JP2016221497A - Treating method of waste gas containing ethylene oxide gas - Google Patents
Treating method of waste gas containing ethylene oxide gas Download PDFInfo
- Publication number
- JP2016221497A JP2016221497A JP2015119761A JP2015119761A JP2016221497A JP 2016221497 A JP2016221497 A JP 2016221497A JP 2015119761 A JP2015119761 A JP 2015119761A JP 2015119761 A JP2015119761 A JP 2015119761A JP 2016221497 A JP2016221497 A JP 2016221497A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- eog
- activated carbon
- waste gas
- ethylene oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007789 gas Substances 0.000 title claims abstract description 65
- 238000000034 method Methods 0.000 title claims abstract description 57
- 239000002912 waste gas Substances 0.000 title claims abstract description 52
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 title claims abstract description 28
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 116
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 92
- 230000001954 sterilising effect Effects 0.000 claims abstract description 28
- 238000004659 sterilization and disinfection Methods 0.000 claims abstract description 28
- 239000003245 coal Substances 0.000 claims abstract description 12
- 239000003208 petroleum Substances 0.000 claims abstract description 12
- 239000007864 aqueous solution Substances 0.000 claims description 23
- 238000000354 decomposition reaction Methods 0.000 claims description 10
- 239000000843 powder Substances 0.000 claims description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 abstract description 6
- 238000001179 sorption measurement Methods 0.000 description 44
- 238000012545 processing Methods 0.000 description 14
- 239000011521 glass Substances 0.000 description 13
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 12
- 241000196324 Embryophyta Species 0.000 description 8
- 238000004523 catalytic cracking Methods 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 6
- 230000007062 hydrolysis Effects 0.000 description 6
- 238000006460 hydrolysis reaction Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000004817 gas chromatography Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 239000011973 solid acid Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 4
- 238000005070 sampling Methods 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 229920002799 BoPET Polymers 0.000 description 3
- 239000005041 Mylar™ Substances 0.000 description 3
- 229910021536 Zeolite Inorganic materials 0.000 description 3
- RGCKGOZRHPZPFP-UHFFFAOYSA-N alizarin Chemical compound C1=CC=C2C(=O)C3=C(O)C(O)=CC=C3C(=O)C2=C1 RGCKGOZRHPZPFP-UHFFFAOYSA-N 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000003610 charcoal Substances 0.000 description 3
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004880 explosion Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 238000003672 processing method Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000010457 zeolite Substances 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 2
- 235000013162 Cocos nucifera Nutrition 0.000 description 2
- 244000060011 Cocos nucifera Species 0.000 description 2
- 238000010306 acid treatment Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000006837 decompression Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000011301 petroleum pitch Substances 0.000 description 2
- 239000011295 pitch Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 239000011949 solid catalyst Substances 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- 208000008918 voyeurism Diseases 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000003421 catalytic decomposition reaction Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000011300 coal pitch Substances 0.000 description 1
- 239000011280 coal tar Substances 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000004525 petroleum distillation Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Landscapes
- Apparatus For Disinfection Or Sterilisation (AREA)
- Treating Waste Gases (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
【課題】滅菌処理後の廃ガスに含まれる酸化エチレンガスの除去性能に優れた処理方法を提供する。【解決手段】粉末、粒状、繊維状のあるいは特殊成形した、石油、石炭または植物を原料とする活性炭であって、硫酸水溶液を0.01%以上重量濃度、好ましくは0.01〜5%重量濃度で担時させた活性炭に、滅菌処理装置より排出された廃ガスを接触させて酸化エチレンガスを吸着させ、エチレングリコールに分解する処理方法。【選択図】図5Disclosed is a treatment method having excellent removal performance of ethylene oxide gas contained in waste gas after sterilization treatment. SOLUTION: Powdered, granular, fibrous or specially shaped activated carbon based on petroleum, coal or plant, and having an aqueous sulfuric acid concentration of 0.01% or more, preferably 0.01 to 5% by weight A treatment method in which waste gas discharged from a sterilization treatment apparatus is brought into contact with activated carbon carried at a concentration to adsorb ethylene oxide gas and decompose into ethylene glycol. [Selection] Figure 5
Description
本発明は、滅菌処理後の廃ガスに含まれる酸化エチレンガスを除去する廃ガス処理方法に関する。さらに、本発明は滅菌処理後の廃ガスに含まれる酸化エチレンガスを除去する滅菌処理装置と前記記載の処理方法の組み合わせによって酸化エチレンガスが加水分解される方法に関する。 The present invention relates to a waste gas treatment method for removing ethylene oxide gas contained in waste gas after sterilization treatment. Furthermore, the present invention relates to a method in which ethylene oxide gas is hydrolyzed by a combination of a sterilization apparatus for removing ethylene oxide gas contained in waste gas after sterilization and the above-described treatment method.
医療の安全性の保証に関する重要な項目に滅菌保証がある。医療の高度化に伴い医療現場で使用される医療用具の滅菌保証が従来よりも強く要求されつつある。滅菌法としては、酸化エチレンガス滅菌法(以下、EOG滅菌法と略記することがある)、薬剤滅菌法、高圧蒸気滅菌法、放射線滅菌法などが挙げられ、医療用具の材質に応じて最適な滅菌法が採用される。現在、医療用具としては、ポリエチレン、ポリプロピレン、シリコーン、ポリ塩化ビニルなどを素材とするディスポーザブル製品が汎用されている。素材の損傷が少ないこと、操作がきわめて容易であること、幅広い菌スペクトルに対して有効であることなどの理由から、上記滅菌法の中でもEOG滅菌法が主流である。 An important item related to medical safety assurance is sterilization assurance. With the advancement of medical care, there has been a strong demand for guaranteeing sterilization of medical devices used in medical settings. Examples of the sterilization method include ethylene oxide gas sterilization method (hereinafter may be abbreviated as EOG sterilization method), drug sterilization method, high-pressure steam sterilization method, radiation sterilization method, etc., which are optimal depending on the material of the medical device. Sterilization is adopted. At present, disposable products made of polyethylene, polypropylene, silicone, polyvinyl chloride and the like are widely used as medical devices. The EOG sterilization method is the mainstream among the above sterilization methods because it has little damage to the material, is very easy to operate, and is effective against a broad spectrum of bacteria.
