子が三重項励起子に非発光遷移した後、三重項励起子が基底状態に遷移しながら発光するメカニズムで行われる。   Recently, it is known that not only fluorescent light-emitting substances but also phosphorescent light-emitting substances can be used as light-emitting substances for organic light-emitting devices. Such phosphorescence emission is caused by inter-system transition after electrons transition from the ground state to the excited state. This is performed by a mechanism in which singlet excitons undergo non-light-emission transition to triplet excitons due to crossing, and then triplet excitons emit light while transitioning to the ground state.

このように、有機発光素子において、有機物層として使用される材料は、機能によって、発光材料と電荷輸送材料、例えば、正孔注入材料、正孔輸送材料、電子輸送材料、電子注入材料などに分類できる。   As described above, in the organic light emitting device, the material used as the organic material layer is classified into a light emitting material and a charge transport material, for example, a hole injection material, a hole transport material, an electron transport material, and an electron injection material, depending on the function. it can.

また、発光材料は、発光色によって、青色、緑色、赤色発光材料と、より良い天然色を具現するために必要な黄色および樺色発光材料に区分される。   The light emitting materials are classified into blue, green and red light emitting materials and yellow and amber light emitting materials necessary for realizing a better natural color according to the light emission color.

一方、発光材料として1つの物質のみを使用する場合、分子間相互作用によって最大発光波長が長波長に移動し、色純度の低下や発光減衰効果による素子効率低下といった問題が発生するため、色純度の増加ならびにエネルギー転移による発光効率および安定性の増加のために、発光材料としてホスト/ドーパント系を使用することができる。   On the other hand, when only one substance is used as the light emitting material, the maximum emission wavelength shifts to a long wavelength due to intermolecular interaction, and problems such as a decrease in color purity and a decrease in device efficiency due to the light emission attenuation effect occur. A host / dopant system can be used as the luminescent material to increase the emission efficiency and stability due to energy transfer.

有機発光素子が前述の優れた特徴を十分に発揮するためには、素子内の有機物層をなす物質、例えば、正孔注入物質、正孔輸送物質、発光物質、電子輸送物質、電子注入物質、発光材料のうち、ホストおよび/またはドーパントなどが安定かつ効率的な材料によって補助されることが先行されなければならず、まだ安定かつ効率的な有機発光素子用有機物層材料の開発が十分になされていない状態であり、したがって、新たな材料の開発が要求され続けている。このような材料開発の必要性は、前述した他の有機光電子素子においても同様である。   In order for the organic light emitting device to fully exhibit the above-described excellent characteristics, a material forming an organic material layer in the device, for example, a hole injection material, a hole transport material, a light emitting material, an electron transport material, an electron injection material, Among the light-emitting materials, it must be preceded that the host and / or dopant is assisted by a stable and efficient material, and the development of a stable and efficient organic material for organic light-emitting devices has been sufficiently developed. Therefore, the development of new materials continues to be required. The necessity for such material development is the same in the other organic optoelectronic devices described above.

また、低分子有機発光素子は、真空蒸着法によって薄膜の形態で素子を製造するため、効率および寿命性能が良い一方、高分子有機発光素子は、インクジェット法またはスピンコート法を用いるため、初期投資費が少なく、大面積化に有利であるという利点がある。   In addition, low-molecular organic light-emitting elements are manufactured in the form of a thin film by a vacuum deposition method, so that the efficiency and life performance are good. On the other hand, high-molecular organic light-emitting elements use an inkjet method or a spin coat method, so initial investment There is an advantage that the cost is small and it is advantageous for the large area.

低分子有機発光素子および高分子有機発光素子はいずれも、自発光、高速応答、広視野角、超薄型、高画質、耐久性、広い駆動温度範囲などの利点を有していて、次世代ディスプレイとして注目されている。特に、既存の液晶ディスプレイ(LCD)と比較して、自発光型であって、暗い所や外部の光が入ってきても視認性が良く、バックライトを必要とせず、LCDの1/3水準に厚さおよび重量を低減することができる。   Both low-molecular organic light-emitting elements and high-molecular organic light-emitting elements have advantages such as self-emission, high-speed response, wide viewing angle, ultra-thinness, high image quality, durability, and wide driving temperature range. It is attracting attention as a display. In particular, it is a self-luminous type compared to existing liquid crystal displays (LCDs), has good visibility even in dark places or when external light enters, does not require a backlight, and is 1/3 level of LCD The thickness and weight can be reduced.

また、応答速度がLCDに比べて1000倍以上速いマイクロ秒単位であるため、残像のない完璧な動画を実現することができる。したがって、最近、本格的なマルチメディア時代に合わせて最適なディスプレイとして脚光を浴びることが期待され、このような利点を基に、1980年代後半に最初に開発して以来、効率80倍、寿命100倍以上に達する急激な技術発展を成し遂げてきており、最近は、40インチの有機発光素子パネルが発表されるなど、大型化が急速に進んでいる。   In addition, since the response speed is in microsecond units, which is 1000 times faster than that of the LCD, it is possible to realize a perfect moving image with no afterimage. Therefore, recently, it is expected to attract attention as an optimal display in accordance with the full-fledged multimedia era. Based on such advantages, since it was first developed in the late 1980s, the efficiency has been increased by 80 times and the lifetime has been increased to 100. The rapid technological development has reached more than double, and recently, a 40-inch organic light-emitting element panel has been announced, and the size has been rapidly increasing.

大型化のためには、発光効率の増大および素子の寿命向上が伴わなければならない。このために、安定かつ効率的な有機発光素子用有機物層材料の開発が必要である。   To increase the size, it is necessary to increase the light emission efficiency and improve the lifetime of the device. Therefore, it is necessary to develop a stable and efficient organic layer material for organic light emitting devices.

高効率、長寿命などの特性を有する有機光電子素子を提供することができる有機光電子素子用化合物を提供する。   Provided is a compound for an organic optoelectronic device capable of providing an organic optoelectronic device having characteristics such as high efficiency and long life.

前記有機光電子素子用化合物を含む有機発光素子および前記有機発光素子を含む表示装置を提供する。   Provided are an organic light emitting device including the compound for organic optoelectronic devices and a display device including the organic light emitting device.

本発明の一実施形態では、下記の化学式1で表される有機光電子素子用化合物を提供する。   In one embodiment of the present invention, a compound for an organic optoelectronic device represented by the following chemical formula 1 is provided.

前記化学式1において、Arは置換もしくは非置換のC6〜C30のアリール基、置換もしくは非置換のC2〜C30のヘテロアリール基、またはこれらの組み合わせであり、L〜Lは互いに独立して、置換もしくは非置換のC2〜C6のアルケニレン基、置換もしくは非置換のC2〜C6のアルキニレン基、置換もしくは非置換のC6〜C30のアリーレン基、置換もしくは非置換のC2〜C30のヘテロアリーレン基、またはこれらの組み合わせであり、n1〜n3は互いに独立して、0〜3のうちのいずれか1つの整数であり、Aは下記の化学式A−2であり、Bは下記の化学式A−2、置換もしくは非置換のC6〜C30のアリール基、または置換もしくは非置換のC2〜C30のヘテロアリール基である: In Formula 1, Ar 1 is a substituted or unsubstituted C6-C30 aryl group, a substituted or unsubstituted C2-C30 heteroaryl group, or a combination thereof, and L 1 to L 3 are independent of each other. Substituted or unsubstituted C2-C6 alkenylene group, substituted or unsubstituted C2-C6 alkynylene group, substituted or unsubstituted C6-C30 arylene group, substituted or unsubstituted C2-C30 heteroarylene group, Or a combination thereof, n1 to n3 are each independently an integer of 0 to 3, A is the following chemical formula A-2, B is the following chemical formula A-2, A substituted or unsubstituted C6-C30 aryl group, or a substituted or unsubstituted C2-C30 heteroaryl group:

前記化学式A−2において、Xは−O−または−S−であり、RおよびRは互いに独立して、水素、重水素、ハロゲン基、シアノ基、ヒドロキシル基、アミノ基、置換もしくは非置換のC1〜C20のアミン基、ニトロ基、カルボキシル基、フェロセニル基、置換もしくは非置換のC1〜C20のアルキル基、置換もしくは非置換のC6〜C30のアリール基、置換もしくは非置換のC2〜C30のヘテロアリール基、置換もしくは非置換のC1〜C20のアルコキシ基、置換もしくは非置換のC6〜C20のアリールオキシ基、置換もしくは非置換のC3〜C40のシリルオキシ基、置換もしくは非置換のC1〜C20のアシル基、置換もしくは非置換のC2〜C20のアルコキシカルボニル基、置換もしくは非置換のC2〜C20のアシルオキシ基、置換もしくは非置換のC2〜C20のアシルアミノ基、置換もしくは非置換のC2〜C20のアルコキシカルボニルアミノ基、置換もしくは非置換のC7〜C20のアリールオキシカルボニルアミノ基、置換もしくは非置換のC1〜C20のスルファモイルアミノ基、置換もしくは非置換のC1〜C20のスルホニル基、置換もしくは非置換のC1〜C20のアルキルチオール基、置換もしくは非置換のC6〜C20のアリールチオール基、置換もしくは非置換のC1〜C20のヘテロシクロチオール基、置換もしくは非置換のC1〜C20のウレイド基、置換もしくは非置換のC3〜C40のシリル基、またはこれらの組み合わせである。 In Formula A-2, X 1 is —O— or —S—, and R 3 and R 4 are independently of each other hydrogen, deuterium, halogen group, cyano group, hydroxyl group, amino group, substituted or Unsubstituted C1-C20 amine group, nitro group, carboxyl group, ferrocenyl group, substituted or unsubstituted C1-C20 alkyl group, substituted or unsubstituted C6-C30 aryl group, substituted or unsubstituted C2- C30 heteroaryl group, substituted or unsubstituted C1-C20 alkoxy group, substituted or unsubstituted C6-C20 aryloxy group, substituted or unsubstituted C3-C40 silyloxy group, substituted or unsubstituted C1-C20 C20 acyl group, substituted or unsubstituted C2-C20 alkoxycarbonyl group, substituted or unsubstituted C2-C2 Acyloxy group, substituted or unsubstituted C2-C20 acylamino group, substituted or unsubstituted C2-C20 alkoxycarbonylamino group, substituted or unsubstituted C7-C20 aryloxycarbonylamino group, substituted or unsubstituted C1-C20 sulfamoylamino group, substituted or unsubstituted C1-C20 sulfonyl group, substituted or unsubstituted C1-C20 alkylthiol group, substituted or unsubstituted C6-C20 arylthiol group, substituted or An unsubstituted C1-C20 heterocyclothiol group, a substituted or unsubstituted C1-C20 ureido group, a substituted or unsubstituted C3-C40 silyl group, or a combination thereof.

前記Bは下記のA−2であってもよい。   The B may be the following A-2.

前記Arは下記の化学式B−1であってもよい。 The Ar 1 may be represented by the following chemical formula B-1.

前記化学式B−1において、R〜Rは互いに独立して、水素、重水素、ハロゲン基、シアノ基、ヒドロキシル基、アミノ基、置換もしくは非置換のC1〜C20のアミン基、ニトロ基、カルボキシル基、フェロセニル基、置換もしくは非置換のC1〜C20のアルキル基、置換もしくは非置換のC6〜C30のアリール基、置換もしくは非置換のC2〜C30のヘテロアリール基、置換もしくは非置換のC1〜C20のアルコキシ基、置換もしくは非置換のC6〜C20のアリールオキシ基、置換もしくは非置換のC3〜C40のシリルオキシ基、置換もしくは非置換のC1〜C20のアシル基、置換もしくは非置換のC2〜C20のアルコキシカルボニル基、置換もしくは非置換のC2〜C20のアシルオキシ基、置換もしくは非置換のC2〜C20のアシルアミノ基、置換もしくは非置換のC2〜C20のアルコキシカルボニルアミノ基、置換もしくは非置換のC7〜C20のアリールオキシカルボニルアミノ基、置換もしくは非置換のC1〜C20のスルファモイルアミノ基、置換もしくは非置換のC1〜C20のスルホニル基、置換もしくは非置換のC1〜C20のアルキルチオール基、置換もしくは非置換のC6〜C20のアリールチオール基、置換もしくは非置換のC1〜C20のヘテロシクロチオール基、置換もしくは非置換のC1〜C20のウレイド基、置換もしくは非置換のC3〜C40のシリル基、またはこれらの組み合わせである。 In Formula B-1, R 5 to R 8 are independently of each other hydrogen, deuterium, halogen group, cyano group, hydroxyl group, amino group, substituted or unsubstituted C1-C20 amine group, nitro group, A carboxyl group, a ferrocenyl group, a substituted or unsubstituted C1-C20 alkyl group, a substituted or unsubstituted C6-C30 aryl group, a substituted or unsubstituted C2-C30 heteroaryl group, a substituted or unsubstituted C1- C20 alkoxy group, substituted or unsubstituted C6-C20 aryloxy group, substituted or unsubstituted C3-C40 silyloxy group, substituted or unsubstituted C1-C20 acyl group, substituted or unsubstituted C2-C20 Alkoxycarbonyl group, substituted or unsubstituted C2-C20 acyloxy group, substituted or unsubstituted C2-C20 acylamino group, substituted or unsubstituted C2-C20 alkoxycarbonylamino group, substituted or unsubstituted C7-C20 aryloxycarbonylamino group, substituted or unsubstituted C1-C20 sulfamoylamino Group, substituted or unsubstituted C1-C20 sulfonyl group, substituted or unsubstituted C1-C20 alkylthiol group, substituted or unsubstituted C6-C20 arylthiol group, substituted or unsubstituted C1-C20 hetero A cyclothiol group, a substituted or unsubstituted C1-C20 ureido group, a substituted or unsubstituted C3-C40 silyl group, or a combination thereof.

前記Arは下記の化学式B−2であってもよい。 The Ar 1 may be represented by the following chemical formula B-2.

前記化学式B−2において、R〜Rは互いに独立して、水素、重水素、ハロゲン基、シアノ基、ヒドロキシル基、アミノ基、置換もしくは非置換のC1〜C20のアミン基、ニトロ基、カルボキシル基、フェロセニル基、置換もしくは非置換のC1〜C20のアルキル基、置換もしくは非置換のC6〜C30のアリール基、置換もしくは非置換のC2〜C30のヘテロアリール基、置換もしくは非置換のC1〜C20のアルコキシ基、置換もしくは非置換のC6〜C20のアリールオキシ基、置換もしくは非置換のC3〜C40のシリルオキシ基、置換もしくは非置換のC1〜C20のアシル基、置換もしくは非置換のC2〜C20のアルコキシカルボニル基、置換もしくは非置換のC2〜C20のアシルオキシ基、置換もしくは非置換のC2〜C20のアシルアミノ基、置換もしくは非置換のC2〜C20のアルコキシカルボニルアミノ基、置換もしくは非置換のC7〜C20のアリールオキシカルボニルアミノ基、置換もしくは非置換のC1〜C20のスルファモイルアミノ基、置換もしくは非置換のC1〜C20のスルホニル基、置換もしくは非置換のC1〜C20のアルキルチオール基、置換もしくは非置換のC6〜C20のアリールチオール基、置換もしくは非置換のC1〜C20のヘテロシクロチオール基、置換もしくは非置換のC1〜C20のウレイド基、置換もしくは非置換のC3〜C40のシリル基、またはこれらの組み合わせである。 In Formula B-2, R 5 to R 8 are independently of each other hydrogen, deuterium, halogen group, cyano group, hydroxyl group, amino group, substituted or unsubstituted C1-C20 amine group, nitro group, A carboxyl group, a ferrocenyl group, a substituted or unsubstituted C1-C20 alkyl group, a substituted or unsubstituted C6-C30 aryl group, a substituted or unsubstituted C2-C30 heteroaryl group, a substituted or unsubstituted C1- C20 alkoxy group, substituted or unsubstituted C6-C20 aryloxy group, substituted or unsubstituted C3-C40 silyloxy group, substituted or unsubstituted C1-C20 acyl group, substituted or unsubstituted C2-C20 Alkoxycarbonyl group, substituted or unsubstituted C2-C20 acyloxy group, substituted or unsubstituted C2-C20 acylamino group, substituted or unsubstituted C2-C20 alkoxycarbonylamino group, substituted or unsubstituted C7-C20 aryloxycarbonylamino group, substituted or unsubstituted C1-C20 sulfamoylamino Group, substituted or unsubstituted C1-C20 sulfonyl group, substituted or unsubstituted C1-C20 alkylthiol group, substituted or unsubstituted C6-C20 arylthiol group, substituted or unsubstituted C1-C20 hetero A cyclothiol group, a substituted or unsubstituted C1-C20 ureido group, a substituted or unsubstituted C3-C40 silyl group, or a combination thereof.

前記Arは下記の化学式B−3であってもよい。 The Ar 1 may be represented by the following chemical formula B-3.

前記化学式B−3において、R〜R12は互いに独立して、水素、重水素、ハロゲン基、シアノ基、ヒドロキシル基、アミノ基、置換もしくは非置換のC1〜C20のアミン基、ニトロ基、カルボキシル基、フェロセニル基、置換もしくは非置換のC1〜C20のアルキル基、置換もしくは非置換のC6〜C30のアリール基、置換もしくは非置換のC2〜C30のヘテロアリール基、置換もしくは非置換のC1〜C20のアルコキシ基、置換もしくは非置換のC6〜C20のアリールオキシ基、置換もしくは非置換のC3〜C40のシリルオキシ基、置換もしくは非置換のC1〜C20のアシル基、置換もしくは非置換のC2〜C20のアルコキシカルボニル基、置換もしくは非置換のC2〜C20のアシルオキシ基、置換もしくは非置換のC2〜C20のアシルアミノ基、置換もしくは非置換のC2〜C20のアルコキシカルボニルアミノ基、置換もしくは非置換のC7〜C20のアリールオキシカルボニルアミノ基、置換もしくは非置換のC1〜C20のスルファモイルアミノ基、置換もしくは非置換のC1〜C20のスルホニル基、置換もしくは非置換のC1〜C20のアルキルチオール基、置換もしくは非置換のC6〜C20のアリールチオール基、置換もしくは非置換のC1〜C20のヘテロシクロチオール基、置換もしくは非置換のC1〜C20のウレイド基、置換もしくは非置換のC3〜C40のシリル基、またはこれらの組み合わせである。 In Formula B-3, R 9 to R 12 are independently of each other hydrogen, deuterium, halogen group, cyano group, hydroxyl group, amino group, substituted or unsubstituted C1-C20 amine group, nitro group, A carboxyl group, a ferrocenyl group, a substituted or unsubstituted C1-C20 alkyl group, a substituted or unsubstituted C6-C30 aryl group, a substituted or unsubstituted C2-C30 heteroaryl group, a substituted or unsubstituted C1- C20 alkoxy group, substituted or unsubstituted C6-C20 aryloxy group, substituted or unsubstituted C3-C40 silyloxy group, substituted or unsubstituted C1-C20 acyl group, substituted or unsubstituted C2-C20 An alkoxycarbonyl group, a substituted or unsubstituted C2-C20 acyloxy group, substituted or unsubstituted Substituted C2-C20 acylamino group, substituted or unsubstituted C2-C20 alkoxycarbonylamino group, substituted or unsubstituted C7-C20 aryloxycarbonylamino group, substituted or unsubstituted C1-C20 sulfamoyl Amino group, substituted or unsubstituted C1-C20 sulfonyl group, substituted or unsubstituted C1-C20 alkyl thiol group, substituted or unsubstituted C6-C20 aryl thiol group, substituted or unsubstituted C1-C20 A heterocyclothiol group, a substituted or unsubstituted C1-C20 ureido group, a substituted or unsubstituted C3-C40 silyl group, or a combination thereof.

前記Arは下記の化学式B−4であってもよい。 The Ar 1 may be represented by the following chemical formula B-4.

前記Arは下記の化学式B−5であってもよい。 The Ar 1 may be represented by the following chemical formula B-5.

