[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2016204639A - Resin composition, laminate and multilayer printed board - Google Patents

Resin composition, laminate and multilayer printed board Download PDF

Info

Publication number
JP2016204639A
JP2016204639A JP2016076615A JP2016076615A JP2016204639A JP 2016204639 A JP2016204639 A JP 2016204639A JP 2016076615 A JP2016076615 A JP 2016076615A JP 2016076615 A JP2016076615 A JP 2016076615A JP 2016204639 A JP2016204639 A JP 2016204639A
Authority
JP
Japan
Prior art keywords
group
carbon atoms
resin composition
resin
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016076615A
Other languages
Japanese (ja)
Other versions
JP6922157B2 (en
Inventor
隆雄 谷川
Takao Tanigawa
隆雄 谷川
入野 哲朗
Tetsuro Irino
哲朗 入野
富男 福田
Tomio Fukuda
富男 福田
裕希 永井
Yuki Nagai
裕希 永井
村井 曜
Hikari Murai
曜 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Publication of JP2016204639A publication Critical patent/JP2016204639A/en
Application granted granted Critical
Publication of JP6922157B2 publication Critical patent/JP6922157B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin composition that has excellent high frequency properties (low relative dielectric constant and low dielectric loss tangent) and also has low thermal expansion properties and conductor adhesion properties at high levels.SOLUTION: This invention relates to a resin composition comprising (A) a maleimide compound having a saturated or unsaturated divalent hydrocarbon group, and (B) an aromatic maleimide compound.SELECTED DRAWING: None

Description

本発明は、樹脂組成物、積層板及び多層プリント配線板に関する。   The present invention relates to a resin composition, a laminated board, and a multilayer printed wiring board.

携帯電話に代表される移動体通信機器、その基地局装置、サーバー、ルーター等のネットワークインフラ機器、大型コンピュータなどの電子機器では使用する信号の高速化及び大容量化が年々進んでいる。これに伴い、これらの電子機器に搭載されるプリント配線板には高周波化対応が必要となり、伝送損失の低減を可能とする低比誘電率及び低誘電正接の基板材料が求められている。近年、このような高周波信号を扱うアプリケーションとして、上述した電子機器のほかに、ITS分野(自動車、交通システム関連)及び室内の近距離通信分野でも高周波無線信号を扱う新規システムの実用化及び実用計画が進んでおり、今後、これらの機器に搭載するプリント配線板に対しても、低伝送損失基板材料が更に要求されると予想される。   In mobile communication devices typified by mobile phones, base station devices, network infrastructure devices such as servers and routers, and electronic devices such as large computers, the speed and capacity of signals used are increasing year by year. Along with this, printed wiring boards mounted on these electronic devices are required to cope with high frequencies, and a substrate material having a low relative dielectric constant and a low dielectric loss tangent that can reduce transmission loss is required. In recent years, practical applications and practical plans for new systems that handle high-frequency radio signals in the ITS field (related to automobiles and transportation systems) and indoor short-distance communication fields in addition to the above-described electronic devices are available as applications that handle such high-frequency signals. In the future, it is expected that a low transmission loss substrate material will be further required for printed wiring boards mounted on these devices.

また、近年の環境問題から、鉛フリーはんだによる電子部品の実装及びハロゲンフリーによる難燃化が要求されるようになってきたため、プリント配線板用材料にはこれまでよりも高い耐熱性及び難燃性が必要とされている。   In addition, due to recent environmental problems, mounting of electronic components with lead-free solder and flame-retardant with halogen-free has been required, so printed circuit board materials have higher heat resistance and flame resistance than before. Sex is needed.

従来、低伝送損失が要求されるプリント配線板には、優れた高周波特性を示す耐熱性熱可塑性ポリマーとしてポリフェニレンエーテル(PPE)系樹脂が使用されている。ポリフェニレンエーテル系樹脂の使用としては、例えば、ポリフェニレンエーテルと熱硬化性樹脂とを併用する方法が提案されており、具体的には、ポリフェニレンエーテル及びエポキシ樹脂を含有する樹脂組成物(例えば、特許文献1参照)、ポリフェニレンエーテルと、熱硬化性樹脂の中でも比誘電率が低いシアネートエステル樹脂とを併用した樹脂組成物(例えば、特許文献2参照)等が開示されている。   Conventionally, a polyphenylene ether (PPE) -based resin is used as a heat-resistant thermoplastic polymer exhibiting excellent high-frequency characteristics in a printed wiring board that requires low transmission loss. As the use of the polyphenylene ether-based resin, for example, a method in which polyphenylene ether and a thermosetting resin are used in combination has been proposed. Specifically, a resin composition containing a polyphenylene ether and an epoxy resin (for example, a patent document) 1), a resin composition (for example, refer to Patent Document 2) and the like using polyphenylene ether and a cyanate ester resin having a low relative dielectric constant among thermosetting resins.

また、本発明者らは、ポリフェニレンエーテル樹脂及びポリブタジエン樹脂をベースとして、樹脂組成物の製造段階(Aステージ段階)でセミIPN化することで相溶性、耐熱性、熱膨張特性、導体との接着性等を向上できる樹脂組成物を提案している(例えば、特許文献3参照)。   In addition, the present inventors use a polyphenylene ether resin and a polybutadiene resin as a base to make a semi-IPN at the resin composition production stage (A stage stage), thereby providing compatibility, heat resistance, thermal expansion characteristics, and adhesion to a conductor. The resin composition which can improve property etc. is proposed (for example, refer patent document 3).

さらに、プリント配線板用材料として、マレイミド化合物を用いることも検討されている。例えば、特許文献4には、少なくとも2つのマレイミド骨格を有するマレイミド化合物と、少なくとも2つのアミノ基を有するとともに芳香族環構造を有する芳香族ジアミン化合物と、前記マレイミド化合物と前記芳香族ジアミン化合物との反応を促す、塩基性基及びフェノール性水酸基を有する触媒と、シリカと、を有することを特徴とする樹脂組成物が開示されている。   Furthermore, the use of a maleimide compound as a printed wiring board material has been studied. For example, Patent Document 4 discloses a maleimide compound having at least two maleimide skeletons, an aromatic diamine compound having at least two amino groups and having an aromatic ring structure, and the maleimide compound and the aromatic diamine compound. A resin composition comprising a catalyst having a basic group and a phenolic hydroxyl group that promotes a reaction and silica is disclosed.

特開昭58−69046号公報JP 58-69046 A 特公昭61−18937号公報Japanese Patent Publication No. 61-18937 特開2008−95061号公報JP 2008-95061 A 特開2012−255059号公報JP 2012-255059 A

しかしながら、近年の高周波帯で使用するプリント配線板用基板材料には高周波特性及び導体との高接着性に加えて、低熱膨張率等の各種特性が更に優れていることが要求されている。   However, printed circuit board materials used in recent high-frequency bands are required to be further excellent in various properties such as a low coefficient of thermal expansion in addition to high-frequency properties and high adhesion to conductors.

例えば、導体との接着性としては、樹脂との接着面側の表面粗さが非常に小さいロープロファイル銅箔(Rz:1〜2μm)使用時の銅箔引き剥がし強さで0.6kN/m以上が望まれている。また、低熱膨張特性としては、熱膨張係数(Z方向、Tg以下)が45ppm/℃以下であることが望まれている。   For example, the adhesiveness to the conductor is 0.6 kN / m in terms of the peel strength of the copper foil when using a low profile copper foil (Rz: 1 to 2 μm) having a very low surface roughness on the side of the adhesive surface with the resin. The above is desired. Moreover, as a low thermal expansion characteristic, it is desired that a thermal expansion coefficient (Z direction, Tg or less) is 45 ppm / ° C. or less.

もちろん高周波特性としては、より高い周波数帯での優れた誘電特性が要求されており、例えば、一般的なEガラス基材を複合させた場合の基板材料の比誘電率は3.7以下、更には3.6以下であることが望まれている。しかも、従来の1〜5GHzでの誘電特性値のみならず、10GHz帯以上の高周波帯で上記要求値を満たす必要性が高まってきている。   Of course, as the high frequency characteristics, excellent dielectric characteristics in a higher frequency band are required. For example, the relative dielectric constant of a substrate material when a general E glass base material is combined is 3.7 or less, and Is desired to be 3.6 or less. In addition to the conventional dielectric characteristic values at 1 to 5 GHz, there is an increasing need to satisfy the above-mentioned required values in a high frequency band of 10 GHz band or higher.

本発明は、このような現状に鑑み、優れた高周波特性(低比誘電率、低誘電正接)を備え、かつ、低熱膨張特性及び導体との接着性をも高い水準で備える樹脂組成物、並びに、該樹脂組成物を用いて製造され、外観及び取扱性が良好である積層板及び多層プリント配線板を提供することを目的とする。   In view of the present situation, the present invention provides a resin composition having excellent high frequency characteristics (low relative dielectric constant, low dielectric loss tangent), low thermal expansion characteristics and high adhesion to conductors, and An object of the present invention is to provide a laminated board and a multilayer printed wiring board which are manufactured using the resin composition and have good appearance and handleability.

本発明者らは上記課題を解決すべく鋭意検討した結果、特定の構造を有する化合物及び当該化合物とは異なる芳香族マレイミド化合物を含有する樹脂組成物により上記課題を解決できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by a compound having a specific structure and a resin composition containing an aromatic maleimide compound different from the compound. It came to be completed.

すなわち、本発明は以下の態様を含むものである。
[1](A)飽和又は不飽和の2価の炭化水素基を有するマレイミド化合物と、(B)芳香族マレイミド化合物と、を含有する樹脂組成物。
[2]前記(B)芳香族マレイミド化合物が、マレイミド基が芳香環に結合した構造を有する、[1]に記載の樹脂組成物。
[3]前記飽和又は不飽和の2価の炭化水素基の炭素数が8〜100である、[1]又は[2]に記載の樹脂組成物。
[4]前記飽和又は不飽和の2価の炭化水素基が下記式(II)で表される基である、[1]又は[2]に記載の樹脂組成物。
That is, the present invention includes the following aspects.
[1] A resin composition comprising (A) a maleimide compound having a saturated or unsaturated divalent hydrocarbon group, and (B) an aromatic maleimide compound.
[2] The resin composition according to [1], wherein the (B) aromatic maleimide compound has a structure in which a maleimide group is bonded to an aromatic ring.
[3] The resin composition according to [1] or [2], wherein the saturated or unsaturated divalent hydrocarbon group has 8 to 100 carbon atoms.
[4] The resin composition according to [1] or [2], wherein the saturated or unsaturated divalent hydrocarbon group is a group represented by the following formula (II).

Figure 2016204639

[式(II)中、R及びRはそれぞれ独立に炭素数4〜50のアルキレン基を示し、Rは炭素数4〜50のアルキル基を示し、Rは炭素数2〜50のアルキル基を示す。]
Figure 2016204639

[In formula (II), R 2 and R 3 each independently represents an alkylene group having 4 to 50 carbon atoms, R 4 represents an alkyl group having 4 to 50 carbon atoms, and R 5 represents an alkyl group having 2 to 50 carbon atoms. An alkyl group is shown. ]

[5]前記(A)飽和又は不飽和の2価の炭化水素基を有するマレイミド化合物が、少なくとも2つのイミド結合を有する2価の基を更に有する、[1]〜[4]のいずれかに記載の樹脂組成物。
[6]前記少なくとも2つのイミド結合を有する2価の基が、下記式(I)で表される基である、[1]に記載の樹脂組成物。
[5] Any of [1] to [4], wherein the maleimide compound (A) having a saturated or unsaturated divalent hydrocarbon group further has a divalent group having at least two imide bonds. The resin composition as described.
[6] The resin composition according to [1], wherein the divalent group having at least two imide bonds is a group represented by the following formula (I).

Figure 2016204639

[式(I)中、Rは4価の有機基を示す。]
Figure 2016204639

[In Formula (I), R 1 represents a tetravalent organic group. ]

[7]前記(B)芳香族マレイミド化合物が下記の式(VI)で表される化合物である、[1]〜[5]のいずれかに記載の樹脂組成物。 [7] The resin composition according to any one of [1] to [5], wherein the (B) aromatic maleimide compound is a compound represented by the following formula (VI).

Figure 2016204639

[式(VI)中、Aは下記式(VII)、(VIII)、(IX)又は(X)で表される残基を示し、Aは下記式(XI)で表される残基を示す。]
Figure 2016204639

[In the formula (VI), A 4 represents a residue represented by the following formula (VII), (VIII), (IX) or (X), and A 5 represents a residue represented by the following formula (XI). Indicates. ]

Figure 2016204639

[式(VII)中、R10は各々独立に、水素原子、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子を示す。]
Figure 2016204639

[In Formula (VII), each R 10 independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms, or a halogen atom. ]

Figure 2016204639

[式(VIII)中、R11及びR12は各々独立に、水素原子、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子を示し、Aは炭素数1〜5のアルキレン基若しくはアルキリデン基、エーテル基、スルフィド基、スルホニル基、ケトン基、単結合又は下記式(VIII−1)で表される残基を示す。]
Figure 2016204639

[In Formula (VIII), R 11 and R 12 each independently represent a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom, and A 6 represents an alkylene group or alkylidene having 1 to 5 carbon atoms. A group, an ether group, a sulfide group, a sulfonyl group, a ketone group, a single bond or a residue represented by the following formula (VIII-1); ]

Figure 2016204639

[式(VIII−1)中、R13及びR14は各々独立に、水素原子、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子を示し、Aは炭素数1〜5のアルキレン基、イソプロピリデン基、エーテル基、スルフィド基、スルホニル基、ケトン基又は単結合を示す。]
Figure 2016204639

[In Formula (VIII-1), R 13 and R 14 each independently represent a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom, and A 7 represents an alkylene group having 1 to 5 carbon atoms. , An isopropylidene group, an ether group, a sulfide group, a sulfonyl group, a ketone group or a single bond. ]

Figure 2016204639

[式(IX)中、iは1〜10の整数である。]
Figure 2016204639

[In formula (IX), i is an integer of 1-10. ]

Figure 2016204639

[式(X)中、R15及びR16は各々独立に、水素原子又は炭素数1〜5の脂肪族炭化水素基を示し、jは1〜8の整数である。]
Figure 2016204639

[In Formula (X), R 15 and R 16 each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 5 carbon atoms, and j is an integer of 1 to 8. ]

Figure 2016204639

[式(XI)中、R17及びR18は各々独立に、水素原子、炭素数1〜5の脂肪族炭化水素基、炭素数1〜5のアルコキシ基、水酸基又はハロゲン原子を示し、Aは炭素数1〜5のアルキレン基若しくはアルキリデン基、エーテル基、スルフィド基、スルホニル基、ケトン基、フルオレニレン基、単結合、下記式(XI−1)で表される残基又は下記式(XI−2)で表される残基を示す。]
Figure 2016204639

Wherein (XI), each independently R 17 and R 18 represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a hydroxyl group or a halogen atom, A 8 Is an alkylene group having 1 to 5 carbon atoms or an alkylidene group, an ether group, a sulfide group, a sulfonyl group, a ketone group, a fluorenylene group, a single bond, a residue represented by the following formula (XI-1), or the following formula (XI- The residue represented by 2) is shown. ]

Figure 2016204639

[式(XI−1)中、R19及びR20は各々独立に、水素原子、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子を示し、Aは炭素数1〜5のアルキレン基、イソプロピリデン基、m−フェニレンジイソプロピリデン基、p−フェニレンジイソプロピリデン基、エーテル基、スルフィド基、スルホニル基、ケトン基又は単結合を示す。]
Figure 2016204639

[In Formula (XI-1), R 19 and R 20 each independently represent a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom, and A 9 represents an alkylene group having 1 to 5 carbon atoms. , Isopropylidene group, m-phenylene diisopropylidene group, p-phenylene diisopropylidene group, ether group, sulfide group, sulfonyl group, ketone group or single bond. ]

Figure 2016204639

[式(XI−2)中、R21は各々独立に、水素原子、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子を示し、A10及びA11は炭素数1〜5のアルキレン基、イソプロピリデン基、エーテル基、スルフィド基、スルホニル基、ケトン基又は単結合を示す。]
Figure 2016204639

[In formula (XI-2), each R 21 independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom, and A 10 and A 11 are alkylene groups having 1 to 5 carbon atoms. , An isopropylidene group, an ether group, a sulfide group, a sulfonyl group, a ketone group or a single bond. ]

[8]前記(A)飽和又は不飽和の2価の炭化水素基を有するマレイミド化合物の重量平均分子量が、500〜10000である、[1]〜[7]のいずれかに記載の樹脂組成物。
[9][1]〜[8]のいずれかに記載の樹脂組成物の硬化物を含む樹脂層と、導体層とを有する積層板。
[10][1]〜[8]のいずれかに記載の樹脂組成物の硬化物を含む樹脂層と、回路層とを備える、多層プリント配線板。
[8] The resin composition according to any one of [1] to [7], wherein the (A) maleimide compound having a saturated or unsaturated divalent hydrocarbon group has a weight average molecular weight of 500 to 10,000. .
[9] A laminate having a resin layer containing a cured product of the resin composition according to any one of [1] to [8] and a conductor layer.
[10] A multilayer printed wiring board comprising a resin layer containing a cured product of the resin composition according to any one of [1] to [8] and a circuit layer.

本発明によれば、優れた高周波特性(低比誘電率、低誘電正接)を備え、かつ、低熱膨張特性、導体との接着性をも高い水準で備える樹脂組成物、並びに、該樹脂組成物を用いて製造される積層板及び多層プリント配線板を提供できる。   According to the present invention, a resin composition having excellent high-frequency characteristics (low relative dielectric constant, low dielectric loss tangent), low thermal expansion characteristics, and high adhesion to a conductor, and the resin composition A laminated board and a multilayer printed wiring board manufactured using can be provided.

また、従来の樹脂フィルムにおいては、補強基材を樹脂組成物中に配さない場合、樹脂フィルムの取扱性が悪くなり、強度も十分に保持できなくなる傾向にあった。これに対し、本発明の樹脂組成物を用いて作製される樹脂フィルムは、補強基材を有さなくても、外観及び取扱性(タック性、割れ、粉落ち等)に優れるものとなる。   Moreover, in the conventional resin film, when the reinforcing base material is not arranged in the resin composition, the handleability of the resin film is deteriorated, and the strength tends to be not sufficiently maintained. On the other hand, the resin film produced using the resin composition of the present invention is excellent in appearance and handleability (tackiness, cracking, powder falling, etc.) without having a reinforcing substrate.

本発明の積層板及び多層プリント配線板は、本発明の樹脂組成物を用いて形成されるため、高周波領域における比誘電率及び誘電正接がともに低いという優れた誘電特性を有する。   Since the laminated board and multilayer printed wiring board of the present invention are formed using the resin composition of the present invention, they have excellent dielectric properties such that the relative dielectric constant and dielectric loss tangent are both low in the high frequency region.