しかしながら、酸化エチレンガス(以下、EOGと略記することがある)は、細菌や微生物に有効である反面、作業者の身体に及ぼす影響も皆無ではない。特にEOGは、皮膚、粘膜の一過性あるいは長期にわたる損傷を引き起こすことが懸念されている(たとえば、高島征助「酸化エチレンの気管上皮への影響に関する実験的研究」、耳鼻臨床、補柵11:1〜25,1987)。 However, while ethylene oxide gas (hereinafter sometimes abbreviated as EOG) is effective against bacteria and microorganisms, it has no influence on the worker's body. In particular, EOG is feared to cause transient or long-term damage to the skin and mucous membranes (for example, Sesuke Takashima “Experimental research on the effects of ethylene oxide on the tracheal epithelium”, Otolaryngology, Supplementary fence 11 : 1-25, 1987).
また、東京都、大阪府、埼玉県などの自治体では、医療施設や医療用具の製造施設に対して、大気中に排出するEOGに対して極めて厳しいゼロ規制を施行しており、早晩、全国的な規制に拡大されることは必至である。 In addition, local governments such as Tokyo, Osaka, and Saitama have enforced extremely strict zero regulations for EOG discharged into the atmosphere at medical facilities and medical device manufacturing facilities. It is inevitable that the regulations will be expanded.
国内の大規模な医療施設などでは、EOGを何らかの方法で分解処理している。EOGを分解処理する代表的な方法としては、EOGを炭酸ガスと水に分解する接触分解法が挙げられる。最も一般的な接触分解法は、金属製あるいはセラミック製の両端が解放された筒状の反応器内に五酸化バナジウムなどの強固な固体触媒を充填し、EOGを反応器内に導入し電気ヒーターで250〜350℃に加熱するという方法である。なお、接触分解法では、触媒活性が経時的に低下することが知られており触媒を適宜交換する必要がある。しかしながら、接触触媒法で用いられる触媒は高価であるため頻繁に交換することは現実的には難しい。 In large-scale medical facilities in Japan, EOG is decomposed by some method. A typical method for decomposing EOG includes a catalytic decomposition method in which EOG is decomposed into carbon dioxide gas and water. The most common catalytic cracking method is to fill a solid reactor such as vanadium pentoxide into a cylindrical reactor with both ends opened, made of metal or ceramic, and introduce EOG into the reactor. It is the method of heating to 250-350 degreeC. In the catalytic cracking method, it is known that the catalyst activity decreases with time, and it is necessary to replace the catalyst appropriately. However, since the catalyst used in the catalytic catalyst method is expensive, it is practically difficult to replace it frequently.
一方、本発明者らは、硫酸を用いてEOGをエチレングリコール(以下、EGと略記することがある)に加水分解する分解法を検討してきた。EOGは、沸点が12.5℃の気体であり、爆発限界はごく低濃度(0.1%)〜ほぼ100%と極めて広く、火源があれば爆発する危険性は極めて高い。EOGを扱うに際しては引火、爆発に細心の注意を払う必要があるが、硫酸を用いた加水分解法は常温・常圧下で操作可能であるため安全性が高い。なお、加水分解法は、用いる硫酸水溶液の容積にもよるが、一定期間処理を行うと硫酸水溶液のpHが上昇するとともにEOGの分解率が低下することが確認されている。そのため、一定期間処理を行った硫酸水溶液は交換する必要があり、交換のたびに大量の硫酸水溶液を廃棄処理しなければならない問題があった。 On the other hand, the present inventors have studied a decomposition method in which EOG is hydrolyzed to ethylene glycol (hereinafter sometimes abbreviated as EG) using sulfuric acid. EOG is a gas having a boiling point of 12.5 ° C., and its explosion limit is extremely wide (very low concentration (0.1%) to almost 100%), and there is a very high risk of explosion if there is a fire source. When handling EOG, it is necessary to pay close attention to ignition and explosion, but the hydrolysis method using sulfuric acid is safe because it can be operated at normal temperature and pressure. Although the hydrolysis method depends on the volume of the sulfuric acid aqueous solution used, it has been confirmed that when the treatment is performed for a certain period of time, the pH of the sulfuric acid aqueous solution increases and the decomposition rate of EOG decreases. Therefore, it is necessary to replace the sulfuric acid aqueous solution that has been treated for a certain period of time, and there is a problem that a large amount of the sulfuric acid aqueous solution must be discarded every time it is exchanged.
特許文献1に記載の方法は、EOG滅菌器から排出されたEOGを含む廃ガスを細孔径0.5〜1.0nm、表面積80〜100m2/gの固体酸で処理する方法である。また、特許文献1には、EOGを含む廃ガスを固体酸で処理する前に、希硫酸水溶液の水中を通過させることによって固体酸の吸着除去活性を飛躍的に延長させることも可能であると記載されている。なお、特許文献1の実施例には固体酸としてゼオライト13X(細孔径:0.9nm)を用いた処理方法が記載されており、比較例には椰子殻活性炭を用いた処理方法が記載されている。しかしながら、特許文献1に記載の固体酸はEOGの除去性能が不十分であり改善が求められていた。The method described in Patent Document 1 is a method of treating waste gas containing EOG discharged from an EOG sterilizer with a solid acid having a pore diameter of 0.5 to 1.0 nm and a surface area of 80 to 100 m 2 / g. Further, in Patent Document 1, it is possible to drastically extend the solid acid adsorption / removal activity by passing the waste gas containing EOG through a dilute sulfuric acid aqueous solution before it is treated with the solid acid. Have been described. In addition, in the Example of patent document 1, the processing method using the zeolite 13X (pore diameter: 0.9 nm) as a solid acid is described, and the processing method using coconut shell activated carbon is described in the comparative example. Yes. However, the solid acid described in Patent Document 1 has insufficient EOG removal performance and has been required to be improved.
そこで、本発明者らは、特許文献2に記載の滅菌処理後の廃ガスに含まれる酸化エチレンガスを除去する廃ガス処理装置を発明した。本発明は石油または石炭またはヤシガラ炭などの植物性活性炭を原料とする活性炭が充填され、前記廃ガスを該活性炭に接触させて酸化エチレンガスを吸着させて分解することにより該廃ガスから酸化エチレンを除去するための吸着筒を備えることを特徴とする廃ガス処理装置であると記載されている。また、特許文献2には、前記吸着筒の前段および/または後段に、さらに酸化エチレンガスを分解するための希硫酸浴または接触分解槽を備え、加水分解を行うことを特徴とする廃ガス処理装置であると記載されている。しかしながら、特許文献2に記載の装置ではEOGの除去が出来るものの、完全ではなく改善が求められていた。 Therefore, the present inventors have invented a waste gas treatment apparatus that removes ethylene oxide gas contained in waste gas after sterilization described in Patent Document 2. The present invention is filled with activated carbon made from plant activated carbon such as petroleum, coal or coconut husk charcoal, and the waste gas is brought into contact with the activated carbon to adsorb and decompose the ethylene oxide gas to produce ethylene oxide from the waste gas. It is described that it is a waste gas processing apparatus characterized by including an adsorption cylinder for removing water. Further, Patent Document 2 further includes a dilute sulfuric acid bath or a catalytic cracking tank for decomposing ethylene oxide gas at the front stage and / or the rear stage of the adsorption cylinder, and performs waste gas treatment. It is described as a device. However, although the apparatus described in Patent Document 2 can remove EOG, it is not perfect and an improvement has been demanded.