前記化学式B−5において、Xは−O−、−S−またはNR’であり、R’、R13およびR14は互いに独立して、水素、重水素、ハロゲン基、シアノ基、ヒドロキシル基、アミノ基、置換もしくは非置換のC1〜C20のアミン基、ニトロ基、カルボキシル基、フェロセニル基、置換もしくは非置換のC1〜C20のアルキル基、置換もしくは非置換のC6〜C30のアリール基、置換もしくは非置換のC2〜C30のヘテロアリール基、置換もしくは非置換のC1〜C20のアルコキシ基、置換もしくは非置換のC6〜C20のアリールオキシ基、置換もしくは非置換のC3〜C40のシリルオキシ基、置換もしくは非置換のC1〜C20のアシル基、置換もしくは非置換のC2〜C20のアルコキシカルボニル基、置換もしくは非置換のC2〜C20のアシルオキシ基、置換もしくは非置換のC2〜C20のアシルアミノ基、置換もしくは非置換のC2〜C20のアルコキシカルボニルアミノ基、置換もしくは非置換のC7〜C20のアリールオキシカルボニルアミノ基、置換もしくは非置換のC1〜C20のスルファモイルアミノ基、置換もしくは非置換のC1〜C20のスルホニル基、置換もしくは非置換のC1〜C20のアルキルチオール基、置換もしくは非置換のC6〜C20のアリールチオール基、置換もしくは非置換のC1〜C20のヘテロシクロチオール基、置換もしくは非置換のC1〜C20のウレイド基、置換もしくは非置換のC3〜C40のシリル基、またはこれらの組み合わせである。 In Formula B-5, X 2 is —O—, —S— or NR ′, and R ′, R 13 and R 14 are independently of each other hydrogen, deuterium, halogen group, cyano group, hydroxyl group. Amino group, substituted or unsubstituted C1-C20 amine group, nitro group, carboxyl group, ferrocenyl group, substituted or unsubstituted C1-C20 alkyl group, substituted or unsubstituted C6-C30 aryl group, substituted Or unsubstituted C2-C30 heteroaryl group, substituted or unsubstituted C1-C20 alkoxy group, substituted or unsubstituted C6-C20 aryloxy group, substituted or unsubstituted C3-C40 silyloxy group, substituted Or an unsubstituted C1-C20 acyl group, a substituted or unsubstituted C2-C20 alkoxycarbonyl group, a substituted or unsubstituted A substituted C2-C20 acyloxy group, a substituted or unsubstituted C2-C20 acylamino group, a substituted or unsubstituted C2-C20 alkoxycarbonylamino group, a substituted or unsubstituted C7-C20 aryloxycarbonylamino group, Substituted or unsubstituted C1-C20 sulfamoylamino group, substituted or unsubstituted C1-C20 sulfonyl group, substituted or unsubstituted C1-C20 alkylthiol group, substituted or unsubstituted C6-C20 aryl A thiol group, a substituted or unsubstituted C1-C20 heterocyclothiol group, a substituted or unsubstituted C1-C20 ureido group, a substituted or unsubstituted C3-C40 silyl group, or a combination thereof.

前記Arは下記の化学式B−6であってもよい。 The Ar 1 may be represented by the following chemical formula B-6.

前記化学式B−6において、R15およびR16は互いに独立して、水素、重水素、ハロゲン基、シアノ基、ヒドロキシル基、アミノ基、置換もしくは非置換のC1〜C20のアミン基、ニトロ基、カルボキシル基、フェロセニル基、置換もしくは非置換のC1〜C20のアルキル基、置換もしくは非置換のC6〜C30のアリール基、置換もしくは非置換のC2〜C30のヘテロアリール基、置換もしくは非置換のC1〜C20のアルコキシ基、置換もしくは非置換のC6〜C20のアリールオキシ基、置換もしくは非置換のC3〜C40のシリルオキシ基、置換もしくは非置換のC1〜C20のアシル基、置換もしくは非置換のC2〜C20のアルコキシカルボニル基、置換もしくは非置換のC2〜C20のアシルオキシ基、置換もしくは非置換のC2〜C20のアシルアミノ基、置換もしくは非置換のC2〜C20のアルコキシカルボニルアミノ基、置換もしくは非置換のC7〜C20のアリールオキシカルボニルアミノ基、置換もしくは非置換のC1〜C20のスルファモイルアミノ基、置換もしくは非置換のC1〜C20のスルホニル基、置換もしくは非置換のC1〜C20のアルキルチオール基、置換もしくは非置換のC6〜C20のアリールチオール基、置換もしくは非置換のC1〜C20のヘテロシクロチオール基、置換もしくは非置換のC1〜C20のウレイド基、置換もしくは非置換のC3〜C40のシリル基、またはこれらの組み合わせである。 In Formula B-6, R 15 and R 16 are independently of each other hydrogen, deuterium, halogen group, cyano group, hydroxyl group, amino group, substituted or unsubstituted C1-C20 amine group, nitro group, A carboxyl group, a ferrocenyl group, a substituted or unsubstituted C1-C20 alkyl group, a substituted or unsubstituted C6-C30 aryl group, a substituted or unsubstituted C2-C30 heteroaryl group, a substituted or unsubstituted C1- C20 alkoxy group, substituted or unsubstituted C6-C20 aryloxy group, substituted or unsubstituted C3-C40 silyloxy group, substituted or unsubstituted C1-C20 acyl group, substituted or unsubstituted C2-C20 An alkoxycarbonyl group, a substituted or unsubstituted C2-C20 acyloxy group, substituted Is an unsubstituted C2-C20 acylamino group, a substituted or unsubstituted C2-C20 alkoxycarbonylamino group, a substituted or unsubstituted C7-C20 aryloxycarbonylamino group, a substituted or unsubstituted C1-C20 sulfo group. Famoylamino group, substituted or unsubstituted C1-C20 sulfonyl group, substituted or unsubstituted C1-C20 alkylthiol group, substituted or unsubstituted C6-C20 arylthiol group, substituted or unsubstituted C1-C20 A C20 heterocyclothiol group, a substituted or unsubstituted C1-C20 ureido group, a substituted or unsubstituted C3-C40 silyl group, or a combination thereof.

前記Arは置換もしくは非置換のビフェニル基であってもよい。 Ar 1 may be a substituted or unsubstituted biphenyl group.

前記AおよびBは前記化学式A−2で表される置換基であってもよい。   A and B may be a substituent represented by the chemical formula A-2.

前記化学式A−2において、前記RおよびRは水素であってもよい。 In the chemical formula A-2, R 3 and R 4 may be hydrogen.

前記有機光電子素子用化合物は、700以下の分子量を有することができる。   The organic optoelectronic device compound may have a molecular weight of 700 or less.

前記有機光電子素子用化合物は、600以下の分子量を有することができる。   The organic optoelectronic device compound may have a molecular weight of 600 or less.

前記有機光電子素子は、有機光電素子、有機発光素子、有機太陽電池、有機トランジスタ、有機感光体ドラム、および有機メモリ素子からなる群より選択されるいずれか1つであってもよい。   The organic optoelectronic element may be any one selected from the group consisting of an organic photoelectric element, an organic light emitting element, an organic solar battery, an organic transistor, an organic photoreceptor drum, and an organic memory element.

本発明の他の実施形態では、陽極、陰極、および前記陽極と陰極との間に介在する少なくとも1層以上の有機薄膜層を含む有機発光素子において、前記有機薄膜層のうちの少なくともいずれか1層は前記有機光電子素子用化合物を含む有機発光素子を提供する。   In another embodiment of the present invention, in an organic light emitting device including an anode, a cathode, and at least one organic thin film layer interposed between the anode and the cathode, at least one of the organic thin film layers. The layer provides an organic light emitting device comprising the compound for organic optoelectronic devices.

前記有機薄膜層は、発光層、正孔輸送層、正孔注入層、電子輸送層、電子注入層、正孔阻止層、およびこれらの組み合わせからなる群より選択されるいずれか1つであってもよい。   The organic thin film layer is any one selected from the group consisting of a light emitting layer, a hole transport layer, a hole injection layer, an electron transport layer, an electron injection layer, a hole blocking layer, and combinations thereof. Also good.

前記有機光電子素子用化合物は、発光層内に含まれてもよい。   The compound for an organic optoelectronic device may be included in the light emitting layer.

前記有機光電子素子用化合物は、発光層内に燐光または蛍光ホスト材料として使用されてもよい。   The compound for an organic optoelectronic device may be used as a phosphorescent or fluorescent host material in the light emitting layer.

本発明のさらに他の実施形態では、前記有機発光素子を含む表示装置を提供する。   In still another embodiment of the present invention, a display device including the organic light emitting device is provided.

前記有機光電子素子用化合物を含む有機光電子素子は、優れた電気化学的および熱的安定性を有し、寿命特性に優れ、低い駆動電圧においても高い発光効率を有することができる。   The organic optoelectronic device containing the compound for organic optoelectronic device has excellent electrochemical and thermal stability, excellent life characteristics, and high luminous efficiency even at a low driving voltage.

本発明の一実施形態に係る有機光電子素子用化合物を用いて製造可能な有機発光素子に対する多様な実施形態を示す断面図である。It is sectional drawing which shows various embodiment with respect to the organic light emitting element which can be manufactured using the compound for organic optoelectronic devices concerning one Embodiment of this invention. 本発明の一実施形態に係る有機光電子素子用化合物を用いて製造可能な有機発光素子に対する多様な実施形態を示す断面図である。It is sectional drawing which shows various embodiment with respect to the organic light emitting element which can be manufactured using the compound for organic optoelectronic devices concerning one Embodiment of this invention. 本発明の一実施形態に係る有機光電子素子用化合物を用いて製造可能な有機発光素子に対する多様な実施形態を示す断面図である。It is sectional drawing which shows various embodiment with respect to the organic light emitting element which can be manufactured using the compound for organic optoelectronic devices concerning one Embodiment of this invention. 本発明の一実施形態に係る有機光電子素子用化合物を用いて製造可能な有機発光素子に対する多様な実施形態を示す断面図である。It is sectional drawing which shows various embodiment with respect to the organic light emitting element which can be manufactured using the compound for organic optoelectronic devices concerning one Embodiment of this invention. 本発明の一実施形態に係る有機光電子素子用化合物を用いて製造可能な有機発光素子に対する多様な実施形態を示す断面図である。It is sectional drawing which shows various embodiment with respect to the organic light emitting element which can be manufactured using the compound for organic optoelectronic devices concerning one Embodiment of this invention.

以下、本発明の実施形態を詳細に説明する。ただし、これは例として提示されるものであり、これによって本発明が制限されず、本発明は後述する請求範囲の範疇によってのみ定義される。   Hereinafter, embodiments of the present invention will be described in detail. However, this is provided as an example, and the present invention is not limited thereby, and the present invention is defined only by the scope of the claims to be described later.

本明細書において、「置換」とは、別途の定義がない限り、置換基または化合物中の少なくとも1つの水素が、重水素、ハロゲン基、ヒドロキシ基、アミノ基、置換もしくは非置換のC1〜C30のアミン基、ニトロ基、置換もしくは非置換のC3〜C40のシリル基、C1〜C30のアルキル基、C1〜C10のアルキルシリル基、C3〜C30のシクロアルキル基、C6〜C30のアリール基、C1〜C20のアルコキシ基、フルオロ基、トリフルオロメチル基などのC1〜C10のトリフルオロアルキル基、またはシアノ基で置換されたことを意味する。   In this specification, unless otherwise defined, “substituted” means that at least one hydrogen in the substituent or compound is deuterium, halogen group, hydroxy group, amino group, substituted or unsubstituted C1-C30. Amine group, nitro group, substituted or unsubstituted C3-C40 silyl group, C1-C30 alkyl group, C1-C10 alkylsilyl group, C3-C30 cycloalkyl group, C6-C30 aryl group, C1 It means being substituted with a C1-C10 trifluoroalkyl group such as a C20 alkoxy group, a fluoro group, a trifluoromethyl group, or a cyano group.

また、前記置換されたハロゲン基、ヒドロキシ基、アミノ基、置換もしくは非置換のC1〜C20のアミン基、ニトロ基、置換もしくは非置換のC3〜C40のシリル基、C1〜C30のアルキル基、C1〜C10のアルキルシリル基、C3〜C30のシクロアルキル基、C6〜C30のアリール基、C1〜C20のアルコキシ基、フルオロ基、トリフルオロメチル基などのC1〜C10のトリフルオロアルキル基、またはシアノ基のうちの隣接した2つの置換基が融合して環を形成してもよい。   The substituted halogen group, hydroxy group, amino group, substituted or unsubstituted C1-C20 amine group, nitro group, substituted or unsubstituted C3-C40 silyl group, C1-C30 alkyl group, C1 C1-C10 alkylsilyl group, C3-C30 cycloalkyl group, C6-C30 aryl group, C1-C20 alkoxy group, C1-C10 trifluoroalkyl group such as fluoro group, trifluoromethyl group, or cyano group Two adjacent substituents may be fused to form a ring.

本明細書において、「ヘテロ」とは、別途の定義がない限り、1つの官能基内にN、O、S、およびPからなる群より選択されるヘテロ原子を1〜3個含有し、残りは炭素であるものを意味する。   In the present specification, unless otherwise defined, “hetero” contains 1 to 3 heteroatoms selected from the group consisting of N, O, S, and P in one functional group, and the rest Means what is carbon.

本明細書において、「これらの組み合わせ」とは、別途の定義がない限り、2以上の置換基が連結基に結合されていたり、2以上の置換基が縮合して結合されていることを意味する。   In the present specification, “a combination thereof” means that two or more substituents are bonded to a linking group or two or more substituents are condensed and bonded unless otherwise defined. To do.

本明細書において、「アルキル基」とは、別途の定義がない限り、脂肪族炭化水素基を意味する。アルキル基は、いかなる二重結合や三重結合を含んでいない「飽和アルキル基」であってもよい。   In the present specification, the “alkyl group” means an aliphatic hydrocarbon group unless otherwise defined. The alkyl group may be a “saturated alkyl group” that does not contain any double bond or triple bond.

アルキル基は、C1〜C20のアルキル基であってもよい。より具体的には、アルキル基は、C1〜C10のアルキル基、またはC1〜C6のアルキル基であってもよい。例えば、C1〜C4のアルキル基は、アルキル鎖に1〜4個の炭素原子が含まれるものを意味し、メチル、エチル、プロピル、イソプロピル、n−ブチル、イソブチル、sec−ブチル、およびt−ブチルからなる群より選択されるものを示す。   The alkyl group may be a C1-C20 alkyl group. More specifically, the alkyl group may be a C1-C10 alkyl group or a C1-C6 alkyl group. For example, a C1-C4 alkyl group means one having 1-4 carbon atoms in the alkyl chain, methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl, and t-butyl. Those selected from the group consisting of

前記アルキル基は、具体例を挙げると、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t−ブチル基、ペンチル基、ヘキシル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基などを意味する。   Specific examples of the alkyl group include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, hexyl, cyclopropyl, cyclobutyl, cyclopentyl, A cyclohexyl group or the like is meant.

「アリール基」は、環状の置換基のすべての元素がp軌道を有しており、これらのp軌道が共役を形成している置換基を意味し、モノサイクリックまたは融合環ポリサイクリック(つまり、炭素原子の隣接した対を分け合う環)官能基を含む。   “Aryl group” means a substituent in which all elements of a cyclic substituent have a p orbital, and these p orbitals form a conjugation, and are monocyclic or fused ring polycyclic ( That is, it includes a ring) functional group that separates adjacent pairs of carbon atoms.

「ヘテロアリール基」は、アリール基内にN、O、S、およびPからなる群より選択されるヘテロ原子を1〜3個含有し、残りは炭素であるものを意味する。前記ヘテロアリール基が融合環の場合、それぞれの環ごとに前記ヘテロ原子を1〜3個含むことができる。   “Heteroaryl group” means an aryl group containing 1 to 3 heteroatoms selected from the group consisting of N, O, S, and P, with the remainder being carbon. When the heteroaryl group is a fused ring, 1 to 3 heteroatoms may be included in each ring.

本明細書において、正孔特性とは、HOMO準位によって導電特性を有し、陽極で形成された正孔の発光層への注入および発光層での移動を容易にする特性を意味する。より具体的には、電子を押し出す特性とも類似する。   In this specification, the hole characteristic means a characteristic that has a conductive characteristic by the HOMO level and facilitates injection of holes formed at the anode into the light emitting layer and movement in the light emitting layer. More specifically, it is similar to the characteristic of pushing out electrons.

また、電子特性とは、LUMO準位によって導電特性を有し、陰極で形成された電子の発光層への注入および発光層での移動を容易にする特性を意味する。より具体的には、電子を吸引する特性とも類似する。   Further, the electronic property means a property that has a conductive property according to the LUMO level and facilitates injection of electrons formed in the cathode into the light emitting layer and movement in the light emitting layer. More specifically, it is similar to the property of attracting electrons.

本発明の一実施形態によれば、下記の化学式1で表される有機光電子素子用化合物を提供することができる。   According to one embodiment of the present invention, a compound for an organic optoelectronic device represented by the following chemical formula 1 can be provided.

前記化学式1において、Arは置換もしくは非置換のC6〜C30のアリール基、置換もしくは非置換のC2〜C30のヘテロアリール基、またはこれらの組み合わせであり、L〜Lは互いに独立して、置換もしくは非置換のC2〜C6のアルケニレン基、置換もしくは非置換のC2〜C6のアルキニレン基、置換もしくは非置換のC6〜C30のアリーレン基、置換もしくは非置換のC2〜C30のヘテロアリーレン基、またはこれらの組み合わせであり、n1〜n3は互いに独立して、0〜3のうちのいずれか1つの整数であり、Aは下記の化学式A−2であり、Bは下記の化学式A−2、置換もしくは非置換のC6〜C30のアリール基、または置換もしくは非置換のC2〜C30のヘテロアリール基である。 In Formula 1, Ar 1 is a substituted or unsubstituted C6-C30 aryl group, a substituted or unsubstituted C2-C30 heteroaryl group, or a combination thereof, and L 1 to L 3 are independent of each other. Substituted or unsubstituted C2-C6 alkenylene group, substituted or unsubstituted C2-C6 alkynylene group, substituted or unsubstituted C6-C30 arylene group, substituted or unsubstituted C2-C30 heteroarylene group, Or a combination thereof, n1 to n3 are each independently an integer of 0 to 3, A is the following chemical formula A-2, B is the following chemical formula A-2, A substituted or unsubstituted C6-C30 aryl group, or a substituted or unsubstituted C2-C30 heteroaryl group.

前記化学式A−2において、Xは−O−または−S−であり、R〜Rは互いに独立して、水素、重水素、ハロゲン基、シアノ基、ヒドロキシル基、アミノ基、置換もしくは非置換のC1〜C20のアミン基、ニトロ基、カルボキシル基、フェロセニル基、置換もしくは非置換のC1〜C20のアルキル基、置換もしくは非置換のC6〜C30のアリール基、置換もしくは非置換のC2〜C30のヘテロアリール基、置換もしくは非置換のC1〜C20のアルコキシ基、置換もしくは非置換のC6〜C20のアリールオキシ基、置換もしくは非置換のC3〜C40のシリルオキシ基、置換もしくは非置換のC1〜C20のアシル基、置換もしくは非置換のC2〜C20のアルコキシカルボニル基、置換もしくは非置換のC2〜C20のアシルオキシ基、置換もしくは非置換のC2〜C20のアシルアミノ基、置換もしくは非置換のC2〜C20のアルコキシカルボニルアミノ基、置換もしくは非置換のC7〜C20のアリールオキシカルボニルアミノ基、置換もしくは非置換のC1〜C20のスルファモイルアミノ基、置換もしくは非置換のC1〜C20のスルホニル基、置換もしくは非置換のC1〜C20のアルキルチオール基、置換もしくは非置換のC6〜C20のアリールチオール基、置換もしくは非置換のC1〜C20のヘテロシクロチオール基、置換もしくは非置換のC1〜C20のウレイド基、置換もしくは非置換のC3〜C40のシリル基、またはこれらの組み合わせである。 In Formula A-2, X 1 is —O— or —S—, and R 1 to R 4 are independently of each other hydrogen, deuterium, halogen group, cyano group, hydroxyl group, amino group, substituted or Unsubstituted C1-C20 amine group, nitro group, carboxyl group, ferrocenyl group, substituted or unsubstituted C1-C20 alkyl group, substituted or unsubstituted C6-C30 aryl group, substituted or unsubstituted C2- C30 heteroaryl group, substituted or unsubstituted C1-C20 alkoxy group, substituted or unsubstituted C6-C20 aryloxy group, substituted or unsubstituted C3-C40 silyloxy group, substituted or unsubstituted C1-C20 C20 acyl group, substituted or unsubstituted C2 to C20 alkoxycarbonyl group, substituted or unsubstituted C2 to C20 An acyloxy group, a substituted or unsubstituted C2-C20 acylamino group, a substituted or unsubstituted C2-C20 alkoxycarbonylamino group, a substituted or unsubstituted C7-C20 aryloxycarbonylamino group, a substituted or unsubstituted C1 -C20 sulfamoylamino group, substituted or unsubstituted C1-C20 sulfonyl group, substituted or unsubstituted C1-C20 alkylthiol group, substituted or unsubstituted C6-C20 arylthiol group, substituted or non-substituted A substituted C1-C20 heterocyclothiol group, a substituted or unsubstituted C1-C20 ureido group, a substituted or unsubstituted C3-C40 silyl group, or a combination thereof.

