JP2016204172A - Cooling method and production method of single crystal, and single crystal growth apparatus - Google Patents
Cooling method and production method of single crystal, and single crystal growth apparatus Download PDFInfo
- Publication number
- JP2016204172A JP2016204172A JP2015083895A JP2015083895A JP2016204172A JP 2016204172 A JP2016204172 A JP 2016204172A JP 2015083895 A JP2015083895 A JP 2015083895A JP 2015083895 A JP2015083895 A JP 2015083895A JP 2016204172 A JP2016204172 A JP 2016204172A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- raw material
- material melt
- crucible
- solidified
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
本発明は、単結晶の冷却方法及び製造方法、並びに単結晶育成装置に関する。 The present invention relates to a single crystal cooling method and manufacturing method, and a single crystal growing apparatus.
酸化アルミニウム単結晶等の酸化物単結晶は、青色LEDや白色LEDを作製する際のエピタキシャル成長用結晶基板として多く利用されている。これらのLEDは、省エネルギーの観点で照明分野への普及が拡大することが予想されており多方面から注目されている。 An oxide single crystal such as an aluminum oxide single crystal is widely used as a crystal substrate for epitaxial growth when producing a blue LED or a white LED. These LEDs are expected to spread in the lighting field from the viewpoint of energy saving, and are attracting attention from various fields.
上記の酸化物単結晶として良質で大型の単結晶を製造する方法には、チョクラルスキー法(Czochralski−Method)、キロプロス法(Kyropoulos−Method)などの溶融固化法があり工業的に用いられている。特にチョクラルスキー法は汎用性があり、技術的完成度が高いことから最も広く用いられている。 As a method for producing a large single crystal of good quality as the above oxide single crystal, there are melt solidification methods such as the Czochralski method (Czochralski-Method) and the Kiloporos method (Industry), which are industrially used. Yes. In particular, the Czochralski method is most widely used because of its versatility and high technical perfection.
チョクラルスキー法によって酸化物単結晶を製造するには、まず坩堝に酸化物原料を充填し、高周波誘導加熱法や抵抗加熱法により坩堝を加熱し原料を溶融する(例えば、特許文献1)。原料が溶融した後、所定の結晶方位に切り出した種結晶を原料融液表面に接触させ、種結晶を所定の回転速度で回転させながら所定の速度で上方に引き上げて単結晶を成長させる。 In order to produce an oxide single crystal by the Czochralski method, first, an oxide raw material is filled in a crucible, and the raw material is melted by heating the crucible by a high frequency induction heating method or a resistance heating method (for example, Patent Document 1). After the raw material is melted, the seed crystal cut in a predetermined crystal orientation is brought into contact with the surface of the raw material melt, and the single crystal is grown by pulling upward at a predetermined speed while rotating the seed crystal at a predetermined rotation speed.
しかし、酸化物単結晶をチョクラルスキー法で代表される溶融固化法で結晶成長させると、結晶中に小傾角粒界が発生し易い。エピタキシャル成長用結晶基板となるウエハーに粒界が形成されていると、LED特性に悪影響を与えるため、融液固化法により得られた単結晶インゴットから所望のエピタキシャル成長用結晶基板を歩留まり良く得ることが困難である。 However, when an oxide single crystal is crystal-grown by a melt solidification method represented by the Czochralski method, a low-angle grain boundary is likely to be generated in the crystal. If grain boundaries are formed on the wafer serving as the crystal substrate for epitaxial growth, the LED characteristics will be adversely affected, making it difficult to obtain the desired crystal substrate for epitaxial growth from the single crystal ingot obtained by the melt solidification method with high yield. It is.
結晶中に発生する粒界を低減するため、溶融固化法で酸化物単結晶を育成する際、坩堝周囲の断熱材の構成及びルツボとヒーターの位置関係を調節し、単結晶引き上げ軸方向に対する固液界面近傍の温度勾配を大きくすることで、粒界の発生が抑制され、良質な結晶が得られることが知られている。しかしながら、固液界面近傍の温度勾配が大きな状態では、成長した結晶内の応力が大きくなり、内部応力が除去されないまま結晶を冷却した場合、結晶にクラックが発生することがある。また、クラックの無い結晶が得られた場合であっても、エピタキシャル成長用基板に加工する工程において結晶内の残留応力による基板の変形やクラックが発生し、歩留まりを大きく低下させる原因となり得る。 In order to reduce the grain boundary generated in the crystal, when growing the oxide single crystal by the melt solidification method, the composition of the heat insulating material around the crucible and the positional relationship between the crucible and the heater are adjusted, and the solid crystal with respect to the single crystal pulling axis direction is adjusted. It is known that by increasing the temperature gradient in the vicinity of the liquid interface, generation of grain boundaries is suppressed, and high-quality crystals can be obtained. However, when the temperature gradient near the solid-liquid interface is large, the stress in the grown crystal becomes large, and if the crystal is cooled without removing the internal stress, cracks may occur in the crystal. Even when a crystal free of cracks is obtained, the substrate may be deformed or cracked due to residual stress in the crystal during the process of processing into a substrate for epitaxial growth, which may cause a significant decrease in yield.
そのため、結晶内の残留応力の除去方法として、単結晶成長終了時に、炉内温度を低下させながら原料融液が入った坩堝を下降させるとともに、成長済み酸化物単結晶の直胴部が加熱体(側面円筒型ヒーター)の上端より下方となるように保持し、酸化物単結晶の切り離しを行う方法が提案されている(例えば、特許文献2参照)。特許文献2に記載の方法では、加熱ゾーンを設けた結晶育成装置内で、育成終了後に低温度勾配領域に育成結晶を移動させて熱処理を行っている。 Therefore, as a method of removing the residual stress in the crystal, at the end of the single crystal growth, the crucible containing the raw material melt is lowered while the furnace temperature is lowered, and the straight body portion of the grown oxide single crystal is heated. A method has been proposed in which the oxide single crystal is separated by holding it so as to be lower than the upper end of the (side cylindrical heater) (see, for example, Patent Document 2). In the method described in Patent Document 2, heat treatment is performed by moving a grown crystal to a low temperature gradient region after the growth is completed in a crystal growing apparatus provided with a heating zone.
特許文献2に記載の方法によれば、単結晶内の温度が均一となり、さらにこの状態を維持したまま冷却することによって、成長時に蓄積された結晶内部の応力が除去され、単結晶切り離し後に発生するクラックが抑制される。更に、内部応力が緩和されているのでウエハーの変形や加工時に発生するクラックが減少し、高品質な単結晶を安価で製造することができる。 According to the method described in Patent Document 2, the temperature inside the single crystal becomes uniform, and further, while maintaining this state, the stress inside the crystal accumulated during the growth is removed, and is generated after the single crystal is separated. Cracks are suppressed. Further, since the internal stress is relaxed, cracks generated during wafer deformation and processing are reduced, and a high-quality single crystal can be manufactured at low cost.