本発明は上記課題を解決するためになされたものであり、廃ガスに含まれるEOGの除去性能に優れた処理方法を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a treatment method having excellent removal performance of EOG contained in waste gas.
上記課題は、滅菌処理後の廃ガスに含まれるEOGを除去する廃ガス処理方法であって、石油又は石炭又は植物を原料とする活性炭に前記廃ガスを接触させてEOGを吸着させて分解することにより該廃ガスから酸化エチレンを除去することを特徴とする廃ガス処理方法を提供することによって解決される。 The above-mentioned problem is a waste gas treatment method for removing EOG contained in waste gas after sterilization treatment, wherein the waste gas is brought into contact with activated carbon made from petroleum, coal, or a plant to adsorb EOG and decompose. This is solved by providing a waste gas treatment method characterized by removing ethylene oxide from the waste gas.
このとき、前記活性炭は粉末、粒状、繊維状、特殊成形であって、そのなかでも粒状であることが好ましい。 At this time, the activated carbon is powder, granular, fibrous, or specially formed, and is preferably granular.
また、このとき、前記活性炭は0.01%以上重量濃度であって、そのなかでも0.01%から5%重量濃度の硫酸水溶液を担持させた活性炭であることが好ましい。 At this time, the activated carbon is 0.01% or more in weight concentration, and among them, it is preferable to be activated carbon carrying a sulfuric acid aqueous solution of 0.01% to 5% weight concentration.
上記課題は、滅菌処理後の廃ガスに含まれる酸化エチレンガスを除去する廃ガス処理装置と前記請求項1から前記請求項3までに記載の方法を組み合わせることによって、酸化エチレンガスが完全分解される方法を提供することによっても解決される。 The above problem is that ethylene oxide gas is completely decomposed by combining a waste gas treatment apparatus for removing ethylene oxide gas contained in waste gas after sterilization treatment and the method according to claims 1 to 3. It is also solved by providing a method.
本発明により、廃ガスに含まれるEOGの除去効率に優れた処理方法を提供することが出来る。 According to the present invention, it is possible to provide a treatment method excellent in the removal efficiency of EOG contained in waste gas.
本発明は、滅菌処理後の廃ガスに含まれる酸化エチレンガスを除去する廃ガス処理方法であって、石油又は石炭又は植物を原料とする活性炭に前記廃ガスを接触させて酸化エチレンガスを吸着させて分解することにより該廃ガスから酸化エチレンを除去することを特徴とする廃ガス処理方法である。本発明の最大の特徴は0.01%以上重量濃度、好ましくは0.01%から5%重量濃度の硫酸水溶液を担持させた活性炭であることである。これまで本発明者らは、ゼオライトや植物を原料とする活性炭を用いて廃ガス中の酸化エチレンを除去する方法を検討してきたが、その吸着性能は必ずしも十分でなかった。今般本発明者らが鋭意検討した結果、驚くべきことに石油または石炭または植物を原料とする活性炭に硫酸水溶液を担時させることでEOGの除去性能が大幅に4改善されることを見出した。 The present invention is a waste gas treatment method for removing ethylene oxide gas contained in waste gas after sterilization treatment, and adsorbs ethylene oxide gas by contacting the waste gas with activated carbon made from petroleum, coal, or plants. The waste gas treatment method is characterized in that ethylene oxide is removed from the waste gas by decomposition. The greatest feature of the present invention is that the activated carbon supports a sulfuric acid aqueous solution having a weight concentration of 0.01% or more, preferably 0.01 to 5% by weight. So far, the present inventors have studied a method for removing ethylene oxide in waste gas using activated carbon made of zeolite or plants as raw material, but its adsorption performance is not always sufficient. As a result of intensive studies by the present inventors, it has been surprisingly found that the removal performance of EOG is greatly improved by applying an aqueous sulfuric acid solution to activated carbon made from petroleum, coal or plants as a raw material.
また、本発明者らは過去の知見から活性炭へのEOGの吸着様式は物理吸着であろうと予測していた。しかしながら、EOGを接触させた後の活性炭をアセトンで抽出して、当該アセトンに含まれる成分を分析した結果、その成分のほとんどがEGであった。石油または石炭または植物を原料とする活性炭にEOGを接触させることによりEOGがEGに分解されることも本発明者が検討することで明らかになった。本発明において、石油または石炭または植物を原料とする活性炭とは、粉末、粒状、繊維状、特殊成形などの材料を原料として製造された活性炭のことである。 In addition, the present inventors have predicted that the adsorption mode of EOG to activated carbon will be physical adsorption from past knowledge. However, as a result of extracting the activated carbon after contacting EOG with acetone and analyzing the components contained in the acetone, most of the components were EG. The present inventors have also clarified that EOG is decomposed into EG by bringing EOG into contact with activated carbon made from petroleum, coal, or plants. In the present invention, the activated carbon made from petroleum, coal, or plant is activated carbon produced from a material such as powder, granular, fibrous, or specially shaped.
活性炭はその形状から、通常、粉末状活性炭、粒状活性炭、繊維状活性炭、特殊成形状活性炭に分類される。さらに粒状活性炭は破砕炭と、球状や円柱状などの成形炭に区分されている。 Activated carbon is usually classified into powdered activated carbon, granular activated carbon, fibrous activated carbon, and specially shaped activated carbon according to its shape. Furthermore, granular activated carbon is divided into crushed charcoal and spherical or cylindrical shaped charcoal.