前記化学式1で表される化合物は、インデノ構造を含む置換基を含むアミン基をコア構造として有することができる。このようなコア構造の場合、Arの構造において正孔特性を示し得る置換基がアミン基コアと合わさることで、電子または正孔が容易に流れる構造を有することができる。また、インデノ構造の置換基は、非共有電子対を有する構造のため、電子または正孔の流れを良くし、分子量が小さく、蒸着用素材として適合する。一般に、蒸着用素材の場合、分子量が1000を超えると、熱安定性の問題を誘発することがある。また、Arに置換される構造の場合、電子(π結合が豊富である電子供与体)を豊富に有していることを特徴とし、アミンを介してインデノ構造の置換基はArの電子を吸引する構造となっており、化合物内の電子の偏在化を防ぐことができ、結果的に、素子の高効率、長寿命を達成することができる。 The compound represented by Formula 1 may have an amine group including a substituent including an indeno structure as a core structure. In the case of such a core structure, a substituent capable of exhibiting hole characteristics in the structure of Ar 1 is combined with the amine group core, whereby a structure in which electrons or holes easily flow can be provided. In addition, since the substituent having an indeno structure has a structure having an unshared electron pair, the flow of electrons or holes is improved, the molecular weight is small, and the substituent is suitable as an evaporation material. Generally, in the case of a material for vapor deposition, if the molecular weight exceeds 1000, a problem of thermal stability may be induced. The structure substituted with Ar 1 is characterized by having abundant electrons (electron donors rich in π bonds), and the substituent of the indeno structure is an electron of Ar 1 through an amine. The structure in which the compound is attracted can prevent the uneven distribution of electrons in the compound. As a result, high efficiency and long life of the device can be achieved.

また、前記化学式1で表される有機光電子素子用化合物は、コア部分と、コア部分に置換された置換基に多様なさらに他の置換基を導入することにより、多様なエネルギーバンドギャップを有する化合物になっていてもよい。   In addition, the compound for an organic optoelectronic device represented by the chemical formula 1 is a compound having various energy band gaps by introducing various other substituents into the core portion and the substituents substituted in the core portion. It may be.

前記化合物の置換基に応じて適切なエネルギー準位を有する化合物を有機光電子素子に使用することにより、正孔伝達能力または電子伝達能力が高められ、効率および駆動電圧の面で優れた効果を有し、電気化学的および熱的安定性に優れ、有機光電子素子の駆動時の寿命特性を向上させることができる。   By using a compound having an appropriate energy level in accordance with the substituent of the compound in the organic optoelectronic device, the hole transfer capability or the electron transfer capability is enhanced, and has an excellent effect in terms of efficiency and driving voltage. In addition, it has excellent electrochemical and thermal stability, and can improve the life characteristics during driving of the organic optoelectronic device.

より具体的には、本発明の一実施形態において、置換もしくは非置換のC6〜C30のアリール基、および/または置換もしくは非置換のC2〜C30のヘテロアリール基は、置換もしくは非置換のフェニル基、置換もしくは非置換のナフチル基、置換もしくは非置換のアントラセニル基、置換もしくは非置換のフェナントリル基、置換もしくは非置換のナフタセニル基、置換もしくは非置換のピレニル基、置換もしくは非置換のビフェニリル基、置換もしくは非置換のp−ターフェニル基、置換もしくは非置換のm−ターフェニル基、置換もしくは非置換のクリセニル基、置換もしくは非置換のトリフェニレニル基、置換もしくは非置換のペリレニル基、置換もしくは非置換のインデニル基、置換もしくは非置換のフラニル基、置換もしくは非置換のチオフェニル基、置換もしくは非置換のピロリル基、置換もしくは非置換のピラゾリル基、置換もしくは非置換のイミダゾリル基、置換もしくは非置換のトリアゾリル基、置換もしくは非置換のオキサゾリル基、置換もしくは非置換のチアゾリル基、置換もしくは非置換のオキサジアゾリル基、置換もしくは非置換のチアジアゾリル基、置換もしくは非置換のピリジル基、置換もしくは非置換のピリミジニル基、置換もしくは非置換のピラジニル基、置換もしくは非置換のトリアジニル基、置換もしくは非置換のベンゾフラニル基、置換もしくは非置換のベンゾチオフェニル基、置換もしくは非置換のベンズイミダゾリル基、置換もしくは非置換のインドリル基、置換もしくは非置換のキノリニル基、置換もしくは非置換のイソキノリニル基、置換もしくは非置換のキナゾリニル基、置換もしくは非置換のキノキサリニル基、置換もしくは非置換のナフチリジニル基、置換もしくは非置換のベンズオキサジニル基、置換もしくは非置換のベンズチアジニル基、置換もしくは非置換のアクリジニル基、置換もしくは非置換のフェナジニル基、置換もしくは非置換のフェノチアジニル基、置換もしくは非置換のフェノキサジニル基、またはこれらの組み合わせであってもよいが、これらに制限されない。   More specifically, in one embodiment of the present invention, a substituted or unsubstituted C6-C30 aryl group and / or a substituted or unsubstituted C2-C30 heteroaryl group is a substituted or unsubstituted phenyl group. Substituted or unsubstituted naphthyl group, substituted or unsubstituted anthracenyl group, substituted or unsubstituted phenanthryl group, substituted or unsubstituted naphthacenyl group, substituted or unsubstituted pyrenyl group, substituted or unsubstituted biphenylyl group, substituted Or unsubstituted p-terphenyl group, substituted or unsubstituted m-terphenyl group, substituted or unsubstituted chrysenyl group, substituted or unsubstituted triphenylenyl group, substituted or unsubstituted perylenyl group, substituted or unsubstituted Indenyl group, substituted or unsubstituted furanyl group, substituted or Unsubstituted thiophenyl group, substituted or unsubstituted pyrrolyl group, substituted or unsubstituted pyrazolyl group, substituted or unsubstituted imidazolyl group, substituted or unsubstituted triazolyl group, substituted or unsubstituted oxazolyl group, substituted or unsubstituted Thiazolyl group, substituted or unsubstituted oxadiazolyl group, substituted or unsubstituted thiadiazolyl group, substituted or unsubstituted pyridyl group, substituted or unsubstituted pyrimidinyl group, substituted or unsubstituted pyrazinyl group, substituted or unsubstituted triazinyl Group, substituted or unsubstituted benzofuranyl group, substituted or unsubstituted benzothiophenyl group, substituted or unsubstituted benzimidazolyl group, substituted or unsubstituted indolyl group, substituted or unsubstituted quinolinyl group, substituted or unsubstituted Isoki Linyl group, substituted or unsubstituted quinazolinyl group, substituted or unsubstituted quinoxalinyl group, substituted or unsubstituted naphthyridinyl group, substituted or unsubstituted benzoxazinyl group, substituted or unsubstituted benzthiazinyl group, substituted or unsubstituted It may be, but is not limited to, a substituted acridinyl group, a substituted or unsubstituted phenazinyl group, a substituted or unsubstituted phenothiazinyl group, a substituted or unsubstituted phenoxazinyl group, or a combination thereof.

また、前記L〜Lを選択的に調節することで、化合物全体の共役長を決定することができ、これにより三重項エネルギーバンドギャップを調節することができる。これにより、有機光電子素子に必要とされる材料の特性を実現することができる。また、オルト、パラ、メタの結合位置の変更によっても、三重項エネルギーバンドギャップを調節することができる。 Moreover, by selectively adjusting the L 1 to L 3 , the conjugate length of the entire compound can be determined, and thereby the triplet energy band gap can be adjusted. Thereby, the characteristic of the material required for an organic optoelectronic device is realizable. The triplet energy band gap can also be adjusted by changing the bonding positions of ortho, para, and meta.

前記L〜Lの具体例としては、置換もしくは非置換のフェニレン基、置換もしくは非置換のビフェニレン基、置換もしくは非置換のターフェニレン基、置換もしくは非置換のナフチレン基、置換もしくは非置換のアントラセニレン基、置換もしくは非置換のフェナントリレン基、置換もしくは非置換のピレニレン基、置換もしくは非置換のフルオレニレン基、置換もしくは非置換のp−ターフェニル基、置換もしくは非置換のm−ターフェニル基、置換もしくは非置換のペリレニル基などである。 Specific examples of L 1 to L 3 include a substituted or unsubstituted phenylene group, a substituted or unsubstituted biphenylene group, a substituted or unsubstituted terphenylene group, a substituted or unsubstituted naphthylene group, substituted or unsubstituted Anthracenylene group, substituted or unsubstituted phenanthrylene group, substituted or unsubstituted pyrenylene group, substituted or unsubstituted fluorenylene group, substituted or unsubstituted p-terphenyl group, substituted or unsubstituted m-terphenyl group, substituted Or an unsubstituted perylenyl group.

より具体的には、前記L〜Lは互いに独立して、フェニレン基であってもよい。前記L〜Lがフェニレン基の場合、前記フェニレン基を基準として両側のコア部分は、オルト、メタ、またはパラに結合されてもよい。 More specifically, the L 1 to L 3 may be independently a phenylene group. When L 1 to L 3 are phenylene groups, the core portions on both sides based on the phenylene group may be bonded to ortho, meta, or para.

前記Bは下記の化学式A−2であってもよい。前記化学式A−2は、非共有電子対を有しているため、電子または正孔の流れを良くし、高効率の素子を得るのに有利である。また、一般に使用するジベンゾフランまたはジベンゾチオフェンに比べて分子量が小さいため、蒸着素材として有利であり得る。そして、前記Arに偏在された電子(π結合、電子供与基)を、前記化学式A−2の置換体で化合物全体に均一に分布させることにより、高効率/長寿命の素子を得ることができる。より具体的には、前記有機光電子素子用化合物が2つのインデノ構造を含む場合、電子を均一に分布することができる。 The B may be represented by the following chemical formula A-2. Since the chemical formula A-2 has an unshared electron pair, it is advantageous for improving the flow of electrons or holes and obtaining a highly efficient device. Moreover, since molecular weight is small compared with the dibenzofuran or dibenzothiophene generally used, it can be advantageous as a vapor deposition material. Then, a highly efficient / long-life device can be obtained by uniformly distributing the electrons (π bond, electron donating group) unevenly distributed in Ar 1 throughout the compound with the substituent of Chemical Formula A-2. it can. More specifically, when the compound for an organic optoelectronic device includes two indeno structures, electrons can be uniformly distributed.

より具体的には、前記Arは下記の化学式B−1であってもよい。 More specifically, the Ar 1 may be represented by the following chemical formula B-1.

前記化学式B−1において、R〜Rは互いに独立して、水素、重水素、ハロゲン基、シアノ基、ヒドロキシル基、アミノ基、置換もしくは非置換のC1〜C20のアミン基、ニトロ基、カルボキシル基、フェロセニル基、置換もしくは非置換のC1〜C20のアルキル基、置換もしくは非置換のC6〜C30のアリール基、置換もしくは非置換のC2〜C30のヘテロアリール基、置換もしくは非置換のC1〜C20のアルコキシ基、置換もしくは非置換のC6〜C20のアリールオキシ基、置換もしくは非置換のC3〜C40のシリルオキシ基、置換もしくは非置換のC1〜C20のアシル基、置換もしくは非置換のC2〜C20のアルコキシカルボニル基、置換もしくは非置換のC2〜C20のアシルオキシ基、置換もしくは非置換のC2〜C20のアシルアミノ基、置換もしくは非置換のC2〜C20のアルコキシカルボニルアミノ基、置換もしくは非置換のC7〜C20のアリールオキシカルボニルアミノ基、置換もしくは非置換のC1〜C20のスルファモイルアミノ基、置換もしくは非置換のC1〜C20のスルホニル基、置換もしくは非置換のC1〜C20のアルキルチオール基、置換もしくは非置換のC6〜C20のアリールチオール基、置換もしくは非置換のC1〜C20のヘテロシクロチオール基、置換もしくは非置換のC1〜C20のウレイド基、置換もしくは非置換のC3〜C40のシリル基、またはこれらの組み合わせである。 In Formula B-1, R 5 to R 8 are independently of each other hydrogen, deuterium, halogen group, cyano group, hydroxyl group, amino group, substituted or unsubstituted C1-C20 amine group, nitro group, A carboxyl group, a ferrocenyl group, a substituted or unsubstituted C1-C20 alkyl group, a substituted or unsubstituted C6-C30 aryl group, a substituted or unsubstituted C2-C30 heteroaryl group, a substituted or unsubstituted C1- C20 alkoxy group, substituted or unsubstituted C6-C20 aryloxy group, substituted or unsubstituted C3-C40 silyloxy group, substituted or unsubstituted C1-C20 acyl group, substituted or unsubstituted C2-C20 Alkoxycarbonyl group, substituted or unsubstituted C2-C20 acyloxy group, substituted or unsubstituted C2-C20 acylamino group, substituted or unsubstituted C2-C20 alkoxycarbonylamino group, substituted or unsubstituted C7-C20 aryloxycarbonylamino group, substituted or unsubstituted C1-C20 sulfamoylamino Group, substituted or unsubstituted C1-C20 sulfonyl group, substituted or unsubstituted C1-C20 alkylthiol group, substituted or unsubstituted C6-C20 arylthiol group, substituted or unsubstituted C1-C20 hetero A cyclothiol group, a substituted or unsubstituted C1-C20 ureido group, a substituted or unsubstituted C3-C40 silyl group, or a combination thereof.

この場合、化学式B−1のようなフルオレン基の場合、中央の炭素(C)が二重結合なしになされた構造のため、π結合が途切れる。このため、正孔を形成しやすくなり、アミン(N)を中心とするインデノ構造の置換体と調和をなすことができる。電子または正孔を良好に伝達するためには、正孔を形成しやすい置換体と、電子を形成しやすい置換体とがよく調和していなければならないが、前記フルオレン基が正孔を形成しやすい置換体である。また、フルオレンが含まれている化合物の場合、素子の高効率および駆動電圧の面で特性を改善することができる。   In this case, in the case of a fluorene group as represented by the chemical formula B-1, the π bond is interrupted because the central carbon (C) is formed without a double bond. For this reason, it becomes easy to form a hole, and it can make | form with the substitution body of the indeno structure centering on amine (N). In order to transmit electrons or holes satisfactorily, a substituent that easily forms holes and a substituent that easily forms electrons must be well harmonized, but the fluorene group forms holes. It is an easy substitute. In the case of a compound containing fluorene, the characteristics can be improved in terms of the high efficiency of the device and the driving voltage.

具体例を挙げると、前記Arは下記の化学式B−2であってもよい。 As a specific example, the Ar 1 may be represented by the following chemical formula B-2.

前記化学式B−2において、R〜Rは互いに独立して、水素、重水素、ハロゲン基、シアノ基、ヒドロキシル基、アミノ基、置換もしくは非置換のC1〜C20のアミン基、ニトロ基、カルボキシル基、フェロセニル基、置換もしくは非置換のC1〜C20のアルキル基、置換もしくは非置換のC6〜C30のアリール基、置換もしくは非置換のC2〜C30のヘテロアリール基、置換もしくは非置換のC1〜C20のアルコキシ基、置換もしくは非置換のC6〜C20のアリールオキシ基、置換もしくは非置換のC3〜C40のシリルオキシ基、置換もしくは非置換のC1〜C20のアシル基、置換もしくは非置換のC2〜C20のアルコキシカルボニル基、置換もしくは非置換のC2〜C20のアシルオキシ基、置換もしくは非置換のC2〜C20のアシルアミノ基、置換もしくは非置換のC2〜C20のアルコキシカルボニルアミノ基、置換もしくは非置換のC7〜C20のアリールオキシカルボニルアミノ基、置換もしくは非置換のC1〜C20のスルファモイルアミノ基、置換もしくは非置換のC1〜C20のスルホニル基、置換もしくは非置換のC1〜C20のアルキルチオール基、置換もしくは非置換のC6〜C20のアリールチオール基、置換もしくは非置換のC1〜C20のヘテロシクロチオール基、置換もしくは非置換のC1〜C20のウレイド基、置換もしくは非置換のC3〜C40のシリル基、またはこれらの組み合わせである。 In Formula B-2, R 5 to R 8 are independently of each other hydrogen, deuterium, halogen group, cyano group, hydroxyl group, amino group, substituted or unsubstituted C1-C20 amine group, nitro group, A carboxyl group, a ferrocenyl group, a substituted or unsubstituted C1-C20 alkyl group, a substituted or unsubstituted C6-C30 aryl group, a substituted or unsubstituted C2-C30 heteroaryl group, a substituted or unsubstituted C1- C20 alkoxy group, substituted or unsubstituted C6-C20 aryloxy group, substituted or unsubstituted C3-C40 silyloxy group, substituted or unsubstituted C1-C20 acyl group, substituted or unsubstituted C2-C20 Alkoxycarbonyl group, substituted or unsubstituted C2-C20 acyloxy group, substituted or unsubstituted C2-C20 acylamino group, substituted or unsubstituted C2-C20 alkoxycarbonylamino group, substituted or unsubstituted C7-C20 aryloxycarbonylamino group, substituted or unsubstituted C1-C20 sulfamoylamino Group, substituted or unsubstituted C1-C20 sulfonyl group, substituted or unsubstituted C1-C20 alkylthiol group, substituted or unsubstituted C6-C20 arylthiol group, substituted or unsubstituted C1-C20 hetero A cyclothiol group, a substituted or unsubstituted C1-C20 ureido group, a substituted or unsubstituted C3-C40 silyl group, or a combination thereof.

前記化学式B−2で表される置換基は、合成が容易な位置で、コアのアミン窒素と結合することができる。   The substituent represented by the chemical formula B-2 can be bonded to the core amine nitrogen at a position where synthesis is easy.

より具体的には、前記Arは下記の化学式B−3であってもよい。 More specifically, the Ar 1 may be represented by the following chemical formula B-3.