しかしながら、近年の単結晶の大型化に伴い、上述のような特許文献2に記載の残留応力の除去方法を採用した場合であっても、単結晶冷却時に結晶内の不均一な温度分布による歪みが増加し、クラックが発生し易くなってきた。特に、直径が8インチ以上の酸化アルミニウム単結晶を育成すると、冷却中に単結晶底部から割れが生じ、単結晶内部にクラックが入り易くなる場合があり、単結晶が大型化しても、クラックが発生し難い単結晶の製造方法が求められるようになってきた。 However, with the recent increase in the size of single crystals, even when the method for removing residual stress described in Patent Document 2 as described above is employed, distortion due to non-uniform temperature distribution in the crystals during single crystal cooling. Has increased, and cracks are likely to occur. In particular, when an aluminum oxide single crystal having a diameter of 8 inches or more is grown, cracks may occur from the bottom of the single crystal during cooling, and cracks may easily enter the single crystal. There has been a demand for a method for producing a single crystal that is less likely to occur.
そこで、本発明は、単結晶育成後の冷却時の割れの発生を防止できる単結晶の冷却方法及び製造方法、並びに単結晶育成装置を提供することを目的とする。 Then, an object of this invention is to provide the cooling method and manufacturing method of a single crystal which can prevent generation | occurrence | production of the crack at the time of cooling after single crystal growth, and a single crystal growth apparatus.
上記目的を達成するため、本発明の一態様に係る単結晶の冷却方法は、育成後の単結晶を冷却する単結晶の冷却方法であって、
育成後の単結晶を原料融液から切り離した状態で、該坩堝内に残留している原料融液が固化するまで待機する工程と、
前記育成後の単結晶を下降させ、前記坩堝内で固化した前記原料融液に接触させる工程と、を有する。
In order to achieve the above object, a cooling method of a single crystal according to one embodiment of the present invention is a cooling method of a single crystal for cooling a single crystal after growth,
A step of waiting until the raw material melt remaining in the crucible is solidified in a state where the single crystal after growth is separated from the raw material melt;
And lowering the grown single crystal and bringing it into contact with the raw material melt solidified in the crucible.
本発明の他の態様に係る単結晶の製造方法は、坩堝内の原料融液を加熱し、原料融液内で単結晶を育成する工程と、
育成後の前記単結晶を前記原料融液から切り離した状態で、前記坩堝内に残留している前記原料融液が固化するまで待機する工程と、
育成後の前記単結晶を下降させ、前記坩堝内で固化した前記原料融液に接触させる工程と、を有する。
The method for producing a single crystal according to another aspect of the present invention includes a step of heating the raw material melt in the crucible and growing the single crystal in the raw material melt,
Waiting until the raw material melt remaining in the crucible is solidified in a state where the single crystal after growth is separated from the raw material melt;
And lowering the grown single crystal and bringing it into contact with the raw material melt solidified in the crucible.
本発明の他の態様に係る単結晶育成装置は、原料融液を貯留可能な坩堝と、
該坩堝の周囲に設けられた加熱体と、
前記原料融液内で育成された単結晶を前記坩堝上に引き上げ可能な単結晶引上げ手段と、
前記坩堝に設けられ、貯留した前記原料融液の温度を検出可能な温度検出手段と、
前記原料融液内で前記単結晶が育成したときに、前記単結晶引上げ手段に前記単結晶を前記原料融液から切り離させるとともに、前記温度検出手段により検出された前記原料融液の温度から前記原料融液が固化したか否かを判定し、前記原料融液が固化したと判定したときには、前記単結晶引上げ手段に前記単結晶が固化した前記原料融液に接触するように前記単結晶を下降させる制御手段と、を有する。
A single crystal growth apparatus according to another aspect of the present invention includes a crucible capable of storing a raw material melt,
A heating element provided around the crucible;
A single crystal pulling means capable of pulling a single crystal grown in the raw material melt onto the crucible;
A temperature detecting means provided in the crucible and capable of detecting the temperature of the stored raw material melt;
When the single crystal grows in the raw material melt, the single crystal pulling means separates the single crystal from the raw material melt, and the temperature of the raw material melt detected by the temperature detecting means It is determined whether or not the raw material melt has solidified, and when it is determined that the raw material melt has solidified, the single crystal is brought into contact with the raw material melt with the single crystal solidified by the single crystal pulling means. Control means for lowering.
本発明によれば、育成された単結晶底面の歪みを低減することができ、クラックの発生を抑制することができる。 According to the present invention, it is possible to reduce the strain on the bottom surface of the grown single crystal and to suppress the generation of cracks.
以下、図面を参照して、本発明を実施するための形態の説明を行う。 DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
本発明の酸化物単結晶の冷却方法及び製造方法は、炉体内の坩堝に単結晶用原料を入れて坩堝側面及び底部に設けられた加熱体により単結晶用原料を加熱溶融した後、原料融液に種結晶を接触させて成長した結晶を引き上げる溶融固化法において、残留融液が完全に固化したことを確認した後、固化した原料融液と単結晶の底部を接触させて単結晶の冷却を行うことを特徴としている。 The method for cooling and producing an oxide single crystal according to the present invention includes the steps of putting a raw material for a single crystal into a crucible in a furnace body, heating and melting the raw material for a single crystal with a heating body provided on the side and bottom of the crucible, In the melt-solidification method in which the seed crystal is brought into contact with the liquid and the grown crystal is pulled up, after confirming that the residual melt is completely solidified, the solidified raw material melt is brought into contact with the bottom of the single crystal to cool the single crystal. It is characterized by performing.
1.酸化物単結晶育成装置
図1は、本発明の実施形態に係る酸化物単結晶の冷却方法及び製造方法を実施するための酸化物単結晶育成装置の一例を示した図である。
1. FIG. 1 is a diagram showing an example of an oxide single crystal growing apparatus for carrying out a cooling method and a manufacturing method of an oxide single crystal according to an embodiment of the present invention.