本発明で用いられる活性炭の製造方法は特に限定されない。球状活性炭を製造する際の好適な製造方法としては、鉱物由来の材料を用いて混練、造粒して、所望の粒径、形状に形成してから、炭化処理および賦課処理を施す方法が挙げられる。このようにして球状の活性炭を製造する際には、上述の原料のうち、コールタール、石炭ピッチ、石油蒸留残渣、石油ピッチなどの流動性を有する原料を使用することで、成形時にバインダーを必要としない高性能の球状活性炭を得ることが出来る。 The manufacturing method of the activated carbon used by this invention is not specifically limited. A suitable production method for producing spherical activated carbon includes a method of kneading and granulating using a mineral-derived material to form a desired particle size and shape, and then performing carbonization treatment and imposition treatment. It is done. When producing spherical activated carbon in this way, a binder is required at the time of molding by using raw materials having fluidity such as coal tar, coal pitch, petroleum distillation residue, petroleum pitch among the above-mentioned raw materials. High performance spherical activated carbon can be obtained.
本発明で用いられる活性炭は、平均粒径(数平均球相当平均径)が10mm以下であることが好ましく、5mm以下であることがより好ましく、1mm以下であることがさらに好ましい。一方、ハンドリングの便宜からは、平均粒径は0.1mm以上である。 The activated carbon used in the present invention preferably has an average particle diameter (number average sphere equivalent average diameter) of 10 mm or less, more preferably 5 mm or less, and even more preferably 1 mm or less. On the other hand, for convenience of handling, the average particle size is 0.1 mm or more.
また、本発明で用いられる活性炭は、0.01%以上重量濃度、好ましくは0.01%から5%重量濃度の硫酸水溶液を担持させた活性炭がよい。 The activated carbon used in the present invention is preferably activated carbon carrying 0.01% or more by weight, preferably 0.01% to 5% by weight sulfuric acid aqueous solution.
本発明において、活性炭の単位重量あたりの比表面積が大きいほど廃ガスとの接触効率がよい。本発明における活性炭のBET比表面積は100m2/g以上が好ましく、500m2/g以上がより好ましい。一方、BET比表面積は、通常、10000m2/g以下である。In the present invention, the larger the specific surface area per unit weight of the activated carbon, the better the contact efficiency with the waste gas. The BET specific surface area of the activated carbon in the present invention is preferably 100 m 2 / g or more, and more preferably 500 m 2 / g or more. On the other hand, the BET specific surface area is usually 10000 m 2 / g or less.
以下、図面を参照しながら、本発明の実施態様にかかる処理方法について説明する。本実施態様は、単に具体例を示すものであり本願発明の技術的範囲を何ら限定するものではない。 Hereinafter, a processing method according to an embodiment of the present invention will be described with reference to the drawings. This embodiment is merely a specific example, and does not limit the technical scope of the present invention.
図に示すように、処理装置1は、滅菌器10と吸着筒20と希硫酸浴30とを備える。本発明の廃ガス処理装置は、少なくとも吸着筒20を有していればよく、滅菌器10と希硫酸浴30は任意の構成である。 As shown in the figure, the processing apparatus 1 includes a sterilizer 10, an adsorption cylinder 20, and a dilute sulfuric acid bath 30. The waste gas treatment apparatus of the present invention only needs to have at least the adsorption cylinder 20, and the sterilizer 10 and the dilute sulfuric acid bath 30 have arbitrary configurations.
滅菌器10は、医療用具などの被処理体が入れられる気密性の高い容器である。そして、ガス導入口11から滅菌器10内にEOGを含むガス(以下、単にガスと略記することがある)が導入される。ついで、ガス導入口11が閉じられ、滅菌器10内で所定時間滅菌処理が施される。このとき、滅菌器10に導入されるガスは、EOGのみであっても、さらにほかのガスを含むものであっても構わない。他のガスとしては、炭酸ガス、窒素ガス、水蒸気などを用いることが出来る。滅菌効率の面からは10重量%以上がEOGであるガスを用いることが好ましい。また、ガスを滅菌器10に導入するに際しては、減圧ポンプ(図示せず)などによって滅菌器10を予め減圧しておくことが好ましい。滅菌処理後、滅菌器10内のガスは廃ガスとしてガス排出口12から排出され、吸着筒20に導入される。廃ガスの排出に際しては、減圧ポンプ(図示せず)などによって減圧排気することが好ましい。また、その後に滅菌器10内に空気をパージして減圧排気することを繰り返すことも好ましい。その際、パージ後に排出される廃ガスも、必要に応じて吸着筒20に導入することができる。 The sterilizer 10 is a highly airtight container in which an object to be processed such as a medical tool is placed. Then, a gas containing EOG (hereinafter sometimes simply referred to as gas) is introduced into the sterilizer 10 from the gas inlet 11. Next, the gas inlet 11 is closed and sterilization is performed for a predetermined time in the sterilizer 10. At this time, the gas introduced into the sterilizer 10 may be only EOG or may contain other gases. As other gas, carbon dioxide gas, nitrogen gas, water vapor and the like can be used. From the viewpoint of sterilization efficiency, it is preferable to use a gas in which 10% by weight or more is EOG. Further, when introducing the gas into the sterilizer 10, it is preferable to depressurize the sterilizer 10 in advance by a decompression pump (not shown) or the like. After the sterilization process, the gas in the sterilizer 10 is discharged from the gas outlet 12 as waste gas and introduced into the adsorption cylinder 20. When exhausting the waste gas, it is preferable that the exhaust gas is evacuated by a decompression pump (not shown). Moreover, it is also preferable to repeat purging air in the sterilizer 10 and exhausting under reduced pressure thereafter. At that time, waste gas discharged after purging can also be introduced into the adsorption cylinder 20 as necessary.
吸着筒20には石油または石炭または植物を原料とする活性炭が充填されている。吸着筒20における活性炭の充填量は、EOG吸着率、導入廃ガス量、通気時の圧力損失などを考慮して適宜設定される。吸着筒20の素材は、ガスによって劣化、腐食しないものであれば特に限定されず、代表的には、金属、ガラス、プラスチックなどをあげることが出来る。吸着筒20の長さや内径は特に限定されないが、やはり、EOG吸着率、導入廃ガス量、通気時の圧力損失などを考慮して適宜設定される。 The adsorption cylinder 20 is filled with activated carbon made from petroleum, coal or plants. The filling amount of the activated carbon in the adsorption cylinder 20 is appropriately set in consideration of the EOG adsorption rate, the introduced waste gas amount, the pressure loss during ventilation, and the like. The material of the adsorption cylinder 20 is not particularly limited as long as it does not deteriorate or corrode due to gas, and representative examples thereof include metal, glass, and plastic. The length and inner diameter of the adsorption cylinder 20 are not particularly limited, but are set as appropriate in consideration of the EOG adsorption rate, the amount of introduced waste gas, the pressure loss during ventilation, and the like.