前記化学式B−3において、R〜R12は互いに独立して、水素、重水素、ハロゲン基、シアノ基、ヒドロキシル基、アミノ基、置換もしくは非置換のC1〜C20のアミン基、ニトロ基、カルボキシル基、フェロセニル基、置換もしくは非置換のC1〜C20のアルキル基、置換もしくは非置換のC6〜C30のアリール基、置換もしくは非置換のC2〜C30のヘテロアリール基、置換もしくは非置換のC1〜C20のアルコキシ基、置換もしくは非置換のC6〜C20のアリールオキシ基、置換もしくは非置換のC3〜C40のシリルオキシ基、置換もしくは非置換のC1〜C20のアシル基、置換もしくは非置換のC2〜C20のアルコキシカルボニル基、置換もしくは非置換のC2〜C20のアシルオキシ基、置換もしくは非置換のC2〜C20のアシルアミノ基、置換もしくは非置換のC2〜C20のアルコキシカルボニルアミノ基、置換もしくは非置換のC7〜C20のアリールオキシカルボニルアミノ基、置換もしくは非置換のC1〜C20のスルファモイルアミノ基、置換もしくは非置換のC1〜C20のスルホニル基、置換もしくは非置換のC1〜C20のアルキルチオール基、置換もしくは非置換のC6〜C20のアリールチオール基、置換もしくは非置換のC1〜C20のヘテロシクロチオール基、置換もしくは非置換のC1〜C20のウレイド基、置換もしくは非置換のC3〜C40のシリル基、またはこれらの組み合わせである。 In Formula B-3, R 9 to R 12 are independently of each other hydrogen, deuterium, halogen group, cyano group, hydroxyl group, amino group, substituted or unsubstituted C1-C20 amine group, nitro group, A carboxyl group, a ferrocenyl group, a substituted or unsubstituted C1-C20 alkyl group, a substituted or unsubstituted C6-C30 aryl group, a substituted or unsubstituted C2-C30 heteroaryl group, a substituted or unsubstituted C1- C20 alkoxy group, substituted or unsubstituted C6-C20 aryloxy group, substituted or unsubstituted C3-C40 silyloxy group, substituted or unsubstituted C1-C20 acyl group, substituted or unsubstituted C2-C20 An alkoxycarbonyl group, a substituted or unsubstituted C2-C20 acyloxy group, substituted or unsubstituted Substituted C2-C20 acylamino group, substituted or unsubstituted C2-C20 alkoxycarbonylamino group, substituted or unsubstituted C7-C20 aryloxycarbonylamino group, substituted or unsubstituted C1-C20 sulfamoyl Amino group, substituted or unsubstituted C1-C20 sulfonyl group, substituted or unsubstituted C1-C20 alkyl thiol group, substituted or unsubstituted C6-C20 aryl thiol group, substituted or unsubstituted C1-C20 A heterocyclothiol group, a substituted or unsubstituted C1-C20 ureido group, a substituted or unsubstituted C3-C40 silyl group, or a combination thereof.

前記化学式B−3のようなフェナントレン基が存在する場合、より低いHOMO準位を達成することができる。また、前記フェナントレン(B−2)基は、フェニル基3個が折れているため、正孔を形成しやすい構造として知られている。そして、フルオレン(B−1)基に比べて熱安定性(フェニル基がすべて共鳴構造をなす)に優れている。   When a phenanthrene group as shown in Formula B-3 is present, a lower HOMO level can be achieved. The phenanthrene (B-2) group is known as a structure that easily forms holes because three phenyl groups are broken. And compared with a fluorene (B-1) group, it is excellent in thermal stability (all phenyl groups make a resonance structure).

より具体的には、前記Arは下記の化学式B−4であってもよい。 More specifically, the Ar 1 may be represented by the following chemical formula B-4.

より具体的には、フェナントレン(化学式B−2)基よりも低いHOMO準位が必要な場合、トリフェニレン(化学式B−3)基を導入してこれを調節することができる。前記トリフェニレン基はフェニル基が3個集まっており、豊富な電子供与基を提供することができ、電子吸引基(例えば、インデノ置換体)と結合される場合、正孔を形成しやすい構造であり得る。そして、フルオレン基に比べて熱安定性(フェニル基のすべてが共鳴構造をなす)に優れている。   More specifically, when a HOMO level lower than that of the phenanthrene (Chemical Formula B-2) group is required, a triphenylene (Chemical Formula B-3) group can be introduced and adjusted. The triphenylene group has three phenyl groups, can provide abundant electron donating groups, and has a structure that easily forms holes when combined with an electron withdrawing group (for example, an indeno substituent). obtain. And it is excellent in thermal stability (all of the phenyl groups have a resonance structure) compared to the fluorene group.

より具体的には、前記Arは下記の化学式B−5であってもよい。 More specifically, the Ar 1 may be represented by the following chemical formula B-5.

前記化学式B−5において、Xは−O−、−S−またはNR’であり、R’、R13およびR14は互いに独立して、水素、重水素、ハロゲン基、シアノ基、ヒドロキシル基、アミノ基、置換もしくは非置換のC1〜C20のアミン基、ニトロ基、カルボキシル基、フェロセニル基、置換もしくは非置換のC1〜C20のアルキル基、置換もしくは非置換のC6〜C30のアリール基、置換もしくは非置換のC2〜C30のヘテロアリール基、置換もしくは非置換のC1〜C20のアルコキシ基、置換もしくは非置換のC6〜C20のアリールオキシ基、置換もしくは非置換のC3〜C40のシリルオキシ基、置換もしくは非置換のC1〜C20のアシル基、置換もしくは非置換のC2〜C20のアルコキシカルボニル基、置換もしくは非置換のC2〜C20のアシルオキシ基、置換もしくは非置換のC2〜C20のアシルアミノ基、置換もしくは非置換のC2〜C20のアルコキシカルボニルアミノ基、置換もしくは非置換のC7〜C20のアリールオキシカルボニルアミノ基、置換もしくは非置換のC1〜C20のスルファモイルアミノ基、置換もしくは非置換のC1〜C20のスルホニル基、置換もしくは非置換のC1〜C20のアルキルチオール基、置換もしくは非置換のC6〜C20のアリールチオール基、置換もしくは非置換のC1〜C20のヘテロシクロチオール基、置換もしくは非置換のC1〜C20のウレイド基、置換もしくは非置換のC3〜C40のシリル基、またはこれらの組み合わせである。 In Formula B-5, X 2 is —O—, —S— or NR ′, and R ′, R 13 and R 14 are independently of each other hydrogen, deuterium, halogen group, cyano group, hydroxyl group. Amino group, substituted or unsubstituted C1-C20 amine group, nitro group, carboxyl group, ferrocenyl group, substituted or unsubstituted C1-C20 alkyl group, substituted or unsubstituted C6-C30 aryl group, substituted Or unsubstituted C2-C30 heteroaryl group, substituted or unsubstituted C1-C20 alkoxy group, substituted or unsubstituted C6-C20 aryloxy group, substituted or unsubstituted C3-C40 silyloxy group, substituted Or an unsubstituted C1-C20 acyl group, a substituted or unsubstituted C2-C20 alkoxycarbonyl group, a substituted or unsubstituted A substituted C2-C20 acyloxy group, a substituted or unsubstituted C2-C20 acylamino group, a substituted or unsubstituted C2-C20 alkoxycarbonylamino group, a substituted or unsubstituted C7-C20 aryloxycarbonylamino group, Substituted or unsubstituted C1-C20 sulfamoylamino group, substituted or unsubstituted C1-C20 sulfonyl group, substituted or unsubstituted C1-C20 alkylthiol group, substituted or unsubstituted C6-C20 aryl A thiol group, a substituted or unsubstituted C1-C20 heterocyclothiol group, a substituted or unsubstituted C1-C20 ureido group, a substituted or unsubstituted C3-C40 silyl group, or a combination thereof.

正孔または電子輸送能力に優れる前記化学式B−5を使用した場合、高効率の素子を得ることができる。   When the chemical formula B-5, which is excellent in hole or electron transport capability, is used, a highly efficient device can be obtained.

より具体的には、前記Arは下記の化学式B−6であってもよい。 More specifically, the Ar 1 may be represented by the following chemical formula B-6.

前記化学式B−6において、R15およびR16は互いに独立して、水素、重水素、ハロゲン基、シアノ基、ヒドロキシル基、アミノ基、置換もしくは非置換のC1〜C20のアミン基、ニトロ基、カルボキシル基、フェロセニル基、置換もしくは非置換のC1〜C20のアルキル基、置換もしくは非置換のC6〜C30のアリール基、置換もしくは非置換のC2〜C30のヘテロアリール基、置換もしくは非置換のC1〜C20のアルコキシ基、置換もしくは非置換のC6〜C20のアリールオキシ基、置換もしくは非置換のC3〜C40のシリルオキシ基、置換もしくは非置換のC1〜C20のアシル基、置換もしくは非置換のC2〜C20のアルコキシカルボニル基、置換もしくは非置換のC2〜C20のアシルオキシ基、置換もしくは非置換のC2〜C20のアシルアミノ基、置換もしくは非置換のC2〜C20のアルコキシカルボニルアミノ基、置換もしくは非置換のC7〜C20のアリールオキシカルボニルアミノ基、置換もしくは非置換のC1〜C20のスルファモイルアミノ基、置換もしくは非置換のC1〜C20のスルホニル基、置換もしくは非置換のC1〜C20のアルキルチオール基、置換もしくは非置換のC6〜C20のアリールチオール基、置換もしくは非置換のC1〜C20のヘテロシクロチオール基、置換もしくは非置換のC1〜C20のウレイド基、置換もしくは非置換のC3〜C40のシリル基、またはこれらの組み合わせである。 In Formula B-6, R 15 and R 16 are independently of each other hydrogen, deuterium, halogen group, cyano group, hydroxyl group, amino group, substituted or unsubstituted C1-C20 amine group, nitro group, A carboxyl group, a ferrocenyl group, a substituted or unsubstituted C1-C20 alkyl group, a substituted or unsubstituted C6-C30 aryl group, a substituted or unsubstituted C2-C30 heteroaryl group, a substituted or unsubstituted C1- C20 alkoxy group, substituted or unsubstituted C6-C20 aryloxy group, substituted or unsubstituted C3-C40 silyloxy group, substituted or unsubstituted C1-C20 acyl group, substituted or unsubstituted C2-C20 An alkoxycarbonyl group, a substituted or unsubstituted C2-C20 acyloxy group, substituted Is an unsubstituted C2-C20 acylamino group, a substituted or unsubstituted C2-C20 alkoxycarbonylamino group, a substituted or unsubstituted C7-C20 aryloxycarbonylamino group, a substituted or unsubstituted C1-C20 sulfo group. Famoylamino group, substituted or unsubstituted C1-C20 sulfonyl group, substituted or unsubstituted C1-C20 alkylthiol group, substituted or unsubstituted C6-C20 arylthiol group, substituted or unsubstituted C1-C20 A C20 heterocyclothiol group, a substituted or unsubstituted C1-C20 ureido group, a substituted or unsubstituted C3-C40 silyl group, or a combination thereof.

前記化学式B−6のようなカルバゾール基の場合、アミン(N)を中心としてπ結合が途切れるため、正孔を形成するのに有利であり、非共有電子対を有しているため、正孔輸送能力にも優れている。また、前記化学式B−6のようなカルバゾール基は、正孔輸送能力が電子輸送能力に比べて非常に優れているため、素子への適用時、正孔輸送層や正孔輸送層の補助層または正孔特性を有するホストとして用いると、高効率低電圧素子を実現することができる。   In the case of the carbazole group represented by the chemical formula B-6, the π bond is interrupted around the amine (N), which is advantageous for forming holes, and since it has an unshared electron pair, Excellent transport capability. In addition, since the carbazole group as represented by the chemical formula B-6 has a hole transporting capability that is very superior to the electron transporting capability, a hole transporting layer or an auxiliary layer of the hole transporting layer can be applied to the device. Alternatively, when used as a host having hole characteristics, a high-efficiency low-voltage element can be realized.

より具体的には、前記Arは置換もしくは非置換のビフェニル基であってもよい。より具体的な例を挙げると、前記Arは下記の化学式B−7またはB−8であってもよい。 More specifically, Ar 1 may be a substituted or unsubstituted biphenyl group. As a more specific example, Ar 1 may be represented by the following chemical formula B-7 or B-8.

より単純な構造のB−7および/またはB−8の置換基は、熱的、電気的安定性に優れ、高寿命の素子を実現するのに適合する。   The substituent of B-7 and / or B-8 having a simpler structure is excellent in thermal and electrical stability and is suitable for realizing a device having a long lifetime.

具体例を挙げると、前記AおよびBは前記化学式A−2で表されてもよい。つまり、コアのアミン基に、化学式A−2で表される置換基が同時に存在する場合、正孔または電子輸送に優れた化学式A−2の存在によって、素子の駆動電圧が低くなり、効率を向上できる。また、前記化学式A−2は分子構造が単純なため、熱的、電気的安定性に優れている。   As a specific example, the A and B may be represented by the chemical formula A-2. That is, when the substituent represented by the chemical formula A-2 is simultaneously present in the amine group of the core, the presence of the chemical formula A-2 excellent in hole or electron transport reduces the driving voltage of the device, and improves the efficiency. It can be improved. Further, the chemical formula A-2 has a simple molecular structure, and thus has excellent thermal and electrical stability.

前記化学式A−2において、前記RおよびRは水素であってもよいし、これらに制限されない。 In the chemical formula A-2, R 3 and R 4 may be hydrogen, but are not limited thereto.

前記有機光電子素子用化合物は、700以下の分子量を有することができる。より具体的には600以下の分子量を有することができる。この場合、素子の製造時に低い温度で蒸着が可能なので蒸着が容易であり、熱的安定性を向上できる。これにより、素子の安定性を改善できる。   The organic optoelectronic device compound may have a molecular weight of 700 or less. More specifically, it can have a molecular weight of 600 or less. In this case, since vapor deposition can be performed at a low temperature when the device is manufactured, vapor deposition is easy, and thermal stability can be improved. Thereby, the stability of the element can be improved.

具体的な本発明の一実施形態の例示として下記の化合物などがある。ただし、これらに制限されるわけではない。   Specific examples of one embodiment of the present invention include the following compounds. However, it is not necessarily limited to these.

本発明の他の実施形態では、陽極、陰極、および前記陽極と陰極との間に介在する1層以上の有機薄膜層を含み、前記有機薄膜層のうちの少なくともいずれか1層は前記有機光電子素子用化合物を含む有機光電子素子を提供する。   In another embodiment of the present invention, an anode, a cathode, and one or more organic thin film layers interposed between the anode and the cathode, wherein at least one of the organic thin film layers is the organic photoelectron. An organic optoelectronic device comprising a device compound is provided.

前記有機光電子素子用化合物は、有機薄膜層に使用され、有機光電子素子の寿命特性、効率特性、電気化学的安定性および熱的安定性を向上させ、駆動電圧を低下させることができる。   The compound for an organic optoelectronic device is used in an organic thin film layer, and can improve the life characteristics, efficiency characteristics, electrochemical stability and thermal stability of the organic optoelectronic device, and reduce the driving voltage.

前記有機薄膜層は、具体的には、発光層であってもよい。   Specifically, the organic thin film layer may be a light emitting layer.

前記有機光電子素子は、有機発光素子、有機光電素子、有機太陽電池、有機トランジスタ、有機感光体ドラム、または有機メモリ素子であってもよい。   The organic optoelectronic device may be an organic light emitting device, an organic photoelectric device, an organic solar cell, an organic transistor, an organic photoreceptor drum, or an organic memory device.

より具体的には、前記有機光電子素子は、有機発光素子であってもよい。図1〜図5は、本発明の一実施形態に係る有機光電子素子用化合物を含む有機発光素子の断面図である。   More specifically, the organic optoelectronic device may be an organic light emitting device. 1-5 is sectional drawing of the organic light emitting element containing the compound for organic optoelectronic devices based on one Embodiment of this invention.

図1〜図5を参照すれば、本発明の一実施形態に係る有機発光素子100、200、300、400および500は、陽極120、陰極110、およびこれら陽極と陰極との間に介在した少なくとも1層の有機薄膜層105を含む構造を有する。   1 to 5, an organic light emitting device 100, 200, 300, 400 and 500 according to an embodiment of the present invention includes an anode 120, a cathode 110, and at least interposed between the anode and the cathode. It has a structure including one organic thin film layer 105.

前記陽極120は、陽極物質を含み、この陽極物質としては、通常、有機薄膜層への正孔注入が円滑となるよう、仕事関数の大きい物質であることが好ましい。陽極物質の具体例としては、ニッケル、白金、バナジウム、クロム、銅、亜鉛、金のような金属、またはこれらの合金が挙げられ、亜鉛酸化物、インジウム酸化物、インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)のような金属酸化物が挙げられ、ZnOとAl、またはSnOとSbのような金属と酸化物との組み合わせが挙げられ、ポリ(3−メチルチオフェン)、ポリ(3,4−(エチレン−1,2−ジオキシ)チオフェン:PEDT)、ポリピロール、およびポリアニリンのような導電性高分子などが挙げられるが、これらに限定されるものではない。より具体的には、前記陽極として、ITOを含む透明電極を使用することができる。 The anode 120 includes an anode material, and the anode material is preferably a material having a large work function so that hole injection into the organic thin film layer is usually smooth. Specific examples of anode materials include metals such as nickel, platinum, vanadium, chromium, copper, zinc, gold, or alloys thereof, zinc oxide, indium oxide, indium tin oxide (ITO), Examples include metal oxides such as indium zinc oxide (IZO), and combinations of metals and oxides such as ZnO and Al, or SnO 2 and Sb, and include poly (3-methylthiophene) and poly ( Examples include, but are not limited to, conductive polymers such as 3,4- (ethylene-1,2-dioxy) thiophene: PEDT), polypyrrole, and polyaniline. More specifically, a transparent electrode containing ITO can be used as the anode.

前記陰極110は、陰極物質を含み、この陰極物質としては、通常、有機薄膜層への電子注入が容易となるよう、仕事関数の小さい物質であることが好ましい。陰極物質の具体例としては、マグネシウム、カルシウム、ナトリウム、カリウム、チタン、インジウム、イットリウム、リチウム、ガドリニウム、アルミニウム、銀、スズ、鉛、セシウム、バリウムなどのような金属、またはこれらの合金が挙げられ、LiF/Al、LiO/Al、LiF/Ca、LiF/Al、およびBaF/Caのような多層構造の物質などが挙げられるが、これらに限定されるものではない。より具体的には、前記陰極として、アルミニウムなどのような金属電極を使用することができる。 The cathode 110 includes a cathode material, and the cathode material is preferably a material having a small work function so that the electron injection into the organic thin film layer is facilitated. Specific examples of the cathode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, lead, cesium, barium, and alloys thereof. , LiF / Al, LiO 2 / Al, LiF / Ca, LiF / Al, and BaF 2 / Ca, but not limited to these. More specifically, a metal electrode such as aluminum can be used as the cathode.

まず、図1を参照すれば、図1は、有機薄膜層105として、発光層130のみが存在する有機発光素子100を示すもので、前記有機薄膜層105は、発光層130のみで存在してもよい。   Referring to FIG. 1, FIG. 1 shows an organic light emitting device 100 in which only the light emitting layer 130 exists as the organic thin film layer 105, and the organic thin film layer 105 exists only in the light emitting layer 130. Also good.

図2を参照すれば、図2は、有機薄膜層105として、電子輸送層を含む発光層230および正孔輸送層140が存在する2層型有機発光素子200を示すもので、図2に示されているように、有機薄膜層105は、発光層230および正孔輸送層140を含む2層型であってもよい。この場合、発光層130は、電子輸送層の機能を果たし、正孔輸送層140は、ITOのような透明電極との接合性および正孔輸送性を向上させる機能を果たす。   Referring to FIG. 2, FIG. 2 shows a two-layer organic light emitting device 200 in which a light emitting layer 230 including an electron transport layer and a hole transport layer 140 are present as the organic thin film layer 105. As described above, the organic thin film layer 105 may be a two-layer type including the light emitting layer 230 and the hole transport layer 140. In this case, the light emitting layer 130 functions as an electron transport layer, and the hole transport layer 140 functions to improve the bonding property with a transparent electrode such as ITO and the hole transport property.

図3を参照すれば、図3は、有機薄膜層105として、電子輸送層150、発光層130、および正孔輸送層140が存在する3層型有機発光素子300であって、前記有機薄膜層105において、発光層130は独立した形態となっており、電子輸送性や正孔輸送性に優れた膜(電子輸送層150および正孔輸送層140)を別途の層として積層した形態を示している。   Referring to FIG. 3, FIG. 3 illustrates a three-layer organic light emitting device 300 in which an electron transport layer 150, a light emitting layer 130, and a hole transport layer 140 are present as the organic thin film layer 105. 105, the light emitting layer 130 has an independent form, and shows a form in which films having excellent electron transportability and hole transportability (electron transport layer 150 and hole transport layer 140) are stacked as separate layers. Yes.

図4を参照すれば、図4は、有機薄膜層105として、電子注入層160、発光層130、正孔輸送層140、および正孔注入層170が存在する4層型有機発光素子400であって、前記正孔注入層170は、陽極として使用されるITOとの接合性を向上させることができる。   Referring to FIG. 4, FIG. 4 illustrates a four-layer organic light emitting device 400 in which an electron injection layer 160, a light emitting layer 130, a hole transport layer 140, and a hole injection layer 170 are present as the organic thin film layer 105. In addition, the hole injection layer 170 can improve the bonding property with ITO used as an anode.