本実施形態に係る多層プリント配線板の製造工程を示す概略図である。It is the schematic which shows the manufacturing process of the multilayer printed wiring board which concerns on this embodiment. 内層回路基板の製造工程を示す概略図である。It is the schematic which shows the manufacturing process of an inner layer circuit board. 本実施形態に係る多層プリント配線板の製造工程を示す概略図である。It is the schematic which shows the manufacturing process of the multilayer printed wiring board which concerns on this embodiment.

以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されない。なお、本明細書において、高周波領域とは、0.3GHz〜300GHzの領域を指し、特に3GHz〜300GHzを指すものとする。   Hereinafter, preferred embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the present specification, the high frequency region refers to a region of 0.3 GHz to 300 GHz, and particularly 3 GHz to 300 GHz.

[樹脂組成物]
本実施形態の樹脂組成物は、(A)飽和又は不飽和の2価の炭化水素基を有するマレイミド化合物と、(B)芳香族マレイミド化合物と、を含有する。
[Resin composition]
The resin composition of this embodiment contains (A) a maleimide compound having a saturated or unsaturated divalent hydrocarbon group, and (B) an aromatic maleimide compound.

<(A)飽和又は不飽和の2価の炭化水素基を有するマレイミド化合物>
本実施形態に係る飽和又は不飽和の2価の炭化水素基を有するマレイミド化合物を(A)成分ということがある。(A)成分は、(a)マレイミド基及び(c)飽和又は不飽和の2価の炭化水素基を有する化合物である。(a)マレイミド基を構造(a)といい、(c)飽和又は不飽和の2価の炭化水素基を構造(c)ということがある。(A)成分を用いることで、高周波特性及び導体との高い接着性を有する樹脂組成物を得ることができる。
<(A) Maleimide compound having a saturated or unsaturated divalent hydrocarbon group>
The maleimide compound having a saturated or unsaturated divalent hydrocarbon group according to this embodiment may be referred to as component (A). The component (A) is a compound having (a) a maleimide group and (c) a saturated or unsaturated divalent hydrocarbon group. (A) The maleimide group may be referred to as structure (a), and (c) a saturated or unsaturated divalent hydrocarbon group may be referred to as structure (c). By using the component (A), it is possible to obtain a resin composition having high frequency characteristics and high adhesiveness with a conductor.

(A)成分は、構造(a)及び構造(c)に加えて、(b)少なくとも2つのイミド結合を有する2価の基を更に有していてもよい。(b)少なくとも2つのイミド結合を有する2価の基を構造(b)ということがある。   In addition to the structure (a) and the structure (c), the component (A) may further include (b) a divalent group having at least two imide bonds. (B) A divalent group having at least two imide bonds may be referred to as structure (b).

(a)マレイミド基は特に限定されず、一般的なマレイミド基である。(a)マレイミド基は芳香環に結合していても、脂肪族鎖に結合していてもよいが、誘電特性の観点からは、長鎖脂肪族鎖(例えば、炭素数8〜100の飽和炭化水素基)に結合していることが好ましい。(A)成分が、(a)マレイミド基が長鎖脂肪族鎖に結合した構造を有することで、樹脂組成物の高周波特性をより向上することができる。   (A) The maleimide group is not particularly limited, and is a general maleimide group. (A) The maleimide group may be bonded to an aromatic ring or an aliphatic chain, but from the viewpoint of dielectric properties, a long-chain aliphatic chain (for example, saturated carbonization having 8 to 100 carbon atoms) It is preferably bonded to a hydrogen group. Since the component (A) has a structure in which the (a) maleimide group is bonded to a long-chain aliphatic chain, the high-frequency characteristics of the resin composition can be further improved.

構造(b)としては特に限定されないが、例えば、下記式(I)で表される基が挙げられる。   Although it does not specifically limit as a structure (b), For example, group represented by following formula (I) is mentioned.

Figure 2016204639
Figure 2016204639

式(I)中、Rは4価の有機基を示す。Rは4価の有機基であれば特に限定されないが、例えば、取扱性の観点から、炭素数1〜100の炭化水素基であってもよく、炭素数2〜50の炭化水素基であってもよく、炭素数4〜30の炭化水素基であってもよい。 In formula (I), R 1 represents a tetravalent organic group. R 1 is not particularly limited as long as it is a tetravalent organic group. For example, from the viewpoint of handleability, R 1 may be a hydrocarbon group having 1 to 100 carbon atoms, or a hydrocarbon group having 2 to 50 carbon atoms. It may be a hydrocarbon group having 4 to 30 carbon atoms.

は、置換又は非置換のシロキサン部位であってもよい。シロキサン部位としては、例えば、ジメチルシロキサン、メチルフェニルシロキサン、ジフェニルシロキサン等に由来する構造が挙げられる。 R 1 may be a substituted or unsubstituted siloxane moiety. Examples of the siloxane moiety include structures derived from dimethylsiloxane, methylphenylsiloxane, diphenylsiloxane, and the like.

が置換されている場合、置換基としては、例えば、アルキル基、アルケニル基、アルキニル基、水酸基、アルコキシ基、メルカプト基、シクロアルキル基、置換シクロアルキル基、ヘテロ環基、置換ヘテロ環基、アリール基、置換アリール基、ヘテロアリール基、置換ヘテロアリール基、アリールオキシ基、置換アリールオキシ基、ハロゲン原子、ハロアルキル基、シアノ基、ニトロ基、ニトロソ基、アミノ基、アミド基、−C(O)H、−NRC(O)−N(R、−OC(O)−N(R、アシル基、オキシアシル基、カルボキシル基、カルバメート基、スルホンアミド基等が挙げられる。ここで、Rは水素原子又はアルキル基を示す。これらの置換基は目的、用途等に合わせて、1種類又は2種類以上を選択できる。 When R 1 is substituted, examples of the substituent include an alkyl group, an alkenyl group, an alkynyl group, a hydroxyl group, an alkoxy group, a mercapto group, a cycloalkyl group, a substituted cycloalkyl group, a heterocyclic group, and a substituted heterocyclic group. , Aryl group, substituted aryl group, heteroaryl group, substituted heteroaryl group, aryloxy group, substituted aryloxy group, halogen atom, haloalkyl group, cyano group, nitro group, nitroso group, amino group, amide group, -C ( O) H, -NR x C ( O) -N (R x) 2, -OC (O) -N (R x) 2, like acyl groups, oxyacyl group, a carboxyl group, a carbamate group, a sulfonamido group or the like It is done. Here, R x represents a hydrogen atom or an alkyl group. These substituents can be selected from one type or two or more types according to the purpose and application.

としては、例えば、1分子中に2個以上の無水物環を有する酸無水物の4価の残基、すなわち、酸無水物から酸無水物基(−C(=O)OC(=O)−)を2個除いた4価の基が好ましい。酸無水物としては、後述するような化合物が例示できる。 As R 1 , for example, a tetravalent residue of an acid anhydride having two or more anhydride rings in one molecule, that is, an acid anhydride to an acid anhydride group (—C (═O) OC (= A tetravalent group excluding two O)-) is preferred. Examples of the acid anhydride include compounds as described below.

機械強度の観点から、Rは芳香族であることが好ましく、無水ピロメリット酸から2つの酸無水物基を取り除いた基であることがより好ましい。すなわち、構造(b)は下記式(III)で表される基であることがより好ましい。 From the viewpoint of mechanical strength, R 1 is preferably aromatic, and more preferably a group obtained by removing two acid anhydride groups from pyromellitic anhydride. That is, the structure (b) is more preferably a group represented by the following formula (III).

Figure 2016204639
Figure 2016204639

流動性及び回路埋め込み性の観点からは、構造(b)は、(A)成分中に複数存在すると好ましい。その場合、構造(b)は、それぞれ同一であってもよく、異なっていてもよい。(A)成分中の構造(b)の数は、2〜40であることが好ましく、2〜20であることがより好ましく、2〜10であることが更に好ましい。   From the viewpoint of fluidity and circuit embedding properties, it is preferable that a plurality of structures (b) exist in the component (A). In that case, the structures (b) may be the same or different. The number of structures (b) in the component (A) is preferably 2 to 40, more preferably 2 to 20, and still more preferably 2 to 10.

誘電特性の観点から、構造(b)は、下記式(IV)又は下記式(V)で表される基であってもよい。   From the viewpoint of dielectric properties, the structure (b) may be a group represented by the following formula (IV) or the following formula (V).

Figure 2016204639
Figure 2016204639

Figure 2016204639
Figure 2016204639

構造(c)は特に限定されず、直鎖状、分岐状、環状のいずれであってもよい。高周波特性の観点から、構造(c)は、脂肪族炭化水素基であることが好ましい。また、飽和又は不飽和の2価の炭化水素基の炭素数は、8〜100であってもよい。構造(c)は、炭素数8〜100の分岐を有していてもよいアルキレン基であることが好ましく、炭素数10〜70の分岐を有していてもよいアルキレン基であるとより好ましく、炭素数15〜50の分岐を有していてもよいアルキレン基であると更に好ましい。構造(c)が炭素数8以上の分岐を有していてもよいアルキレン基であると、分子構造を三次元化し易く、ポリマーの自由体積を増大させて低密度化し易い。すなわち低誘電率化できるため、樹脂組成物の高周波特性を向上し易くなる。また、(A)成分が構造(c)を有することで、本実施形態に係る樹脂組成物の可とう性が向上し、樹脂組成物から作製される樹脂フィルムの取扱性(タック性、割れ、粉落ち等)及び強度を高めることが可能である。   The structure (c) is not particularly limited, and may be linear, branched or cyclic. From the viewpoint of high-frequency characteristics, the structure (c) is preferably an aliphatic hydrocarbon group. Moreover, 8-100 may be sufficient as carbon number of a saturated or unsaturated divalent hydrocarbon group. The structure (c) is preferably an alkylene group which may have a branch having 8 to 100 carbon atoms, more preferably an alkylene group which may have a branch having 10 to 70 carbon atoms, More preferably, it is an alkylene group which may have a branch having 15 to 50 carbon atoms. When the structure (c) is an alkylene group which may have a branch having 8 or more carbon atoms, the molecular structure can be easily three-dimensional, and the free volume of the polymer can be increased to reduce the density. That is, since the dielectric constant can be reduced, the high frequency characteristics of the resin composition can be easily improved. In addition, since the component (A) has the structure (c), the flexibility of the resin composition according to this embodiment is improved, and the handleability of the resin film produced from the resin composition (tackiness, cracking, And the strength can be increased.

構造(c)としては、例えば、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基、テトラデシレン基、ヘキサデシレン基、オクタデシレン基、ノナデシレン基等のアルキレン基;ベンジレン基、フェニレン基、ナフチレン基等のアリーレン基;フェニレンメチレン基、フェニレンエチレン基、ベンジルプロピレン基、ナフチレンメチレン基、ナフチレンエチレン基等のアリーレンアルキレン基;フェニレンジメチレン基、フェニレンジエチレン基等のアリーレンジアルキレン基などが挙げられる。   As the structure (c), for example, an alkylene group such as a nonylene group, a decylene group, an undecylene group, a dodecylene group, a tetradecylene group, a hexadecylene group, an octadecylene group or a nonadecylene group; an arylene group such as a benzylene group, a phenylene group or a naphthylene group; Examples include arylene alkylene groups such as phenylenemethylene group, phenyleneethylene group, benzylpropylene group, naphthylenemethylene group, and naphthyleneethylene group; and arylenealkylene groups such as phenylenedimethylene group and phenylenediethylene group.

高周波特性、低熱膨張特性、導体との接着性、耐熱性及び低吸湿性の観点から、構造(c)として下記式(II)で表される基が特に好ましい。   From the viewpoints of high-frequency characteristics, low thermal expansion characteristics, adhesion to conductors, heat resistance, and low hygroscopicity, a group represented by the following formula (II) is particularly preferable as the structure (c).

Figure 2016204639
Figure 2016204639

式(II)中、R及びRは各々独立に炭素数4〜50のアルキレン基を示す。柔軟性の更なる向上及び合成容易性の観点から、R及びRは各々独立に、炭素数5〜25のアルキレン基であることが好ましく、炭素数6〜10のアルキレン基であることがより好ましく、炭素数7〜10のアルキレン基であることが更に好ましい。 In formula (II), R 2 and R 3 each independently represents an alkylene group having 4 to 50 carbon atoms. From the viewpoint of further improvement in flexibility and ease of synthesis, R 2 and R 3 are each independently preferably an alkylene group having 5 to 25 carbon atoms, and preferably an alkylene group having 6 to 10 carbon atoms. More preferably, it is a C7-10 alkylene group.

式(II)中、Rは炭素数4〜50のアルキル基を示す。柔軟性の更なる向上及び合成容易性の観点から、Rは炭素数5〜25のアルキル基であることが好ましく、炭素数6〜10のアルキル基であることがより好ましく、炭素数7〜10のアルキル基であることが更に好ましい。 In formula (II), R 4 represents an alkyl group having 4 to 50 carbon atoms. From the viewpoint of further improving flexibility and ease of synthesis, R 4 is preferably an alkyl group having 5 to 25 carbon atoms, more preferably an alkyl group having 6 to 10 carbon atoms, and 7 to 7 carbon atoms. More preferably, it is 10 alkyl groups.

式(II)中、Rは炭素数2〜50のアルキル基を示す。柔軟性の更なる向上及び合成容易性の観点から、Rは炭素数3〜25のアルキル基であることが好ましく、炭素数4〜10のアルキル基であることがより好ましく、炭素数5〜8のアルキル基であることが更に好ましい。 In formula (II), R 5 represents an alkyl group having 2 to 50 carbon atoms. From the viewpoint of further improvement in flexibility and ease of synthesis, R 5 is preferably an alkyl group having 3 to 25 carbon atoms, more preferably an alkyl group having 4 to 10 carbon atoms, and 5 to 5 carbon atoms. More preferably, it is an alkyl group of 8.

流動性及び回路埋め込み性の観点からは、構造(c)は、(A)成分中に複数存在すると好ましい。その場合、構造(c)はそれぞれ同一であってもよく、異なっていてもよい。例えば、(A)成分中に2〜40の構造(c)が存在することが好ましく、2〜20の構造(c)が存在することがより好ましく、2〜10の構造(c)が存在することが更に好ましい。   From the viewpoint of fluidity and circuit embedding properties, it is preferable that a plurality of structures (c) exist in the component (A). In that case, the structures (c) may be the same or different. For example, the component (A) preferably has 2 to 40 structures (c), more preferably 2 to 20 structures (c), and more preferably 2 to 10 structures (c). More preferably.

樹脂組成物中の(A)成分の含有量は特に限定されない。耐熱性の観点から、(A)成分の含有量は樹脂組成物の全質量に対して2〜98質量%であることが好ましく、10〜50質量%であることがより好ましく、10〜30質量%であることが更に好ましい。   The content of the component (A) in the resin composition is not particularly limited. From the viewpoint of heat resistance, the content of the component (A) is preferably 2 to 98% by mass, more preferably 10 to 50% by mass, and more preferably 10 to 30% by mass with respect to the total mass of the resin composition. % Is more preferable.

(A)成分の分子量は特に限定されない。取扱性、流動性及び回路埋め込み性の観点より(A)成分の重量平均分子量(Mw)は、500〜10000であることが好ましく、1000〜9000であることがより好ましく、1500〜9000であることが更に好ましく、1500〜7000であることがより一層好ましく、1700〜5000であることが特に好ましい。   The molecular weight of the component (A) is not particularly limited. The weight average molecular weight (Mw) of the component (A) is preferably 500 to 10,000, more preferably 1000 to 9000, and 1500 to 9000 from the viewpoints of handleability, fluidity, and circuit embedding properties. Is more preferable, it is still more preferable that it is 1500-7000, and it is especially preferable that it is 1700-5000.

(A)成分のMwは、ゲルパーミエーションクロマトグラフィー(GPC)法により測定することができる。   (A) Mw of a component can be measured by a gel permeation chromatography (GPC) method.

なお、GPCの測定条件は下記のとおりである。
ポンプ:L−6200型[株式会社日立ハイテクノロジーズ製]
検出器:L−3300型RI[株式会社日立ハイテクノロジーズ製]
カラムオーブン:L−655A−52[株式会社日立ハイテクノロジーズ製]
ガードカラム及びカラム:TSK Guardcolumn HHR−L+TSKgel G4000HHR+TSKgel G2000HHR[すべて東ソー株式会社製、商品名]
カラムサイズ:6.0×40mm(ガードカラム)、7.8×300mm(カラム)
溶離液:テトラヒドロフラン
試料濃度:30mg/5mL
注入量:20μL
流量:1.00mL/分
測定温度:40℃
The measurement conditions for GPC are as follows.
Pump: L-6200 [manufactured by Hitachi High-Technologies Corporation]
Detector: L-3300 RI [manufactured by Hitachi High-Technologies Corporation]
Column oven: L-655A-52 [manufactured by Hitachi High-Technologies Corporation]
Guard column and column: TSK Guardcolumn HHR-L + TSKgel G4000HHR + TSKgel G2000HHR [All trade names, manufactured by Tosoh Corporation]
Column size: 6.0 × 40 mm (guard column), 7.8 × 300 mm (column)
Eluent: Tetrahydrofuran Sample concentration: 30 mg / 5 mL
Injection volume: 20 μL
Flow rate: 1.00 mL / min Measurement temperature: 40 ° C

(A)成分を製造する方法は限定されない。(A)成分は、例えば、酸無水物とジアミンとを反応させてアミン末端化合物を合成した後、該アミン末端化合物を過剰の無水マレイン酸と反応させることで作製してもよい。   The method for producing the component (A) is not limited. The component (A) may be produced, for example, by reacting an acid anhydride and a diamine to synthesize an amine-terminated compound and then reacting the amine-terminated compound with an excess of maleic anhydride.

酸無水物としては、例えば、無水ピロメリット酸、無水マレイン酸、無水コハク酸、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物等が挙げられる。これらの酸無水物は目的、用途等に合わせて、1種類を単独で用いても、2種類以上を併用してもよい。なお、前述のとおり、上記式(I)のRとして、上記に挙げられるような酸無水物に由来する4価の有機基を用いることができる。より良好な誘電特性の観点から、酸無水物は、無水ピロメリット酸であることが好ましい。 Examples of the acid anhydride include pyromellitic anhydride, maleic anhydride, succinic anhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyl. Examples thereof include tetracarboxylic dianhydride and 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride. These acid anhydrides may be used alone or in combination of two or more depending on the purpose and application. Incidentally, as described above, as R 1 of the formula (I), can be used a tetravalent organic group derived from acid anhydrides such as those listed above. From the viewpoint of better dielectric properties, the acid anhydride is preferably pyromellitic anhydride.