また、吸着筒20の出口には、当該吸着筒20内のEOG濃度をモニタリングするモニタリング手段を備えることが好ましい。モニタリング手段は、簡易な点から、EOGと反応する色素であることが好ましい。色素の水溶液を含浸させたシートを吸着筒20内の出口に設置し、ピーピンググラス21からシートの色の変化を観測することで吸着筒20内のEOG濃度をモニタリングすることができる。色素は、特定のEOG濃度で、EOGと反応して変色するものであれば特に限定されず、アリザリンレッドなどを挙げることができる。 Moreover, it is preferable to provide a monitoring means for monitoring the EOG concentration in the adsorption cylinder 20 at the outlet of the adsorption cylinder 20. The monitoring means is preferably a dye that reacts with EOG from the viewpoint of simplicity. A sheet impregnated with an aqueous dye solution is installed at the outlet in the adsorption cylinder 20, and the EOG concentration in the adsorption cylinder 20 can be monitored by observing a change in the color of the sheet from the peeping glass 21. The dye is not particularly limited as long as it changes color by reacting with EOG at a specific EOG concentration, and examples thereof include alizarin red.
図1では吸着筒20を4つ並列に設置した例を示したが、吸着筒20の個数や設置方法は限定されず、複数個の吸着筒20を直列に設置してもよい。また、吸着筒20は処理装置1から取り外すことがきるカートリッジ式であることが好ましい。例えば、吸着筒20を複数個並列に設置しておけば、バルブ操作によって処理装置1を稼働させながら吸着筒20を交換することができる。取り外した吸着筒20は、そのまま廃棄してもよいし、活性炭を詰め替えて再び処理装置1に取り付けてもよい。吸着筒20を焼却可能なプラスチック容器で形成した場合には、吸着筒20全体を焼却処理することができ、作業環境へのEOG漏洩を最小限に抑えることができる。また、吸着筒20を再利用する場合であっても、吸着されたEOGは、その大部分がEGに変換されているので、ハンドリング時の作業環境への漏洩は大幅に抑制される。いずれにしても、使用後の活性炭は容易に焼却処理することができ、その際に焼却残渣や有害ガスもほとんど発生しないので、焼却残渣が大量に発生するゼオライトなどの吸着剤に比べて環境面からも優れている。 Although FIG. 1 shows an example in which four adsorption cylinders 20 are installed in parallel, the number and the installation method of the adsorption cylinders 20 are not limited, and a plurality of adsorption cylinders 20 may be installed in series. The adsorption cylinder 20 is preferably a cartridge type that can be removed from the processing apparatus 1. For example, if a plurality of adsorption cylinders 20 are installed in parallel, the adsorption cylinders 20 can be exchanged while operating the processing apparatus 1 by valve operation. The removed adsorption cylinder 20 may be discarded as it is, or the activated carbon may be refilled and attached to the processing apparatus 1 again. When the adsorption cylinder 20 is formed of a plastic container that can be incinerated, the entire adsorption cylinder 20 can be incinerated, and EOG leakage to the work environment can be minimized. Even when the suction cylinder 20 is reused, most of the sucked EOG is converted to EG, so that leakage to the working environment during handling is greatly suppressed. In any case, the activated carbon after use can be easily incinerated. At that time, almost no incineration residue and noxious gas are generated, so it is more environmentally friendly than adsorbents such as zeolite that generate a large amount of incineration residue. Is also excellent.
吸着筒20から排出された廃ガスはガス吹込口31から希硫酸浴30に導入され、希硫酸浴30中の10重量%硫酸水溶液32を通過する。これにより廃ガスに残ったEOGがEGに加水分解される。図示は省略したが、硫酸浴30には10重量%硫酸水溶液32のpHを計測するためのpHメータが備わっていてもよい。 Waste gas discharged from the adsorption cylinder 20 is introduced into the dilute sulfuric acid bath 30 through the gas inlet 31 and passes through the 10 wt% sulfuric acid aqueous solution 32 in the dilute sulfuric acid bath 30. As a result, EOG remaining in the waste gas is hydrolyzed into EG. Although not shown, the sulfuric acid bath 30 may be equipped with a pH meter for measuring the pH of the 10 wt% sulfuric acid aqueous solution 32.
また、処理装置1は、希硫酸浴30に代えて、EOGを分解する固体触媒が充填された接触分解槽を備えることも好ましい。固体触媒はEOGを分解して無害化することのできるものであれば特に限定されないが、五酸化バナジウムが代表的である。 Moreover, it is preferable that the processing apparatus 1 is provided with the catalytic cracking tank filled with the solid catalyst which decomposes | disassembles EOG instead of the dilute sulfuric acid bath 30. FIG. The solid catalyst is not particularly limited as long as it can decompose and detoxify EOG, but vanadium pentoxide is typical.
このように、滅菌器10から排出された廃ガスは吸着筒20及び希硫酸浴30で処理されてガス排出口33から大気中に放出される。 As described above, the waste gas discharged from the sterilizer 10 is processed by the adsorption cylinder 20 and the dilute sulfuric acid bath 30 and discharged from the gas discharge port 33 to the atmosphere.
従来、EOGの処理には、上述したような接触分解法や加水分解法が用いられてきた。加水分解法では、用いる硫酸水溶液の容積にもよるが一定期間処理を行うと硫酸水溶液のpHが上昇するとともにEOGの分解率も低下することが確認されている。 Conventionally, the catalytic cracking method and the hydrolysis method as described above have been used for the treatment of EOG. In the hydrolysis method, although it depends on the volume of the sulfuric acid aqueous solution to be used, it has been confirmed that when the treatment is performed for a certain period of time, the pH of the sulfuric acid aqueous solution increases and the decomposition rate of EOG also decreases.
本発明者らは、反応槽(500mL)に10重量%の硫酸水溶液を入れ、硫酸水溶液にEOGを20重量%及び炭酸ガスを80重量%含む混合ガスを一定の速度で吹き込み、EOGの分解率と硫酸水溶液のpH値の変化を分析した。その結果、反応開始後の一定時間内では、硫酸水溶液のpH値は0であり、その時に硫酸水溶液を通過した気体をガスクロマトグラフィー分析をしたところ、EOG分解率は100%であった。しかしながら、2週間連続で試験を継続すると、硫酸水溶液のpH値は1.0に上昇し、EOG分解率は99%に低下した。さらに実験を継続するとpH値はさらに上昇して2.0になり、EOG分解率はさらに低下して98%となった。 The inventors put a 10% by weight sulfuric acid aqueous solution into a reaction vessel (500 mL), and blown a mixed gas containing 20% by weight of EOG and 80% by weight of carbon dioxide into the aqueous sulfuric acid solution at a constant rate. And the change of pH value of sulfuric acid aqueous solution was analyzed. As a result, the pH value of the aqueous sulfuric acid solution was 0 within a fixed time after the start of the reaction, and when the gas that passed through the aqueous sulfuric acid solution was analyzed by gas chromatography, the EOG decomposition rate was 100%. However, when the test was continued for 2 weeks, the pH value of the sulfuric acid aqueous solution increased to 1.0, and the EOG degradation rate decreased to 99%. When the experiment was further continued, the pH value further increased to 2.0, and the EOG decomposition rate further decreased to 98%.