酸化物単結晶育成装置内には、酸化物単結晶用原料を入れるための坩堝10が備えられており、上下動が可能な坩堝軸20の上に載置されている。酸化物単結晶用原料を融解するための坩堝10は、酸化物単結晶用原料の種類によって異なり、一概に規定できないが、酸化アルミニウム単結晶用であれば、その融点以上の耐熱性を有するイリジウム製、モリブデン製、タングステン製等から構成されることが好ましく、用途に応じた所望のサイズの坩堝10を用いることができる。坩堝10の側面周囲には、酸化物単結晶用原料を融解するために、側面円筒型ヒーター31が配置されている。また、坩堝10の下方には、円盤状の底部円盤型ヒーター32が、坩堝軸20が貫通する形で配置されている。側面円筒型ヒーター31と底部円盤型ヒーター32とで、酸化物単結晶育成装置のヒーター(加熱体)30の全体を構成する。側面円筒型ヒーター31の周囲、底部円盤型ヒーター32の下方には、断熱材50が酸化物単結晶育成装置のチャンバー60に沿って設けられている。また、坩堝10の上方には、上下動可能な引き上げ軸40が設置されている。引き上げ軸40には種結晶が取り付け可能であるとともに、引き上げ軸40が上面を貫通する形で断熱材50が設けられている。 In the oxide single crystal growing apparatus, a crucible 10 for containing a raw material for oxide single crystal is provided, and is placed on a crucible shaft 20 that can move up and down. The crucible 10 for melting the oxide single crystal raw material differs depending on the type of the oxide single crystal raw material and cannot be generally defined. However, if it is for an aluminum oxide single crystal, it has heat resistance equal to or higher than its melting point. The crucible 10 having a desired size according to the application can be used. A side cylindrical heater 31 is arranged around the side surface of the crucible 10 in order to melt the raw material for oxide single crystal. In addition, a disc-shaped bottom disc heater 32 is disposed below the crucible 10 so that the crucible shaft 20 passes therethrough. The side cylindrical heater 31 and the bottom disk heater 32 constitute the entire heater (heating body) 30 of the oxide single crystal growing apparatus. A heat insulating material 50 is provided around the side cylindrical heater 31 and below the bottom disk heater 32 along the chamber 60 of the oxide single crystal growth apparatus. A pulling shaft 40 that can move up and down is installed above the crucible 10. A seed crystal can be attached to the pulling shaft 40, and a heat insulating material 50 is provided so that the pulling shaft 40 penetrates the upper surface.
また、チャンバー60を貫通し、断熱材50を貫通しない態様で、熱電対70が設けられる。熱電対70は、炉内の温度変化、より詳細には坩堝10及び加熱体30の周囲の温度変化を検出することにより、原料融液90の温度変化を検出し、監視するための温度検出器である。熱電対70により、原料融液90の温度変化を検出し、原料融液90が固化したか否か、つまり溶融状態か固化状態かを検出することができる。なお、熱電対70は、原料融液90が2000℃以上の高温となるため、坩堝10内又はヒーター30よりも内側の領域内ではなく、ヒーター30よりも外側に設けられている。つまり、熱電対70は、原料融液90の外側に設けられているが、原料融液90の温度が変化すれば、その周囲温度も変化し、断熱材50内の温度も変化するので、原料融液90の温度変化を検出し、固化したか否かを判定するためには、断熱材50内に設ければ十分にその役割を果たすことができる。なお、本実施例では、温度検出器の例として、熱電対70を断熱材50に3個設けた例を挙げているが、原料融液90が固化したか否かを判定可能に温度の検出が可能であれば、用途に応じて種々の温度センサを、任意の箇所に任意の個数設けることができる。 Further, a thermocouple 70 is provided so as to penetrate the chamber 60 and not penetrate the heat insulating material 50. The thermocouple 70 is a temperature detector for detecting and monitoring the temperature change of the raw material melt 90 by detecting the temperature change in the furnace, more specifically, the temperature change around the crucible 10 and the heating body 30. It is. The thermocouple 70 can detect a temperature change of the raw material melt 90 to detect whether the raw material melt 90 is solidified, that is, whether it is in a molten state or a solidified state. The thermocouple 70 is provided outside the heater 30 rather than in the crucible 10 or in the region inside the heater 30 because the raw material melt 90 has a high temperature of 2000 ° C. or higher. That is, the thermocouple 70 is provided outside the raw material melt 90, but if the temperature of the raw material melt 90 changes, the ambient temperature also changes and the temperature in the heat insulating material 50 also changes. In order to detect the temperature change of the melt 90 and determine whether or not the melt 90 is solidified, if it is provided in the heat insulating material 50, it can sufficiently fulfill its role. In this embodiment, an example in which three thermocouples 70 are provided in the heat insulating material 50 is given as an example of the temperature detector. However, it is possible to detect whether or not the raw material melt 90 has solidified. If possible, an arbitrary number of various temperature sensors can be provided at an arbitrary location according to the application.
また、本実施形態に係る酸化物単結晶育成装置は、本実施形態に係る単結晶の冷却方法及び製造方法を実施すべく、酸化物単結晶育成装置全体の動作を制御する制御部80を備える。制御部80は、酸化物単結晶育成装置の各構成要素に動作指令を与え、各構成要素の動作を制御する。例えば、制御部80は、引き上げ軸40の上下動及びそのタイミングを制御する。詳細は後述するが、本実施形態に係る単結晶の冷却方法及び製造方法では、単結晶100を原料融液90から切り離した後、切り離した状態で引き上げ軸40を静止させ、熱電対70で検出した温度から、原料融液90が固化したと判断したときに、引き上げ軸40を下降させる動作を行う。よって、制御部80は、少なくとも熱電対70の検出温度が入力され、引き上げ軸40の上下動を制御する機能を有するため、熱電対70及び引き上げ軸40とは少なくとも電気的に接続されている。また、引き上げ軸40の上下動は、図示しない引き上げ軸40のアクチュエータが設けられ、制御部80は、引き上げ軸40のアクチュエータに動作指令を出して引き上げ軸40の動作を制御する。制御部80は、演算処理機能を有すれば、種々の構成としてよいが、例えば、CPU(Central Processing Unit、中央処理装置)及びROM(Read Only Memory)やRAM(Random Access Memory)等の記憶手段を備え、プログラムにより動作するマイクロコンピュータや、特定の用途向けの集積回路として形成されたASIC(Application Specific Integrated Circuit)として構成されてもよい。 Moreover, the oxide single crystal growth apparatus according to the present embodiment includes a control unit 80 that controls the operation of the entire oxide single crystal growth apparatus in order to perform the cooling method and the manufacturing method of the single crystal according to the present embodiment. . The controller 80 gives an operation command to each component of the oxide single crystal growth apparatus and controls the operation of each component. For example, the control unit 80 controls the vertical movement of the lifting shaft 40 and its timing. Although details will be described later, in the cooling method and the manufacturing method of the single crystal according to the present embodiment, after the single crystal 100 is separated from the raw material melt 90, the pulling shaft 40 is stopped in the separated state and detected by the thermocouple 70. When it is determined from the measured temperature that the raw material melt 90 has solidified, an operation of lowering the pulling shaft 40 is performed. Therefore, since the control unit 80 has a function of controlling the vertical movement of the pulling shaft 40 by inputting at least the detected temperature of the thermocouple 70, the thermocouple 70 and the pulling shaft 40 are at least electrically connected. Further, the vertical movement of the lifting shaft 40 is provided with an actuator for the lifting shaft 40 (not shown), and the controller 80 issues an operation command to the actuator of the lifting shaft 40 to control the operation of the lifting shaft 40. The control unit 80 may have various configurations as long as it has an arithmetic processing function. For example, a storage unit such as a CPU (Central Processing Unit) and a ROM (Read Only Memory) or a RAM (Random Access Memory) And an ASIC (Application Specific Integrated Circuit) formed as an integrated circuit for a specific application.