図5を参照すれば、図5は、有機薄膜層105として、電子注入層160、電子輸送層150、発光層130、正孔輸送層140、および正孔注入層170のようなそれぞれ異なる機能を果たす5つの層が存在する5層型有機発光素子500を示しており、前記有機発光素子500は、電子注入層160を別途形成しているので、低電圧化に効果的である。   Referring to FIG. 5, the organic thin film layer 105 has different functions such as an electron injection layer 160, an electron transport layer 150, a light emitting layer 130, a hole transport layer 140, and a hole injection layer 170. A five-layer organic light emitting device 500 having five layers is shown. The organic light emitting device 500 is formed with an electron injection layer 160 separately, which is effective for lowering the voltage.

前記図1〜図5において、前記有機薄膜層105をなす電子輸送層150、電子注入層160、発光層130、230、正孔輸送層140、正孔注入層170、およびこれらの組み合わせからなる群より選択されるいずれか1つは、前記有機光電子素子用材料を含む。   1 to 5, the group consisting of the electron transport layer 150, the electron injection layer 160, the light emitting layers 130 and 230, the hole transport layer 140, the hole injection layer 170, and combinations thereof forming the organic thin film layer 105. Any one selected from the above includes the material for an organic optoelectronic device.

前記有機光電子素子用化合物は、前記発光層130、230に使用可能であり、この時、発光層内で緑色の燐光材料として使用可能である。   The compound for an organic optoelectronic device can be used for the light emitting layers 130 and 230. At this time, it can be used as a green phosphorescent material in the light emitting layer.

より具体的には、前記有機光電子素子用化合物は、前記正孔輸送層に使用できる。また、図示していないが、正孔輸送層は、複数で存在してもよく、発光層に隣接した正孔輸送層を補助層としてみた時、前記有機光電子素子用化合物は、前記補助層に存在してもよい。   More specifically, the compound for an organic optoelectronic device can be used for the hole transport layer. Although not shown, a plurality of hole transport layers may exist. When the hole transport layer adjacent to the light emitting layer is viewed as an auxiliary layer, the compound for an organic optoelectronic device is formed in the auxiliary layer. May be present.

上記で説明した有機発光素子は、基板に陽極を形成した後、真空蒸着法、スパッタリング、プラズマメッキおよびイオンメッキのような乾式成膜法;またはスピンコート法、浸漬法、流動コート法のような湿式成膜法などで有機薄膜層を形成した後、その上に陰極を形成して製造することができる。   The organic light emitting device described above is formed by forming a positive electrode on a substrate, and then forming a dry film formation method such as vacuum deposition, sputtering, plasma plating and ion plating; or spin coating, dipping, fluid coating, etc. After the organic thin film layer is formed by a wet film forming method or the like, the cathode can be formed on the organic thin film layer.

本発明のさらに他の実施形態では、前記有機光電子素子を含む表示装置を提供する。   In yet another embodiment of the present invention, a display device including the organic optoelectronic device is provided.

以下、本発明の具体的な実施例を提示する。ただし、下記に記載の実施例は本発明を具体的に例示または説明するためのものに過ぎず、これによって本発明が制限されない。   Hereinafter, specific examples of the present invention will be presented. However, the examples described below are only for specifically illustrating or explaining the present invention, and the present invention is not limited thereby.

(有機光電子素子用化合物の製造)
合成例1:中間体I−1の製造
(Manufacture of compounds for organic optoelectronic devices)
Synthesis Example 1 Production of Intermediate I-1

窒素雰囲気下、1−ブロモ−4−クロロベンゼン(53.7g、280.7mmol)をテトラヒドロフラン(THF)0.5Lに溶解した後、これに、ベンゾフラン−2−ボロン酸(50.0g、308.7mmol)とテトラキス(トリフェニルホスフィン)パラジウム(16.2g、14.0mmol)を加えて撹拌した。水に飽和した炭酸カリウム(82.7g、561.4mmol)を加え、100℃で47時間加熱還流した。反応完了後、反応液に水を加えてジクロロメタン(DCM)で抽出し、無水MgSOで水分を除去した後、ろ過し、減圧濃縮した。このように得られた残渣をフラッシュカラムクロマトグラフィーで分離精製し、化合物I−1(50.8g、79%)を得た。 1-Bromo-4-chlorobenzene (53.7 g, 280.7 mmol) was dissolved in 0.5 L of tetrahydrofuran (THF) under a nitrogen atmosphere, and then benzofuran-2-boronic acid (50.0 g, 308.7 mmol). ) And tetrakis (triphenylphosphine) palladium (16.2 g, 14.0 mmol) were added and stirred. Saturated potassium carbonate (82.7 g, 561.4 mmol) was added to water, and the mixture was heated to reflux at 100 ° C. for 47 hours. After completion of the reaction, water was added to the reaction solution, and the mixture was extracted with dichloromethane (DCM). Water was removed with anhydrous MgSO 4 , filtered, and concentrated under reduced pressure. The residue thus obtained was separated and purified by flash column chromatography to obtain compound I-1 (50.8 g, 79%).

HRMS(70eV,EI+):m/z calcd for C14H9ClO:228.0342,found:228.Elemental Analysis:C,74%;H,4%。   HRMS (70 eV, EI +): m / z calcd for C14H9ClO: 228.0342, found: 228. Elemental Analysis: C, 74%; H, 4%.

合成例2:中間体I−2の製造Synthesis Example 2: Production of Intermediate I-2

窒素雰囲気下、1−ブロモ−4−クロロベンゼン(48.9g、255.3mmol)をテトラヒドロフラン(THF)0.5Lに溶解した後、これに、ベンゾチオフェン−2−ボロン酸(50.0g、280.9mmol)とテトラキス(トリフェニルホスフィン)パラジウム(8.85g、7.66mmol)を加えて撹拌した。水に飽和した炭酸カリウム(75.2g、510.6mmol)を加え、80℃で17時間加熱還流した。反応完了後、反応液に水を加えてジクロロメタン(DCM)で抽出し、無水MgSOで水分を除去した後、ろ過し、減圧濃縮した。このように得られた残渣をフラッシュカラムクロマトグラフィーで分離精製し、化合物I−2(61.3g、98%)を得た。 In a nitrogen atmosphere, 1-bromo-4-chlorobenzene (48.9 g, 255.3 mmol) was dissolved in 0.5 L of tetrahydrofuran (THF), and then benzothiophene-2-boronic acid (50.0 g, 280. 9 mmol) and tetrakis (triphenylphosphine) palladium (8.85 g, 7.66 mmol) were added and stirred. Saturated potassium carbonate (75.2 g, 510.6 mmol) was added to water, and the mixture was heated to reflux at 80 ° C. for 17 hours. After completion of the reaction, water was added to the reaction solution, and the mixture was extracted with dichloromethane (DCM). Water was removed with anhydrous MgSO 4 , filtered, and concentrated under reduced pressure. The residue thus obtained was separated and purified by flash column chromatography to obtain compound I-2 (61.3 g, 98%).

HRMS(70eV,EI+):m/z calcd for C14H9ClS:224.0113,found:224.Elemental Analysis:C,69%;H,4%。   HRMS (70 eV, EI +): m / z calcd for C14H9ClS: 224.0113, found: 224. Elemental Analysis: C, 69%; H, 4%.

合成例3:中間体I−3の製造Synthesis Example 3 Production of Intermediate I-3

窒素雰囲気下、1−ブロモ−4−ニトロベンゼン(50g、247.5mmol)をテトラヒドロフラン(THF)0.5Lに溶解した後、これに、9,9−ジメチル−9H−フルオレン−2−イルボロン酸(70.7g、297.0mmol)とテトラキス(トリフェニルホスフィン)パラジウム(8.58g、7.43mmol)を加えて撹拌した。水に飽和した炭酸カリウム(72.9g、495.0mmol)を加え、80℃で21時間加熱還流した。反応完了後、反応液に水を加えてジクロロメタン(DCM)で抽出し、無水MgSOで水分を除去した後、ろ過し、減圧濃縮した。このように得られた残渣をフラッシュカラムクロマトグラフィーで分離精製し、化合物I−3(78.1g、82%)を得た。 1-Bromo-4-nitrobenzene (50 g, 247.5 mmol) was dissolved in 0.5 L of tetrahydrofuran (THF) in a nitrogen atmosphere, and then 9,9-dimethyl-9H-fluoren-2-ylboronic acid (70 0.7 g, 297.0 mmol) and tetrakis (triphenylphosphine) palladium (8.58 g, 7.43 mmol) were added and stirred. Saturated potassium carbonate (72.9 g, 495.0 mmol) was added to water, and the mixture was heated to reflux at 80 ° C. for 21 hours. After completion of the reaction, water was added to the reaction solution, and the mixture was extracted with dichloromethane (DCM). Water was removed with anhydrous MgSO 4 , filtered, and concentrated under reduced pressure. The residue thus obtained was separated and purified by flash column chromatography to obtain compound I-3 (78.1 g, 82%).

HRMS(70eV,EI+):m/z calcd for C21H17NO2:315.1259,found:315.Elemental Analysis:C,80%;H,5%。   HRMS (70 eV, EI +): m / z calcd for C21H17NO2: 315.1259, found: 315. Elemental Analysis: C, 80%; H, 5%.

合成例4:中間体I−4の製造Synthesis Example 4: Production of Intermediate I-4

窒素雰囲気下、I−3(30g、95.1mmol)を dmテトラヒドロフラン(THF)0.3Lに溶解した後、メタノール0.3Lを加え、0℃に冷却した。これに、水素化ホウ素ナトリウム(36.0g、951mmol)を入れた後、塩化スズ(II)(90.2g、475.5mmol)を加え、常温で2時間反応させた。反応完了後、反応液に水を加えて酢酸エチル(EA)で抽出し、無水MgSOで水分を除去した後、ろ過し、減圧濃縮した。このように得られた残渣をフラッシュカラムクロマトグラフィーで分離精製し、I−4(14.9g、55%)を得た。 I-3 (30 g, 95.1 mmol) was dissolved in 0.3 L of dm tetrahydrofuran (THF) under a nitrogen atmosphere, 0.3 L of methanol was added, and the mixture was cooled to 0 ° C. To this was added sodium borohydride (36.0 g, 951 mmol), tin (II) chloride (90.2 g, 475.5 mmol) was added, and the mixture was reacted at room temperature for 2 hours. After completion of the reaction, water was added to the reaction mixture, and the mixture was extracted with ethyl acetate (EA). Water was removed with anhydrous MgSO 4 , filtered, and concentrated under reduced pressure. The residue thus obtained was separated and purified by flash column chromatography to obtain I-4 (14.9 g, 55%).

HRMS(70eV,EI+):m/z calcd for C21H19N:285.1517,found:285.Elemental Analysis:C,88%;H,7%。   HRMS (70 eV, EI +): m / z calcd for C21H19N: 285.1517, found: 285. Elemental Analysis: C, 88%; H, 7%.

合成例5:中間体I−5の製造Synthesis Example 5 Production of Intermediate I-5

窒素雰囲気下、1−ブロモ−4−ニトロベンゼン(50g、247.5mmol)をテトラヒドロフラン(THF)0.6Lに溶解した後、これに、ジベンゾフラン−4−イルボロン酸(63.0g、297.0mmol)とテトラキス(トリフェニルホスフィン)パラジウム(8.58g、7.43mmol)を加えて撹拌した。水に飽和した炭酸カリウム(72.9g、495.0mmol)を加え、80℃で24時間加熱還流した。反応完了後、反応液に水を加えてジクロロメタン(DCM)で抽出し、無水MgSOで水分を除去した後、ろ過し、減圧濃縮した。このように得られた残渣をフラッシュカラムクロマトグラフィーで分離精製し、化合物I−5(53.7g、75%)を得た。 In a nitrogen atmosphere, 1-bromo-4-nitrobenzene (50 g, 247.5 mmol) was dissolved in 0.6 L of tetrahydrofuran (THF), and then dibenzofuran-4-ylboronic acid (63.0 g, 297.0 mmol) and Tetrakis (triphenylphosphine) palladium (8.58 g, 7.43 mmol) was added and stirred. Saturated potassium carbonate (72.9 g, 495.0 mmol) was added to water, and the mixture was heated to reflux at 80 ° C. for 24 hours. After completion of the reaction, water was added to the reaction solution, and the mixture was extracted with dichloromethane (DCM). Water was removed with anhydrous MgSO 4 , filtered, and concentrated under reduced pressure. The residue thus obtained was separated and purified by flash column chromatography to obtain compound I-5 (53.7 g, 75%).

HRMS(70eV,EI+):m/z calcd for C18H11NO3:289.0739,found:289.Elemental Analysis:C,75%;H,4%。   HRMS (70 eV, EI +): m / z calcd for C18H11NO3: 289.0739, found: 289. Elemental Analysis: C, 75%; H, 4%.

合成例6:中間体I−6の製造Synthesis Example 6 Production of Intermediate I-6

窒素雰囲気下、I−5(30g、103.7mmol)をdmテトラヒドロフラン(THF)0.3Lに溶かした後、メタノール0.3Lを加え、0℃に冷却した。これに、水素化ホウ素ナトリウム(39.2g、1,037mmol)を加えた後、塩化スズ(II)(98.3g、518.5mmol)を加え、常温で3時間反応させた。反応完了後、反応液に水を加えて酢酸エチル(EA)で抽出し、無水MgSOで水分を除去した後、ろ過し、減圧濃縮した。このように得られた残渣をフラッシュカラムクロマトグラフィーで分離精製し、I−6(14.0g、52%)を得た。 Under a nitrogen atmosphere, I-5 (30 g, 103.7 mmol) was dissolved in 0.3 L of dm tetrahydrofuran (THF), 0.3 L of methanol was added, and the mixture was cooled to 0 ° C. To this was added sodium borohydride (39.2 g, 1,037 mmol), and then tin (II) chloride (98.3 g, 518.5 mmol) was added, followed by reaction at room temperature for 3 hours. After completion of the reaction, water was added to the reaction mixture, and the mixture was extracted with ethyl acetate (EA). Water was removed with anhydrous MgSO 4 , filtered, and concentrated under reduced pressure. The residue thus obtained was separated and purified by flash column chromatography to obtain 1-6 (14.0 g, 52%).

HRMS(70eV,EI+):m/z calcd for C18H13NO:259.0997,found:259.Elemental Analysis:C,83%;H,5%。   HRMS (70 eV, EI +): m / z calcd for C18H13NO: 259.0997, found: 259. Elemental Analysis: C, 83%; H, 5%.

合成例7:中間体I−7の製造Synthesis Example 7 Production of Intermediate I-7

窒素雰囲気下、カルバゾール(50g、299.0mmol)をトルエン0.5Lに溶解した後、これに、1−ブロモ−4−ニトロベンゼン(60.4g、299.0mmol)、トリス(ジフェニリデンアセトン)ジパラジウム(0)(8.24g、8.97mmol)、トリス−tert−ブチルホスフィン(7.26g、35.9mmol)、およびナトリウムtert−ブトキシド(34.5g、358.8mmol)を順次加え、130℃で46時間加熱還流した。反応完了後、反応液に水を加えてジクロロメタン(DCM)で抽出し、無水MgSOで水分を除去した後、ろ過し、減圧濃縮した。このように得られた残渣をフラッシュカラムクロマトグラフィーで分離精製し、化合物I−7(74.1g、86%)を得た。 Under a nitrogen atmosphere, carbazole (50 g, 299.0 mmol) was dissolved in 0.5 L of toluene, and this was added to 1-bromo-4-nitrobenzene (60.4 g, 299.0 mmol), tris (diphenylideneacetone) Palladium (0) (8.24 g, 8.97 mmol), tris-tert-butylphosphine (7.26 g, 35.9 mmol), and sodium tert-butoxide (34.5 g, 358.8 mmol) were sequentially added at 130 ° C. And heated at reflux for 46 hours. After completion of the reaction, water was added to the reaction solution, and the mixture was extracted with dichloromethane (DCM). Water was removed with anhydrous MgSO 4 , filtered, and concentrated under reduced pressure. The residue thus obtained was separated and purified by flash column chromatography to obtain compound I-7 (74.1 g, 86%).

HRMS(70eV,EI+):m/z calcd for C18H12N2O2:288.0899,found:288.Elemental Analysis:C,75%;H,4%。   HRMS (70 eV, EI +): m / z calcd for C18H12N2O2: 288.0899, found: 288. Elemental Analysis: C, 75%; H, 4%.

合成例8:中間体I−8の製造Synthesis Example 8 Production of Intermediate I-8

窒素雰囲気下、I−7(30g、104.1mmol)をdmテトラヒドロフラン(THF)0.3Lに溶解した後、メタノール0.3Lを加え、0℃に冷却した。これに、水素化ホウ素ナトリウム(39.4g、1,041mmol)を加えた後、塩化スズ(II)(98.7g、520.5mmol)を加え、常温で3時間反応させた。反応完了後、反応液に水を加えて酢酸エチル(EA)で抽出し、無水MgSOで水分を除去した後、ろ過し、減圧濃縮した。このように得られた残渣をフラッシュカラムクロマトグラフィーで分離精製し、I−6(11.6g、43%)を得た。 Under a nitrogen atmosphere, I-7 (30 g, 104.1 mmol) was dissolved in 0.3 L of dm tetrahydrofuran (THF), 0.3 L of methanol was added, and the mixture was cooled to 0 ° C. To this was added sodium borohydride (39.4 g, 1,041 mmol), and then tin (II) chloride (98.7 g, 520.5 mmol) was added, followed by reaction at room temperature for 3 hours. After completion of the reaction, water was added to the reaction mixture, and the mixture was extracted with ethyl acetate (EA). Water was removed with anhydrous MgSO 4 , filtered, and concentrated under reduced pressure. The residue thus obtained was separated and purified by flash column chromatography to obtain 1-6 (11.6 g, 43%).

HRMS(70eV,EI+):m/z calcd for C18H14N2:258.1157,found:258.Elemental Analysis:C,84%;H,5%。   HRMS (70 eV, EI +): m / z calcd for C18H14N2: 258.1157, found: 258. Elemental Analysis: C, 84%; H, 5%.

実施例1:化合物2の製造Example 1 Preparation of Compound 2

窒素雰囲気下、9,9−ジメチル−9H−フルオレン−2−アミン(15.5g、74.1mmol)をトルエン0.35Lに溶解した後、これに、中間体I−1(50.8g、222.2mmol)、トリス(ジフェニリデンアセトン)ジパラジウム(0)(2.0g、2.22mmol)、トリス−tert−ブチルホスフィン(1.80g、4.23mmol)、およびナトリウムtert−ブトキシド(15.7g、162.9mmol)を順次加え、100℃で3日間加熱還流した。反応完了後、反応液に水を加えてジクロロメタン(DCM)で抽出し、無水MgSOで水分を除去した後、ろ過し、減圧濃縮した。このように得られた残渣をフラッシュカラムクロマトグラフィーで分離精製し、化合物1(37.4g、85%)を得た。 Under a nitrogen atmosphere, 9,9-dimethyl-9H-fluoren-2-amine (15.5 g, 74.1 mmol) was dissolved in 0.35 L of toluene, and then this was mixed with intermediate I-1 (50.8 g, 222 .2 mmol), tris (diphenylideneacetone) dipalladium (0) (2.0 g, 2.22 mmol), tris-tert-butylphosphine (1.80 g, 4.23 mmol), and sodium tert-butoxide (15. 7 g, 162.9 mmol) was sequentially added, and the mixture was heated to reflux at 100 ° C. for 3 days. After completion of the reaction, water was added to the reaction solution, and the mixture was extracted with dichloromethane (DCM). Water was removed with anhydrous MgSO 4 , filtered, and concentrated under reduced pressure. The residue thus obtained was separated and purified by flash column chromatography to obtain Compound 1 (37.4 g, 85%).

HRMS(70eV,EI+):m/z calcd for C43H31NO2:593.2355,found:593.Elemental Analysis:C,87%;H,5%。   HRMS (70 eV, EI +): m / z calcd for C43H31NO2: 593.2355, found: 593. Elemental Analysis: C, 87%; H, 5%.