このような加水分解法において、硫酸水溶液に吹き込むガスのEOG濃度を予め低下させておけば、硫酸水溶液のpH値は長期間にわたって低い値に保たれ、反応槽から大気中に放出されるEOG濃度を低値のまま維持できる。したがって、石油又は石炭を原料とする活性炭が充填された吸着筒を備えることによって、硫酸水溶液のpH上昇を大幅に抑制することが可能になる。 In such a hydrolysis method, if the EOG concentration of the gas blown into the sulfuric acid aqueous solution is lowered in advance, the pH value of the sulfuric acid aqueous solution is kept low over a long period of time, and the EOG concentration released from the reaction tank to the atmosphere. Can be maintained at a low value. Therefore, by providing an adsorption cylinder filled with activated carbon made of petroleum or coal as a raw material, it is possible to significantly suppress the pH increase of the sulfuric acid aqueous solution.
一方、接触分解法は、長期間運転を継続することによって触媒活性が低下することが知られている。また、高温で分解させるために、装置内の高温部に高濃度のEOGが接触することによる、金属部材の腐食にも留意しなければならない。したがって、石油又は石炭を原料とする活性炭が充填された吸着筒を備えることによって、加水分解法と同様に、触媒の寿命を大幅に延ばすことが可能になるし、配管の腐食を抑制することも可能になる。 On the other hand, it is known that the catalytic activity of the catalytic cracking method decreases when the operation is continued for a long time. In addition, in order to decompose at a high temperature, it is necessary to pay attention to the corrosion of the metal member due to the high concentration EOG coming into contact with the high temperature portion in the apparatus. Therefore, by providing an adsorption cylinder filled with activated carbon made from petroleum or coal, it is possible to greatly extend the life of the catalyst, as well as to suppress the corrosion of piping, as in the hydrolysis method. It becomes possible.
以上説明したように、吸着筒の後段に、さらにEOGを分解するための希硫酸浴又は接触分解槽を備えることが好ましく、触媒や希硫酸浴の寿命の延長などに役立つと考えられる。 As described above, it is preferable to further include a dilute sulfuric acid bath or a catalytic cracking tank for decomposing EOG at the subsequent stage of the adsorption cylinder, which is considered to be useful for extending the life of the catalyst and dilute sulfuric acid bath.
本発明者らは、さらなるEOG分解のため、活性炭を濃度の異なる硫酸水溶液に浸漬させ、EOGの分解率を分析した。その結果、低い重量%濃度の硫酸水溶液は高い重量%濃度の硫酸水溶液に優れていたことがわかった。これは、この硫酸処理活性炭の表面にEGが生成して活性点を覆い、反応が抑制されたと考えられる。 For further EOG decomposition, the present inventors immersed activated carbon in sulfuric acid aqueous solutions having different concentrations and analyzed the decomposition rate of EOG. As a result, it was found that the sulfuric acid aqueous solution having a low weight% concentration was superior to the sulfuric acid aqueous solution having a high weight% concentration. This is probably because EG was generated on the surface of this sulfuric acid-treated activated carbon to cover the active site, and the reaction was suppressed.
本発明の廃ガス処理方法は、廃ガス処理装置と組み合わせることによって、滅菌処理後の廃ガスに含まれるEOGを効率的に除去することができる。中でも、医療用具を収納する容器と、容器に酸化エチレンガスを含むガスを供給する手段と、上記吸着筒とを備える、滅菌処理装置と滅菌処理後の廃ガスに含まれる酸化エチレンガスを除去する廃ガス処理方法であって、石油または石炭を原料とする活性炭に前記廃ガスを接触させて酸化エチレンガスを吸着させて分解することにより該廃ガスから酸化エチレンを除去することを特徴とする廃ガス処理方法を組み合わせることが好適な実施形態である。 The waste gas treatment method of the present invention can efficiently remove EOG contained in waste gas after sterilization by combining with a waste gas treatment apparatus. Among them, a sterilization apparatus and a waste gas after sterilization treatment, which includes a container for storing a medical device, a means for supplying a gas containing ethylene oxide gas to the container, and the adsorption cylinder, are removed. A waste gas treatment method, wherein the waste gas is brought into contact with activated carbon made from petroleum or coal to adsorb and decompose ethylene oxide gas to remove ethylene oxide from the waste gas. Combining gas treatment methods is a preferred embodiment.
図2に示す実験装置2を用いて、下記の手順でEOGの処理を行った。 Using the experimental apparatus 2 shown in FIG. 2, the EOG treatment was performed according to the following procedure.
(1)内径が10mm、長さが30cmのガラス管50を用意した。そのガラス管に株式会社クレハ製の、石油ピッチを原料とした球状の活性炭「A−BAC SP」(平均粒径:0.40mm以下、BET比表面積:1100〜1300m2/g)を充填した。ふるい分けによる粒度分布曲線によればほとんど全ての粒子の粒径が0.2〜0.45mmの範囲に入る。
(2)ガラス管出口90にアリザリンレッドを含浸させたろ紙を静置した。
(3)容量が20Lのマイラーバッグ40に試料ガス(組成:EOG20重量%、CO2:80重量%)を充填した。
(4)ガスタイトシリンジを用いて、ガラス管50に導入される前の試料ガスを試料ガス採取口(入口)70から1.0mL採取した。
(5)ポンプ60を用いて、マイラーバッグ40に充填された試料ガスを流量50mL/minでガラス管50に導入した。
(6)ガスタイトシリンジを用いて、所定時間毎に試料ガス採取口(出口)80から試料ガスを1.0mL採取した。
(7)上記手順(4)で採取した処理前の試料ガス及び上記手順(6)で採取した処理後の試料ガスそれぞれをガスクロマトグラフィーで分析した。(1) A glass tube 50 having an inner diameter of 10 mm and a length of 30 cm was prepared. The glass tube was filled with spherical activated carbon “A-BAC SP” (average particle diameter: 0.40 mm or less, BET specific surface area: 1100 to 1300 m 2 / g) manufactured by Kureha Corporation and made from petroleum pitch. According to the particle size distribution curve by sieving, the particle size of almost all particles falls within the range of 0.2 to 0.45 mm.