ジアミンとしては、例えば、ダイマージアミン、2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパン、1,3−ビス(4−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル、1,3−ビス[2−(4−アミノフェニル)−2−プロピル]ベンゼン、1,4−ビス[2−(4−アミノフェニル)−2−プロピル]ベンゼン、ポリオキシアルキレンジアミン、[3,4−ビス(1−アミノヘプチル)−6−ヘキシル−5−(1−オクテニル)]シクロヘキセン等が挙げられる。これらは目的、用途等に合わせて、1種類を単独で用いても、2種類以上を併用してもよい。   Examples of the diamine include dimer diamine, 2,2-bis (4- (4-aminophenoxy) phenyl) propane, 1,3-bis (4-aminophenoxy) benzene, 4,4′-bis (4-amino). Phenoxy) biphenyl, 4,4′-diamino-3,3′-dihydroxybiphenyl, 1,3-bis [2- (4-aminophenyl) -2-propyl] benzene, 1,4-bis [2- (4 -Aminophenyl) -2-propyl] benzene, polyoxyalkylenediamine, [3,4-bis (1-aminoheptyl) -6-hexyl-5- (1-octenyl)] cyclohexene, and the like. These may be used alone or in combination of two or more according to the purpose and application.

(A)成分としては、例えば、下記式(XIII)で表される化合物であってもよい。

Figure 2016204639
As the component (A), for example, a compound represented by the following formula (XIII) may be used.
Figure 2016204639

式中、R及びQはそれぞれ独立に2価の有機基を示す。Rは上述の構造(c)と同じものが使用でき、Qは上述のRと同じものが使用できる。また、nは1〜10の整数を表す。 In the formula, R and Q each independently represent a divalent organic group. R can be the same as in the above structure (c), and Q can be the same as the above R 1 . N represents an integer of 1 to 10.

(A)成分としては市販されている化合物を使用することもできる。市販されている化合物としては、例えば、Designer Molecules Inc.製の製品が挙げられ、具体的には、BMI−1500、BMI−1700、BMI−3000、BMI−5000、BMI−9000(いずれも商品名)等が挙げられる。より良好な高周波特性を得る観点から、(A)成分としてBMI−3000を使用することがより好ましい。   As the component (A), a commercially available compound can also be used. As a commercially available compound, for example, Designer Molecules Inc. Specific examples include BMI-1500, BMI-1700, BMI-3000, BMI-5000, BMI-9000 (all are trade names), and the like. From the viewpoint of obtaining better high-frequency characteristics, it is more preferable to use BMI-3000 as the component (A).

<(B)芳香族マレイミド化合物>
本実施形態に係る(B)芳香族マレイミド化合物を(B)成分ということがある。(B)成分は、(A)成分とは異なるマレイミド化合物である。なお、(A)成分及び(B)成分の双方に該当し得る化合物は、(A)成分に帰属するものとするが、(A)成分及び(B)成分の双方に該当し得る化合物を2種類以上含む場合、そのうち1つを(A)成分、その他の化合物を(B)成分と帰属するものとする。(B)成分を用いることで、樹脂組成物は、特に低熱膨張特性に優れるものとなる。すなわち、本実施形態の樹脂組成物は、(A)成分と(B)成分とを併用することにより、良好な誘電特性を維持しつつ、低熱膨張特性等を更に向上させることができる。この理由として、(A)成分と(B)成分とを含有する樹脂組成物から得られる硬化物は、低誘電特性を備える(A)成分からなる構造単位と、低熱膨張である(B)成分からなる構造単位とを備えるポリマーを含有するためだと推測される。
<(B) Aromatic maleimide compound>
The (B) aromatic maleimide compound according to this embodiment may be referred to as the (B) component. The component (B) is a maleimide compound different from the component (A). In addition, although the compound applicable to both (A) component and (B) component shall belong to (A) component, the compound applicable to both (A) component and (B) component is 2 When two or more types are included, one of them belongs to the component (A), and the other compounds belong to the component (B). By using the component (B), the resin composition is particularly excellent in low thermal expansion characteristics. That is, the resin composition of the present embodiment can further improve the low thermal expansion characteristics and the like while maintaining good dielectric characteristics by using the component (A) and the component (B) in combination. The reason for this is that the cured product obtained from the resin composition containing the component (A) and the component (B) is a structural unit composed of the component (A) having low dielectric properties and the component (B) having low thermal expansion. This is presumably because it contains a polymer having a structural unit consisting of

すなわち、(B)は、(A)成分よりも熱膨張係数が低いことが好ましい。(A)成分よりも熱膨張係数が低い(B)成分として、例えば、(A)成分よりも分子量が低いマレイミド基含有化合物、(A)成分よりも多くの芳香環を有するマレイミド基含有化合物、主鎖が(A)成分よりも短いマレイミド基含有化合物等が挙げられる。   That is, (B) preferably has a lower thermal expansion coefficient than component (A). As the component (B) having a lower thermal expansion coefficient than the component (A), for example, a maleimide group-containing compound having a lower molecular weight than the component (A), a maleimide group-containing compound having more aromatic rings than the component (A), Examples thereof include maleimide group-containing compounds having a main chain shorter than the component (A).

樹脂組成物中の(B)成分の含有量は特に限定されない。低熱膨張性及び誘電特性の観点から(B)成分の含有量は樹脂組成物の全質量に対して1〜95質量%であることが好ましく、3〜90質量%であることがより好ましく、5〜85質量%であることが更に好ましい。   The content of the component (B) in the resin composition is not particularly limited. From the viewpoint of low thermal expansion and dielectric properties, the content of the component (B) is preferably 1 to 95% by mass, more preferably 3 to 90% by mass, with respect to the total mass of the resin composition. More preferably, it is -85 mass%.

樹脂組成物中の(A)成分と(B)成分との配合割合は特に限定されない。誘電特性及び低熱膨張係数の観点から、(A)成分と(B)成分の質量比(B)/(A)が0.01〜3であることが好ましく、0.03〜2であることがより好ましく、0.05〜1であることが更に好ましい。   The blending ratio of the component (A) and the component (B) in the resin composition is not particularly limited. From the viewpoint of dielectric properties and a low thermal expansion coefficient, the mass ratio (B) / (A) of the component (A) to the component (B) is preferably 0.01 to 3, and preferably 0.03 to 2. More preferably, it is 0.05-1 more preferably.

(B)成分は、芳香環を有していれば、特に限定されない。芳香環は剛直で低熱膨張であるため、芳香環を有する(B)成分を用いることで、樹脂組成物の熱膨張係数を低減させることができる。マレイミド基は芳香環に結合していても、脂肪族鎖に結合していてもよいが、低熱膨張性の観点から、芳香環に結合していることが好ましい。また、(B)成分は、マレイミド基を2個以上含有するポリマレイミド化合物であることも好ましい。   The component (B) is not particularly limited as long as it has an aromatic ring. Since the aromatic ring is rigid and has low thermal expansion, the thermal expansion coefficient of the resin composition can be reduced by using the component (B) having an aromatic ring. The maleimide group may be bonded to an aromatic ring or an aliphatic chain, but is preferably bonded to an aromatic ring from the viewpoint of low thermal expansion. The component (B) is also preferably a polymaleimide compound containing two or more maleimide groups.

(B)成分の具体例としては、1,2−ジマレイミドエタン、1,3−ジマレイミドプロパン、ビス(4−マレイミドフェニル)メタン、ビス(3−エチル−4−マレイミドフェニル)メタン、ビス(3−エチル−5−メチル−4−マレイミドフェニル)メタン、2,7−ジマレイミドフルオレン、N,N’−(1,3−フェニレン)ビスマレイミド、N,N’−(1,3−(4−メチルフェニレン))ビスマレイミド、ビス(4−マレイミドフェニル)スルホン、ビス(4−マレイミドフェニル)スルフィド、ビス(4−マレイミドフェニル)エ−テル、1,3−ビス(3−マレイミドフェノキシ)ベンゼン、1,3−ビス(3−(3−マレイミドフェノキシ)フェノキシ)ベンゼン、ビス(4−マレイミドフェニル)ケトン、2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパン、ビス(4−(4−マレイミドフェノキシ)フェニル)スルホン、ビス[4−(4−マレイミドフェノキシ)フェニル]スルホキシド、4,4’−ビス(3−マレイミドフェノキシ)ビフェニル、1,3−ビス(2−(3−マレイミドフェニル)プロピル)ベンゼン、1,3−ビス(1−(4−(3−マレイミドフェノキシ)フェニル)−1−プロピル)ベンゼン、ビス(マレイミドシクロヘキシル)メタン、2,2−ビス[4−(3−マレイミドフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、ビス(マレイミドフェニル)チオフェン等が挙げられる。これらは1種類を単独で用いても、2種類以上を併用してもよい。これらの中でも、吸湿性及び熱膨張係数をより低下させる観点からは、ビス(3−エチル−5−メチル−4−マレイミドフェニル)メタンを用いることが好ましい。樹脂組成物から形成される樹脂フィルムの破壊強度及び金属箔引き剥がし強さを更に高める観点からは、(B)成分として、2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパンを用いることが好ましい。   Specific examples of the component (B) include 1,2-dimaleimidoethane, 1,3-dimaleimidopropane, bis (4-maleimidophenyl) methane, bis (3-ethyl-4-maleimidophenyl) methane, bis ( 3-ethyl-5-methyl-4-maleimidophenyl) methane, 2,7-dimaleimidofluorene, N, N ′-(1,3-phenylene) bismaleimide, N, N ′-(1,3- (4 -Methylphenylene)) bismaleimide, bis (4-maleimidophenyl) sulfone, bis (4-maleimidophenyl) sulfide, bis (4-maleimidophenyl) ether, 1,3-bis (3-maleimidophenoxy) benzene, 1,3-bis (3- (3-maleimidophenoxy) phenoxy) benzene, bis (4-maleimidophenyl) ketone, 2,2-bi (4- (4-maleimidophenoxy) phenyl) propane, bis (4- (4-maleimidophenoxy) phenyl) sulfone, bis [4- (4-maleimidophenoxy) phenyl] sulfoxide, 4,4′-bis (3- Maleimidophenoxy) biphenyl, 1,3-bis (2- (3-maleimidophenyl) propyl) benzene, 1,3-bis (1- (4- (3-maleimidophenoxy) phenyl) -1-propyl) benzene, bis (Maleimidocyclohexyl) methane, 2,2-bis [4- (3-maleimidophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, bis (maleimidophenyl) thiophene and the like can be mentioned. These may be used alone or in combination of two or more. Among these, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane is preferably used from the viewpoint of further reducing the hygroscopicity and the thermal expansion coefficient. From the viewpoint of further increasing the breaking strength and the metal foil peeling strength of the resin film formed from the resin composition, 2,2-bis (4- (4-maleimidophenoxy) phenyl) propane is used as the component (B). It is preferable to use it.

成形性の観点からは、(B)成分としては、例えば、下記式(VI)で表される化合物が好ましい。   From the viewpoint of moldability, as the component (B), for example, a compound represented by the following formula (VI) is preferable.

Figure 2016204639
Figure 2016204639

式(VI)中、Aは下記式(VII)、(VIII)、(IX)又は(X)で表される残基を示し、Aは下記式(XI)で表される残基を示す。低熱膨張性の観点から、Aは下記式(VII)、(VIII)又は(IX)で表される残基であることが好ましい。 In the formula (VI), A 4 represents a residue represented by the following formula (VII), (VIII), (IX) or (X), and A 5 represents a residue represented by the following formula (XI). Show. From the viewpoint of low thermal expansibility, A 4 is preferably a residue represented by the following formula (VII), (VIII) or (IX).

Figure 2016204639
Figure 2016204639

式(VII)中、R10は各々独立に、水素原子、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子を示す。 In formula (VII), each R 10 independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom.

Figure 2016204639
Figure 2016204639

式(VIII)中、R11及びR12は各々独立に、水素原子、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子を示し、Aは炭素数1〜5のアルキレン基若しくはアルキリデン基、エーテル基、スルフィド基、スルホニル基、ケトン基、単結合又は下記式(VIII−1)で表される残基を示す。 In formula (VIII), R 11 and R 12 each independently represent a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms, or a halogen atom, and A 6 represents an alkylene group or alkylidene group having 1 to 5 carbon atoms. , An ether group, a sulfide group, a sulfonyl group, a ketone group, a single bond, or a residue represented by the following formula (VIII-1).

Figure 2016204639
Figure 2016204639

式(VIII−1)中、R13及びR14は各々独立に、水素原子、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子を示し、Aは炭素数1〜5のアルキレン基、イソプロピリデン基、エーテル基、スルフィド基、スルホニル基、ケトン基又は単結合を示す。 In formula (VIII-1), R 13 and R 14 each independently represent a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom, A 7 is an alkylene group having 1 to 5 carbon atoms, An isopropylidene group, an ether group, a sulfide group, a sulfonyl group, a ketone group or a single bond is shown.

Figure 2016204639
Figure 2016204639

式(IX)中、iは1〜10の整数である。   In formula (IX), i is an integer of 1-10.

Figure 2016204639
Figure 2016204639

式(X)中、R15及びR16は各々独立に、水素原子又は炭素数1〜5の脂肪族炭化水素基を示し、jは1〜8の整数である。 In formula (X), R 15 and R 16 each independently represents a hydrogen atom or an aliphatic hydrocarbon group having 1 to 5 carbon atoms, and j is an integer of 1 to 8.

Figure 2016204639
Figure 2016204639

式(XI)中、R17及びR18は各々独立に、水素原子、炭素数1〜5の脂肪族炭化水素基、炭素数1〜5のアルコキシ基、水酸基又はハロゲン原子を示し、Aは、炭素数1〜5のアルキレン基若しくはアルキリデン基、エーテル基、スルフィド基、スルホニル基、ケトン基、フルオレニレン基、単結合、下記式(XI−1)で表される残基又は下記式(XI−2)で表される残基を示す。 In formula (XI), R 17 and R 18 each independently represent a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a hydroxyl group or a halogen atom, and A 8 represents , An alkylene group having 1 to 5 carbon atoms or an alkylidene group, an ether group, a sulfide group, a sulfonyl group, a ketone group, a fluorenylene group, a single bond, a residue represented by the following formula (XI-1), or the following formula (XI- The residue represented by 2) is shown.

Figure 2016204639
Figure 2016204639

式(XI−1)中、R19及びR20は各々独立に、水素原子、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子を示し、Aは、炭素数1〜5のアルキレン基、イソプロピリデン基、m−フェニレンジイソプロピリデン基、p−フェニレンジイソプロピリデン基、エーテル基、スルフィド基、スルホニル基、ケトン基又は単結合を示す。 In formula (XI-1), R 19 and R 20 each independently represent a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom, and A 9 represents an alkylene group having 1 to 5 carbon atoms. , Isopropylidene group, m-phenylene diisopropylidene group, p-phenylene diisopropylidene group, ether group, sulfide group, sulfonyl group, ketone group or single bond.

Figure 2016204639
Figure 2016204639

式(XI−2)中、R21は各々独立に、水素原子、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子を示し、A10及びA11は各々独立に、炭素数1〜5のアルキレン基、イソプロピリデン基、エーテル基、スルフィド基、スルホニル基、ケトン基又は単結合を示す。 In formula (XI-2), R 21 each independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom, and A 10 and A 11 each independently represent 1 to 5 carbon atoms. An alkylene group, an isopropylidene group, an ether group, a sulfide group, a sulfonyl group, a ketone group or a single bond.

(B)成分は、有機溶媒への溶解性、高周波特性、導体との高接着性、プリプレグの成形性等の観点から、ポリアミノビスマレイミド化合物として用いることが好ましい。ポリアミノビスマレイミド化合物は、例えば、末端に2個のマレイミド基を有する化合物と、分子中に2個の一級アミノ基を有する芳香族ジアミン化合物とを有機溶媒中でマイケル付加反応させることにより得られる。   The component (B) is preferably used as a polyaminobismaleimide compound from the viewpoints of solubility in an organic solvent, high frequency characteristics, high adhesion to a conductor, moldability of a prepreg, and the like. The polyamino bismaleimide compound can be obtained, for example, by Michael addition reaction of a compound having two maleimide groups at the terminal and an aromatic diamine compound having two primary amino groups in the molecule in an organic solvent.

分子中に2個の一級アミノ基を有する芳香族ジアミン化合物は特に限定されないが、例えば、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノ−3,3’−ジメチル−ジフェニルメタン、2,2’−ジメチル−4,4’−ジアミノビフェニル、2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパン、4,4’−[1,3−フェニレンビス(1−メチルエチリデン)]ビスアニリン、4,4’−[1,4−フェニレンビス(1−メチルエチリデン)]ビスアニリン等が挙げられる。これらは1種類を単独で用いても、2種類以上を併用してもよい。   The aromatic diamine compound having two primary amino groups in the molecule is not particularly limited. For example, 4,4′-diaminodiphenylmethane, 4,4′-diamino-3,3′-dimethyl-diphenylmethane, 2,2 '-Dimethyl-4,4'-diaminobiphenyl, 2,2-bis (4- (4-aminophenoxy) phenyl) propane, 4,4'-[1,3-phenylenebis (1-methylethylidene)] bisaniline 4,4 ′-[1,4-phenylenebis (1-methylethylidene)] bisaniline and the like. These may be used alone or in combination of two or more.

また、有機溶媒への溶解性が高く、合成時の反応率が高く、かつ耐熱性を高くできる観点からは、4,4’−ジアミノジフェニルメタン及び4,4’−ジアミノ−3,3’−ジメチル−ジフェニルメタンが好ましい。これらは目的、用途等に合わせて、1種類を単独で用いても、2種類以上を併用してもよい。   From the viewpoint of high solubility in organic solvents, high reaction rate during synthesis, and high heat resistance, 4,4′-diaminodiphenylmethane and 4,4′-diamino-3,3′-dimethyl -Diphenylmethane is preferred. These may be used alone or in combination of two or more according to the purpose and application.

ポリアミノビスマレイミド化合物を製造する際に使用される有機溶媒は特に制限はないが、例えば、メタノール、エタノール、ブタノール、ブチルセロソルブ、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;トルエン、キシレン、メシチレン等の芳香族炭化水素類;メトキシエチルアセテート、エトキシエチルアセテート、ブトキシエチルアセテート、酢酸エチル等のエステル類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン等の含窒素類などが挙げられる。これらは1種類を単独で用いてもよく、2種類以上を混合して用いてもよい。また、これらの中でも、メチルエチルケトン、シクロヘキサノン、プロピレングリコールモノメチルエーテル、N,N−ジメチルホルムアミド及びN,N−ジメチルアセトアミドが溶解性の観点から好ましい。   The organic solvent used in producing the polyaminobismaleimide compound is not particularly limited, and examples thereof include alcohols such as methanol, ethanol, butanol, butyl cellosolve, ethylene glycol monomethyl ether, propylene glycol monomethyl ether; acetone, methyl ethyl ketone, methyl Ketones such as isobutyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene and mesitylene; esters such as methoxyethyl acetate, ethoxyethyl acetate, butoxyethyl acetate and ethyl acetate; N, N-dimethylformamide, N, And nitrogen-containing compounds such as N-dimethylacetamide and N-methyl-2-pyrrolidone. These may be used alone or in combination of two or more. Among these, methyl ethyl ketone, cyclohexanone, propylene glycol monomethyl ether, N, N-dimethylformamide and N, N-dimethylacetamide are preferable from the viewpoint of solubility.