実施例2:化合物3の製造Example 2: Preparation of compound 3

窒素雰囲気下、9,9−ジメチル−9H−フルオレン−2−アミン(19.4g、92.9mmol)をトルエン0.35Lに溶解した後、これに、中間体I−2(50g、204.3mmol)、トリス(ジフェニリデンアセトン)ジパラジウム(0)(2.55g、2.79mmol)、トリス−tert−ブチルホスフィン(2.26g、11.1mmol)、およびナトリウムtert−ブトキシド(19.6g、204.4mmol)を順次加え、100℃で25時間加熱還流した。反応完了後、反応液に水を加えてジクロロメタン(DCM)で抽出し、無水MgSOで水分を除去した後、ろ過し、減圧濃縮した。このように得られた残渣をフラッシュカラムクロマトグラフィーで分離精製し、化合物3(54.0g、93%)を得た。 Under a nitrogen atmosphere, 9,9-dimethyl-9H-fluoren-2-amine (19.4 g, 92.9 mmol) was dissolved in 0.35 L of toluene, and then intermediate I-2 (50 g, 204.3 mmol) was dissolved therein. ), Tris (diphenylideneacetone) dipalladium (0) (2.55 g, 2.79 mmol), tris-tert-butylphosphine (2.26 g, 11.1 mmol), and sodium tert-butoxide (19.6 g, 204.4 mmol) was sequentially added, and the mixture was heated to reflux at 100 ° C for 25 hours. After completion of the reaction, water was added to the reaction solution, and the mixture was extracted with dichloromethane (DCM). Water was removed with anhydrous MgSO 4 , filtered, and concentrated under reduced pressure. The residue thus obtained was separated and purified by flash column chromatography to obtain compound 3 (54.0 g, 93%).

HRMS(70eV,EI+):m/z calcd for C43H31NS2:625.1898,found:625.Elemental Analysis:C,83%;H,5%。   HRMS (70 eV, EI +): m / z calcd for C43H31NS2: 615.1898, found: 625. Elemental Analysis: C, 83%; H, 5%.

実施例3:化合物4の製造Example 3: Preparation of compound 4

窒素雰囲気下、中間体I−4(10g、35.0mmol)をトルエン0.15Lに溶解した後、これに、中間体I−2(18.9g、77.1mmol)、トリス(ジフェニリデンアセトン)ジパラジウム(0)(0.96g、1.05mmol)、トリス−tert−ブチルホスフィン(0.85g、4.2mmol)、およびナトリウムtert−ブトキシド(7.41g、77.1mmol)を順次加え、100℃で22時間加熱還流した。反応完了後、反応液に水を加えてジクロロメタン(DCM)で抽出し、無水MgSOで水分を除去した後、ろ過し、減圧濃縮した。このように得られた残渣をフラッシュカラムクロマトグラフィーで分離精製し、化合物5(20.9g、85%)を得た。 Under a nitrogen atmosphere, intermediate I-4 (10 g, 35.0 mmol) was dissolved in 0.15 L of toluene, and this was mixed with intermediate I-2 (18.9 g, 77.1 mmol), tris (diphenylideneacetone). ) Dipalladium (0) (0.96 g, 1.05 mmol), tris-tert-butylphosphine (0.85 g, 4.2 mmol), and sodium tert-butoxide (7.41 g, 77.1 mmol) were added sequentially, The mixture was heated to reflux at 100 ° C. for 22 hours. After completion of the reaction, water was added to the reaction solution, and the mixture was extracted with dichloromethane (DCM). Water was removed with anhydrous MgSO 4 , filtered, and concentrated under reduced pressure. The residue thus obtained was separated and purified by flash column chromatography to obtain compound 5 (20.9 g, 85%).

HRMS(70eV,EI+):m/z calcd for C49H35NS2:701.2211,found:701.Elemental Analysis:C,84%;H,5%。   HRMS (70 eV, EI +): m / z calcd for C49H35NS2: 701.2211, found: 701. Elemental Analysis: C, 84%; H, 5%.

実施例4:化合物110の製造Example 4: Preparation of compound 110

窒素雰囲気下、N−(ビフェニル−4−イル)−9,9−ジメチル−9H−フルオレン−2−アミン(10g、27.7mmol)をトルエン0.1Lに溶解した後、これに、中間体I−1(13.9g、60.9mmol)、トリス(ジフェニリデンアセトン)ジパラジウム(0)(0.76g、0.83mmol)、トリス−tert−ブチルホスフィン(0.67g、3.32mmol)、およびナトリウムtert−ブトキシド(5.85g、60.9mmol)を順次加え、100℃で13時間加熱還流した。反応完了後、反応液に水を加えてジクロロメタン(DCM)で抽出し、無水MgSOで水分を除去した後、ろ過し、減圧濃縮した。このように得られた残渣をフラッシュカラムクロマトグラフィーで分離精製し、化合物110(13.9g、91%)を得た。 Under a nitrogen atmosphere, N- (biphenyl-4-yl) -9,9-dimethyl-9H-fluoren-2-amine (10 g, 27.7 mmol) was dissolved in 0.1 L of toluene, and then intermediate I -1 (13.9 g, 60.9 mmol), tris (diphenylideneacetone) dipalladium (0) (0.76 g, 0.83 mmol), tris-tert-butylphosphine (0.67 g, 3.32 mmol), And sodium tert-butoxide (5.85 g, 60.9 mmol) were sequentially added, and the mixture was heated to reflux at 100 ° C. for 13 hours. After completion of the reaction, water was added to the reaction solution, and the mixture was extracted with dichloromethane (DCM). Water was removed with anhydrous MgSO 4 , filtered, and concentrated under reduced pressure. The residue thus obtained was separated and purified by flash column chromatography to obtain Compound 110 (13.9 g, 91%).

HRMS(70eV,EI+):m/z calcd for C41H31NO:553.2406,found:553.Elemental Analysis:C,89%;H,6%。   HRMS (70 eV, EI +): m / z calcd for C41H31NO: 5533.2406, found: 553. Elemental Analysis: C, 89%; H, 6%.

実施例5:化合物129の製造Example 5: Preparation of compound 129

窒素雰囲気下、4−(9−フェニル−9H−カルバゾール−3−イル)アニリン(10g、29.9mmol)をトルエン0.1Lに溶解した後、これに、中間体I−2(16.1g、65.8mmol)、トリス(ジフェニリデンアセトン)ジパラジウム(0)(0.82g、0.90mmol)、トリス−tert−ブチルホスフィン(0.73g、3.59mmol)、およびナトリウムtert−ブトキシド(6.32g、65.8mmol)を順次加え、100℃で17時間加熱還流した。反応完了後、反応液に水を加えてジクロロメタン(DCM)で抽出し、無水MgSOで水分を除去した後、ろ過し、減圧濃縮した。このように得られた残渣をフラッシュカラムクロマトグラフィーで分離精製し、化合物129(19.8g、88%)を得た。 4- (9-Phenyl-9H-carbazol-3-yl) aniline (10 g, 29.9 mmol) was dissolved in 0.1 L of toluene under a nitrogen atmosphere, and then intermediate I-2 (16.1 g, 65.8 mmol), tris (diphenylideneacetone) dipalladium (0) (0.82 g, 0.90 mmol), tris-tert-butylphosphine (0.73 g, 3.59 mmol), and sodium tert-butoxide (6 .32 g, 65.8 mmol) was sequentially added, and the mixture was heated to reflux at 100 ° C. for 17 hours. After completion of the reaction, water was added to the reaction solution, and the mixture was extracted with dichloromethane (DCM). Water was removed with anhydrous MgSO 4 , filtered, and concentrated under reduced pressure. The residue thus obtained was separated and purified by flash column chromatography to obtain Compound 129 (19.8 g, 88%).

HRMS(70eV,EI+):m/z calcd for C52H34N2S2:750.2163,found:750.Elemental Analysis:C,83%;H,5%。   HRMS (70 eV, EI +): m / z calcd for C52H34N2S2: 750.2163, found: 750. Elemental Analysis: C, 83%; H, 5%.

実施例6:化合物141の製造Example 6: Preparation of compound 141

窒素雰囲気下、フェナントレン−2−アミン(10g、51.7mmol)をトルエン0.15Lに溶解した後、これに、中間体I−2(27.9g、113.8mmol)、トリス(ジフェニリデンアセトン)ジパラジウム(0)(1.42g、1.55mmol)、トリス−tert−ブチルホスフィン(1.26g、6.2mmol)、およびナトリウムtert−ブトキシド(10.9g、113.8mmol)を順次加え、100℃で23時間加熱還流した。反応完了後、反応液に水を加えてジクロロメタン(DCM)で抽出し、無水MgSOで水分を除去した後、ろ過し、減圧濃縮した。このように得られた残渣をフラッシュカラムクロマトグラフィーで分離精製し、化合物141(30.9g、98%)を得た。 Under a nitrogen atmosphere, phenanthren-2-amine (10 g, 51.7 mmol) was dissolved in 0.15 L of toluene, and then this was mixed with intermediate I-2 (27.9 g, 113.8 mmol), tris (diphenylideneacetone). ) Dipalladium (0) (1.42 g, 1.55 mmol), tris-tert-butylphosphine (1.26 g, 6.2 mmol), and sodium tert-butoxide (10.9 g, 113.8 mmol) were added sequentially, The mixture was heated to reflux at 100 ° C. for 23 hours. After completion of the reaction, water was added to the reaction solution, and the mixture was extracted with dichloromethane (DCM). Water was removed with anhydrous MgSO 4 , filtered, and concentrated under reduced pressure. The residue thus obtained was separated and purified by flash column chromatography to obtain Compound 141 (30.9 g, 98%).

HRMS(70eV,EI+):m/z calcd for C42H27NS2:609.1585,found:609.Elemental Analysis:C,83%;H,4%。   HRMS (70 eV, EI +): m / z calcd for C42H27NS2: 609.1585, found: 609. Elemental Analysis: C, 83%; H, 4%.

実施例7:化合物150の製造Example 7: Preparation of compound 150

窒素雰囲気下、トリフェニレン−2−アミン(10g、41.1mmol)をトルエン0.16Lに溶解した後、これに、中間体I−2(22.1g、90.4mmol)、トリス(ジフェニリデンアセトン)ジパラジウム(0)(1.13g、1.23mmol)、トリス−tert−ブチルホスフィン(1.0g、4.93mmol)、およびナトリウムtert−ブトキシド(8.69g、90.4mmol)を順次加え、100℃で21時間加熱還流した。反応完了後、反応液に水を加えてジクロロメタン(DCM)で抽出し、無水MgSOで水分を除去した後、ろ過し、減圧濃縮した。このように得られた残渣をフラッシュカラムクロマトグラフィーで分離精製し、化合物150(25.2g、93%)を得た。 Triphenylene-2-amine (10 g, 41.1 mmol) was dissolved in 0.16 L of toluene under a nitrogen atmosphere, and then intermediate I-2 (22.1 g, 90.4 mmol), tris (diphenylideneacetone) were added thereto. ) Dipalladium (0) (1.13 g, 1.23 mmol), tris-tert-butylphosphine (1.0 g, 4.93 mmol), and sodium tert-butoxide (8.69 g, 90.4 mmol) were added sequentially, The mixture was heated to reflux at 100 ° C. for 21 hours. After completion of the reaction, water was added to the reaction solution, and the mixture was extracted with dichloromethane (DCM). Water was removed with anhydrous MgSO 4 , filtered, and concentrated under reduced pressure. The residue thus obtained was separated and purified by flash column chromatography to obtain Compound 150 (25.2 g, 93%).

HRMS(70eV,EI+):m/z calcd for C46H29NS2:659.1742,found:659.Elemental Analysis:C,84%;H,4%。   HRMS (70 eV, EI +): m / z calcd for C46H29NS2: 6599.1742, found: 659. Elemental Analysis: C, 84%; H, 4%.

実施例8:化合物153の製造Example 8: Preparation of compound 153

窒素雰囲気下、ビフェニル−4−アミン(10g、59.1mmol)をトルエン0.16Lに溶解した後、これに、中間体I−2(31.8g、130.0mmol)、トリス(ジフェニリデンアセトン)ジパラジウム(0)(1.62g、1.77mmol)、トリス−tert−ブチルホスフィン(1.43g、7.09mmol)、およびナトリウムtert−ブトキシド(12.5g、130.0mmol)を順次加え、100℃で14時間加熱還流した。反応完了後、反応液に水を加えてジクロロメタン(DCM)で抽出し、無水MgSOで水分を除去した後、ろ過し、減圧濃縮した。このように得られた残渣をフラッシュカラムクロマトグラフィーで分離精製し、化合物153(33.2g、96%)を得た。 In a nitrogen atmosphere, biphenyl-4-amine (10 g, 59.1 mmol) was dissolved in 0.16 L of toluene, and then this was mixed with intermediate I-2 (31.8 g, 130.0 mmol), tris (diphenylideneacetone). ) Dipalladium (0) (1.62 g, 1.77 mmol), tris-tert-butylphosphine (1.43 g, 7.09 mmol), and sodium tert-butoxide (12.5 g, 130.0 mmol) were added sequentially, The mixture was heated to reflux at 100 ° C. for 14 hours. After completion of the reaction, water was added to the reaction solution, and the mixture was extracted with dichloromethane (DCM). Water was removed with anhydrous MgSO 4 , filtered, and concentrated under reduced pressure. The residue thus obtained was separated and purified by flash column chromatography to obtain Compound 153 (33.2 g, 96%).

HRMS(70eV,EI+):m/z calcd for C40H27NS2:585.1585,found:585.Elemental Analysis:C,82%;H,5%。   HRMS (70 eV, EI +): m / z calcd for C40H27NS2: 5855.1585, found: 585. Elemental Analysis: C, 82%; H, 5%.

実施例9:化合物159の製造Example 9: Preparation of compound 159

窒素雰囲気下、中間体I−6(10g、38.6mmol)をトルエン0.15Lに溶解した後、これに、中間体I−2(20.8g、84.8mmol)、トリス(ジフェニリデンアセトン)ジパラジウム(0)(1.06g、1.16mmol)、トリス−tert−ブチルホスフィン(0.94g、4.63mmol)、およびナトリウムtert−ブトキシド(8.15g、84.8mmol)を順次加え、100℃で16時間加熱還流した。反応完了後、反応液に水を加えてジクロロメタン(DCM)で抽出し、無水MgSOで水分を除去した後、ろ過し、減圧濃縮した。このように得られた残渣をフラッシュカラムクロマトグラフィーで分離精製し、化合物159(22.2g、96%)を得た。 Under a nitrogen atmosphere, intermediate I-6 (10 g, 38.6 mmol) was dissolved in 0.15 L of toluene, and then intermediate I-2 (20.8 g, 84.8 mmol), tris (diphenylideneacetone) ) Dipalladium (0) (1.06 g, 1.16 mmol), tris-tert-butylphosphine (0.94 g, 4.63 mmol), and sodium tert-butoxide (8.15 g, 84.8 mmol) were added sequentially, The mixture was heated to reflux at 100 ° C. for 16 hours. After completion of the reaction, water was added to the reaction solution, and the mixture was extracted with dichloromethane (DCM). Water was removed with anhydrous MgSO 4 , filtered, and concentrated under reduced pressure. The residue thus obtained was separated and purified by flash column chromatography to obtain Compound 159 (22.2 g, 96%).

HRMS(70eV,EI+):m/z calcd for C46H29NOS2:675.1691,found:675.Elemental Analysis:C,82%;H,4%。   HRMS (70 eV, EI +): m / z calcd for C46H29NOS2: 675.1691, found: 675. Elemental Analysis: C, 82%; H, 4%.

実施例10:化合物171の製造Example 10: Preparation of compound 171

窒素雰囲気下、中間体I−8(10g、38.7mmol)をトルエン0.16Lに溶解した後、これに、中間体I−2(20.8g、85.2mmol)、トリス(ジフェニリデンアセトン)ジパラジウム(0)(1.06g、1.16mmol)、トリス−tert−ブチルホスフィン(0.94g、4.64mmol)、およびナトリウムtert−ブトキシド(8.19g、85.2mmol)を順次加え、100℃で18時間加熱還流した。反応完了後、反応液に水を加えてジクロロメタン(DCM)で抽出し、無水MgSOで水分を除去した後、ろ過し、減圧濃縮した。このように得られた残渣をフラッシュカラムクロマトグラフィーで分離精製し、化合物171(23.5g、90%)を得た。 Under a nitrogen atmosphere, Intermediate I-8 (10 g, 38.7 mmol) was dissolved in 0.16 L of toluene, and then this was mixed with Intermediate I-2 (20.8 g, 85.2 mmol), Tris (diphenylideneacetone). ) Dipalladium (0) (1.06 g, 1.16 mmol), tris-tert-butylphosphine (0.94 g, 4.64 mmol), and sodium tert-butoxide (8.19 g, 85.2 mmol) were added sequentially, The mixture was heated to reflux at 100 ° C. for 18 hours. After completion of the reaction, water was added to the reaction solution, and the mixture was extracted with dichloromethane (DCM). Water was removed with anhydrous MgSO 4 , filtered, and concentrated under reduced pressure. The residue thus obtained was separated and purified by flash column chromatography to obtain Compound 171 (23.5 g, 90%).

HRMS(70eV,EI+):m/z calcd for C46H30N2S2:674.1850,found:674.Elemental Analysis:C,82%;H,4%。   HRMS (70 eV, EI +): m / z calcd for C46H30N2S2: 674.1850, found: 674. Elemental Analysis: C, 82%; H, 4%.

(有機発光素子の製造)
実施例11:有機発光素子の製造(ブルー共通層)
インジウムスズ酸化物(ITO)が1500Åの厚さで薄膜コーティングされたガラス基板を蒸留水超音波で洗浄した。洗浄後、イソプロパノール、アセトン、メタノールなどの溶剤で超音波洗浄し、乾燥後、プラズマ洗浄機に移して酸素プラズマを用いて前記基板を5分間洗浄し、真空蒸着機に基板を移した。このように用意されたITO透明電極を陽極として用いて、ITO基板の上部に、4,4’−ビス(N−[4−{N,N’−ビス(3−メチルフェニル)アミノ}−フェニル]−N−フェニルアミノ)ビフェニル(DNTPD)を真空蒸着し、600Åの厚さの正孔注入層を形成した。次に、実施例1で製造された化合物2を用いて、真空蒸着で300Åの厚さの正孔輸送層を形成した。前記正孔輸送層の上部に、9,10−ジ−(2−ナフチル)アントラセン(AND)をホストとして用い、ドーパントとして2,5,8,11−テトラ(tert−ブチル)ペリレン(TBPe)を3重量%でドーピングし、真空蒸着で250Åの厚さの発光層を形成した。その後、前記発光層の上部にAlq3を真空蒸着し、250Åの厚さの電子輸送層を形成した。前記電子輸送層の上部に10ÅのLiFと1000ÅのAlを順次に真空蒸着して陰極を形成することにより、有機発光素子を製造した。
(Manufacture of organic light emitting devices)
Example 11: Production of an organic light emitting device (blue common layer)
A glass substrate coated with a thin film of indium tin oxide (ITO) with a thickness of 1500 mm was cleaned with distilled water ultrasonic waves. After cleaning, the substrate was ultrasonically cleaned with a solvent such as isopropanol, acetone, methanol, etc., dried, transferred to a plasma cleaner, the substrate was cleaned with oxygen plasma for 5 minutes, and the substrate was transferred to a vacuum deposition machine. Using the ITO transparent electrode thus prepared as an anode, 4,4′-bis (N- [4- {N, N′-bis (3-methylphenyl) amino} -phenyl is formed on the top of the ITO substrate. ] -N-phenylamino) biphenyl (DNTPD) was vacuum deposited to form a hole injection layer having a thickness of 600 mm. Next, using the compound 2 produced in Example 1, a hole transport layer having a thickness of 300 mm was formed by vacuum deposition. On the hole transport layer, 9,10-di- (2-naphthyl) anthracene (AND) is used as a host, and 2,5,8,11-tetra (tert-butyl) perylene (TBPe) is used as a dopant. A light-emitting layer having a thickness of 250 mm was formed by doping with 3% by weight and vacuum deposition. Thereafter, Alq3 was vacuum deposited on the light emitting layer to form an electron transport layer having a thickness of 250 mm. An organic light emitting device was manufactured by sequentially vacuum depositing 10% LiF and 1000% Al on the electron transport layer to form a cathode.