(2) The filter paper impregnated with alizarin red was allowed to stand at the glass tube outlet 90.
(3) A sample gas (composition: EOG 20 wt%, CO 2 : 80 wt%) was filled in a 20 L Mylar bag 40.
(4) 1.0 mL of sample gas before being introduced into the glass tube 50 was sampled from a sample gas sampling port (inlet) 70 using a gas tight syringe.
(5) The sample gas filled in the Mylar bag 40 was introduced into the glass tube 50 at a flow rate of 50 mL / min using the pump 60.
(6) 1.0 mL of sample gas was sampled from the sample gas sampling port (exit) 80 every predetermined time using a gas tight syringe.
(7) The sample gas before the treatment collected in the procedure (4) and the sample gas after the treatment collected in the procedure (6) were analyzed by gas chromatography.
ガスクロマトグラフィー分析は以下の装置を用いて行った。
・装置:株式会社島津製作所製 GC−2014型
・検出器:FID
・カラム:PORAPAK QS,50〜80mesh
3mmφ × 2m(ガスカラム)
・温度:試料注入口 250℃、検出器 140℃、カラム 250℃
・キャリアガス:窒素PN2 200MPa
・燃焼ガス:水素PH2 100MPa
・空気PAir:50MPa
・GC分析用ガス採取量:1mLThe gas chromatographic analysis was performed using the following apparatus.
・ Device: GC-2014 type, manufactured by Shimadzu Corporation ・ Detector: FID
Column: PORAPAK QS, 50-80 mesh
3mmφ x 2m (gas column)
-Temperature: Sample inlet 250 ° C, detector 140 ° C, column 250 ° C
Carrier gas: Nitrogen PN2 200 MPa
-Combustion gas: Hydrogen P H2 100 MPa
・ Air P Air : 50 MPa
・ Gas amount for GC analysis: 1mL
ガスクロマトグラフィー分析の結果から、ガラス管50に充填された活性炭のEOG吸着率(%)を以下の式(1)および(2)に基づいて算出した。 From the results of gas chromatography analysis, the EOG adsorption rate (%) of the activated carbon filled in the glass tube 50 was calculated based on the following formulas (1) and (2).
EOG残存率(%)=(EOGに由来するピーク面積(処理後))/(EOGに由来するピーク面積(処理前))×100・・・(1)
EOG吸着率(%)=100−EOG残存率(%)・・・(2)EOG residual rate (%) = (peak area derived from EOG (after treatment)) / (peak area derived from EOG (before treatment)) × 100 (1)
EOG adsorption rate (%) = 100-EOG residual rate (%) (2)
図3は、横軸を処理を開始してからの経過時間(min)、縦軸を上記式(2)で求めたEOG吸着率(%)としたグラフである。図3に示されている各ポイントは、上記手順(6)を行ったポイントである。図3に示すように、処理開始後、おおよそ140minまでは試料ガスに含まれるEOGのほとんどが活性炭に吸着されることがわかった。また、図4は、横軸を処理を開始してからの経過時間(min)、縦軸を上記式(2)で求めたEOG吸着率(%)としたグラフである。図3に示されている各ポイントは、上記手順(6)を行ったポイントである。図3に示すように、処理開始後、おおよそ180minまでは試料ガスに含まれるEOGのほとんどが活性炭に吸着されることがわかった。 FIG. 3 is a graph in which the horizontal axis represents the elapsed time (min) from the start of processing, and the vertical axis represents the EOG adsorption rate (%) obtained by the above equation (2). Each point shown in FIG. 3 is a point where the procedure (6) is performed. As shown in FIG. 3, it was found that most of the EOG contained in the sample gas was adsorbed on the activated carbon until approximately 140 minutes after the start of the treatment. FIG. 4 is a graph in which the horizontal axis represents the elapsed time (min) from the start of processing, and the vertical axis represents the EOG adsorption rate (%) obtained by the above equation (2). Each point shown in FIG. 3 is a point where the procedure (6) is performed. As shown in FIG. 3, it was found that most of EOG contained in the sample gas was adsorbed on the activated carbon until about 180 minutes after the start of the treatment.
また、ガラス管50に充填されていた活性炭を取り出し、アセトンで抽出処理し、アセトンを蒸発除去後、蒸発残分を再び少量のアセトンに溶解してガスクロマトグラフィー分析を行った。その結果、アセトンに含まれる成分のほとんどがEGであることがわかった。このことから、EOGは活性炭に化学吸着してEGに分解されていることがわかった。 Further, the activated carbon filled in the glass tube 50 was taken out, extracted with acetone, the acetone was removed by evaporation, and the evaporation residue was dissolved again in a small amount of acetone for gas chromatography analysis. As a result, it was found that most of the components contained in acetone were EG. From this, it was found that EOG was chemisorbed on activated carbon and decomposed into EG.
さらに、ガラス管出口90に設置したアリザリンレッドを含浸させたろ紙の色は、EOG吸収率(%)が40%になったところで赤色から黄色に変化した。 Furthermore, the color of the filter paper impregnated with alizarin red installed at the glass tube outlet 90 changed from red to yellow when the EOG absorption rate (%) reached 40%.
顆粒状の活性炭を用いて実施例1と同様の処理を行った。結果を図4に示す。実施例1に比べて破過時間が長くなっていることがわかった。 The same treatment as in Example 1 was performed using granular activated carbon. The results are shown in FIG. It was found that the breakthrough time was longer than that in Example 1.
吸着したEOGをEGに分解させ、廃棄時の安全性を確保するために、数種類の濃度で処理した活性炭の破過時間を測定した。 In order to decompose the adsorbed EOG into EG and ensure safety at the time of disposal, the breakthrough time of activated carbon treated at several concentrations was measured.
クレハ製活性炭(ピッチ系)を用いて、1%硫酸処理し、実施例1と同様の処理を行った。結果を図5に示す。破過時間は140分であった。 Using Kureha activated carbon (pitch system), 1% sulfuric acid treatment was performed, and the same treatment as in Example 1 was performed. The results are shown in FIG. The breakthrough time was 140 minutes.
クレハ製活性炭(ピッチ系)を用いて、10%硫酸処理し、実施例1と同様の処理を行った。結果を図6に示す。破過時間は40分であった。 10% sulfuric acid treatment was performed using activated carbon (pitch system) made by Kureha, and the same treatment as in Example 1 was performed. The results are shown in FIG. The breakthrough time was 40 minutes.