(触媒)
本実施形態に係る樹脂組成物は、(A)成分の硬化を促進するための触媒を更に含有してもよい。触媒の含有量は特に限定されないが、樹脂組成物の全質量に対して0.1〜5質量%であってもよい。触媒としては、例えば、過酸化物、アゾ化合物等を用いることができる。
(catalyst)
The resin composition according to the present embodiment may further contain a catalyst for promoting the curing of the component (A). Although content of a catalyst is not specifically limited, 0.1-5 mass% may be sufficient with respect to the total mass of a resin composition. As the catalyst, for example, a peroxide, an azo compound, or the like can be used.

過酸化物としては、例えば、ジクミルパーオキサイド、ジベンゾイルパーオキサイド、2−ブタノンパーオキサイド、tert−ブチルパーベンゾエイト、ジ−tert−ブチルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、ビス(tert−ブチルパーオキシイソプロピル)ベンゼン及びtert−ブチルヒドロパーオキシドが挙げられる。アゾ化合物としては、例えば、2,2’−アゾビス(2−メチルプロパンニトリル)、2,2’−アゾビス(2−メチルブタンニトリル)及び1,1’−アゾビス(シクロヘキサンカルボニトリル)が挙げられる。   Examples of the peroxide include dicumyl peroxide, dibenzoyl peroxide, 2-butanone peroxide, tert-butyl perbenzoate, di-tert-butyl peroxide, 2,5-dimethyl-2,5-dioxide. (T-Butylperoxy) hexane, bis (tert-butylperoxyisopropyl) benzene, and tert-butyl hydroperoxide. Examples of the azo compound include 2,2'-azobis (2-methylpropanenitrile), 2,2'-azobis (2-methylbutanenitrile), and 1,1'-azobis (cyclohexanecarbonitrile).

<(C)熱硬化性樹脂>
本実施形態の樹脂組成物は、(A)成分及び(B)成分とは異なる(C)熱硬化性樹脂を更に含有することができる。なお、(A)成分又は(B)成分に該当し得る化合物は、(C)熱硬化性樹脂に帰属しないものとする。(C)熱硬化性樹脂としては、例えば、エポキシ樹脂、シアネートエステル樹脂等が挙げられる。(C)熱硬化性樹脂を含むことで、樹脂組成物の低熱膨張特性等を更に向上させることができる。
<(C) Thermosetting resin>
The resin composition of this embodiment can further contain a thermosetting resin (C) different from the component (A) and the component (B). In addition, the compound which can correspond to (A) component or (B) component shall not belong to (C) thermosetting resin. (C) As a thermosetting resin, an epoxy resin, cyanate ester resin, etc. are mentioned, for example. (C) By including a thermosetting resin, the low thermal expansion characteristic etc. of a resin composition can further be improved.

(C)熱硬化性樹脂としてエポキシ樹脂を含有させる場合、特に制限されないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂等のナフタレン骨格含有型エポキシ樹脂、2官能ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ジヒドロアントラセン型エポキシ樹脂などが挙げられる。これらは1種類を単独で用いても、2種類以上を併用してもよい。これらの中でも、高周波特性及び熱膨張特性の観点からは、ナフタレン骨格含有型エポキシ樹脂又はビフェニルアラルキル型エポキシ樹脂を用いることが好ましい。   (C) When an epoxy resin is contained as the thermosetting resin, it is not particularly limited. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, alicyclic epoxy resin, aliphatic chain Epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolak type epoxy resin, phenol aralkyl type epoxy resin, naphthol novolak type epoxy resin, naphthol aralkyl type epoxy resin, etc. Biphenyl type epoxy resin, biphenyl aralkyl type epoxy resin, dicyclopentadiene type epoxy resin, dihydroanthracene type epoxy resin and the like can be mentioned. These may be used alone or in combination of two or more. Among these, it is preferable to use a naphthalene skeleton containing type epoxy resin or a biphenyl aralkyl type epoxy resin from the viewpoint of high frequency characteristics and thermal expansion characteristics.

(C)熱硬化性樹脂としてシアネートエステル樹脂を含有させる場合、特に限定されないが、例えば、2,2−ビス(4−シアナトフェニル)プロパン、ビス(4−シアナトフェニル)エタン、ビス(3,5−ジメチル−4−シアナトフェニル)メタン、2,2−ビス(4−シアナトフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、α,α’−ビス(4−シアナトフェニル)−m−ジイソプロピルベンゼン、フェノール付加ジシクロペンタジエン重合体のシアネートエステル化合物、フェノールノボラック型シアネートエステル化合物、クレゾールノボラック型シアネートエステル化合物等が挙げられる。これらは1種類を用いても、2種類以上を併用してもよい。これらの中でも、安価である点、高周波特性及びその他特性の総合バランスを考慮すると、2,2−ビス(4−シアナトフェニル)プロパンを用いることが好ましい。   (C) When cyanate ester resin is contained as the thermosetting resin, it is not particularly limited. For example, 2,2-bis (4-cyanatophenyl) propane, bis (4-cyanatophenyl) ethane, bis (3 , 5-Dimethyl-4-cyanatophenyl) methane, 2,2-bis (4-cyanatophenyl) -1,1,1,3,3,3-hexafluoropropane, α, α′-bis (4 -Cyanatophenyl) -m-diisopropylbenzene, cyanate ester compound of phenol-added dicyclopentadiene polymer, phenol novolak type cyanate ester compound, cresol novolak type cyanate ester compound and the like. These may be used alone or in combination of two or more. Among these, it is preferable to use 2,2-bis (4-cyanatophenyl) propane in consideration of the low cost, the high-frequency characteristics, and the overall balance of other characteristics.

(硬化剤)
本実施形態の樹脂組成物は、(C)熱硬化性樹脂の硬化剤を更に含有してもよい。これにより、樹脂組成物の硬化物を得る際の反応を円滑に進めることができるとともに、得られる樹脂組成物の硬化物の物性を適度に調節することが可能となる。
(Curing agent)
The resin composition of this embodiment may further contain (C) a curing agent for a thermosetting resin. Thereby, the reaction at the time of obtaining the cured product of the resin composition can be smoothly advanced, and the physical properties of the cured product of the obtained resin composition can be appropriately adjusted.

エポキシ樹脂を用いる場合、硬化剤としては特に制限されないが、例えば、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルメタン、m−フェニレンジアミン、ジシアンジアミド等のポリアミン化合物;ビスフェノールA、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂、フェノールアラルキル樹脂等のポリフェノール化合物;無水フタル酸、無水ピロメリット酸等の酸無水物;各種カルボン酸化合物;各種活性エステル化合物などが挙げられる。   When an epoxy resin is used, the curing agent is not particularly limited. For example, polyamine compounds such as diethylenetriamine, triethylenetetramine, diaminodiphenylmethane, m-phenylenediamine, and dicyandiamide; bisphenol A, phenol novolac resin, cresol novolac resin, bisphenol A Examples thereof include polyphenol compounds such as novolak resins and phenol aralkyl resins; acid anhydrides such as phthalic anhydride and pyromellitic anhydride; various carboxylic acid compounds; and various active ester compounds.

シアネートエステル樹脂を用いる場合、硬化剤としては特に限定されないが、例えば、各種モノフェノール化合物、各種ポリフェノール化合物、各種アミン化合物、各種アルコール化合物、各種酸無水物、各種カルボン酸化合物等が挙げられる。これらは1種類を単独で用いても、2種類以上を併用してもよい。   When the cyanate ester resin is used, the curing agent is not particularly limited, and examples thereof include various monophenol compounds, various polyphenol compounds, various amine compounds, various alcohol compounds, various acid anhydrides, various carboxylic acid compounds, and the like. These may be used alone or in combination of two or more.

(硬化促進剤)
本実施形態の樹脂組成物には、(C)熱硬化性樹脂の種類に応じて硬化促進剤を更に配合してもよい。エポキシ樹脂の硬化促進剤としては、例えば、潜在性の熱硬化剤である各種イミダゾール類、BFアミン錯体、リン系硬化促進剤等が挙げられる。硬化促進剤を配合する場合、樹脂組成物の保存安定性、半硬化の樹脂組成物の取扱性及びはんだ耐熱性の観点から、イミダゾール類及びリン系硬化促進剤が好ましい。
(Curing accelerator)
You may further mix | blend a hardening accelerator with the resin composition of this embodiment according to the kind of (C) thermosetting resin. Examples of the epoxy resin curing accelerator include various imidazoles which are latent thermosetting agents, BF 3 amine complexes, phosphorus curing accelerators, and the like. When a curing accelerator is blended, imidazoles and phosphorus curing accelerators are preferable from the viewpoints of storage stability of the resin composition, handleability of the semi-cured resin composition, and solder heat resistance.

(無機充填剤)
本実施形態の樹脂組成物は、無機充填剤を更に含有してもよい。任意に適切な無機充填剤を含有させることで、樹脂組成物の低熱膨張特性、高弾性率性、耐熱性、難燃性等を向上させることができる。無機充填剤としては特に制限されないが、例えば、シリカ、アルミナ、酸化チタン、マイカ、ベリリア、チタン酸バリウム、チタン酸カリウム、チタン酸ストロンチウム、チタン酸カルシウム、炭酸アルミニウム、水酸化マグネシウム、水酸化アルミニウム、ケイ酸アルミニウム、炭酸カルシウム、ケイ酸カルシウム、ケイ酸マグネシウム、窒化ケイ素、窒化ホウ素、焼成クレー、タルク、ホウ酸アルミニウム、炭化ケイ素等が挙げられる。これらは1種類を単独で用いても、2種類以上を併用してもよい。
(Inorganic filler)
The resin composition of this embodiment may further contain an inorganic filler. By arbitrarily containing an appropriate inorganic filler, it is possible to improve low thermal expansion characteristics, high elastic modulus, heat resistance, flame retardancy, and the like of the resin composition. The inorganic filler is not particularly limited. For example, silica, alumina, titanium oxide, mica, beryllia, barium titanate, potassium titanate, strontium titanate, calcium titanate, aluminum carbonate, magnesium hydroxide, aluminum hydroxide, Examples thereof include aluminum silicate, calcium carbonate, calcium silicate, magnesium silicate, silicon nitride, boron nitride, calcined clay, talc, aluminum borate, and silicon carbide. These may be used alone or in combination of two or more.

無機充填剤の形状及び粒径についても特に制限はない。無機充填剤の粒径は、例えば、0.01〜20μmであっても、0.1〜10μmであってもよい。ここで、粒径とは、平均粒子径を指し、粒子の全体積を100%として粒子径による累積度数分布曲線を求めた時、体積50%に相当する点の粒子径のことである。平均粒径はレーザー回折散乱法を用いた粒度分布測定装置等で測定することができる。   There are no particular restrictions on the shape and particle size of the inorganic filler. The particle size of the inorganic filler may be, for example, 0.01 to 20 μm or 0.1 to 10 μm. Here, the particle diameter means an average particle diameter, and is a particle diameter at a point corresponding to a volume of 50% when a cumulative frequency distribution curve based on the particle diameter is obtained with the total volume of the particles being 100%. The average particle diameter can be measured with a particle size distribution measuring apparatus using a laser diffraction scattering method.

無機充填剤を用いる場合、その使用量は特に制限されないが、例えば、樹脂組成物中の固形分を全量として無機充填剤の含有比率が3〜75体積%であることが好ましく、5〜70体積%であることがより好ましい。樹脂組成物中の無機充填剤の含有比率が上記の範囲である場合、良好な硬化性、成形性及び耐薬品性が得られ易くなる。   When the inorganic filler is used, the amount used is not particularly limited. For example, the content of the inorganic filler is preferably 3 to 75% by volume based on the solid content in the resin composition, and preferably 5 to 70 volume. % Is more preferable. When the content ratio of the inorganic filler in the resin composition is in the above range, good curability, moldability, and chemical resistance are easily obtained.

無機充填剤を用いる場合、無機充填剤の分散性、有機成分との密着性を向上させる等の目的で、必要に応じ、カップリング剤を併用できる。カップリング剤としては特に限定されず、例えば、各種のシランカップリング剤、チタネートカップリング剤等を用いることができる。これらは1種類を単独で用いても、2種類以上を併用してもよい。また、カップリング剤の使用量も特に限定されず、例えば、使用する無機充填剤100質量部に対して0.1〜5質量部としてもよいし、0.5〜3質量部としてもよい。この範囲であれば、諸特性の低下が少なく、無機充填剤の使用による特長を効果的に発揮し易くなる。   When an inorganic filler is used, a coupling agent can be used in combination as necessary for the purpose of improving the dispersibility of the inorganic filler and the adhesion with the organic component. It does not specifically limit as a coupling agent, For example, various silane coupling agents, a titanate coupling agent, etc. can be used. These may be used alone or in combination of two or more. Moreover, the usage-amount of a coupling agent is not specifically limited, For example, it is good also as 0.1-5 mass parts with respect to 100 mass parts of inorganic fillers to be used, and good also as 0.5-3 mass parts. If it is this range, there will be little fall of various characteristics and it will become easy to exhibit the feature by use of an inorganic filler effectively.

カップリング剤を用いる場合、樹脂組成物中に無機充填剤を配合した後、カップリング剤を添加する、いわゆるインテグラルブレンド処理方式であってもよいが、予め無機充填剤にカップリング剤を、乾式又は湿式で表面処理した無機充填剤を使用する方式が好ましい。この方法を用いることで、より効果的に上記無機充填剤の特長を発現できる。   When a coupling agent is used, it may be a so-called integral blend treatment method in which an inorganic filler is added to the resin composition and then the coupling agent is added, but the coupling agent is added to the inorganic filler in advance. A method using an inorganic filler surface-treated with a dry method or a wet method is preferable. By using this method, the characteristics of the inorganic filler can be expressed more effectively.

(熱可塑性樹脂)
本実施形態の樹脂組成物は、樹脂フィルムの取扱い性を高める観点から、熱可塑性樹脂を更に含有してもよい。熱可塑性樹脂の種類は特に限定されず、分子量も限定されないが、(A)成分との相溶性をより高める点から、数平均分子量(Mn)が200〜60000であることが好ましい。
(Thermoplastic resin)
The resin composition of the present embodiment may further contain a thermoplastic resin from the viewpoint of improving the handleability of the resin film. Although the kind of thermoplastic resin is not specifically limited and molecular weight is also not limited, It is preferable that a number average molecular weight (Mn) is 200-60000 from the point which improves compatibility with (A) component.

フィルム形成性及び耐吸湿性の観点から、熱可塑性樹脂は、熱可塑性エラストマであることが好ましい。熱可塑性エラストマとしては飽和型熱可塑性エラストマ等が挙げられ、飽和型熱可塑性エラストマとしては化学変性飽和型熱可塑性エラストマ、非変性飽和型熱可塑性エラストマ等が挙げられる。化学変性飽和型熱可塑性エラストマとしては、無水マレイン酸で変性されたスチレン−エチレン−ブチレン共重合体等が挙げられる。化学変性飽和型熱可塑性エラストマの具体例としては、タフテックM1911、M1913、M1943(全て旭化成ケミカルズ株式会社製、商品名)等が挙げられる。一方、非変性飽和型熱可塑性エラストマとしては、非変性のスチレン−エチレン−ブチレン共重合体等が挙げられる。非変性飽和型熱可塑性エラストマの具体例としては、タフテックH1041、H1051、H1043、H1053(全て旭化成ケミカルズ株式会社製、商品名)等が挙げられる。   From the viewpoint of film formability and moisture absorption resistance, the thermoplastic resin is preferably a thermoplastic elastomer. Examples of the thermoplastic elastomer include saturated thermoplastic elastomers, and examples of the saturated thermoplastic elastomer include chemically modified saturated thermoplastic elastomers and non-modified saturated thermoplastic elastomers. Examples of the chemically-modified saturated thermoplastic elastomer include styrene-ethylene-butylene copolymer modified with maleic anhydride. Specific examples of the chemically modified saturated thermoplastic elastomer include Tuftec M1911, M1913, M1943 (all trade names, manufactured by Asahi Kasei Chemicals Corporation). On the other hand, examples of the non-modified saturated thermoplastic elastomer include non-modified styrene-ethylene-butylene copolymer. Specific examples of the unmodified saturated thermoplastic elastomer include Tuftec H1041, H1051, H1043, and H1053 (all trade names, manufactured by Asahi Kasei Chemicals Corporation).

フィルム形成性、誘電特性及び耐吸湿性の観点から、飽和型熱可塑性エラストマは、分子中にスチレンユニットを有することがより好ましい。なお、本明細書において、スチレンユニットとは、重合体における、スチレン単量体に由来する単位を指し、飽和型熱可塑性エラストマとは、スチレンユニットの芳香族炭化水素部分以外の脂肪族炭化水素部分が、いずれも飽和結合基によって構成された構造を有するものをいう。   From the viewpoint of film formability, dielectric properties, and moisture absorption resistance, the saturated thermoplastic elastomer preferably has a styrene unit in the molecule. In this specification, the styrene unit refers to a unit derived from a styrene monomer in a polymer, and the saturated thermoplastic elastomer refers to an aliphatic hydrocarbon portion other than the aromatic hydrocarbon portion of the styrene unit. Are all having a structure constituted by a saturated bonding group.

飽和型熱可塑性エラストマにおけるスチレンユニットの含有比率は、特に限定されないが、飽和型熱可塑性エラストマの全質量に対するスチレンユニットの質量百分率で、10〜80質量%であると好ましく、20〜70質量%であるとより好ましい。スチレンユニットの含有比率が上記範囲内であると、フィルム外観、耐熱性及び接着性に優れる傾向にある。   The content ratio of the styrene unit in the saturated thermoplastic elastomer is not particularly limited, but is preferably 10 to 80% by mass with respect to the total mass of the saturated thermoplastic elastomer, preferably 10 to 80% by mass, and 20 to 70% by mass. More preferably. When the content ratio of the styrene unit is within the above range, the film appearance, heat resistance and adhesiveness tend to be excellent.

分子中にスチレンユニットを有する飽和型熱可塑性エラストマの具体例としては、スチレン−エチレン−ブチレン共重合体が挙げられる。スチレン−エチレン−ブチレン共重合体は、例えば、スチレン−ブタジエン共重合体のブタジエンに由来する構造単位が有する不飽和二重結合に水素添加を行うことにより得ることができる。   Specific examples of the saturated thermoplastic elastomer having a styrene unit in the molecule include a styrene-ethylene-butylene copolymer. A styrene-ethylene-butylene copolymer can be obtained, for example, by hydrogenating an unsaturated double bond of a structural unit derived from butadiene of a styrene-butadiene copolymer.