種結晶は、純度が高い酸化物結晶であり、例えば、酸化アルミニウム結晶であれば、チョクラルスキー法、キロプロス、HEMなどの製造方法によって得られたものが好ましく、単結晶製品の用途によって適宜選択することができる。 The seed crystal is an oxide crystal with high purity. For example, if it is an aluminum oxide crystal, it is preferably obtained by a production method such as the Czochralski method, Kilopros, or HEM, and is appropriately selected depending on the use of the single crystal product. can do.
酸化物単結晶育成装置は、上述の構成に限定されず、例えば、底部円盤型ヒーター32の代わりにL字型又はカップ型の側面ヒーターを用いてもよく、底部円盤型ヒーター32が無く、側面円筒型ヒーター31のみでも良い。また、酸化物単結晶育成装置には、必要により、炉体内を減圧する手段と、減圧度をモニターする手段と、炉体内に窒素または不活性ガスを供給する手段を設けることができる。 The oxide single crystal growth apparatus is not limited to the above-described configuration. For example, an L-shaped or cup-shaped side heater may be used instead of the bottom disk-type heater 32, and there is no bottom disk-type heater 32. Only the cylindrical heater 31 may be used. In addition, the oxide single crystal growth apparatus can be provided with means for reducing the pressure inside the furnace, means for monitoring the degree of pressure reduction, and means for supplying nitrogen or an inert gas into the furnace, as necessary.
2.酸化物単結晶用原料の溶融
本発明の実施形態に係る酸化物単結晶の冷却方法及び製造方法は、上述の酸化物単結晶育成装置を用い、まず、坩堝10に酸化物単結晶用原料を入れた後、側面円筒型ヒーター31及び底部円盤型ヒーター32により坩堝10を加熱して原料を溶融させる。
2. Melting of Oxide Single Crystal Raw Material In the oxide single crystal cooling method and manufacturing method according to the embodiment of the present invention, first, the oxide single crystal raw material is put into the crucible 10 using the above-described oxide single crystal growth apparatus. After putting, the crucible 10 is heated by the side cylindrical heater 31 and the bottom disk heater 32 to melt the raw material.
酸化物単結晶用原料としては、酸化アルミニウム粉末やタンタル酸リチウム粉末、あるいは酸化ニオブ粉末をはじめとして、各種の酸化物粉末を用いることができる。本発明の実施形態において好ましく用いられる酸化アルミニウム粉末は、実質的にAlとOの2元素からなる酸化アルミニウム粉末である。 As the raw material for oxide single crystal, various oxide powders such as aluminum oxide powder, lithium tantalate powder, or niobium oxide powder can be used. The aluminum oxide powder preferably used in the embodiment of the present invention is an aluminum oxide powder substantially composed of two elements of Al and O.
坩堝10に酸化物単結晶用原料を入れて、側面円筒型ヒーター31および底部円盤型ヒーター32により坩堝10を加熱して原料を溶融させる。酸化物単結晶用原料が融点に達するまでの加熱速度は、特に制限されるわけではないが、酸化物単結晶原料が不均一に加熱されることにより生じる突沸現象を抑制するため、急速に加熱せずに長時間かけて徐々に加熱するほうがよい。そのため、例えば10時間以上、特に12時間かけて徐々に加熱することが望ましい。次に、酸化物単結晶用原料の融解後も、炉内温度を10〜20℃高くなるように3時間以上、特に5時間以上、得られた原料融液90を加熱する。このときの温度測定はヒーター外周にある断熱材に差し込まれた熱電対を用いて行う。 The raw material for oxide single crystal is put into the crucible 10 and the crucible 10 is heated by the side cylindrical heater 31 and the bottom disk heater 32 to melt the raw material. The heating rate until the oxide single crystal raw material reaches the melting point is not particularly limited, but it is rapidly heated to suppress bumping phenomenon caused by uneven heating of the oxide single crystal raw material. It is better to heat gradually over a long period of time. Therefore, it is desirable to heat gradually, for example over 10 hours, especially over 12 hours. Next, even after melting the raw material for oxide single crystal, the obtained raw material melt 90 is heated for 3 hours or more, particularly 5 hours or more so that the furnace temperature is increased by 10 to 20 ° C. The temperature at this time is measured using a thermocouple inserted into a heat insulating material on the outer periphery of the heater.
この際、炉内は不活性ガス雰囲気とするが、必要により減圧してもよい。ただし、酸素を導入するとヒーターが酸化して急速に劣化するため、酸素がほとんど含まれない低酸素濃度雰囲気下で単結晶用原料を溶解することが望ましい。 At this time, the inside of the furnace is an inert gas atmosphere, but the pressure may be reduced if necessary. However, when oxygen is introduced, the heater is oxidized and rapidly deteriorates. Therefore, it is desirable to dissolve the raw material for single crystal in a low oxygen concentration atmosphere containing almost no oxygen.
3.単結晶の育成と引き上げ
単結晶100の育成においては、側面円筒型ヒーター31の上端に対して、坩堝10の上端の位置を2cm下から6cm上の範囲とし、特に一致する位置から2cm以上、上の位置に合わせて原料を溶融させ、単結晶の育成を開始させるようにすることが望ましい。これにより、単結晶100の成長終了後、坩堝軸20を下降させることにより、成長済の酸化物結晶と原料融液の切り離しを行い易くすることができる。
3. Single crystal growth and pulling In the growth of the single crystal 100, the upper end position of the crucible 10 is set to a range from 2 cm lower to 6 cm higher than the upper end of the side cylindrical heater 31, and 2 cm or more above the particularly matched position. It is desirable to start the growth of the single crystal by melting the raw material in accordance with the positions of Thereby, after the growth of the single crystal 100 is completed, the crucible shaft 20 is lowered to facilitate separation of the grown oxide crystal and the raw material melt.