(考察)
10%硫酸処理した活性炭で分解率が劣ることが見られた。この硫酸処理活性炭には、EGが生成して活性点を覆い、反応が抑制されたと考えられる。(Discussion)
It was observed that the decomposition rate was poor with activated carbon treated with 10% sulfuric acid. In this sulfuric acid-treated activated carbon, it is considered that EG was generated to cover the active site and the reaction was suppressed.
1 処理装置
10 滅菌器
11 ガス導入口
12 ガス排出路
20 吸着筒
21 ピーピンググラス
30 希硫酸浴
31 ガス吹込口
32 10重量%硫酸水溶液
33 ガス排出口
2 実験装置
40 マイラーバッグ
50 ガラス管
60 ポンプ
70 試料ガス採取口(入口)
80 試料ガス採取口(出口)
90 ガラス管出口DESCRIPTION OF SYMBOLS 1 Processing apparatus 10 Sterilizer 11 Gas inlet 12 Gas discharge path 20 Adsorption cylinder 21 Peeping glass 30 Dilute sulfuric acid bath 31 Gas inlet 32 10 wt% sulfuric acid aqueous solution 33 Gas outlet 2 Experimental apparatus 40 Mylar bag 50 Glass tube 60 Pump 70 Sample gas sampling port (inlet)
80 Sample gas sampling port (exit)
90 Glass tube outlet
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015119761A JP2016221497A (en) | 2015-05-26 | 2015-05-26 | Treating method of waste gas containing ethylene oxide gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015119761A JP2016221497A (en) | 2015-05-26 | 2015-05-26 | Treating method of waste gas containing ethylene oxide gas |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016221497A true JP2016221497A (en) | 2016-12-28 |
Family
ID=57746489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015119761A Pending JP2016221497A (en) | 2015-05-26 | 2015-05-26 | Treating method of waste gas containing ethylene oxide gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2016221497A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018149509A (en) * | 2017-03-14 | 2018-09-27 | 大陽日酸株式会社 | Ethylene oxide removal method |
JP2018149508A (en) * | 2017-03-14 | 2018-09-27 | 大陽日酸株式会社 | Ethylene oxide removal method |
WO2021147261A1 (en) * | 2020-01-20 | 2021-07-29 | Qiaokang Biotech (Guangdong) Co., LTD. | Bacteria for degrading ethylene oxide and uses thereof |
US11085016B1 (en) | 2020-01-20 | 2021-08-10 | Chio Kang Medical, Inc. | Method for screening bacteria capable of degrading ethylene oxide |
US11124438B2 (en) | 2020-01-20 | 2021-09-21 | Chio Kang Medical, Inc. | Alcaligenes faecalis for degrading ethylene oxide |
US11130939B2 (en) | 2020-01-20 | 2021-09-28 | Chio Kang Medical, Inc. | Bacteria for degrading ethylene oxide and uses thereof |
US11220667B2 (en) | 2020-01-20 | 2022-01-11 | Chio Kang Medical, Inc. | Bacteria for degrading ethylene oxide and applications thereof |
-
2015
- 2015-05-26 JP JP2015119761A patent/JP2016221497A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018149509A (en) * | 2017-03-14 | 2018-09-27 | 大陽日酸株式会社 | Ethylene oxide removal method |
JP2018149508A (en) * | 2017-03-14 | 2018-09-27 | 大陽日酸株式会社 | Ethylene oxide removal method |
WO2021147261A1 (en) * | 2020-01-20 | 2021-07-29 | Qiaokang Biotech (Guangdong) Co., LTD. | Bacteria for degrading ethylene oxide and uses thereof |
US11085016B1 (en) | 2020-01-20 | 2021-08-10 | Chio Kang Medical, Inc. | Method for screening bacteria capable of degrading ethylene oxide |
US11124438B2 (en) | 2020-01-20 | 2021-09-21 | Chio Kang Medical, Inc. | Alcaligenes faecalis for degrading ethylene oxide |
US11130939B2 (en) | 2020-01-20 | 2021-09-28 | Chio Kang Medical, Inc. | Bacteria for degrading ethylene oxide and uses thereof |
US11220667B2 (en) | 2020-01-20 | 2022-01-11 | Chio Kang Medical, Inc. | Bacteria for degrading ethylene oxide and applications thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2016221497A (en) | Treating method of waste gas containing ethylene oxide gas | |
KR101233542B1 (en) | Method and apparatus for the decontamination of spent activated carbon | |
JP2008114210A (en) | Method and apparatus for treating exhaust gas comprising ethylene oxide | |
KR101756908B1 (en) | Process for the detritiation of soft housekeeping waste and plant thereof | |
CN206837823U (en) | A kind of VOCs waste gas purification apparatuses | |
JP2014237090A (en) | Treating device and treating method of waste gas containing ethylene oxide gas | |
CN107158945A (en) | VOC cleaning system and its purification method in a kind of removal industrial waste gas | |
CN208526154U (en) | A kind of integrated-type organic waste gas treatment device | |
JP2008188492A (en) | Water treatment system | |
JP2011121805A (en) | Method for removing nitrogen oxide and moisture contained in ozone gas | |
CN110559827B (en) | Treatment process of papermaking waste gas | |
CN206881501U (en) | Funeral and interment VOCs processing equipments | |
CN102512926B (en) | Method for removing sulfuryl fluoride by coupling plasma and chemical absorbing | |
CN104399352A (en) | Novel VOCs treatment equipment and treatment process | |
CN105126569A (en) | NaClO oxidation/composite photocatalysis/VOC (Volatile Organic Compound) absorption integrated waste gas treatment equipment and treatment method | |
CN203598274U (en) | Vacuum unit system with exhausting and sterilizing functions | |
CN205550039U (en) | A composite plasma photo-oxygen catalytic organic waste gas purification equipment | |
CN105771576B (en) | A kind of technique removing bioxin using modified activated carbon | |
KR101533623B1 (en) | Poisonous Gas Treatment System for Semiconductor Equipment and Method thereof | |
CN102716653A (en) | Method for purifying phosphine tail gas from fumigation | |
CN108126471A (en) | The concentration photodissociation bioremediation of VOCs exhaust gas | |
JP6661898B2 (en) | Water treatment system | |
CN205687745U (en) | A kind of organic matter of sewage decomposition apparatus | |
KR20220086927A (en) | Dust collector for the simultaneous treatment of dust and volatile organic compounds from exhaust gas | |
CN206915904U (en) | A kind of wastewater treatment equipment |