熱可塑性樹脂の含有量は特に限定されないが、誘電特性を更に良好にする観点からは樹脂組成物の固形分を全量として0.1〜15質量%であることが好ましく、0.3〜10質量%であることがより好ましく、0.5〜5質量%であることが更に好ましい。   The content of the thermoplastic resin is not particularly limited, but from the viewpoint of further improving the dielectric properties, the total solid content of the resin composition is preferably 0.1 to 15% by mass, and 0.3 to 10% by mass. % Is more preferable, and 0.5 to 5% by mass is still more preferable.

(難燃剤)
本実施形態の樹脂組成物には、難燃剤を更に配合してもよい。難燃剤としては特に限定されないが、臭素系難燃剤、リン系難燃剤、金属水酸化物等が好適に用いられる。臭素系難燃剤としては、臭素化ビスフェノールA型エポキシ樹脂、臭素化フェノールノボラック型エポキシ樹脂等の臭素化エポキシ樹脂;ヘキサブロモベンゼン、ペンタブロモトルエン、エチレンビス(ペンタブロモフェニル)、エチレンビステトラブロモフタルイミド、1,2−ジブロモ−4−(1,2−ジブロモエチル)シクロヘキサン、テトラブロモシクロオクタン、ヘキサブロモシクロドデカン、ビス(トリブロモフェノキシ)エタン、臭素化ポリフェニレンエーテル、臭素化ポリスチレン、2,4,6−トリス(トリブロモフェノキシ)−1,3,5−トリアジン等の臭素化添加型難燃剤;トリブロモフェニルマレイミド、トリブロモフェニルアクリレート、トリブロモフェニルメタクリレート、テトラブロモビスフェノールA型ジメタクリレート、ペンタブロモベンジルアクリレート、臭素化スチレン等の不飽和二重結合基含有の臭素化反応型難燃剤などが挙げられる。これらの難燃剤は1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
(Flame retardants)
You may further mix | blend a flame retardant with the resin composition of this embodiment. Although it does not specifically limit as a flame retardant, A bromine flame retardant, a phosphorus flame retardant, a metal hydroxide, etc. are used suitably. Brominated flame retardants include brominated epoxy resins such as brominated bisphenol A type epoxy resins and brominated phenol novolac type epoxy resins; hexabromobenzene, pentabromotoluene, ethylenebis (pentabromophenyl), ethylenebistetrabromophthalimide 1,2-dibromo-4- (1,2-dibromoethyl) cyclohexane, tetrabromocyclooctane, hexabromocyclododecane, bis (tribromophenoxy) ethane, brominated polyphenylene ether, brominated polystyrene, 2,4, Brominated flame retardants such as 6-tris (tribromophenoxy) -1,3,5-triazine; tribromophenylmaleimide, tribromophenyl acrylate, tribromophenyl methacrylate, tetrabromobisphenol A type Methacrylate, pentabromobenzyl acrylate, and unsaturated double bond group brominated reactive flame retardants containing brominated styrene. These flame retardants may be used alone or in combination of two or more.

リン系難燃剤としては、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、クレジルジ−2,6−キシレニルホスフェート、レゾルシノールビス(ジフェニルホスフェート)等の芳香族系リン酸エステル;フェニルホスホン酸ジビニル、フェニルホスホン酸ジアリル、フェニルホスホン酸ビス(1−ブテニル)等のホスホン酸エステル;ジフェニルホスフィン酸フェニル、ジフェニルホスフィン酸メチル、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド誘導体等のホスフィン酸エステル;ビス(2−アリルフェノキシ)ホスファゼン、ジクレジルホスファゼン等のホスファゼン化合物;リン酸メラミン、ピロリン酸メラミン、ポリリン酸メラミン、ポリリン酸メラム、ポリリン酸アンモニウム、リン含有ビニルベンジル化合物、赤リン等のリン系難燃剤などが挙げられる。金属水酸化物難燃剤としては、水酸化マグネシウム、水酸化アルミニウム等が挙げられる。これらの難燃剤は1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。   Phosphorus flame retardants include aromatic phosphoric acids such as triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, cresyl di-2,6-xylenyl phosphate, resorcinol bis (diphenyl phosphate) Ester; Phosphonic acid ester such as divinyl phenylphosphonate, diallyl phenylphosphonate, bis (1-butenyl) phenylphosphonate; phenyl diphenylphosphinate, methyl diphenylphosphinate, 9,10-dihydro-9-oxa-10-phos Phosphinic acid esters such as faphenanthrene-10-oxide derivatives; phosphazene compounds such as bis (2-allylphenoxy) phosphazene and dicresyl phosphazene; melamine phosphate, melamine pyrophosphate, poly Phosphate melamine, melam polyphosphate, ammonium polyphosphate, phosphorus-containing vinylbenzyl compounds, such as phosphorus-based flame retardant of red phosphorus and the like. Examples of the metal hydroxide flame retardant include magnesium hydroxide and aluminum hydroxide. These flame retardants may be used alone or in combination of two or more.

本実施形態の樹脂組成物は、上記した各成分を均一に分散及び混合することによって得ることができ、その調製手段、条件等は特に限定されない。例えば、所定配合量の各種成分をミキサー等によって十分に均一に撹拌及び混合した後、ミキシングロール、押出機、ニーダー、ロール、エクストルーダー等を用いて混練し、更に得られた混練物を冷却及び粉砕する方法が挙げられる。なお、混練形式についても特に限定されない。   The resin composition of this embodiment can be obtained by uniformly dispersing and mixing the above-described components, and the preparation means, conditions, and the like are not particularly limited. For example, after stirring and mixing various components of a predetermined blending amount sufficiently uniformly with a mixer, etc., the mixture is kneaded using a mixing roll, an extruder, a kneader, a roll, an extruder, etc., and the obtained kneaded product is cooled and The method of pulverizing is mentioned. The kneading type is not particularly limited.

本実施形態の樹脂組成物の硬化物の比誘電率は特に限定されないが、高周波帯で好適に用いる観点から、10GHzでの比誘電率は3.6以下であることが好ましく、3.1以下であることがより好ましく、3.0以下であることが更に好ましい。比誘電率の下限については特に限定はないが、例えば、1.0程度であってもよい。また、高周波帯で好適に用いる観点から、本実施形態の樹脂組成物の硬化物の誘電正接は0.004以下であることが好ましく、0.003以下であることがより好ましい。比誘電率の下限については特に限定はなく、例えば、0.0001程度であってもよい。比誘電率及び誘電正接は下記実施例で示す方法で測定できる。   The relative dielectric constant of the cured product of the resin composition of the present embodiment is not particularly limited, but the relative dielectric constant at 10 GHz is preferably 3.6 or less from the viewpoint of being suitably used in a high frequency band. Is more preferable, and it is still more preferable that it is 3.0 or less. The lower limit of the relative dielectric constant is not particularly limited, but may be about 1.0, for example. Further, from the viewpoint of being suitably used in the high frequency band, the dielectric loss tangent of the cured product of the resin composition of the present embodiment is preferably 0.004 or less, and more preferably 0.003 or less. The lower limit of the relative dielectric constant is not particularly limited, and may be, for example, about 0.0001. The relative dielectric constant and dielectric loss tangent can be measured by the methods shown in the following examples.

積層板のそりを抑制する観点から、本実施形態の樹脂組成物の硬化物の熱膨張係数は、10〜90ppm/℃であることが好ましく、10〜45ppm/℃であることがより好ましく、10〜40ppm/℃であることが更に好ましい。熱膨張係数はIPC−TM−650 2.4.24に準拠して測定できる。   From the viewpoint of suppressing warpage of the laminate, the thermal expansion coefficient of the cured product of the resin composition of the present embodiment is preferably 10 to 90 ppm / ° C, more preferably 10 to 45 ppm / ° C. More preferably, it is ˜40 ppm / ° C. The thermal expansion coefficient can be measured according to IPC-TM-650 2.4.24.

[樹脂フィルム]
本実施形態では、上記の樹脂組成物を用いて、樹脂フィルムを製造することができる。なお、樹脂フィルムとは未硬化又は半硬化のフィルム状の樹脂組成物を指す。
[Resin film]
In the present embodiment, a resin film can be produced using the above resin composition. The resin film refers to an uncured or semi-cured film-shaped resin composition.

樹脂フィルムの製造方法は限定されないが、例えば、樹脂組成物を支持基材上に塗布して形成された樹脂層を乾燥することで得られる。具体的には、上記樹脂組成物をキスコーター、ロールコーター、コンマコーター等を用いて支持基材上に塗布した後、加熱乾燥炉中等で、例えば70〜250℃、好ましくは70〜200℃の温度で、1〜30分間、好ましくは3〜15分間乾燥してもよい。これにより、樹脂組成物が半硬化した状態の樹脂フィルムを得ることができる。   Although the manufacturing method of a resin film is not limited, For example, it can obtain by drying the resin layer formed by apply | coating a resin composition on a support base material. Specifically, after coating the resin composition on a supporting substrate using a kiss coater, roll coater, comma coater, etc., the temperature is, for example, 70 to 250 ° C., preferably 70 to 200 ° C. in a heating and drying furnace. And may be dried for 1 to 30 minutes, preferably 3 to 15 minutes. Thereby, the resin film in the state in which the resin composition is semi-cured can be obtained.

なお、この半硬化した状態の樹脂フィルムを、加熱炉で更に、例えば、170〜250℃、好ましくは185〜230℃の温度で、60〜150分間加熱させることによって樹脂フィルムを熱硬化させることができる。   In addition, the resin film in the semi-cured state is further cured in a heating furnace, for example, by heating at a temperature of 170 to 250 ° C., preferably 185 to 230 ° C. for 60 to 150 minutes. it can.

本実施形態に係る樹脂フィルムの厚さは特に限定されないが、1〜200μmであることが好ましく、2〜180μmであることがより好ましく、3〜150μmであることが更に好ましい。樹脂フィルムの厚さを上記の範囲とすることにより、本実施形態に係る樹脂フィルムを用いて得られるプリント配線板の薄型化と良好な高周波特性、を両立し易い。   Although the thickness of the resin film which concerns on this embodiment is not specifically limited, It is preferable that it is 1-200 micrometers, It is more preferable that it is 2-180 micrometers, It is still more preferable that it is 3-150 micrometers. By setting the thickness of the resin film in the above range, it is easy to achieve both a reduction in thickness of the printed wiring board obtained by using the resin film according to the present embodiment and good high frequency characteristics.

支持基材は特に限定されないが、ガラス、金属箔及びPETフィルムからなる群より選ばれる少なくとも一種であることが好ましい。樹脂フィルムが支持基材を備えることにより、保管性及びプリント配線板の製造に用いる際の取扱性が良好となる傾向にある。すなわち、本実施形態に係る樹脂フィルムは、本実施形態の樹脂組成物を含む樹脂層及び支持基材を備える、樹脂層付き支持体の形態をとることができ、使用される際には支持基材から剥離してもよい。   The support substrate is not particularly limited, but is preferably at least one selected from the group consisting of glass, metal foil, and PET film. When a resin film is provided with a support base material, it exists in the tendency for the storage property and the handleability at the time of using for manufacture of a printed wiring board to become favorable. That is, the resin film according to the present embodiment can take the form of a support with a resin layer including a resin layer containing the resin composition of the present embodiment and a support base material, and when used, a support base. It may be peeled from the material.

[プリプレグ]
本実施形態に係るプリプレグは、例えば、本実施形態の樹脂組成物を補強基材である繊維基材に塗工し、塗工された樹脂組成物を乾燥させて得ることができる。また、本実施形態のプリプレグは、繊維基材を本実施形態の樹脂組成物に含浸した後、含浸された樹脂組成物を乾燥させて得てもよい。具体的には、樹脂組成物が付着した繊維基材を、乾燥炉中で通常、80〜200℃の温度で、1〜30分間加熱乾燥することで、樹脂組成物が半硬化したプリプレグを得られる。良好な成形性の観点からは、繊維基材に対する樹脂組成物の付着量は、乾燥後のプリプレグ中の樹脂含有率として30〜90質量%となるように塗工又は含浸することが好ましい。
[Prepreg]
The prepreg according to the present embodiment can be obtained, for example, by applying the resin composition of the present embodiment to a fiber base material that is a reinforcing base material and drying the applied resin composition. Further, the prepreg of the present embodiment may be obtained by impregnating the fiber base material into the resin composition of the present embodiment and then drying the impregnated resin composition. Specifically, the prepreg in which the resin composition is semi-cured is obtained by heating and drying the fiber base material to which the resin composition is adhered, usually in a drying oven at a temperature of 80 to 200 ° C. for 1 to 30 minutes. It is done. From the viewpoint of good moldability, it is preferable to apply or impregnate the resin composition with respect to the fiber substrate so that the resin content in the prepreg after drying is 30 to 90% by mass.

プリプレグの補強基材としては限定されないが、シート状繊維基材が好ましい。シート状繊維基材としては、例えば、各種の電気絶縁材料用積層板に用いられている公知のものが用いられる。その材質としては、例えば、Eガラス、NEガラス、Sガラス、Qガラス等の無機繊維;ポリイミド、ポリエステル、テトラフルオロエチレン等の有機繊維などが挙げられる。シート状繊維基材として、織布、不織布、チョップドストランドマット等の形状を有するものが使用できる。また、シート状繊維基材の厚みは特に制限されず、例えば、0.02〜0.5mmのものを用いることができる。また、シート状繊維基材としては、カップリング剤等で表面処理したもの、又は、機械的に開繊処理を施したものが、樹脂組成物の含浸性、積層板とした際の耐熱性、耐吸湿性及び加工性の観点から好ましい。   Although it does not limit as a reinforcement base material of a prepreg, a sheet-like fiber base material is preferable. As a sheet-like fiber base material, the well-known thing used for the laminated board for various electrical insulation materials is used, for example. Examples of the material include inorganic fibers such as E glass, NE glass, S glass, and Q glass; organic fibers such as polyimide, polyester, and tetrafluoroethylene. As the sheet-like fiber base material, those having a shape such as woven fabric, non-woven fabric, and chopped strand mat can be used. Moreover, the thickness in particular of a sheet-like fiber base material is not restrict | limited, For example, a 0.02-0.5 mm thing can be used. In addition, as the sheet-like fiber base material, what is surface-treated with a coupling agent or the like, or mechanically subjected to fiber opening treatment is impregnated with a resin composition, heat resistance when used as a laminate, It is preferable from the viewpoint of moisture absorption resistance and processability.

[積層板]
本実施形態によれば、上述の樹脂組成物の硬化物を含む樹脂層と、導体層とを有する積層板を提供することができる。例えば、上記樹脂フィルム又は上記プリプレグを用い、金属張積層板を製造することができる。
[Laminated board]
According to this embodiment, the laminated board which has the resin layer containing the hardened | cured material of the above-mentioned resin composition, and a conductor layer can be provided. For example, a metal-clad laminate can be produced using the resin film or the prepreg.

金属張積層板の製造方法は限定されないが、例えば、本実施形態に係る樹脂フィルム又はプリプレグを1枚又は複数枚重ね、少なくとも一つの面に導体層となる金属箔を配置し、例えば、170〜250℃、好ましくは185〜230℃の温度及び0.5〜5.0MPaの圧力で60〜150分間加熱及び加圧することにより、絶縁層となる樹脂層又はプリプレグの少なくとも一つの面に金属箔を備える金属張積層板が得られる。加熱及び加圧は、例えば、真空度は10kPa以下、好ましくは5kPa以下の条件で実施でき、効率を高める観点からは真空中で行うことが好ましい。加熱及び加圧は、開始から30分間〜成形終了時間まで実施することが好ましい。   Although the manufacturing method of a metal-clad laminated board is not limited, For example, the resin film or prepreg which concerns on this embodiment is laminated | stacked 1 sheet or multiple sheets, the metal foil used as a conductor layer is arrange | positioned on at least one surface, for example, 170- A metal foil is applied to at least one surface of a resin layer or a prepreg serving as an insulating layer by heating and pressing at 250 ° C., preferably 185 to 230 ° C. and a pressure of 0.5 to 5.0 MPa for 60 to 150 minutes. A metal-clad laminate provided is obtained. The heating and pressurization can be performed, for example, under a condition where the degree of vacuum is 10 kPa or less, preferably 5 kPa or less, and is preferably performed in vacuum from the viewpoint of increasing efficiency. It is preferable to carry out the heating and pressurization from the start for 30 minutes to the molding end time.

[多層プリント配線板]
本実施形態によれば、上述の樹脂組成物の硬化物を含む樹脂層と、回路層とを備える多層プリント配線板を提供することができる。回路層の数の上限値は特に限定されず、3層〜20層であってもよい。多層プリント配線板は、例えば、上記樹脂フィルム、プリプレグ又は金属張積層板を用いて製造することもできる。
[Multilayer printed wiring board]
According to this embodiment, a multilayer printed wiring board provided with the resin layer containing the hardened | cured material of the above-mentioned resin composition and a circuit layer can be provided. The upper limit of the number of circuit layers is not particularly limited, and may be 3 to 20 layers. A multilayer printed wiring board can also be manufactured using the said resin film, a prepreg, or a metal-clad laminated board, for example.

多層プリント配線板の製造方法としては特に限定されないが、例えば、まず、回路形成加工されたコア基板の片面又は両面に、樹脂フィルムを配置するか、あるいは複数枚のコア基板の間に樹脂フィルムを配置し、加圧及び加熱ラミネート成形、又は加圧及び加熱プレス成形を行って各層を接着した後、レーザー穴開け加工、ドリル穴開け加工、金属めっき加工、金属エッチング等による回路形成加工を行うことで、多層プリント配線板を製造することができる。樹脂フィルムが支持基材を有している場合、支持基材は、コア基板上又はコア基板間に樹脂フィルムを配置する前に剥離しておくか、あるいは、樹脂層をコア基板に張り付けた後に剥離することができる。   The method for producing a multilayer printed wiring board is not particularly limited. For example, first, a resin film is disposed on one or both sides of a core substrate subjected to circuit formation processing, or a resin film is disposed between a plurality of core substrates. Place and apply pressure and heat laminate molding, or press and heat press molding to bond each layer, then perform circuit formation processing by laser drilling, drilling, metal plating, metal etching, etc. Thus, a multilayer printed wiring board can be manufactured. When the resin film has a supporting base, the supporting base is peeled off before placing the resin film on the core substrate or between the core substrates, or after the resin layer is attached to the core substrate. Can be peeled off.