酸化物単結晶100に生ずる粒界の発生を抑制するためには、固液界面近傍における引き上げ軸方向の温度勾配を大きくする必要があり、そのためには、坩堝は固液界面近傍における側面円筒型ヒーターからの輻射を遮る形で上方に配置したうえで結晶育成を開始するのが好ましい。 In order to suppress the generation of grain boundaries in the oxide single crystal 100, it is necessary to increase the temperature gradient in the pulling axis direction in the vicinity of the solid-liquid interface. For this purpose, the crucible is a side cylindrical type in the vicinity of the solid-liquid interface. It is preferable to start crystal growth after disposing it in a shape that blocks radiation from the heater.
図1は、酸化物単結晶100を原料融液90から育成している状態を示している。図1に示されるように、原料が溶融した後、原料融液90に種結晶を接触させて成長単結晶100を引き上げる。常法に従い、回転数や引き上げ速度を調整して単結晶100のネック部および肩部を形成し、引き続き直胴部を形成する。この際、放射温度計などを用いて単結晶100と原料融液90との界面近傍における融液表面の温度を測定することが好ましい。結晶形状の調節は、育成中の結晶重量を測定し、直径や育成速度などを計算によって導き出し、回転速度や引き上げ速度を調整して行うことができる。種結晶は、0.2〜20rpmで回転させるとよい。また、種結晶の回転速度は、1〜10rpmが好ましい。また、結晶重量の変化をフィードバックして融液温度をコントロールできる。 FIG. 1 shows a state where the oxide single crystal 100 is grown from the raw material melt 90. As shown in FIG. 1, after the raw material is melted, the seed crystal is brought into contact with the raw material melt 90 to pull up the grown single crystal 100. According to a conventional method, the number of rotations and the pulling speed are adjusted to form the neck portion and the shoulder portion of the single crystal 100, and then the straight body portion is formed. At this time, it is preferable to measure the temperature of the melt surface in the vicinity of the interface between the single crystal 100 and the raw material melt 90 using a radiation thermometer or the like. The crystal shape can be adjusted by measuring the crystal weight during growth, deriving the diameter, growth speed, and the like by calculation, and adjusting the rotation speed and pulling speed. The seed crystal is preferably rotated at 0.2 to 20 rpm. The rotation speed of the seed crystal is preferably 1 to 10 rpm. In addition, the melt temperature can be controlled by feeding back the change in crystal weight.
4.酸化物結晶の切り離し
その後、充分に酸化物単結晶100が育成した時点で、原料融液90との切り離しを行う。このとき、固液界面付近の温度勾配が大きな状態では、成長結晶内に応力が生じ、成長中、内部応力が単結晶100内に蓄積される。そのために成長終了時に坩堝軸20を下降させて、成長済の酸化物単結晶100と原料融液90の切り離しを行う。
4). Then, when the oxide single crystal 100 is sufficiently grown, the oxide crystal is separated from the raw material melt 90. At this time, in a state where the temperature gradient near the solid-liquid interface is large, stress is generated in the grown crystal, and internal stress is accumulated in the single crystal 100 during the growth. Therefore, the crucible shaft 20 is lowered at the end of growth, and the grown oxide single crystal 100 and the raw material melt 90 are separated.
その際、図2に示すように、成長済単結晶100の直胴部上端101が、側面円筒型ヒーター31の上端より下方に位置するように単結晶100を保持する。成長済単結晶100の直胴部上端101が、側面円筒型ヒーター31の上端より下方に位置する範囲であれば、坩堝軸20を下降させると共に、引き上げ軸40を上方へ移動することで単結晶100を引き上げ、切り離し速度を速めるようにしても差し支えない。 At that time, as shown in FIG. 2, the single crystal 100 is held such that the straight body upper end 101 of the grown single crystal 100 is positioned below the upper end of the side cylindrical heater 31. If the straight barrel upper end 101 of the grown single crystal 100 is in a range located below the upper end of the side cylindrical heater 31, the crucible shaft 20 is lowered and the pulling shaft 40 is moved upward to move the single crystal It may be possible to raise 100 and increase the separation speed.
坩堝10の移動による単結晶100の切り離し距離は1〜15cmとし、望ましくは2〜10cmとする。1cm未満では単結晶100が大きい場合、単結晶100を原料融液90から完全に切り離すことができず、15cmを超える距離にすると、坩堝10の移動スペースを大きく確保しなければならないので好ましくないからである。 The separation distance of the single crystal 100 by the movement of the crucible 10 is 1 to 15 cm, preferably 2 to 10 cm. If it is less than 1 cm, if the single crystal 100 is large, the single crystal 100 cannot be completely separated from the raw material melt 90. If the distance exceeds 15 cm, it is not preferable because a large moving space for the crucible 10 must be secured. It is.
5.酸化物単結晶の冷却
酸化物単結晶100の切り離し後、ヒーター30に投入している電力を徐々に低下させると炉内の温度も低下し、坩堝10の底に残留する残留融液90が固化する。残留融液90が固化すると、凝固熱が発生し、炉内(坩堝10の周囲)をモニターしている熱電対70が指し示す温度が冷却中であるに関わらず、一旦上昇し、残留融液90が完全に固化すると炉内の温度が低下に転じる。
5. Cooling of the oxide single crystal After the oxide single crystal 100 is cut off, when the electric power supplied to the heater 30 is gradually lowered, the temperature in the furnace is also lowered, and the residual melt 90 remaining at the bottom of the crucible 10 is solidified. To do. When the residual melt 90 is solidified, solidification heat is generated, and the temperature indicated by the thermocouple 70 monitoring the inside of the furnace (around the crucible 10) rises once regardless of being cooled, and the residual melt 90 When solidifies completely, the temperature in the furnace starts to drop.
図3は、熱電対70がモニターしている炉内の温度の時間変化の一例を示した図である。図3において、横軸が時間、縦軸が熱電対70の検出温度(℃)を示している。図3に示されるように、検出温度は、残留原料融液90が固化する際に発生する凝固熱の影響を受け、急激に上昇した後、急激に下降するピーク点Pが存在する。そして、ピーク点Pを経過して温度が下降した時刻T1が、残留融液90が固化した時点を示している。制御部80は、熱電対70が間接的にモニターしている残留融液90の温度変化が、図3に示すようなピーク点Pを有する温度変化を認識したら、残留融液90が固化したと判定する。 FIG. 3 is a diagram showing an example of a temporal change in the temperature in the furnace monitored by the thermocouple 70. In FIG. 3, the horizontal axis represents time, and the vertical axis represents the detected temperature (° C.) of the thermocouple 70. As shown in FIG. 3, the detected temperature is affected by the heat of solidification generated when the residual raw material melt 90 is solidified, and has a peak point P that rapidly increases and then rapidly decreases. And time T1 when temperature fell after the peak point P passed has shown the time of the residual melt 90 solidifying. When the controller 80 recognizes that the temperature change of the residual melt 90 indirectly monitored by the thermocouple 70 has a peak point P as shown in FIG. 3, the residual melt 90 has solidified. judge.