前記有機発光素子は、5層の有機薄膜層を有する構造となっており、具体的には、Al(1000Å)/LiF(10Å)/Alq3(250Å)/EML[AND:TBPe=97:3](250Å)/HTL(300Å)/DNTPD(600Å)/ITO(1500Å)の構造で作製した。   The organic light emitting device has a structure having five organic thin film layers, specifically, Al (1000 Å) / LiF (10 Å) / Alq3 (250 Å) / EML [AND: TBPe = 97: 3]. It was produced with a structure of (250Å) / HTL (300Å) / DNTPD (600Å) / ITO (1500Å).

実施例12
前記実施例11において、実施例1の代わりに実施例2を使用した点を除いては、同様の方法で有機発光素子を製造した。
Example 12
In Example 11, an organic light emitting device was manufactured in the same manner except that Example 2 was used instead of Example 1.

実施例13
前記実施例11において、実施例1の代わりに実施例3を使用した点を除いては、同様の方法で有機発光素子を製造した。
Example 13
An organic light emitting device was manufactured in the same manner as in Example 11 except that Example 3 was used instead of Example 1.

実施例14
前記実施例11において、実施例1の代わりに実施例4を使用した点を除いては、同様の方法で有機発光素子を製造した。
Example 14
In Example 11, an organic light emitting device was manufactured in the same manner except that Example 4 was used instead of Example 1.

実施例15
前記実施例11において、実施例1の代わりに実施例5を使用した点を除いては、同様の方法で有機発光素子を製造した。
Example 15
In Example 11, an organic light emitting device was manufactured in the same manner except that Example 5 was used instead of Example 1.

実施例16
前記実施例11において、実施例1の代わりに実施例6を使用した点を除いては、同様の方法で有機発光素子を製造した。
Example 16
An organic light emitting device was manufactured in the same manner as in Example 11 except that Example 6 was used instead of Example 1.

実施例17
前記実施例11において、実施例1の代わりに実施例7を使用した点を除いては、同様の方法で有機発光素子を製造した。
Example 17
An organic light emitting device was manufactured in the same manner as in Example 11 except that Example 7 was used instead of Example 1.

実施例18
前記実施例11において、実施例1の代わりに実施例8を使用した点を除いては、同様の方法で有機発光素子を製造した。
Example 18
In Example 11, an organic light emitting device was manufactured in the same manner except that Example 8 was used instead of Example 1.

実施例19
前記実施例11において、実施例1の代わりに実施例9を使用した点を除いては、同様の方法で有機発光素子を製造した。
Example 19
In Example 11, an organic light emitting device was manufactured in the same manner except that Example 9 was used instead of Example 1.

実施例20
前記実施例11において、実施例1の代わりに実施例10を使用した点を除いては、同様の方法で有機発光素子を製造した。
Example 20
In Example 11, an organic light emitting device was manufactured in the same manner except that Example 10 was used instead of Example 1.

比較例1
前記実施例11において、実施例1の代わりにNPBを使用した点を除いては、同様の方法で有機発光素子を製造した。前記NPBの構造は下記に記載されている。
Comparative Example 1
In Example 11, an organic light emitting device was manufactured in the same manner except that NPB was used instead of Example 1. The structure of the NPB is described below.

比較例2
前記実施例11において、実施例1の代わりにHT1を使用した点を除いては、同様の方法で有機発光素子を製造した。前記HT1の構造は下記に記載されている。
Comparative Example 2
An organic light emitting device was manufactured in the same manner as in Example 11 except that HT1 was used instead of Example 1. The structure of HT1 is described below.

比較例3
前記実施例11において、実施例1の代わりにHT2を使用した点を除いては、同様の方法で有機発光素子を製造した。前記HT2の構造は下記に記載されている。
Comparative Example 3
An organic light emitting device was manufactured in the same manner as in Example 11 except that HT2 was used instead of Example 1. The structure of HT2 is described below.

前記有機発光素子の作製に使用されたDNTPD、AND、TBPe、NPB、HT1、およびHT2の構造は下記の通りである。   The structures of DNTPD, AND, TBPe, NPB, HT1, and HT2 used for manufacturing the organic light emitting device are as follows.

(有機発光素子の性能の測定)
前記実施例11〜20と比較例1〜3で製造されたそれぞれの有機発光素子に対して、電圧に応じた電流密度の変化、輝度変化および発光効率を測定した。具体的な測定方法は下記の通りであり、その結果は下記の表1に示した。
(Measurement of organic light emitting device performance)
For each of the organic light emitting devices manufactured in Examples 11 to 20 and Comparative Examples 1 to 3, a change in current density, a change in luminance, and luminous efficiency in accordance with voltage were measured. The specific measurement method is as follows, and the results are shown in Table 1 below.

(1)電圧の変化に応じた電流密度の変化の測定
製造された有機発光素子に対して、電圧を0Vから10Vまで上昇させながら、電流−電圧計(Keithley2400)を用いて単位素子に流れる電流値を測定し、測定された電流値を面積で除して、結果を得た。
(1) Measurement of change in current density according to change in voltage Current flowing through the unit element using a current-voltmeter (Keithley 2400) while increasing the voltage from 0 V to 10 V with respect to the manufactured organic light emitting element The value was measured and the measured current value was divided by the area to obtain the result.

(2)電圧の変化に応じた輝度変化の測定
製造された有機発光素子に対して、電圧を0Vから10Vまで上昇させながら、輝度計(Minolta Cs−1000A)を用いてその時の輝度を測定し、結果を得た。
(2) Measurement of luminance change according to voltage change While increasing the voltage from 0V to 10V on the manufactured organic light emitting device, the luminance at that time was measured using a luminance meter (Minolta Cs-1000A). And got the result.

(3)発光効率の測定
前記(1)および(2)から測定された輝度と電流密度および電圧を用いて、同一の電流密度(10mA/cm)の電流効率(cd/A)を計算した。
(3) Measurement of luminous efficiency Using the luminance, current density and voltage measured from (1) and (2) above, the current efficiency (cd / A) of the same current density (10 mA / cm 2 ) was calculated. .

前記表1の結果によれば、フルオレン置換基が含まれている実施例11〜14の場合、比較例1〜2と比較して、効率が大幅に向上することが分かる。比較例3の場合、フルオレン置換基を有しており、比較例のうち効率が最も高いことから、フルオレン置換基が効率を大幅に向上させることが分かる。実施例11〜20の場合、全体的に比較例1〜3と比較して、駆動電圧が低いことが分かる。このことから、インデノ置換基が駆動電圧を低下させることが類推できる。そして、最も単純な構造が使用された実施例18の場合、半減寿命が最も高いことから、基本的な構造が素子の寿命にある程度寄与することが分かる。これを基に、優れた正孔注入および正孔伝達能力を有する低電圧、高効率、高輝度、長寿命の有機発光素子を作製することができた。   According to the result of the said Table 1, in the case of Examples 11-14 in which the fluorene substituent is contained, it turns out that efficiency improves significantly compared with Comparative Examples 1-2. In the case of the comparative example 3, it has a fluorene substituent, and since efficiency is the highest among the comparative examples, it can be seen that the fluorene substituent significantly improves the efficiency. In the case of Examples 11-20, it turns out that a drive voltage is low compared with Comparative Examples 1-3 as a whole. From this, it can be inferred that the indeno substituent reduces the drive voltage. In Example 18 in which the simplest structure is used, the half-life is the highest, so it can be seen that the basic structure contributes to the lifetime of the device to some extent. Based on this, a low voltage, high efficiency, high brightness, long life organic light emitting device having excellent hole injection and hole transfer capability could be produced.

本発明は、上記の実施例に限定されるものではなく、互いに異なる多様な形態で製造可能であり、本発明の属する技術分野における通常の知識を有する者は、本発明の技術的な思想や必須の特徴を変更することなく他の具体的な形態で実施可能であることを理解することができる。そのため、以上に述べた実施例は、すべての面で例示的なものであり、限定的ではないと理解しなければならない。   The present invention is not limited to the above-described embodiments, and can be manufactured in various forms different from each other. Those having ordinary knowledge in the technical field to which the present invention pertains It can be understood that the present invention can be implemented in other specific forms without changing essential characteristics. Therefore, it should be understood that the embodiments described above are illustrative in all aspects and not limiting.

100:有機発光素子
110:陰極
120:陽極
105:有機薄膜層
130:発光層
140:正孔輸送層
150:電子輸送層
160:電子注入層
170:正孔注入層
230:発光層+電子輸送層
DESCRIPTION OF SYMBOLS 100: Organic light emitting element 110: Cathode 120: Anode 105: Organic thin film layer 130: Light emitting layer 140: Hole transport layer 150: Electron transport layer 160: Electron injection layer 170: Hole injection layer 230: Light emitting layer + electron transport layer

Claims (19)