本実施形態に係る樹脂フィルムを用いた多層プリント配線板の製造方法を、図1に沿って説明する。図1は、本実施形態に係る多層プリント配線板の製造工程を模式的に示す図である。本実施形態に係る多層プリント配線板の製造方法は、(a)内層回路基板に樹脂フィルムを積層して樹脂層を形成する工程(以下、「工程(a)」という)と、(b)樹脂層を加熱・加圧して硬化する工程(以下、「工程(b)」という)と、(c)硬化した樹脂層上にアンテナ回路層を形成する工程(以下、「工程(c)」という)とを有する。   The manufacturing method of the multilayer printed wiring board using the resin film which concerns on this embodiment is demonstrated along FIG. FIG. 1 is a diagram schematically showing a manufacturing process of a multilayer printed wiring board according to the present embodiment. The method for producing a multilayer printed wiring board according to the present embodiment includes (a) a step of forming a resin layer by laminating a resin film on an inner layer circuit board (hereinafter referred to as “step (a)”), and (b) a resin. A step of curing the layer by heating and pressing (hereinafter referred to as “step (b)”), and a step of forming an antenna circuit layer on the cured resin layer (hereinafter referred to as “step (c)”). And have.

図1の(a)に示すように、工程(a)では、内層回路基板11に本実施形態に係る樹脂フィルム12を積層して樹脂フィルム12からなる樹脂層を形成する。   As shown in FIG. 1A, in step (a), the resin film 12 according to this embodiment is laminated on the inner layer circuit board 11 to form a resin layer made of the resin film 12.

積層方法は特に限定されないが、例えば、多段プレス、真空プレス、常圧ラミネーター、真空下で加熱加圧するラミネーターを用いて積層する方法等が挙げられ、真空下で加熱加圧するラミネーターを用いる方法が好ましい。これにより、内層回路基板11が表面に微細配線回路を有していてもボイドがなく回路間を樹脂で埋め込むことができる。ラミネート条件は特に限定されないが、圧着温度が70〜130℃、圧着圧力が1〜11kgf/cmであって、減圧又は真空下で積層するのが好ましい。ラミネートは、バッチ式であってもよく、また、ロールでの連続式であってもよい。 The laminating method is not particularly limited, and examples thereof include a multi-stage press, a vacuum press, an atmospheric laminator, a method of laminating using a laminator that is heated and pressurized under vacuum, and a method using a laminator that is heated and pressurized under vacuum is preferable. . Thereby, even if the inner circuit board 11 has a fine wiring circuit on the surface, there is no void and the circuit can be filled with the resin. Lamination conditions are not particularly limited, but the pressure bonding temperature is 70 to 130 ° C., the pressure bonding pressure is 1 to 11 kgf / cm 2 , and the lamination is preferably performed under reduced pressure or vacuum. The laminate may be a batch type or a continuous type in a roll.

内層回路基板11としては、特に限定されず、ガラスエポキシ基板、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等を使用することができる。内層回路基板11の樹脂フィルムが積層される面の回路表面は予め粗化処理されていてもよい。   The inner layer circuit board 11 is not particularly limited, and a glass epoxy board, a metal board, a polyester board, a polyimide board, a BT resin board, a thermosetting polyphenylene ether board, or the like can be used. The circuit surface of the surface on which the resin film of the inner layer circuit board 11 is laminated may be roughened in advance.

内層回路基板11の回路層数は限定されない。図1では6層の内層回路基板としたが、この層数に限定されず、例えば、ミリ波レーダー用プリント配線板を作製する場合、その設計に応じて2層〜20層等と自由に選択することができる。本実施形態の多層プリント配線板は、ミリ波レーダーの作製へ応用することができる。すなわち、本実施形態に係る樹脂フィルムの硬化物を含む樹脂層と、回路層とを備えるミリ波レーダー用プリント配線板を作製することができる。   The number of circuit layers of the inner layer circuit board 11 is not limited. In FIG. 1, the inner circuit board has six layers. However, the number of layers is not limited. For example, when a printed wiring board for millimeter wave radar is manufactured, it can be freely selected from 2 to 20 layers depending on the design. can do. The multilayer printed wiring board of this embodiment can be applied to the production of millimeter wave radar. That is, a millimeter-wave radar printed wiring board including a resin layer containing a cured product of the resin film according to the present embodiment and a circuit layer can be produced.

後述するアンテナ回路層14をエッチングにより樹脂層12a上に形成する場合、樹脂フィルム12上に更に金属箔13を積層して金属層13aを形成してもよい。金属箔としては、例えば、銅、アルミニウム、ニッケル、亜鉛等が挙げられ、導電性の観点からは銅が好ましい。金属箔は合金であってもよく、例えば、銅合金として、ベリリウム又はカドミウムを少量添加した高純度銅合金が挙げられる。金属箔の厚みは、3〜200μmが好ましく、5〜70μmがより好ましい。   When the antenna circuit layer 14 described later is formed on the resin layer 12a by etching, a metal foil 13 may be further laminated on the resin film 12 to form the metal layer 13a. Examples of the metal foil include copper, aluminum, nickel, zinc and the like, and copper is preferable from the viewpoint of conductivity. The metal foil may be an alloy. Examples of the copper alloy include a high purity copper alloy to which a small amount of beryllium or cadmium is added. The thickness of the metal foil is preferably 3 to 200 μm, more preferably 5 to 70 μm.

図1の(b)に示すように、工程(b)では、工程(a)で積層した内層回路基板11及び樹脂層12aを加熱加圧して熱硬化させる。条件は特に限定されないが、温度100℃〜250℃、圧力0.2〜10MPa、時間30〜120分間の範囲が好ましく、150℃〜220℃がより好ましい。   As shown in FIG. 1B, in the step (b), the inner layer circuit board 11 and the resin layer 12a laminated in the step (a) are heated and pressurized to be thermally cured. The conditions are not particularly limited, but a temperature range of 100 ° C. to 250 ° C., a pressure of 0.2 to 10 MPa, and a time of 30 to 120 minutes are preferable, and 150 ° C. to 220 ° C. is more preferable.

図1の(c)に示すように、工程(c)では、樹脂層12a上にアンテナ回路層14を形成する。アンテナ回路層14の形成方法は特に限定されず、例えば、サブトラクティブ法等のエッチング法、セミアディティブ法等によって形成してもよい。   As shown in FIG. 1C, in step (c), the antenna circuit layer 14 is formed on the resin layer 12a. The method for forming the antenna circuit layer 14 is not particularly limited, and for example, the antenna circuit layer 14 may be formed by an etching method such as a subtractive method or a semi-additive method.

サブトラクティブ法は、金属層13aの上に、所望のパターン形状に対応した形状のエッチングレジスト層を形成し、その後の現像処理によって、レジストの除去された部分の金属層を薬液で溶解し除去することによって、所望の回路を形成する方法である。薬液としては、例えば、塩化銅溶液、塩化鉄溶液等を使用することができる。   In the subtractive method, an etching resist layer having a shape corresponding to a desired pattern shape is formed on the metal layer 13a, and a portion of the metal layer from which the resist has been removed is dissolved and removed by a chemical solution by subsequent development processing. Thus, a desired circuit is formed. As the chemical solution, for example, a copper chloride solution, an iron chloride solution, or the like can be used.

セミアディティブ法は、無電解めっき法により樹脂層12aの表面に金属被膜を形成し、金属被膜上に所望のパターンに対応した形状のめっきレジスト層を形成し、次いで、電解めっき法によって金属層を形成した後、不要な無電解めっき層を薬液等で除去し、所望の回路層を形成する方法である。   In the semi-additive method, a metal film is formed on the surface of the resin layer 12a by an electroless plating method, a plating resist layer having a shape corresponding to a desired pattern is formed on the metal film, and then the metal layer is formed by an electrolytic plating method. After the formation, an unnecessary electroless plating layer is removed with a chemical solution or the like to form a desired circuit layer.

また、樹脂層12aには、必要に応じてビアホール15等のホールを形成してもよい。ホールの形成方法は限定されないが、NCドリル、炭酸ガスレーザー、UVレーザー、YAGレーザー、プラズマ等を適用できる。   Moreover, you may form holes, such as the via hole 15, as needed in the resin layer 12a. The hole forming method is not limited, but an NC drill, carbon dioxide laser, UV laser, YAG laser, plasma, or the like can be applied.

ここで、内層回路基板11は、図2に示す工程(p)〜(r)によって製造することもできる。図2は、内層回路基板の製造工程を模式的に示す図である。すなわち、本実施形態に係る多層プリント配線板の製造方法は、工程(p)、工程(q)、工程(r)、工程(a)、工程(b)及び工程(c)を有していてもよい。以下、工程(p)〜(r)について説明する。   Here, the inner layer circuit board 11 can also be manufactured by steps (p) to (r) shown in FIG. FIG. 2 is a diagram schematically showing a manufacturing process of the inner layer circuit board. That is, the method for manufacturing a multilayer printed wiring board according to the present embodiment includes a step (p), a step (q), a step (r), a step (a), a step (b), and a step (c). Also good. Hereinafter, steps (p) to (r) will be described.

まず、図2の(p)に示すように、工程(p)では、コア基板41及びプリプレグ42を積層する。コア基板としては、例えば、ガラスエポキシ基板、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等を使用できる。プリプレグとしては、例えば、日立化成株式会社製「GWA−900G」、「GWA−910G」、「GHA−679G」、「GHA−679G(S)」、「GZA−71G」、「GEA−75G」(いずれも商品名)等を使用することができる。   First, as shown in FIG. 2P, in the step (p), the core substrate 41 and the prepreg 42 are laminated. As the core substrate, for example, a glass epoxy substrate, a metal substrate, a polyester substrate, a polyimide substrate, a BT resin substrate, a thermosetting polyphenylene ether substrate, or the like can be used. As the prepreg, for example, “GWA-900G”, “GWA-910G”, “GHA-679G”, “GHA-679G (S)”, “GZA-71G”, “GEA-75G” (manufactured by Hitachi Chemical Co., Ltd.) In either case, the trade name) can be used.

次に、図2の(q)に示すように、工程(q)では、工程(p)で得られたコア基板41及びプリプレグ42の積層体を加熱加圧する。加熱する温度は、特に限定されないが、120〜230℃が好ましく、150〜210℃がより好ましい。また、加圧する圧力は、特に限定されないが、1〜5MPaが好ましく、2〜4MPaがより好ましい。加熱時間は特に限定されないが30〜120分が好ましい。これにより、誘電特性、高温多湿下での機械的、電気的接続信頼性に優れた内層回路基板を得ることができる。   Next, as shown in FIG. 2 (q), in the step (q), the laminated body of the core substrate 41 and the prepreg 42 obtained in the step (p) is heated and pressurized. Although the temperature to heat is not specifically limited, 120-230 degreeC is preferable and 150-210 degreeC is more preferable. Moreover, the pressure to pressurize is not particularly limited, but is preferably 1 to 5 MPa, and more preferably 2 to 4 MPa. The heating time is not particularly limited but is preferably 30 to 120 minutes. As a result, it is possible to obtain an inner layer circuit board having excellent dielectric characteristics, mechanical and electrical connection reliability under high temperature and high humidity.

さらに、図2の(r)に示すように、工程(r)では、必要に応じて内層回路基板にスルーホール43を形成する。スルーホール43の形成方法は特に限定されず、上述するアンテナ回路層を形成する工程と同一であってもよいし、公知の方法を用いてもよい。   Further, as shown in FIG. 2 (r), in the step (r), through holes 43 are formed in the inner layer circuit board as necessary. The formation method of the through hole 43 is not particularly limited, and may be the same as the step of forming the antenna circuit layer described above, or a known method may be used.

上記の工程により、本実施形態の多層プリント配線板を製造できる。また、上記工程を経て製造されたプリント配線板を内層回路基板として更に工程(a)〜(c)を繰り返してもよい。   The multilayer printed wiring board of this embodiment can be manufactured by the above steps. Moreover, you may repeat process (a)-(c) further by making the printed wiring board manufactured through the said process into an inner layer circuit board.

図3は、図1に示す工程により製造された多層プリント配線板を内層回路基板として用いた多層プリント配線板の製造工程を模式的に示す図である。図3の(a)と図1の(a)が、図3の(b)と図1の(b)が、図3の(c)と図1の(c)が、それぞれ対応する。   FIG. 3 is a diagram schematically showing a manufacturing process of a multilayer printed wiring board using the multilayer printed wiring board manufactured by the process shown in FIG. 1 as an inner layer circuit board. FIG. 3A corresponds to FIG. 1A, FIG. 3B corresponds to FIG. 1B, and FIG. 3C corresponds to FIG. 1C.

具体的には、図3の(a)は、内層回路基板21に樹脂フィルム22を積層して樹脂層22sを形成し、必要に応じて金属箔23を樹脂フィルム22に積層して金属層23aを形成する工程である。図3の(b)は、樹脂層22aを加熱・加圧して硬化する工程であり、図3の(c)は硬化した樹脂層上にアンテナ回路層24を形成する工程である。   Specifically, in FIG. 3A, a resin film 22 is laminated on the inner circuit board 21 to form a resin layer 22s, and a metal foil 23 is laminated on the resin film 22 as necessary to form a metal layer 23a. Is a step of forming. 3B is a step of curing the resin layer 22a by heating and pressing, and FIG. 3C is a step of forming the antenna circuit layer 24 on the cured resin layer.

図1及び図3では、アンテナ回路パターン等を形成する目的で内層回路基板上に積層する樹脂層の層数を1層又は2層としたが、これに限定されず、アンテナ回路設計に応じて3層又はそれ以上の層数としてもよい。アンテナ回路層を多層とすることで、広帯域特性を有するアンテナ及び使用周波数帯域でアンテナ放射パターンの角度変化が少ない(ビームチルトレス)アンテナの設計が容易となる。   1 and 3, the number of resin layers laminated on the inner circuit board is one or two for the purpose of forming an antenna circuit pattern or the like. However, the number of resin layers is not limited to this. The number of layers may be three or more. By making the antenna circuit layer multi-layered, it becomes easy to design an antenna having a wide band characteristic and an antenna in which the angle change of the antenna radiation pattern is small (beam tiltless) in the used frequency band.

本実施形態に係る多層プリント配線板の製造方法では、(A)成分及び(B)成分を含有する樹脂フィルムを用いて樹脂層を形成しているため、高周波特性に優れる層の他に接着層を設けずに積層体を作製することができる。これにより、工程の簡略化及び更なる高周波特性の向上効果が得られる。   In the method for producing a multilayer printed wiring board according to the present embodiment, since the resin layer is formed using the resin film containing the component (A) and the component (B), an adhesive layer in addition to the layer having excellent high frequency characteristics. A laminated body can be manufactured without providing. Thereby, the simplification of a process and the further improvement effect of a high frequency characteristic are acquired.

上記のような本実施形態に係る樹脂組成物、樹脂フィルム、プリプレグ、積層板及び多層プリント配線板は、1GHz以上の高周波信号を扱う電子機器に好適に用いることができ、特に10GHz以上の高周波信号を扱う電子機器に好適に用いることができる。   The resin composition, resin film, prepreg, laminate, and multilayer printed wiring board according to the present embodiment as described above can be suitably used for electronic devices that handle high-frequency signals of 1 GHz or higher, particularly high-frequency signals of 10 GHz or higher. It can be suitably used for electronic equipment that handles.

以上、本発明の好適な実施形態を説明したが、これらは本発明の説明のための例示であり、本発明の範囲をこれらの実施形態にのみ限定する趣旨ではない。本発明は、その要旨を逸脱しない範囲で、上記実施形態とは異なる種々の態様で実施することができる。   The preferred embodiments of the present invention have been described above, but these are examples for explaining the present invention, and the scope of the present invention is not intended to be limited to these embodiments. The present invention can be implemented in various modes different from the above-described embodiments without departing from the gist thereof.

以下、実施例及び比較例に基づいて、本発明を更に詳細に説明する。ただし、本発明は以下の実施例に限定されない。   Hereinafter, the present invention will be described in more detail based on examples and comparative examples. However, the present invention is not limited to the following examples.

[樹脂組成物の調製]
下記手順に従って、各種の樹脂組成物を調製した。実施例1〜8、参考例1〜4及び比較例1〜4の樹脂組成物の調製に用いた各原材料の使用量(質量部)は、表1及び表2にまとめて示す。
[Preparation of resin composition]
Various resin compositions were prepared according to the following procedures. Tables 1 and 2 collectively show the amounts (parts by mass) of the raw materials used in the preparation of the resin compositions of Examples 1 to 8, Reference Examples 1 to 4 and Comparative Examples 1 to 4.

温度計、還流冷却管及び攪拌装置を備えた300mLの4つ口フラスコに、表1又は2に示す各成分を投入し、25℃で1時間攪拌した後、#200ナイロンメッシュ(開口75μm)によりろ過して樹脂組成物を得た。   Each component shown in Table 1 or 2 was put into a 300 mL four-necked flask equipped with a thermometer, a reflux condenser, and a stirrer, stirred at 25 ° C. for 1 hour, and then # 200 nylon mesh (opening 75 μm). Filtration gave a resin composition.