図4は、残留融液90の固化後の処理を説明するための図である。 FIG. 4 is a view for explaining the processing after the residual melt 90 is solidified.
上述のように、炉内の温度をモニターし、残留融液90が完全に固化したことを確認したら、制御部80は、引き上げ軸40を制御し、図4に示すように引き上げ軸40を下方へ移動させる。そして、固化した原料融液91と単結晶100の底部を接触させて単結晶100の冷却を行う。つまり、引き上げ軸40を下降させ、単結晶100の底部が固化した原料融液91の上面に接触したら、引き上げ軸40を静止させる。 As described above, when the temperature in the furnace is monitored and it is confirmed that the residual melt 90 is completely solidified, the control unit 80 controls the pulling shaft 40 and moves the pulling shaft 40 downward as shown in FIG. Move to. Then, the solidified raw material melt 91 and the bottom of the single crystal 100 are brought into contact with each other to cool the single crystal 100. That is, the pulling shaft 40 is lowered, and when the bottom of the single crystal 100 comes into contact with the solidified upper surface of the raw material melt 91, the pulling shaft 40 is stopped.
その後、切り離された酸化物単結晶100は1℃〜3℃/minの冷却速度で室温近くまで冷却した後に、単結晶育成装置から酸化物単結晶100を取り出す。 Thereafter, the separated oxide single crystal 100 is cooled to near room temperature at a cooling rate of 1 ° C. to 3 ° C./min, and then the oxide single crystal 100 is taken out from the single crystal growth apparatus.
このように、単結晶100の底面を、固化した残留原料融液91の表面と接触させることにより、単結晶100の下部が熱的に固化した残留原料融液91と一体となり、均一な温度分布領域が広くなる。つまり、熱を逃がす伝達経路が上方の引き上げ軸40を介するルートのみならず、下方の残留原料融液91及び坩堝軸20を介するルートも加わることになる。これにより、単結晶100の熱は、上下から外部に逃がすことが可能となる。これにより、単結晶100の底面の歪みは低減され、クラックの発生が抑制される。また、単結晶100の冷却中、単結晶100はネック部のみが引き上げ軸40に支持されている状態とならず、下面が固化した残留原料融液91に下方から支持されている状態となるので、ネック部に破損が生じて引き上げ軸40から落下してしまう事態を防ぐことができる。 In this way, by bringing the bottom surface of the single crystal 100 into contact with the surface of the solidified residual material melt 91, the lower portion of the single crystal 100 is integrated with the residual raw material melt 91 that has been thermally solidified, and a uniform temperature distribution is obtained. The area becomes wider. That is, not only the route through the upper pulling shaft 40 but also the route through the lower residual material melt 91 and the crucible shaft 20 are added as a transmission path for releasing heat. Thereby, the heat of the single crystal 100 can be released to the outside from above and below. Thereby, the distortion of the bottom face of the single crystal 100 is reduced, and the generation of cracks is suppressed. Further, during the cooling of the single crystal 100, the single crystal 100 is not in a state in which only the neck portion is supported by the pulling shaft 40, but is in a state in which the lower surface is supported from below by the solidified residual material melt 91. It is possible to prevent the neck portion from being damaged and falling from the pulling shaft 40.
〔実施例〕
次に、本実施形態に係る単結晶育成装置を用いて、本実施形態に係る単結晶の冷却方法及び製造方法を実施した実施例について説明する。
〔Example〕
Next, examples in which the single crystal cooling method and the manufacturing method according to the present embodiment are implemented using the single crystal growth apparatus according to the present embodiment will be described.
結晶育成炉の構造と冷却時の結晶の位置を図1に示す。なお、理解の容易のため、本実施形態で説明した構成要素と同様の構成要素には、同一の参照符号を付すこととする。 The structure of the crystal growth furnace and the position of the crystal during cooling are shown in FIG. For ease of understanding, the same reference numerals are assigned to the same components as those described in the present embodiment.
育成炉内には直径300mm、高さ300mmの坩堝10が設置され、その側面および下部にそれぞれ抵抗加熱方式の側面円筒型ヒーター31と底部円盤型ヒーター32が取り付けられている。坩堝10の周囲には断熱材50としてカーボンフェルトが設置されている。 A crucible 10 having a diameter of 300 mm and a height of 300 mm is installed in the growth furnace, and a resistance heating type side cylindrical heater 31 and a bottom disk type heater 32 are attached to the side surface and the lower portion, respectively. Around the crucible 10, a carbon felt is installed as a heat insulating material 50.
坩堝10内の酸化アルミニウム原料融液90から直径約200mm、長さ280mmの酸化アルミニウム単結晶100を育成した。図2に示されるように、単結晶育成終了後、酸化アルミニウム単結晶100を原料融液90の表面から1cm上に上げるとともに、坩堝10の位置を10cm下げることで、単結晶100を原料融液90から切り離し、ヒーターの出力を徐々に下げて冷却を開始した。 An aluminum oxide single crystal 100 having a diameter of about 200 mm and a length of 280 mm was grown from the aluminum oxide raw material melt 90 in the crucible 10. As shown in FIG. 2, after the growth of the single crystal, the aluminum oxide single crystal 100 is raised 1 cm above the surface of the raw material melt 90, and the position of the crucible 10 is lowered by 10 cm, whereby the single crystal 100 is removed from the raw material melt. Disconnected from 90, cooling was started by gradually decreasing the output of the heater.
その後、図3に示されるように、炉内の温度変化をモニターしている熱電対70により、坩堝10内に残留している原料融液90が固化することで固化熱が発生し、温度が一旦上昇した後、低下に転じる温度変化を検出したら、図4に示されるように、制御部80の指令により引き上げ軸40を下方へ移動させ、固化した原料融液91と単結晶100の底部を接触させて単結晶100の冷却を行った。 Thereafter, as shown in FIG. 3, the thermocouple 70 monitoring the temperature change in the furnace solidifies the raw material melt 90 remaining in the crucible 10 to generate heat of solidification, and the temperature is When a temperature change that once rises and then turns down is detected, as shown in FIG. 4, the pulling shaft 40 is moved downward by a command from the control unit 80, and the solidified raw material melt 91 and the bottom of the single crystal 100 are moved. The single crystal 100 was cooled by contact.