下記の化学式1で表される有機光電子素子用化合物:
前記化学式1において、
Arは置換もしくは非置換のC6〜C30のアリール基、置換もしくは非置換のC2〜C30のヘテロアリール基、またはこれらの組み合わせであり、
〜Lは互いに独立して、置換もしくは非置換のC2〜C6のアルケニレン基、置換もしくは非置換のC2〜C6のアルキニレン基、置換もしくは非置換のC6〜C30のアリーレン基、置換もしくは非置換のC2〜C30のヘテロアリーレン基、またはこれらの組み合わせであり、
n1〜n3は互いに独立して、0〜3のうちのいずれか1つの整数であり、
Aは下記の化学式A−2であり、
Bは下記の化学式A−2、置換もしくは非置換のC6〜C30のアリール基、または置換もしくは非置換のC2〜C30のヘテロアリール基である:
前記化学式A−2において、
は−O−または−S−であり、
およびRは互いに独立して、水素、重水素、ハロゲン基、シアノ基、ヒドロキシル基、アミノ基、置換もしくは非置換のC1〜C20のアミン基、ニトロ基、カルボキシル基、フェロセニル基、置換もしくは非置換のC1〜C20のアルキル基、置換もしくは非置換のC6〜C30のアリール基、置換もしくは非置換のC2〜C30のヘテロアリール基、置換もしくは非置換のC1〜C20のアルコキシ基、置換もしくは非置換のC6〜C20のアリールオキシ基、置換もしくは非置換のC3〜C40のシリルオキシ基、置換もしくは非置換のC1〜C20のアシル基、置換もしくは非置換のC2〜C20のアルコキシカルボニル基、置換もしくは非置換のC2〜C20のアシルオキシ基、置換もしくは非置換のC2〜C20のアシルアミノ基、置換もしくは非置換のC2〜C20のアルコキシカルボニルアミノ基、置換もしくは非置換のC7〜C20のアリールオキシカルボニルアミノ基、置換もしくは非置換のC1〜C20のスルファモイルアミノ基、置換もしくは非置換のC1〜C20のスルホニル基、置換もしくは非置換のC1〜C20のアルキルチオール基、置換もしくは非置換のC6〜C20のアリールチオール基、置換もしくは非置換のC1〜C20のヘテロシクロチオール基、置換もしくは非置換のC1〜C20のウレイド基、置換もしくは非置換のC3〜C40のシリル基、またはこれらの組み合わせである。
Compound for organic optoelectronic device represented by chemical formula 1 below:
In Formula 1,
Ar 1 is a substituted or unsubstituted C6-C30 aryl group, a substituted or unsubstituted C2-C30 heteroaryl group, or a combination thereof;
L 1 to L 3 each independently represent a substituted or unsubstituted C 2 to C 6 alkenylene group, a substituted or unsubstituted C 2 to C 6 alkynylene group, a substituted or unsubstituted C 6 to C 30 arylene group, substituted or unsubstituted A substituted C2-C30 heteroarylene group, or a combination thereof,
n1 to n3 are each independently an integer of 0 to 3,
A is the following chemical formula A-2,
B is the following Formula A-2, a substituted or unsubstituted C6-C30 aryl group, or a substituted or unsubstituted C2-C30 heteroaryl group:
In the chemical formula A-2,
X 1 is —O— or —S—;
R 3 and R 4 are independently of each other hydrogen, deuterium, halogen group, cyano group, hydroxyl group, amino group, substituted or unsubstituted C1-C20 amine group, nitro group, carboxyl group, ferrocenyl group, substituted Or an unsubstituted C1-C20 alkyl group, a substituted or unsubstituted C6-C30 aryl group, a substituted or unsubstituted C2-C30 heteroaryl group, a substituted or unsubstituted C1-C20 alkoxy group, substituted or Unsubstituted C6-C20 aryloxy group, substituted or unsubstituted C3-C40 silyloxy group, substituted or unsubstituted C1-C20 acyl group, substituted or unsubstituted C2-C20 alkoxycarbonyl group, substituted or Unsubstituted C2-C20 acyloxy group, substituted or unsubstituted C2-C20 acyl Amino group, substituted or unsubstituted C2-C20 alkoxycarbonylamino group, substituted or unsubstituted C7-C20 aryloxycarbonylamino group, substituted or unsubstituted C1-C20 sulfamoylamino group, substituted or non-substituted Substituted C1-C20 sulfonyl group, substituted or unsubstituted C1-C20 alkylthiol group, substituted or unsubstituted C6-C20 arylthiol group, substituted or unsubstituted C1-C20 heterocyclothiol group, substituted Alternatively, it is an unsubstituted C1-C20 ureido group, a substituted or unsubstituted C3-C40 silyl group, or a combination thereof.
前記Bは下記の化学式A−2である、請求項1に記載の有機光電子素子用化合物。   The said B is a compound for organic optoelectronic devices of Claim 1 which is following Chemical formula A-2. 前記Arは下記の化学式B−1である、請求項1に記載の有機光電子素子用化合物:
前記化学式B−1において、
〜Rは互いに独立して、水素、重水素、ハロゲン基、シアノ基、ヒドロキシル基、アミノ基、置換もしくは非置換のC1〜C20のアミン基、ニトロ基、カルボキシル基、フェロセニル基、置換もしくは非置換のC1〜C20のアルキル基、置換もしくは非置換のC6〜C30のアリール基、置換もしくは非置換のC2〜C30のヘテロアリール基、置換もしくは非置換のC1〜C20のアルコキシ基、置換もしくは非置換のC6〜C20のアリールオキシ基、置換もしくは非置換のC3〜C40のシリルオキシ基、置換もしくは非置換のC1〜C20のアシル基、置換もしくは非置換のC2〜C20のアルコキシカルボニル基、置換もしくは非置換のC2〜C20のアシルオキシ基、置換もしくは非置換のC2〜C20のアシルアミノ基、置換もしくは非置換のC2〜C20のアルコキシカルボニルアミノ基、置換もしくは非置換のC7〜C20のアリールオキシカルボニルアミノ基、置換もしくは非置換のC1〜C20のスルファモイルアミノ基、置換もしくは非置換のC1〜C20のスルホニル基、置換もしくは非置換のC1〜C20のアルキルチオール基、置換もしくは非置換のC6〜C20のアリールチオール基、置換もしくは非置換のC1〜C20のヘテロシクロチオール基、置換もしくは非置換のC1〜C20のウレイド基、置換もしくは非置換のC3〜C40のシリル基、またはこれらの組み合わせである。
The compound for organic optoelectronic devices according to claim 1, wherein Ar 1 is represented by the following chemical formula B-1.
In the chemical formula B-1,
R 5 to R 8 are independently of each other hydrogen, deuterium, halogen group, cyano group, hydroxyl group, amino group, substituted or unsubstituted C1-C20 amine group, nitro group, carboxyl group, ferrocenyl group, substituted Or an unsubstituted C1-C20 alkyl group, a substituted or unsubstituted C6-C30 aryl group, a substituted or unsubstituted C2-C30 heteroaryl group, a substituted or unsubstituted C1-C20 alkoxy group, substituted or Unsubstituted C6-C20 aryloxy group, substituted or unsubstituted C3-C40 silyloxy group, substituted or unsubstituted C1-C20 acyl group, substituted or unsubstituted C2-C20 alkoxycarbonyl group, substituted or Unsubstituted C2-C20 acyloxy group, substituted or unsubstituted C2-C20 acyloxy group Group, substituted or unsubstituted C2 to C20 alkoxycarbonylamino group, substituted or unsubstituted C7 to C20 aryloxycarbonylamino group, substituted or unsubstituted C1 to C20 sulfamoylamino group, substituted or unsubstituted Substituted C1-C20 sulfonyl group, substituted or unsubstituted C1-C20 alkylthiol group, substituted or unsubstituted C6-C20 arylthiol group, substituted or unsubstituted C1-C20 heterocyclothiol group, substituted Alternatively, it is an unsubstituted C1-C20 ureido group, a substituted or unsubstituted C3-C40 silyl group, or a combination thereof.
前記Arは下記の化学式B−2である、請求項1に記載の有機光電子素子用化合物:
前記化学式B−2において、
〜Rは互いに独立して、水素、重水素、ハロゲン基、シアノ基、ヒドロキシル基、アミノ基、置換もしくは非置換のC1〜C20のアミン基、ニトロ基、カルボキシル基、フェロセニル基、置換もしくは非置換のC1〜C20のアルキル基、置換もしくは非置換のC6〜C30のアリール基、置換もしくは非置換のC2〜C30のヘテロアリール基、置換もしくは非置換のC1〜C20のアルコキシ基、置換もしくは非置換のC6〜C20のアリールオキシ基、置換もしくは非置換のC3〜C40のシリルオキシ基、置換もしくは非置換のC1〜C20のアシル基、置換もしくは非置換のC2〜C20のアルコキシカルボニル基、置換もしくは非置換のC2〜C20のアシルオキシ基、置換もしくは非置換のC2〜C20のアシルアミノ基、置換もしくは非置換のC2〜C20のアルコキシカルボニルアミノ基、置換もしくは非置換のC7〜C20のアリールオキシカルボニルアミノ基、置換もしくは非置換のC1〜C20のスルファモイルアミノ基、置換もしくは非置換のC1〜C20のスルホニル基、置換もしくは非置換のC1〜C20のアルキルチオール基、置換もしくは非置換のC6〜C20のアリールチオール基、置換もしくは非置換のC1〜C20のヘテロシクロチオール基、置換もしくは非置換のC1〜C20のウレイド基、置換もしくは非置換のC3〜C40のシリル基、またはこれらの組み合わせである。
The compound for organic optoelectronic devices according to claim 1, wherein Ar 1 is represented by the following chemical formula B-2:
In the chemical formula B-2,
R 5 to R 8 are independently of each other hydrogen, deuterium, halogen group, cyano group, hydroxyl group, amino group, substituted or unsubstituted C1-C20 amine group, nitro group, carboxyl group, ferrocenyl group, substituted Or an unsubstituted C1-C20 alkyl group, a substituted or unsubstituted C6-C30 aryl group, a substituted or unsubstituted C2-C30 heteroaryl group, a substituted or unsubstituted C1-C20 alkoxy group, substituted or Unsubstituted C6-C20 aryloxy group, substituted or unsubstituted C3-C40 silyloxy group, substituted or unsubstituted C1-C20 acyl group, substituted or unsubstituted C2-C20 alkoxycarbonyl group, substituted or Unsubstituted C2-C20 acyloxy group, substituted or unsubstituted C2-C20 acyloxy group Group, substituted or unsubstituted C2 to C20 alkoxycarbonylamino group, substituted or unsubstituted C7 to C20 aryloxycarbonylamino group, substituted or unsubstituted C1 to C20 sulfamoylamino group, substituted or unsubstituted Substituted C1-C20 sulfonyl group, substituted or unsubstituted C1-C20 alkylthiol group, substituted or unsubstituted C6-C20 arylthiol group, substituted or unsubstituted C1-C20 heterocyclothiol group, substituted Alternatively, it is an unsubstituted C1-C20 ureido group, a substituted or unsubstituted C3-C40 silyl group, or a combination thereof.
前記Arは下記の化学式B−3である、請求項1に記載の有機光電子素子用化合物:
前記化学式B−3において、
〜R12は互いに独立して、水素、重水素、ハロゲン基、シアノ基、ヒドロキシル基、アミノ基、置換もしくは非置換のC1〜C20のアミン基、ニトロ基、カルボキシル基、フェロセニル基、置換もしくは非置換のC1〜C20のアルキル基、置換もしくは非置換のC6〜C30のアリール基、置換もしくは非置換のC2〜C30のヘテロアリール基、置換もしくは非置換のC1〜C20のアルコキシ基、置換もしくは非置換のC6〜C20のアリールオキシ基、置換もしくは非置換のC3〜C40のシリルオキシ基、置換もしくは非置換のC1〜C20のアシル基、置換もしくは非置換のC2〜C20のアルコキシカルボニル基、置換もしくは非置換のC2〜C20のアシルオキシ基、置換もしくは非置換のC2〜C20のアシルアミノ基、置換もしくは非置換のC2〜C20のアルコキシカルボニルアミノ基、置換もしくは非置換のC7〜C20のアリールオキシカルボニルアミノ基、置換もしくは非置換のC1〜C20のスルファモイルアミノ基、置換もしくは非置換のC1〜C20のスルホニル基、置換もしくは非置換のC1〜C20のアルキルチオール基、置換もしくは非置換のC6〜C20のアリールチオール基、置換もしくは非置換のC1〜C20のヘテロシクロチオール基、置換もしくは非置換のC1〜C20のウレイド基、置換もしくは非置換のC3〜C40のシリル基、またはこれらの組み合わせである。
The compound for organic optoelectronic device according to claim 1, wherein Ar 1 is represented by the following chemical formula B-3:
In the chemical formula B-3,
R 9 to R 12 are independently of each other hydrogen, deuterium, halogen group, cyano group, hydroxyl group, amino group, substituted or unsubstituted C1-C20 amine group, nitro group, carboxyl group, ferrocenyl group, substituted Or an unsubstituted C1-C20 alkyl group, a substituted or unsubstituted C6-C30 aryl group, a substituted or unsubstituted C2-C30 heteroaryl group, a substituted or unsubstituted C1-C20 alkoxy group, substituted or Unsubstituted C6-C20 aryloxy group, substituted or unsubstituted C3-C40 silyloxy group, substituted or unsubstituted C1-C20 acyl group, substituted or unsubstituted C2-C20 alkoxycarbonyl group, substituted or Unsubstituted C2-C20 acyloxy group, substituted or unsubstituted C2-C20 acyl Mino group, substituted or unsubstituted C2-C20 alkoxycarbonylamino group, substituted or unsubstituted C7-C20 aryloxycarbonylamino group, substituted or unsubstituted C1-C20 sulfamoylamino group, substituted or non-substituted Substituted C1-C20 sulfonyl group, substituted or unsubstituted C1-C20 alkylthiol group, substituted or unsubstituted C6-C20 arylthiol group, substituted or unsubstituted C1-C20 heterocyclothiol group, substituted Alternatively, it is an unsubstituted C1-C20 ureido group, a substituted or unsubstituted C3-C40 silyl group, or a combination thereof.
前記Arは下記の化学式B−4である、請求項1に記載の有機光電子素子用化合物。
The compound for organic optoelectronic devices according to claim 1, wherein Ar 1 is represented by the following chemical formula B-4.
前記Arは下記の化学式B−5である、請求項1に記載の有機光電子素子用化合物:
前記化学式B−5において、
は−O−、−S−またはNR’であり、
13、R14、およびR’は互いに独立して、水素、重水素、ハロゲン基、シアノ基、ヒドロキシル基、アミノ基、置換もしくは非置換のC1〜C20のアミン基、ニトロ基、カルボキシル基、フェロセニル基、置換もしくは非置換のC1〜C20のアルキル基、置換もしくは非置換のC6〜C30のアリール基、置換もしくは非置換のC2〜C30のヘテロアリール基、置換もしくは非置換のC1〜C20のアルコキシ基、置換もしくは非置換のC6〜C20のアリールオキシ基、置換もしくは非置換のC3〜C40のシリルオキシ基、置換もしくは非置換のC1〜C20のアシル基、置換もしくは非置換のC2〜C20のアルコキシカルボニル基、置換もしくは非置換のC2〜C20のアシルオキシ基、置換もしくは非置換のC2〜C20のアシルアミノ基、置換もしくは非置換のC2〜C20のアルコキシカルボニルアミノ基、置換もしくは非置換のC7〜C20のアリールオキシカルボニルアミノ基、置換もしくは非置換のC1〜C20のスルファモイルアミノ基、置換もしくは非置換のC1〜C20のスルホニル基、置換もしくは非置換のC1〜C20のアルキルチオール基、置換もしくは非置換のC6〜C20のアリールチオール基、置換もしくは非置換のC1〜C20のヘテロシクロチオール基、置換もしくは非置換のC1〜C20のウレイド基、置換もしくは非置換のC3〜C40のシリル基、またはこれらの組み合わせである。
The compound for organic optoelectronic device according to claim 1, wherein Ar 1 is represented by the following chemical formula B-5:
In the chemical formula B-5,
X 2 is —O—, —S— or NR ′;
R 13 , R 14 and R ′ are independently of each other hydrogen, deuterium, halogen group, cyano group, hydroxyl group, amino group, substituted or unsubstituted C1-C20 amine group, nitro group, carboxyl group, Ferrocenyl group, substituted or unsubstituted C1-C20 alkyl group, substituted or unsubstituted C6-C30 aryl group, substituted or unsubstituted C2-C30 heteroaryl group, substituted or unsubstituted C1-C20 alkoxy Group, substituted or unsubstituted C6-C20 aryloxy group, substituted or unsubstituted C3-C40 silyloxy group, substituted or unsubstituted C1-C20 acyl group, substituted or unsubstituted C2-C20 alkoxycarbonyl Group, substituted or unsubstituted C2-C20 acyloxy group, substituted or unsubstituted C2- 20 acylamino groups, substituted or unsubstituted C2-C20 alkoxycarbonylamino groups, substituted or unsubstituted C7-C20 aryloxycarbonylamino groups, substituted or unsubstituted C1-C20 sulfamoylamino groups, substituted Or an unsubstituted C1-C20 sulfonyl group, a substituted or unsubstituted C1-C20 alkylthiol group, a substituted or unsubstituted C6-C20 arylthiol group, a substituted or unsubstituted C1-C20 heterocyclothiol group A substituted or unsubstituted C1-C20 ureido group, a substituted or unsubstituted C3-C40 silyl group, or a combination thereof.
前記Arは下記の化学式B−6である、請求項1に記載の有機光電子素子用化合物:
前記化学式B−6において、
15およびR16は互いに独立して、水素、重水素、ハロゲン基、シアノ基、ヒドロキシル基、アミノ基、置換もしくは非置換のC1〜C20のアミン基、ニトロ基、カルボキシル基、フェロセニル基、置換もしくは非置換のC1〜C20のアルキル基、置換もしくは非置換のC6〜C30のアリール基、置換もしくは非置換のC2〜C30のヘテロアリール基、置換もしくは非置換のC1〜C20のアルコキシ基、置換もしくは非置換のC6〜C20のアリールオキシ基、置換もしくは非置換のC3〜C40のシリルオキシ基、置換もしくは非置換のC1〜C20のアシル基、置換もしくは非置換のC2〜C20のアルコキシカルボニル基、置換もしくは非置換のC2〜C20のアシルオキシ基、置換もしくは非置換のC2〜C20のアシルアミノ基、置換もしくは非置換のC2〜C20のアルコキシカルボニルアミノ基、置換もしくは非置換のC7〜C20のアリールオキシカルボニルアミノ基、置換もしくは非置換のC1〜C20のスルファモイルアミノ基、置換もしくは非置換のC1〜C20のスルホニル基、置換もしくは非置換のC1〜C20のアルキルチオール基、置換もしくは非置換のC6〜C20のアリールチオール基、置換もしくは非置換のC1〜C20のヘテロシクロチオール基、置換もしくは非置換のC1〜C20のウレイド基、置換もしくは非置換のC3〜C40のシリル基、またはこれらの組み合わせである。
The compound for organic optoelectronic device according to claim 1, wherein Ar 1 is represented by the following chemical formula B-6:
In the chemical formula B-6,
R 15 and R 16 are independently of each other hydrogen, deuterium, halogen group, cyano group, hydroxyl group, amino group, substituted or unsubstituted C1-C20 amine group, nitro group, carboxyl group, ferrocenyl group, substituted Or an unsubstituted C1-C20 alkyl group, a substituted or unsubstituted C6-C30 aryl group, a substituted or unsubstituted C2-C30 heteroaryl group, a substituted or unsubstituted C1-C20 alkoxy group, substituted or Unsubstituted C6-C20 aryloxy group, substituted or unsubstituted C3-C40 silyloxy group, substituted or unsubstituted C1-C20 acyl group, substituted or unsubstituted C2-C20 alkoxycarbonyl group, substituted or Unsubstituted C2-C20 acyloxy group, substituted or unsubstituted C2-C20 Silamino group, substituted or unsubstituted C2-C20 alkoxycarbonylamino group, substituted or unsubstituted C7-C20 aryloxycarbonylamino group, substituted or unsubstituted C1-C20 sulfamoylamino group, substituted or non-substituted Substituted C1-C20 sulfonyl group, substituted or unsubstituted C1-C20 alkylthiol group, substituted or unsubstituted C6-C20 arylthiol group, substituted or unsubstituted C1-C20 heterocyclothiol group, substituted Alternatively, it is an unsubstituted C1-C20 ureido group, a substituted or unsubstituted C3-C40 silyl group, or a combination thereof.
前記Arは置換もしくは非置換のビフェニル基である、請求項1に記載の有機光電子素子用化合物。 The compound for organic optoelectronic device according to claim 1, wherein Ar 1 is a substituted or unsubstituted biphenyl group. 前記AおよびBは前記化学式A−2で表される置換基である、請求項1に記載の有機光電子素子用化合物。   The compound for organic optoelectronic devices according to claim 1, wherein A and B are substituents represented by the chemical formula A-2. 前記化学式A−2において、前記RおよびRは水素である、請求項1に記載の有機光電子素子用化合物。 2. The compound for an organic optoelectronic device according to claim 1, wherein in the chemical formula A-2, R 3 and R 4 are hydrogen. 前記有機光電子素子用化合物は、700以下の分子量を有するものである、請求項1に記載の有機光電子素子用化合物。   The compound for organic optoelectronic devices according to claim 1, wherein the compound for organic optoelectronic devices has a molecular weight of 700 or less. 前記有機光電子素子用化合物は、600以下の分子量を有するものである、請求項1に記載の有機光電子素子用化合物。   The said compound for organic optoelectronic devices is a compound for organic optoelectronic devices of Claim 1 which has a molecular weight of 600 or less. 前記有機光電子素子は、有機光電素子、有機発光素子、有機太陽電池、有機トランジスタ、有機感光体ドラム、および有機メモリ素子からなる群より選択されるいずれか1つである、請求項1に記載の有機光電子素子用化合物。   2. The organic optoelectronic device according to claim 1, wherein the organic optoelectronic device is any one selected from the group consisting of an organic photoelectric device, an organic light emitting device, an organic solar cell, an organic transistor, an organic photoreceptor drum, and an organic memory device. Compounds for organic optoelectronic devices. 陽極、陰極、および前記陽極と陰極との間に介在する少なくとも1層以上の有機薄膜層を含む有機発光素子において、
前記有機薄膜層のうちの少なくともいずれか1層は、前記請求項1に記載の有機光電子素子用化合物を含む有機発光素子。
In an organic light emitting device comprising an anode, a cathode, and at least one organic thin film layer interposed between the anode and the cathode,
At least any one layer of the said organic thin film layer is an organic light emitting element containing the compound for organic optoelectronic devices of the said Claim 1.
前記有機薄膜層は、発光層、正孔輸送層、正孔注入層、電子輸送層、電子注入層、正孔阻止層、およびこれらの組み合わせからなる群より選択されたいずれか1つである、請求項15に記載の有機発光素子。   The organic thin film layer is any one selected from the group consisting of a light emitting layer, a hole transport layer, a hole injection layer, an electron transport layer, an electron injection layer, a hole blocking layer, and combinations thereof. The organic light emitting device according to claim 15. 前記有機光電子素子用化合物は、発光層内に含まれるものである、請求項16に記載の有機発光素子。   The organic light emitting device according to claim 16, wherein the compound for an organic optoelectronic device is contained in a light emitting layer. 前記有機光電子素子用化合物は、発光層内に燐光または蛍光ホスト材料として使用されるものである、請求項17に記載の有機発光素子。   The organic light-emitting device according to claim 17, wherein the compound for an organic optoelectronic device is used as a phosphorescent or fluorescent host material in a light-emitting layer. 請求項15に記載の有機発光素子を含む表示装置。   The display apparatus containing the organic light emitting element of Claim 15.
JP2015551050A 2012-12-31 2013-06-13 Compound for organic optoelectronic device, organic light emitting device including the same, and display device including the organic light emitting device Pending JP2016505611A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2012-0158651 2012-12-31
KR20120158651 2012-12-31
PCT/KR2013/005239 WO2014104500A1 (en) 2012-12-31 2013-06-13 Compound for organic optoelectric device, organic light emitting diode comprising same, and display apparatus comprising organic light emitting diode

Publications (1)

Publication Number Publication Date
JP2016505611A true JP2016505611A (en) 2016-02-25

Family

ID=51021530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015551050A Pending JP2016505611A (en) 2012-12-31 2013-06-13 Compound for organic optoelectronic device, organic light emitting device including the same, and display device including the organic light emitting device

Country Status (3)

Country Link
JP (1) JP2016505611A (en)
KR (1) KR20140087987A (en)
WO (1) WO2014104500A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101493482B1 (en) 2014-08-29 2015-02-16 덕산네오룩스 주식회사 Organic electronic element using a compound for organic electronic element, and an electronic device thereo
KR102579367B1 (en) * 2019-02-15 2023-09-14 주식회사 엘지화학 Novel compound and organic light emitting device comprising the same
KR102475855B1 (en) * 2019-02-15 2022-12-07 주식회사 엘지화학 Novel compound and organic light emitting device comprising the same
KR102484481B1 (en) * 2019-10-31 2023-01-05 주식회사 동진쎄미켐 New organic compound for capping layer and Organic light emitting diode comprising to the same
WO2021093377A1 (en) * 2019-11-12 2021-05-20 广州华睿光电材料有限公司 Organic electroluminescent device containing material of light extraction layer
CN112687797B (en) * 2020-11-12 2023-03-24 烟台海森大数据有限公司 Organic electroluminescent device and display device comprising same
CN112409326B (en) * 2020-11-24 2022-03-15 吉林奥来德光电材料股份有限公司 Arylamine compound and preparation method and application thereof
WO2022191256A1 (en) 2021-03-12 2022-09-15 保土谷化学工業株式会社 Organic electroluminescence element and electronic equipment therefor
CN116143735A (en) * 2021-11-22 2023-05-23 奥来德(上海)光电材料科技有限公司 Organic electroluminescent compound, preparation method thereof and light-emitting display panel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4604312B2 (en) * 2000-06-13 2011-01-05 チッソ株式会社 Benzothiophene derivative and organic electroluminescence device using the same
US20060091359A1 (en) * 2004-10-29 2006-05-04 Jun-Liang Lai Organic light emitting compounds for a blue-light electroluminescent device
JP5475450B2 (en) * 2007-08-06 2014-04-16 出光興産株式会社 Aromatic amine derivative and organic electroluminescence device using the same
JP5836487B2 (en) * 2011-09-09 2015-12-24 エルジー・ケム・リミテッド Organic light emitting device material and organic light emitting device using the same
KR101474798B1 (en) * 2011-12-23 2014-12-22 제일모직 주식회사 Compound for organic OPTOELECTRONIC device, ORGANIC LIGHT EMITTING DIODE INCLUDING THE SAME and DISPLAY INCLUDING THE organic LIGHT EMITTING DIODE
KR101497135B1 (en) * 2011-12-29 2015-03-02 제일모직 주식회사 Compound for organic OPTOELECTRONIC device, ORGANIC LIGHT EMITTING DIODE INCLUDING THE SAME and DISPLAY INCLUDING THE organic LIGHT EMITTING DIODE

Also Published As

Publication number Publication date
KR20140087987A (en) 2014-07-09
WO2014104500A1 (en) 2014-07-03

Similar Documents

Publication Publication Date Title
EP2799515B1 (en) Compound for organic optoelectric device, organic light-emitting diode including same, and display device including organic light-emitting diode
KR101820865B1 (en) MATERIAL FOR ORGANIC OPTOELECTRONIC DEVICE, ORGANIC LiGHT EMITTING DIODE INCLUDING THE SAME AND DISPLAY INCLUDING THE ORGANIC LiGHT EMITTING DIODE
KR101453768B1 (en) Compound for organic photoelectric device and organic photoelectric device including the same
US20150263294A1 (en) Compound for organic optoelectronic device, organic light-emitting device including same, and display device including the organic light- emitting diode
KR101566530B1 (en) COMPOUND FOR ORGANIC OPTOELECTRONIC DEVICE, ORGANIC LiGHT EMITTING DIODE INCLUDING THE SAME AND DISPLAY INCLUDING THE ORGANIC LiGHT EMITTING DIODE
KR20140087996A (en) Compound for organic optoelectronic device, organic light emitting diode including the same and display including the organic light emitting diode
KR101474801B1 (en) COMPOUND FOR ORGANIC OPTOELECTRONIC DEVICE, ORGANIC LIGHT EMITTING DIODE INCLUDING THE SAME and DISPLAY INCLUDING THE ORGANIC LIGHT EMITTING DIODE
JP2016505611A (en) Compound for organic optoelectronic device, organic light emitting device including the same, and display device including the organic light emitting device
KR20140087882A (en) COMPOUND FOR ORGANIC OPTOELECTRONIC DEVICE, ORGANIC LiGHT EMITTING DIODE INCLUDING THE SAME AND DISPLAY INCLUDING THE ORGANIC LiGHT EMITTING DIODE
JP2015533262A (en) Compound for organic optoelectronic device, organic light emitting device including the same, and display device including the organic light emitting device
JP2013510848A (en) Novel condensed ring compound and organic electronic device using the same
JP2019069944A (en) Compound, and organic light emitting element containing the same, and display device containing the organic light emitting element
JP2015534258A (en) Compound for organic optoelectronic device, organic light emitting device including the same, and display device including the organic light emitting device
KR101474800B1 (en) Compound for organic OPTOELECTRONIC device, ORGANIC LIGHT EMITTING DIODE INCLUDING THE SAME and DISPLAY INCLUDING THE organic LIGHT EMITTING DIODE
JP2016500669A (en) Compound for organic optoelectronic device, organic light emitting device including the same, and display device including the organic light emitting device
KR20130016711A (en) Compound for organic optoelectronic device and organic light emitting diode including the same
KR101627748B1 (en) COMPOUND, ORGANIC LiGHT EMITTING DIODE INCLUDING THE SAME AND DISPLAY INCLUDING THE ORGANIC LiGHT EMITTING DIODE
KR101664122B1 (en) COMPOUND, ORGANIC LiGHT EMITTING DIODE INCLUDING THE SAME, COMPOSITION INCLUDING THE SAME AND DISPLAY INCLUDING THE ORGANIC LiGHT EMITTING DIODE
KR101507000B1 (en) Compound for organic optoelectronic device, organic light emitting diode including the same and display including the organic light emitting diode
KR20150009370A (en) COMPOUND FOR ORGANIC OPTOELECTRONIC DEVICE, ORGANIC LiGHT EMITTING DIODE INCLUDING THE SAME AND DISPLAY INCLUDING THE ORGANIC LiGHT EMITTING DIODE
KR20140088003A (en) Compound for organic optoelectronic device, organic light emitting diode including the same and display including the organic light emitting diode
KR101548159B1 (en) Compound for organic optoelectronic device, organic light emitting diode including the same and display including the organic light emitting diode
JP2016526030A (en) Compound for organic optoelectronic device, organic light emitting device including the same, and display device including the organic light emitting device
WO2014051244A1 (en) Compound for organic optoelectronic device, organic light-emitting device including same, and display device including said organic light-emitting device
KR20130117534A (en) Compound for organic optoelectronic device, organic light emitting diode including the same and display including the organic light emitting diode