なお、表1及び2における各材料の略号等は、以下のとおりである。
(1)BMI−1500[Mw:約1500、Designer Molecules Inc.製、商品名]
(2)BMI−1700[Mw:約1700、Designer Molecules Inc.製、商品名]
(3)BMI−3000[Mw:約3000、Designer Molecules Inc.製、商品名]
(4)BMI−5000[Mw:約5000、Designer Molecules Inc.製、商品名]
(5)BMI−1000[ビス(4−マレイミドフェニル]メタン、大和化成工業株式会社製、商品名)
(6)BMI−4000[2,2−ビス(4−(4−マレイミドフェノキシ)フェニル)プロパン、大和化成工業株式会社製、商品名]
(7)BMI−2300[ポリフェニルメタンマレイミド、大和化成工業株式会社製、商品名]
(8)MIR−3000[ビフェニルアラルキル型マレイミド、日本化薬株式会社製、商品名]
(9)B−3000[ブタジエンホモポリマー、Mn:約3000、日本曹達株式会社製、商品名]
(10)PPO640[ポリフェニレンエーテル、Mn:約16000、SABICイノベーティブプラスチックス社製、商品名]
(11)NC−3000H[ビフェニルアラルキル型エポキシ樹脂、日本化薬株式会社製、商品名]
(12)BADCY[2,2−ビス(4−シアナトフェニル)プロパン、ロンザ社製、商品名]
(13)KA1165[ノボラック型フェノール樹脂、DIC株式会社製、商品名]
(14)PCP[p−クミルフェノール、和光純薬工業株式会社製、商品名]
(15)H1041[Mn6万未満のスチレン−ブタジエン共重合体の水素添加物、スチレン含有比率:30%、Mn:58000、旭化成ケミカルズ株式会社製、商品名「タフテックH1041」]
(16)シリカスラリー[球状溶融シリカ、表面処理:フェニルアミノシランカップリング剤(1質量%/スラリー中の全固形分)、分散媒:メチルイソブチルケトン(MIBK)、固形分濃度:70質量%、平均粒子径:0.5μm、密度:2.2g/cm、株式会社アドマテックス製、商品名「SC−2050KNK」]
(17)パーヘキシン25B[2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、日油株式会社製、商品名]
(18)2E4MZ[2−エチル−4−メチル−イミダゾール、四国化成工業株式会社製、商品名]
(19)ナフテン酸亜鉛[東京化成工業株式会社製]
In addition, the symbol of each material in Tables 1 and 2 is as follows.
(1) BMI-1500 [Mw: about 1500, Designer Molecules Inc. Product name
(2) BMI-1700 [Mw: about 1700, Designer Moleculars Inc. Product name
(3) BMI-3000 [Mw: about 3000, Designer Moleculars Inc. Product name
(4) BMI-5000 [Mw: about 5000, Designer Moleculars Inc. Product name
(5) BMI-1000 [bis (4-maleimidophenyl] methane, manufactured by Daiwa Kasei Kogyo Co., Ltd., trade name)
(6) BMI-4000 [2,2-bis (4- (4-maleimidophenoxy) phenyl) propane, manufactured by Daiwa Kasei Kogyo Co., Ltd., trade name]
(7) BMI-2300 [polyphenylmethanemaleimide, manufactured by Daiwa Kasei Kogyo Co., Ltd., trade name]
(8) MIR-3000 [biphenyl aralkyl type maleimide, manufactured by Nippon Kayaku Co., Ltd., trade name]
(9) B-3000 [Butadiene homopolymer, Mn: about 3000, manufactured by Nippon Soda Co., Ltd., trade name]
(10) PPO640 [polyphenylene ether, Mn: about 16000, manufactured by SABIC Innovative Plastics, trade name]
(11) NC-3000H [Biphenyl aralkyl type epoxy resin, Nippon Kayaku Co., Ltd., trade name]
(12) BADCY [2,2-bis (4-cyanatophenyl) propane, manufactured by Lonza, trade name]
(13) KA1165 [Novolac type phenolic resin, manufactured by DIC Corporation, trade name]
(14) PCP [p-cumylphenol, Wako Pure Chemical Industries, Ltd., trade name]
(15) H1041 [hydrogenated product of styrene-butadiene copolymer having a Mn of less than 60,000, styrene content ratio: 30%, Mn: 58000, manufactured by Asahi Kasei Chemicals Corporation, trade name “Tuftec H1041”]
(16) Silica slurry [spherical fused silica, surface treatment: phenylaminosilane coupling agent (1 mass% / total solid content in slurry), dispersion medium: methyl isobutyl ketone (MIBK), solid content concentration: 70 mass%, average Particle size: 0.5 μm, density: 2.2 g / cm 3 , manufactured by Admatechs Co., Ltd., trade name “SC-2050KNK”]
(17) Perhexine 25B [2,5-dimethyl-2,5-di (t-butylperoxy) hexane, manufactured by NOF Corporation, trade name]
(18) 2E4MZ [2-ethyl-4-methyl-imidazole, manufactured by Shikoku Kasei Kogyo Co., Ltd., trade name]
(19) Zinc naphthenate [Tokyo Chemical Industry Co., Ltd.]

Figure 2016204639
Figure 2016204639

Figure 2016204639
Figure 2016204639

なお、上記(A)成分として用いた化合物の推定される構造は以下のとおりである。下記式(XII−1)〜(XII−3)がそれぞれ上記(1)〜(3)に対応し、(4)は式(XII−3)の構造を有し、(3)よりも大きな重量平均分子量を持つ。式(XII−1)〜(XII−3)において、nは1〜10の整数を表す。   In addition, the presumed structure of the compound used as said (A) component is as follows. The following formulas (XII-1) to (XII-3) correspond to the above (1) to (3), respectively, (4) has the structure of the formula (XII-3), and has a weight larger than (3) Has an average molecular weight. In formulas (XII-1) to (XII-3), n represents an integer of 1 to 10.

Figure 2016204639
Figure 2016204639

Figure 2016204639
Figure 2016204639

Figure 2016204639
Figure 2016204639

[半硬化状態の樹脂層を備える樹脂フィルムの作製]
実施例、参考例及び比較例で得られた樹脂組成物を、コンマコーターを用いて、支持基材として厚さ38μmのPETフィルム(G2−38、帝人株式会社製)上に塗工し(乾燥温度:130℃)、半硬化状態の樹脂層を備えるPETフィルム付き半硬化樹脂フィルムを作製した。半硬化樹脂フィルム(樹脂層)の厚さは50μmであった。
[Production of resin film having semi-cured resin layer]
The resin compositions obtained in Examples, Reference Examples and Comparative Examples were coated on a PET film (G2-38, manufactured by Teijin Ltd.) having a thickness of 38 μm as a supporting substrate using a comma coater (drying). Temperature: 130 ° C.), a semi-cured resin film with a PET film provided with a semi-cured resin layer was produced. The thickness of the semi-cured resin film (resin layer) was 50 μm.

[樹脂フィルムの評価]
実施例1〜8、参考例1〜4及び比較例1〜4の半硬化樹脂フィルムの外観及び取扱性を評価した。結果を表3及び表4に示す。
[Evaluation of resin film]
The appearance and handleability of the semi-cured resin films of Examples 1 to 8, Reference Examples 1 to 4 and Comparative Examples 1 to 4 were evaluated. The results are shown in Tables 3 and 4.

外観は目視により下記の基準で評価した。
○:半硬化樹脂フィルムの表面にムラ、スジ等がない。
×:半硬化樹脂フィルムの表面に多少なりともムラ、スジ等があり、表面平滑性に欠ける。
The appearance was evaluated visually according to the following criteria.
○: There is no unevenness, streaks, etc. on the surface of the semi-cured resin film.
X: The surface of the semi-cured resin film is somewhat uneven, streaks, and lacks surface smoothness.

取扱性は、目視及び触感により下記の基準で評価した。
(1)25℃における表面のべたつき(タック)の有無。
(2)カッターナイフで切断した際の状態の樹脂割れ又は粉落ちの有無。
○:上記(1)及び(2)のいずれも無い。
×:上記(1)及び(2)のいずれか一方でも有る。
The handleability was evaluated according to the following criteria by visual and tactile sensations.
(1) Presence or absence of tackiness (tack) on the surface at 25 ° C.
(2) Presence or absence of resin cracking or powder falling when cut with a cutter knife.
○: None of the above (1) and (2).
X: It exists in any one of said (1) and (2).

[多層プリント配線板]
上述したPETフィルム付き半硬化樹脂フィルムを用い、以下の手順で多層プリント配線板を作製した。
回路パターンが形成されたガラス布基材エポキシ樹脂銅張積層板を内層回路基板とし、その両面に、PETフィルムを剥離した半硬化樹脂フィルムを1枚乗せ、その上に厚さ12μmの電解銅箔(日本電解株式会社製、商品名「YGP−12」)を配置した後、その上に鏡板を乗せ、200℃/3.0MPa/70分のプレス条件で加熱及び加圧成形して、4層プリント配線板を作製した。
[Multilayer printed wiring board]
Using the above-mentioned semi-cured resin film with a PET film, a multilayer printed wiring board was produced by the following procedure.
A glass cloth base epoxy resin copper clad laminate with a circuit pattern formed thereon is used as an inner layer circuit board, and a semi-cured resin film from which a PET film is peeled is placed on both sides thereof, and an electrolytic copper foil having a thickness of 12 μm is placed thereon. (Nippon Electrolytic Co., Ltd., trade name “YGP-12”) is placed, and then a mirror plate is placed thereon, and heated and pressure-molded under press conditions of 200 ° C./3.0 MPa / 70 minutes to form four layers. A printed wiring board was produced.

次いで、作製された4層プリント配線板の最外層の銅箔をエッチングし、回路埋め込み性(多層化成形性)を評価した。多層化成形性は目視により下記基準で評価した。
○:回路にボイド、カスレが存在しない。
×:ボイド、カスレが多少なりとも存在する。
Subsequently, the copper foil of the outermost layer of the produced four-layer printed wiring board was etched, and circuit embedding property (multilayered formability) was evaluated. The multilayer formability was visually evaluated according to the following criteria.
○: There are no voids or blurs in the circuit.
X: Voids and blurring are present to some extent.

[両面金属張硬化樹脂フィルム]
上述のPETフィルム付き半硬化樹脂フィルムからPETフィルムを剥離した樹脂フィルムを2枚重ねた後、その両面に、厚さ18μmのロープロファイル銅箔(M面Rz:3μm、古河電気工業株式会社製、商品名「F3−WS」)をその粗化面(M面)が接するように配置し、その上に鏡板を乗せ、200℃/3.0MPa/70分のプレス条件で加熱及び加圧成形して、両面金属張硬化樹脂フィルム(厚さ:0.1mm)を作製した。
[Double-sided metal-clad cured resin film]
After stacking two resin films from which the PET film was peeled from the semi-cured resin film with PET film described above, a low profile copper foil (M surface Rz: 3 μm, manufactured by Furukawa Electric Co., Ltd.) (Product name “F3-WS”) is placed so that the roughened surface (M surface) is in contact with it, a mirror plate is placed on it, and it is heated and pressure-molded under press conditions of 200 ° C./3.0 MPa / 70 minutes. Thus, a double-sided metal-clad cured resin film (thickness: 0.1 mm) was produced.

上述の両面金属張硬化樹脂フィルムについて、取扱性(耐折曲げ性)、誘電特性、銅箔引きはがし強さ、はんだ耐熱性、吸水率及び絶縁信頼性を評価した。その評価結果を表3及び表4に示す。両面金属張硬化樹脂フィルムの特性評価方法は以下のとおりである。   About the above-mentioned double-sided metal-clad cured resin film, handleability (bending resistance), dielectric properties, copper foil peeling strength, solder heat resistance, water absorption rate and insulation reliability were evaluated. The evaluation results are shown in Tables 3 and 4. The characteristic evaluation method of the double-sided metal-clad cured resin film is as follows.

[耐折曲げ性]
耐折曲げ性は、両面金属張硬化樹脂フィルムの外層銅箔をエッチングしたものを180度折り曲げることにより、下記基準により評価した。
○:折り曲げた際、割れ又はクラックが発生しない。
×:折り曲げた際、割れ又はクラックが多少なりとも発生する。
[Bending resistance]
Bending resistance was evaluated according to the following criteria by bending 180 ° of the outer layer copper foil of the double-sided metal-clad cured resin film.
○: No cracking or cracking occurs when bent.
X: When bent, some cracks or cracks occur.

[誘電特性]
誘電特性である比誘電率及び誘電正接は、両面金属張硬化樹脂フィルムの外層銅箔をエッチングし、長さ60mm、幅2mm、厚み約1mmに切断したものを試験片として空洞共振器摂動法により測定した。測定器にはアジレントテクノロジー社製ベクトル型ネットワークアナライザE8364B、空洞共振器には株式会社関東電子応用開発製CP129(10GHz帯共振器)及びCP137(20GHz帯共振器)、測定プログラムにはCPMA−V2をそれぞれ使用した。条件は、周波数10GHz及び20GHz、測定温度25℃とした。
[Dielectric properties]
The dielectric constant and dielectric loss tangent, which are dielectric properties, are obtained by etching the outer layer copper foil of a double-sided metal-clad cured resin film and cutting it into a length of 60 mm, a width of 2 mm, and a thickness of about 1 mm by a cavity resonator perturbation method. It was measured. Vector type network analyzer E8364B manufactured by Agilent Technologies Co., Ltd., CP129 (10 GHz band resonator) and CP137 (20 GHz band resonator) manufactured by Kanto Electronics Application Co., Ltd., and CPMA-V2 for the measurement program. Each was used. The conditions were frequencies of 10 GHz and 20 GHz, and a measurement temperature of 25 ° C.

[銅箔引きはがし強さ]
銅箔引きはがし強さは、銅張積層板試験規格JIS−C−6481に準拠して測定した。測定温度は25℃とした。
[Copper foil peeling strength]
The copper foil peeling strength was measured in accordance with the copper clad laminate test standard JIS-C-6481. The measurement temperature was 25 ° C.

[はんだ耐熱性]
はんだ耐熱性は、両面金属張硬化樹脂フィルムの片側の銅箔をエッチングし、50mm角に切断したものを試験片として、その常態及びプレッシャークッカーテスト(PCT)装置(条件:121℃、2.2気圧)において、所定時間(1、3、5時間)処理した後のものを288℃の溶融はんだ上に20秒間フロートし、処理時間が異なる硬化樹脂フィルムのそれぞれの外観を下記基準により目視で評価した。同一の処理時間について3枚の試験片の評価を行い、下記基準で○であったものの枚数を表3及び表4に示す。なお、表3及び表4においては、1時間の処理を行ったものをPCT−1hと表記し、3時間の処理を行ったものをPCT−3hと表記し、5時間の処理を行ったものをPCT−5hと表記する。
○:フィルム内部及びフィルムと銅箔間に膨れ又はミーズリングの発生が認められない。
×:フィルム内部及びフィルムと銅箔間に膨れ又はミーズリングの発生が見られる。
[Solder heat resistance]
Solder heat resistance is determined by etching a copper foil on one side of a double-sided metal-clad cured resin film and cutting it into 50 mm squares, using the test pieces as normal and pressure cooker test (PCT) equipment (conditions: 121 ° C., 2.2 At atmospheric pressure), after processing for a predetermined time (1, 3, 5 hours), float on molten solder at 288 ° C. for 20 seconds, and visually evaluate the appearance of each cured resin film with different processing times according to the following criteria did. Three test pieces were evaluated for the same processing time, and the number of samples that were ○ according to the following criteria is shown in Tables 3 and 4. In Tables 3 and 4, what was processed for 1 hour was expressed as PCT-1h, and what was processed for 3 hours was expressed as PCT-3h and processed for 5 hours Is represented as PCT-5h.
○: No occurrence of swelling or measling inside the film or between the film and the copper foil.
X: Generation | occurrence | production of the swelling or mead ring in the film inside and between a film and copper foil is seen.

[吸水率]
吸水率は、両面金属張硬化樹脂フィルムの両面の銅箔をエッチングし、50mm角に切断したものを試験片として、その常態及びプレッシャークッカーテスト(PCT)装置(条件:121℃、2.2気圧)中に所定時間(5時間)処理し、処理前後の質量を測定することで、処理前後の増加割合(重量%)を算出した。
[Water absorption rate]
The water absorption is determined by etching the copper foils on both sides of the double-sided metal-clad cured resin film and cutting them into 50 mm squares, using the test pieces as normal and pressure cooker test (PCT) equipment (conditions: 121 ° C., 2.2 atm. ) Was measured for a predetermined time (5 hours), and the mass before and after the treatment was measured to calculate the increase rate (% by weight) before and after the treatment.

[熱膨張係数(CTE)]
熱膨張係数(板厚方向)は、両面金属張硬化樹脂フィルムの両面の銅箔をエッチングし、5mm角に切断したものを試験片として、熱機械分析装置TMA(TAインスツルメント社製、Q400)(温度範囲:30〜150℃、荷重:5g)により、IPC規格(IPC−TM−650 2.4.24)に準拠して測定した。
[Coefficient of thermal expansion (CTE)]
The coefficient of thermal expansion (in the plate thickness direction) was determined by etching a copper foil on both sides of a double-sided metal-clad cured resin film and cutting it into 5 mm squares, using a test piece as a thermomechanical analyzer TMA (TA Instruments, Q400 ) (Temperature range: 30 to 150 ° C., load: 5 g), and measured according to the IPC standard (IPC-TM-650 2.4.24).

Figure 2016204639
Figure 2016204639

Figure 2016204639
Figure 2016204639

表3に示した結果から明らかなように、実施例1〜8の半硬化樹脂フィルムによれば、外観性(表面均一性)、取扱性(タック性、割れ、粉落ち等)に問題がなく、多層化成形性も良好であることが確認された。
加えて、実施例1〜8の半硬化樹脂フィルムを用いて作製した硬化樹脂フィルムは、いずれも比誘電率、誘電正接がともに優れており、熱膨張特性、はんだ耐熱性、銅箔引きはがし強さ及び吸水率に関しても優れていた。
As is apparent from the results shown in Table 3, according to the semi-cured resin films of Examples 1 to 8, there are no problems in appearance (surface uniformity) and handleability (tackiness, cracking, powder falling, etc.). Further, it was confirmed that the multilayer formability was also good.
In addition, the cured resin films produced using the semi-cured resin films of Examples 1 to 8 are both excellent in relative dielectric constant and dielectric loss tangent, and have high thermal expansion characteristics, solder heat resistance, and copper foil peeling strength. The thickness and water absorption were also excellent.

また、(A)成分と(B)成分とを併用した場合(実施例1〜8)、(A)成分を単独で使用した場合(参考例1〜4)よりも、更に低熱膨張係数を達成できた。   Further, when the component (A) and the component (B) are used in combination (Examples 1 to 8), the case where the component (A) is used alone (Reference Examples 1 to 4) achieves a lower thermal expansion coefficient. did it.

本発明の樹脂組成物はプリント配線板に要求される各種特性及び優れた高周波特性を発現するため、1GHz以上又は10GHz以上の高周波信号を扱う電子機器、移動体通信機器及びその基地局装置、サーバー、ルーター等のネットワーク関連電子機器、大型コンピュータ等の各種電子機器などに使用されるプリント配線板の部材・部品用途として有用である。   Since the resin composition of the present invention expresses various characteristics required for printed wiring boards and excellent high-frequency characteristics, an electronic device, a mobile communication device, a base station device, and a server that handle high-frequency signals of 1 GHz or more or 10 GHz or more It is useful as a member / part for printed wiring boards used in network-related electronic devices such as routers and various electronic devices such as large computers.

11,21…内層回路基板、12,22…樹脂フィルム、12a,22a…樹脂層、13,23…金属箔、13a,23a…金属層、14,24…アンテナ回路層、15…ビアホール、42…プリプレグ、41…コア基板、43…スルーホール。   11, 21 ... inner layer circuit board, 12, 22 ... resin film, 12a, 22a ... resin layer, 13, 23 ... metal foil, 13a, 23a ... metal layer, 14, 24 ... antenna circuit layer, 15 ... via hole, 42 ... Prepreg, 41 ... core substrate, 43 ... through hole.