冷却時、ヒーター30の出力は20時間で0になるように線形に下げ、冷却後、取り出した単結晶100を観察したところ、クラックの発生は見られなかった。 During cooling, the output of the heater 30 was lowered linearly to be 0 in 20 hours, and after cooling, the single crystal 100 taken out was observed, and no cracks were observed.
〔比較例〕
実施例と同じ条件で単結晶を育成し、単結晶を原料融液表面から切り離した位置に保持したまま冷却を行ったところ、取出した単結晶にはクラックが生じていた。酸化アルミニウム単結晶の直径が300mmの場合、ほぼ全数にクラックが発生していた。
[Comparative Example]
When a single crystal was grown under the same conditions as in the example and cooled while being held at a position separated from the surface of the raw material melt, cracks were generated in the single crystal that was taken out. When the diameter of the aluminum oxide single crystal was 300 mm, almost all cracks were generated.
このように、本発明の実施例によれば、比較例と比較して、クラックの発生が抑制されることが示された。 Thus, according to the Example of this invention, it was shown that generation | occurrence | production of a crack is suppressed compared with a comparative example.
なお、発明者等は、本発明を創出するに当たり、冷却時の育成炉内の単結晶の温度変化の解析からスタートした。即ち、本発明者らが冷却時の育成炉内の単結晶の温度変化を解析したところ、冷却過程では単結晶上部は種結晶ホルダーを通じて熱が逃げて温度が低下し、単結晶底部は残留原料融液表面への輻射や残留原料融液表面と単結晶底面の隙間のガスを介した熱伝達によって温度が低下する。 In addition, inventors etc. started from the analysis of the temperature change of the single crystal in the growth furnace at the time of cooling in creating this invention. That is, when the present inventors analyzed the temperature change of the single crystal in the growth furnace during cooling, in the cooling process, the heat escapes through the seed crystal holder at the top of the single crystal and the temperature decreases, and the bottom of the single crystal is the residual raw material. The temperature is lowered by radiation to the melt surface and heat transfer through the gas in the gap between the residual raw material melt surface and the bottom surface of the single crystal.
図5は、発明者等が実施した冷却時の単結晶の温度変化の解析結果を示した図である。図5(a)は、冷却初期、図5(b)は冷却中期、図5(c)は冷却後期の炉内の温度変化の解析結果を各々示した図である。図5(a)〜(c)において、領域A、B、C、D,Eの順に温度が高い領域を示している。 FIG. 5 is a diagram showing the analysis result of the temperature change of the single crystal during cooling performed by the inventors. FIG. 5A shows the analysis results of the temperature change in the furnace at the initial stage of cooling, FIG. 5B shows the middle period of cooling, and FIG. 5A to 5C, regions A, B, C, D, and E are shown in the order of higher temperatures.
図5(a)〜(c)に示されるように、かかる解析結果から、単結晶内では単結晶下部の中央部の温度が最も高く、この中央部を中心にして上下方向に温度勾配が発生し、冷却時間の経過と共に温度勾配が大きくなるという知見が得られた。 As shown in FIGS. 5 (a) to 5 (c), from this analysis result, the temperature of the central part of the lower part of the single crystal is the highest in the single crystal, and a temperature gradient is generated in the vertical direction around this central part. And the knowledge that a temperature gradient became large with progress of cooling time was acquired.
単結晶の割れの原因は、冷却時における単結晶内の温度分布であり、この温度分布が大きいと熱収縮による歪みが発生し、限界の引っ張り応力に達したときに亀裂が入るものと推定できることから、単結晶内の温度を均一に保ちつつ温度を下げることが熱歪みによる割れ発生を低減することに繋がると考えられる。特に、割れは単結晶底面に発生しているので、単結晶下部の温度を均一にすることが重要となる。 The cause of cracks in the single crystal is the temperature distribution in the single crystal during cooling. If this temperature distribution is large, distortion due to thermal shrinkage occurs, and it can be estimated that cracks will occur when the ultimate tensile stress is reached. Therefore, it is considered that reducing the temperature while keeping the temperature in the single crystal uniform leads to reducing the occurrence of cracks due to thermal strain. In particular, since cracks are generated on the bottom surface of the single crystal, it is important to make the temperature at the bottom of the single crystal uniform.
本発明は、このような知見に基づきなされたものであり、単結晶育成後の冷却時において、坩堝内に残留している原料融液表面が固化した後に単結晶の位置を下げて、固化した原料融液と単結晶底部を接触させて単結晶を冷却することにより、単結晶下部が熱的に残留原料融液と一体となり、均一な温度分布領域が広くなるため単結晶底面の歪みは低減され、クラックの発生が抑制される。 The present invention has been made based on such knowledge, and at the time of cooling after growing a single crystal, after the surface of the raw material melt remaining in the crucible solidified, the position of the single crystal was lowered and solidified. By cooling the single crystal by bringing the raw material melt into contact with the bottom of the single crystal, the lower part of the single crystal is thermally integrated with the residual raw material melt, and the uniform temperature distribution region is widened, so the distortion of the bottom surface of the single crystal is reduced. And the occurrence of cracks is suppressed.
以上、本発明の好ましい実施形態及び実施例について詳説したが、本発明は、上述した実施形態及び実施例に制限されることはなく、本発明の範囲を逸脱することなく、上述した実施形態及び実施例に種々の変形及び置換を加えることができる。 The preferred embodiments and examples of the present invention have been described in detail above. However, the present invention is not limited to the above-described embodiments and examples, and the above-described embodiments and examples can be performed without departing from the scope of the present invention. Various modifications and substitutions can be made to the embodiments.
10 坩堝
20 坩堝軸
30 ヒーター(加熱体)
31 側面円筒型ヒーター
32 底部円盤型ヒーター
40 引き上げ軸
50 断熱材
60 チャンバー
70 熱電対
80 制御部
90、91 原料融液
100 単結晶
10 crucible 20 crucible shaft 30 heater (heating body)
31 Side cylindrical heater 32 Bottom disk type heater 40 Lifting shaft 50 Heat insulating material 60 Chamber 70 Thermocouple 80 Control unit 90, 91 Raw material melt 100 Single crystal
Claims (11)
育成後の単結晶を原料融液から切り離した状態で、該坩堝内に残留している原料融液が固化するまで待機する工程と、
前記育成後の単結晶を下降させ、前記坩堝内で固化した前記原料融液に接触させる工程と、を有する単結晶の冷却方法。 A method of cooling a single crystal that cools the grown single crystal,
A step of waiting until the raw material melt remaining in the crucible is solidified in a state where the single crystal after growth is separated from the raw material melt;
A step of lowering the grown single crystal and bringing it into contact with the raw material melt solidified in the crucible.