Claims (10)

(A)飽和又は不飽和の2価の炭化水素基を有するマレイミド化合物と、(B)芳香族マレイミド化合物と、を含有する樹脂組成物。   (A) A resin composition containing a maleimide compound having a saturated or unsaturated divalent hydrocarbon group and (B) an aromatic maleimide compound. 前記(B)芳香族マレイミド化合物が、マレイミド基が芳香環に結合した構造を有する、請求項1に記載の樹脂組成物。   The resin composition according to claim 1, wherein the (B) aromatic maleimide compound has a structure in which a maleimide group is bonded to an aromatic ring. 前記飽和又は不飽和の2価の炭化水素基の炭素数が8〜100である、請求項1又は2に記載の樹脂組成物。   The resin composition according to claim 1 or 2, wherein the saturated or unsaturated divalent hydrocarbon group has 8 to 100 carbon atoms. 前記飽和又は不飽和の2価の炭化水素基が下記式(II)で表される基である、請求項1又は2に記載の樹脂組成物。
Figure 2016204639

[式(II)中、R及びRは各々独立に炭素数4〜50のアルキレン基を示し、Rは炭素数4〜50のアルキル基を示し、Rは炭素数2〜50のアルキル基を示す。]
The resin composition according to claim 1 or 2, wherein the saturated or unsaturated divalent hydrocarbon group is a group represented by the following formula (II).
Figure 2016204639

[In formula (II), R 2 and R 3 each independently represents an alkylene group having 4 to 50 carbon atoms, R 4 represents an alkyl group having 4 to 50 carbon atoms, and R 5 represents an alkyl group having 2 to 50 carbon atoms. An alkyl group is shown. ]
前記(A)飽和又は不飽和の2価の炭化水素基を有するマレイミド化合物が、少なくとも2つのイミド結合を有する2価の基を更に有する、請求項1〜4のいずれか一項に記載の樹脂組成物。   The resin according to any one of claims 1 to 4, wherein the maleimide compound (A) having a saturated or unsaturated divalent hydrocarbon group further has a divalent group having at least two imide bonds. Composition. 前記少なくとも2つのイミド結合を有する2価の基が、下記式(I)で表される基である、請求項5に記載の樹脂組成物。
Figure 2016204639

[式(I)中、Rは4価の有機基を示す。]
The resin composition according to claim 5, wherein the divalent group having at least two imide bonds is a group represented by the following formula (I).
Figure 2016204639

[In Formula (I), R 1 represents a tetravalent organic group. ]
前記(B)芳香族マレイミド化合物が下記式(VI)で表される化合物である、請求項1〜6のいずれか一項に記載の樹脂組成物。
Figure 2016204639

[式(VI)中、Aは下記式(VII)、(VIII)、(IX)又は(X)で表される残基を示し、Aは下記式(XI)で表される残基を示す。]
Figure 2016204639

[式(VII)中、R10は各々独立に、水素原子、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子を示す。]
Figure 2016204639

[式(VIII)中、R11及びR12は各々独立に、水素原子、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子を示し、Aは炭素数1〜5のアルキレン基若しくはアルキリデン基、エーテル基、スルフィド基、スルホニル基、ケトン基、単結合又は下記式(VIII−1)で表される残基を示す。]
Figure 2016204639

[式(VIII−1)中、R13及びR14は各々独立に、水素原子、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子を示し、Aは炭素数1〜5のアルキレン基、イソプロピリデン基、エーテル基、スルフィド基、スルホニル基、ケトン基又は単結合を示す。]
Figure 2016204639

[式(IX)中、iは1〜10の整数である。]
Figure 2016204639

[式(X)中、R15及びR16は各々独立に、水素原子又は炭素数1〜5の脂肪族炭化水素基を示し、jは1〜8の整数である。]
Figure 2016204639

[式(XI)中、R17及びR18は各々独立に、水素原子、炭素数1〜5の脂肪族炭化水素基、炭素数1〜5のアルコキシ基、水酸基又はハロゲン原子を示し、Aは炭素数1〜5のアルキレン基若しくはアルキリデン基、エーテル基、スルフィド基、スルホニル基、ケトン基、フルオレニレン基、単結合、下記式(XI−1)で表される残基又は下記式(XI−2)で表される残基を示す。]
Figure 2016204639

[式(XI−1)中、R19及びR20は各々独立に、水素原子、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子を示し、Aは炭素数1〜5のアルキレン基、イソプロピリデン基、m−フェニレンジイソプロピリデン基、p−フェニレンジイソプロピリデン基、エーテル基、スルフィド基、スルホニル基、ケトン基又は単結合を示す。]
Figure 2016204639

[式(XI−2)中、R21は各々独立に、水素原子、炭素数1〜5の脂肪族炭化水素基又はハロゲン原子を示し、A10及びA11は各々独立に、炭素数1〜5のアルキレン基、イソプロピリデン基、エーテル基、スルフィド基、スルホニル基、ケトン基又は単結合を示す。]
The resin composition as described in any one of Claims 1-6 whose said (B) aromatic maleimide compound is a compound represented by following formula (VI).
Figure 2016204639

[In the formula (VI), A 4 represents a residue represented by the following formula (VII), (VIII), (IX) or (X), and A 5 represents a residue represented by the following formula (XI). Indicates. ]
Figure 2016204639

[In Formula (VII), each R 10 independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms, or a halogen atom. ]
Figure 2016204639

[In Formula (VIII), R 11 and R 12 each independently represent a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom, and A 6 represents an alkylene group or alkylidene having 1 to 5 carbon atoms. A group, an ether group, a sulfide group, a sulfonyl group, a ketone group, a single bond or a residue represented by the following formula (VIII-1); ]
Figure 2016204639

[In Formula (VIII-1), R 13 and R 14 each independently represent a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom, and A 7 represents an alkylene group having 1 to 5 carbon atoms. , An isopropylidene group, an ether group, a sulfide group, a sulfonyl group, a ketone group or a single bond. ]
Figure 2016204639

[In formula (IX), i is an integer of 1-10. ]
Figure 2016204639

[In Formula (X), R 15 and R 16 each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 5 carbon atoms, and j is an integer of 1 to 8. ]
Figure 2016204639

Wherein (XI), each independently R 17 and R 18 represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a hydroxyl group or a halogen atom, A 8 Is an alkylene group having 1 to 5 carbon atoms or an alkylidene group, an ether group, a sulfide group, a sulfonyl group, a ketone group, a fluorenylene group, a single bond, a residue represented by the following formula (XI-1), or the following formula (XI- The residue represented by 2) is shown. ]
Figure 2016204639

[In Formula (XI-1), R 19 and R 20 each independently represent a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom, and A 9 represents an alkylene group having 1 to 5 carbon atoms. , Isopropylidene group, m-phenylene diisopropylidene group, p-phenylene diisopropylidene group, ether group, sulfide group, sulfonyl group, ketone group or single bond. ]
Figure 2016204639

[In formula (XI-2), each R 21 independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom, and A 10 and A 11 each independently represent 1 to 5 shows an alkylene group, isopropylidene group, ether group, sulfide group, sulfonyl group, ketone group or single bond. ]
前記(A)飽和又は不飽和の2価の炭化水素基を有するマレイミド化合物の重量平均分子量が、500〜10000である、請求項1〜7のいずれか一項に記載の樹脂組成物。   The resin composition according to any one of claims 1 to 7, wherein the (A) maleimide compound having a saturated or unsaturated divalent hydrocarbon group has a weight average molecular weight of 500 to 10,000. 請求項1〜8のいずれか一項に記載の樹脂組成物の硬化物を含む樹脂層と、導体層とを有する、積層板。   The laminated board which has a resin layer containing the hardened | cured material of the resin composition as described in any one of Claims 1-8, and a conductor layer. 請求項1〜8のいずれか一項に記載の樹脂組成物の硬化物を含む樹脂層と、回路層とを備える、多層プリント配線板。   A multilayer printed wiring board comprising a resin layer containing a cured product of the resin composition according to claim 1 and a circuit layer.
JP2016076615A 2015-04-17 2016-04-06 Resin composition, laminated board and multi-layer printed wiring board Active JP6922157B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015084633 2015-04-17
JP2015084633 2015-04-17

Publications (2)

Publication Number Publication Date
JP2016204639A true JP2016204639A (en) 2016-12-08
JP6922157B2 JP6922157B2 (en) 2021-08-18

Family

ID=57488937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016076615A Active JP6922157B2 (en) 2015-04-17 2016-04-06 Resin composition, laminated board and multi-layer printed wiring board

Country Status (1)

Country Link
JP (1) JP6922157B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016489A1 (en) * 2016-07-19 2018-01-25 日立化成株式会社 Resin composition, laminate sheet, and multilayer printed wiring board
JP2019108516A (en) * 2017-12-15 2019-07-04 住友ベークライト株式会社 Thermosetting resin composition, and cured product thereof, prepreg, laminate, metal base substrate and power module
WO2019188189A1 (en) * 2018-03-28 2019-10-03 パナソニックIpマネジメント株式会社 Resin composition, and prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board each obtained using said resin composition
WO2019188187A1 (en) * 2018-03-28 2019-10-03 パナソニックIpマネジメント株式会社 Resin composition, and prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board each obtained using said resin composition
JP2019194281A (en) * 2018-05-01 2019-11-07 日立化成株式会社 Resin composition, resin film, metal-clad laminate, printed wiring board and semiconductor package
JP2020132880A (en) * 2019-02-18 2020-08-31 積水化学工業株式会社 Resin material and multilayer printed wiring board
JP2021070160A (en) * 2019-10-29 2021-05-06 昭和電工マテリアルズ株式会社 Fluorine resin substrate laminate
JP2021187893A (en) * 2020-05-26 2021-12-13 味の素株式会社 Resin composition
WO2022102781A1 (en) * 2020-11-16 2022-05-19 昭和電工マテリアルズ株式会社 Maleimide resin composition, prepreg, laminated board, resin film, printed wiring board, and semiconductor package
WO2023276379A1 (en) * 2021-06-29 2023-01-05 株式会社プリンテック Resin composition, varnish, laminated plate, printed wiring board, and molded product
JP7515988B2 (en) 2021-07-27 2024-07-16 信越化学工業株式会社 Thermosetting citraconimide resin composition
JP7533555B2 (en) 2018-12-03 2024-08-14 味の素株式会社 Resin composition
JP7567304B2 (en) 2020-09-15 2024-10-16 株式会社レゾナック Fluororesin substrate laminate
US12122129B2 (en) 2018-03-28 2024-10-22 Panasonic Intellectual Property Management Co., Ltd. Resin composition, and prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board each obtained using said resin composition
WO2024225152A1 (en) * 2023-04-26 2024-10-31 三菱瓦斯化学株式会社 Resin composition, cured product, prepreg, metal-foil-clad laminate, resin composite sheet, printed wiring board, and semiconductor device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57167324A (en) * 1981-04-10 1982-10-15 Mitsui Toatsu Chem Inc Curable resin composition
JPS58132010A (en) * 1982-02-01 1983-08-06 Mitsui Toatsu Chem Inc Thermosetting resin composition
US4608426A (en) * 1985-01-29 1986-08-26 American Cyanamid Company Bis-maleimide resin composition
JPH01167316A (en) * 1987-11-25 1989-07-03 Texaco Dev Corp Novel bismaleimide derivative
JP2011162631A (en) * 2010-02-08 2011-08-25 Mitsubishi Rayon Co Ltd Resin composition and prepreg and fiber-reinforced composite material using the same
JP2012197372A (en) * 2011-03-22 2012-10-18 Mitsubishi Plastics Inc Polymaleimide-based composition
WO2014181456A1 (en) * 2013-05-10 2014-11-13 株式会社 日立製作所 Insulating composition, cured product and insulated wire using same
JP2016196549A (en) * 2015-04-03 2016-11-24 住友ベークライト株式会社 Resin composition for printed wiring board, prepreg, resin substrate, metal clad laminated board, printed wiring board, and semiconductor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57167324A (en) * 1981-04-10 1982-10-15 Mitsui Toatsu Chem Inc Curable resin composition
JPS58132010A (en) * 1982-02-01 1983-08-06 Mitsui Toatsu Chem Inc Thermosetting resin composition
US4608426A (en) * 1985-01-29 1986-08-26 American Cyanamid Company Bis-maleimide resin composition
JPH01167316A (en) * 1987-11-25 1989-07-03 Texaco Dev Corp Novel bismaleimide derivative
JP2011162631A (en) * 2010-02-08 2011-08-25 Mitsubishi Rayon Co Ltd Resin composition and prepreg and fiber-reinforced composite material using the same
JP2012197372A (en) * 2011-03-22 2012-10-18 Mitsubishi Plastics Inc Polymaleimide-based composition
WO2014181456A1 (en) * 2013-05-10 2014-11-13 株式会社 日立製作所 Insulating composition, cured product and insulated wire using same
JP2016196549A (en) * 2015-04-03 2016-11-24 住友ベークライト株式会社 Resin composition for printed wiring board, prepreg, resin substrate, metal clad laminated board, printed wiring board, and semiconductor device

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016489A1 (en) * 2016-07-19 2018-01-25 日立化成株式会社 Resin composition, laminate sheet, and multilayer printed wiring board
JPWO2018016489A1 (en) * 2016-07-19 2019-05-16 日立化成株式会社 Resin composition, laminate and multilayer printed wiring board
JP2022058409A (en) * 2016-07-19 2022-04-12 昭和電工マテリアルズ株式会社 Resin composition, laminate sheet, multilayer printed wiring board, resin film, and prepreg
US11377546B2 (en) 2016-07-19 2022-07-05 Showa Denko Materials Co., Ltd. Resin composition, laminate sheet, and multilayer printed wiring board
JP7468502B2 (en) 2016-07-19 2024-04-16 株式会社レゾナック Resin composition, laminate, multilayer printed wiring board, resin film and prepreg
JP7003918B2 (en) 2016-07-19 2022-01-21 昭和電工マテリアルズ株式会社 Resin composition, laminated board and multi-layer printed wiring board
JP2019108516A (en) * 2017-12-15 2019-07-04 住友ベークライト株式会社 Thermosetting resin composition, and cured product thereof, prepreg, laminate, metal base substrate and power module
WO2019188187A1 (en) * 2018-03-28 2019-10-03 パナソニックIpマネジメント株式会社 Resin composition, and prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board each obtained using said resin composition
JPWO2019188187A1 (en) * 2018-03-28 2021-04-01 パナソニックIpマネジメント株式会社 Resin composition, and prepreg using it, film with resin, metal foil with resin, metal-clad laminate and wiring board
JPWO2019188189A1 (en) * 2018-03-28 2021-04-08 パナソニックIpマネジメント株式会社 Resin composition, and prepreg using it, film with resin, metal foil with resin, metal-clad laminate and wiring board
US20210032424A1 (en) * 2018-03-28 2021-02-04 Panasonic Intellectual Property Management Co., Ltd. Resin composition, and prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board each obtained using said resin composition
US12122129B2 (en) 2018-03-28 2024-10-22 Panasonic Intellectual Property Management Co., Ltd. Resin composition, and prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board each obtained using said resin composition
US11945910B2 (en) 2018-03-28 2024-04-02 Panasonic Intellectual Property Management Co., Ltd. Resin composition, and prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board each obtained using said resin composition
WO2019188189A1 (en) * 2018-03-28 2019-10-03 パナソニックIpマネジメント株式会社 Resin composition, and prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board each obtained using said resin composition
JP7316572B2 (en) 2018-03-28 2023-07-28 パナソニックIpマネジメント株式会社 Resin composition, and prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board using the same
US11365274B2 (en) 2018-03-28 2022-06-21 Panasonic Intellectual Property Management Co., Ltd. Resin composition, and prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board each obtained using said resin composition
JP2019194281A (en) * 2018-05-01 2019-11-07 日立化成株式会社 Resin composition, resin film, metal-clad laminate, printed wiring board and semiconductor package
JP7155595B2 (en) 2018-05-01 2022-10-19 昭和電工マテリアルズ株式会社 Resin compositions, resin films, metal-clad laminates, printed wiring boards and semiconductor packages
JP7533555B2 (en) 2018-12-03 2024-08-14 味の素株式会社 Resin composition
JP7506486B2 (en) 2019-02-18 2024-06-26 積水化学工業株式会社 Resin materials and multilayer printed wiring boards
JP2020132880A (en) * 2019-02-18 2020-08-31 積水化学工業株式会社 Resin material and multilayer printed wiring board
US11745482B2 (en) 2019-10-29 2023-09-05 Resonac Corporation Fluororesin substrate laminate
JP2021070160A (en) * 2019-10-29 2021-05-06 昭和電工マテリアルズ株式会社 Fluorine resin substrate laminate
JP7400627B2 (en) 2020-05-26 2023-12-19 味の素株式会社 resin composition
JP2021187893A (en) * 2020-05-26 2021-12-13 味の素株式会社 Resin composition
JP7567304B2 (en) 2020-09-15 2024-10-16 株式会社レゾナック Fluororesin substrate laminate
US12024624B2 (en) 2020-11-16 2024-07-02 Resonac Corporation Maleimide resin composition, prepreg, laminated board, resin film, printed wiring board, and semiconductor package
WO2022102781A1 (en) * 2020-11-16 2022-05-19 昭和電工マテリアルズ株式会社 Maleimide resin composition, prepreg, laminated board, resin film, printed wiring board, and semiconductor package
WO2023276379A1 (en) * 2021-06-29 2023-01-05 株式会社プリンテック Resin composition, varnish, laminated plate, printed wiring board, and molded product
JP7515988B2 (en) 2021-07-27 2024-07-16 信越化学工業株式会社 Thermosetting citraconimide resin composition
WO2024225152A1 (en) * 2023-04-26 2024-10-31 三菱瓦斯化学株式会社 Resin composition, cured product, prepreg, metal-foil-clad laminate, resin composite sheet, printed wiring board, and semiconductor device

Also Published As

Publication number Publication date
JP6922157B2 (en) 2021-08-18

Similar Documents

Publication Publication Date Title
JP6620844B2 (en) Multilayer printed wiring board and method for manufacturing multilayer printed wiring board
JP6756107B2 (en) Resin film, resin film with support, prepreg, metal-clad laminate for high multilayer and high multilayer printed wiring board
JP6922157B2 (en) Resin composition, laminated board and multi-layer printed wiring board
JP6756108B2 (en) Resin film, resin film with support, prepreg, metal-clad laminate and multi-layer printed wiring board
JP6708947B2 (en) Manufacturing method of resin film for manufacturing printed wiring board for millimeter wave radar
US11339251B2 (en) Resin composition, resin film, laminate, multilayer printed wiring board and method for producing multilayer printed wiring board
WO2017122376A1 (en) Multilayer transmission line plate
JP2022140464A (en) Resin composition, resin-layer provided support, prepreg, laminate sheet, multilayer printed wiring board and printed wiring board for millimeter-wave radar
JP7055994B2 (en) Resin composition, support with resin layer, prepreg, laminated board, multi-layer printed wiring board and printed wiring board for millimeter wave radar
JP7102682B2 (en) Resin composition, support with resin layer, prepreg, laminated board, multilayer printed wiring board and printed wiring board for millimeter wave radar
JP7310944B2 (en) Resin composition, support with resin layer, prepreg, laminate, multilayer printed wiring board, and printed wiring board for millimeter wave radar

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210712

R151 Written notification of patent or utility model registration

Ref document number: 6922157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350