前記育成後の単結晶は、直胴部が前記加熱体の上端より下方の位置にある状態で、前記坩堝内に残留している前記原料融液が固化するのを待機する請求項1乃至3のいずれか一項に記載の単結晶の冷却方法。 Around the crucible, a heating body for heating the crucible is provided,
The single crystal after growth waits for the raw material melt remaining in the crucible to solidify in a state where the straight body portion is at a position below the upper end of the heating body. The method for cooling a single crystal according to any one of the above.
育成後の前記単結晶を前記原料融液から切り離した状態で、前記坩堝内に残留している前記原料融液が固化するまで待機する工程と、
育成後の前記単結晶を下降させ、前記坩堝内で固化した前記原料融液に接触させる工程と、を有する単結晶の製造方法。 Heating the raw material melt in the crucible and growing a single crystal in the raw material melt;
Waiting until the raw material melt remaining in the crucible is solidified in a state where the single crystal after growth is separated from the raw material melt;
Lowering the grown single crystal and bringing it into contact with the raw material melt solidified in the crucible.
前記育成後の単結晶は、直胴部が前記加熱体の上端より下方の位置にある状態で、前記坩堝内に残留している前記原料融液が固化するのを待機する請求項5乃至7のいずれか一項に記載の単結晶の製造方法。 Around the crucible, a heating body for heating the crucible is provided,
The grown single crystal waits for the raw material melt remaining in the crucible to solidify in a state where the straight body portion is at a position below the upper end of the heating body. The manufacturing method of the single crystal as described in any one of these.
該坩堝の周囲に設けられた加熱体と、
前記原料融液内で育成された単結晶を前記坩堝上に引き上げ可能な単結晶引上げ手段と、
前記加熱体の周囲に設けられ、前記原料融液の温度変化を検出可能な温度検出手段と、
前記原料融液内で前記単結晶が育成したときに、前記単結晶引上げ手段に前記単結晶を前記原料融液から切り離させるとともに、前記温度検出手段により検出された前記原料融液の温度変化から前記原料融液が固化したか否かを判定し、前記原料融液が固化したと判定したときには、前記単結晶引上げ手段に前記単結晶が固化した前記原料融液に接触するように前記単結晶を下降させる制御手段と、を有する単結晶育成装置。 A crucible capable of storing a raw material melt;
A heating element provided around the crucible;
A single crystal pulling means capable of pulling a single crystal grown in the raw material melt onto the crucible;
A temperature detecting means provided around the heating body and capable of detecting a temperature change of the raw material melt;
When the single crystal grows in the raw material melt, the single crystal pulling means separates the single crystal from the raw material melt, and from the temperature change of the raw material melt detected by the temperature detecting means. It is determined whether or not the raw material melt has solidified, and when it is determined that the raw material melt has solidified, the single crystal is brought into contact with the raw material melt with the single crystal solidified by the single crystal pulling means. And a control means for lowering the single crystal growth apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015083895A JP6390502B2 (en) | 2015-04-16 | 2015-04-16 | Single crystal cooling method and manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015083895A JP6390502B2 (en) | 2015-04-16 | 2015-04-16 | Single crystal cooling method and manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016204172A true JP2016204172A (en) | 2016-12-08 |
JP6390502B2 JP6390502B2 (en) | 2018-09-19 |
Family
ID=57487174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015083895A Expired - Fee Related JP6390502B2 (en) | 2015-04-16 | 2015-04-16 | Single crystal cooling method and manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6390502B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09328394A (en) * | 1996-06-07 | 1997-12-22 | Shin Etsu Chem Co Ltd | Production of oxide single crystal |
JP2006169016A (en) * | 2004-12-14 | 2006-06-29 | Sumco Corp | Method for producing silicon single crystal |
JP2009242150A (en) * | 2008-03-31 | 2009-10-22 | Sumitomo Metal Mining Co Ltd | Method for producing oxide single crystal |
-
2015
- 2015-04-16 JP JP2015083895A patent/JP6390502B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09328394A (en) * | 1996-06-07 | 1997-12-22 | Shin Etsu Chem Co Ltd | Production of oxide single crystal |
JP2006169016A (en) * | 2004-12-14 | 2006-06-29 | Sumco Corp | Method for producing silicon single crystal |
JP2009242150A (en) * | 2008-03-31 | 2009-10-22 | Sumitomo Metal Mining Co Ltd | Method for producing oxide single crystal |
Also Published As
Publication number | Publication date |
---|---|
JP6390502B2 (en) | 2018-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5633732B2 (en) | Sapphire single crystal manufacturing method and sapphire single crystal manufacturing apparatus | |
KR102157388B1 (en) | Silicon single crystal manufacturing method and apparatus | |
JP3388664B2 (en) | Method and apparatus for manufacturing polycrystalline semiconductor | |
US5714004A (en) | Process for producing polycrystalline semiconductors | |
JP2009505935A (en) | Apparatus and method for crystal growth | |
TWI555886B (en) | Equipment for growing sapphire single crystal | |
JP4810346B2 (en) | Method for producing sapphire single crystal | |
JP6826536B2 (en) | Silicon single crystal ingot pulling device and silicon single crystal ingot manufacturing method | |
TW202113167A (en) | Scalmgo4 single crystal, preparation method for same, and free-standing substrate | |
JP2016033102A (en) | Sapphire single crystal and method for manufacturing the same | |
JP5145721B2 (en) | Method and apparatus for producing silicon single crystal | |
JP6413903B2 (en) | Single crystal manufacturing method | |
JP2018150198A (en) | LARGE-DIAMETER ScAlMgO4 SINGLE CRYSTAL, AND GROWTH METHOD AND GROWTH UNIT THEREFOR | |
JP2015182944A (en) | Production method of sapphire single crystal | |
JP4957619B2 (en) | Method for producing oxide single crystal | |
JP6390502B2 (en) | Single crystal cooling method and manufacturing method | |
JP5392040B2 (en) | Single crystal manufacturing apparatus and single crystal manufacturing method | |
JP4318635B2 (en) | Plate crystal manufacturing apparatus and manufacturing method | |
JP7398702B2 (en) | Single crystal growth equipment and single crystal growth equipment protection method | |
JP2005162507A (en) | Polycrystal semiconductor ingot and its manufacturing device and method | |
JP2010248003A (en) | METHOD FOR PRODUCING SiC SINGLE CRYSTAL | |
JP3812573B2 (en) | Semiconductor crystal growth method | |
JP2019043788A (en) | Method and apparatus for growing single crystal | |
JP6323382B2 (en) | Method for producing single crystal | |
JP2014156373A (en) | Manufacturing apparatus for sapphire single crystal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170525 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180209 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180220 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180328 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180724 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180806 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6390502 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |