[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2016136228A - Anti-reflection film, polarizing plate, cover glass, image display device, and manufacturing method for anti-reflection film - Google Patents

Anti-reflection film, polarizing plate, cover glass, image display device, and manufacturing method for anti-reflection film Download PDF

Info

Publication number
JP2016136228A
JP2016136228A JP2015074247A JP2015074247A JP2016136228A JP 2016136228 A JP2016136228 A JP 2016136228A JP 2015074247 A JP2015074247 A JP 2015074247A JP 2015074247 A JP2015074247 A JP 2015074247A JP 2016136228 A JP2016136228 A JP 2016136228A
Authority
JP
Japan
Prior art keywords
metal oxide
antireflection film
oxide particles
particles
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015074247A
Other languages
Japanese (ja)
Other versions
JP6095238B2 (en
Inventor
美帆 朝日
Miho Asahi
美帆 朝日
伊吹 俊太郎
Shuntaro Ibuki
俊太郎 伊吹
真 内村
Makoto Uchimura
真 内村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of JP2016136228A publication Critical patent/JP2016136228A/en
Application granted granted Critical
Publication of JP6095238B2 publication Critical patent/JP6095238B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】表面にモスアイ構造を有する反射防止フィルムにおいて、モスアイ構造の厚み方向の圧力に対する耐久性が高く、かつ反射率が低く、ヘイズが低い、反射防止フィルムを提供すること。また、反射防止フィルムを含む偏光板、カバーガラス、及び画像表示装置、並びに反射防止フィルムの製造方法を提供することにある。
【解決手段】基材と、バインダー樹脂及び平均一次粒径が50nm以上250nm以下の金属酸化物粒子を含有する反射防止層とを有する反射防止フィルムであって、
金属酸化物粒子の表面は、ヒドロキシル基量が1.00×10−1以下であり、
金属酸化物粒子の押し込み硬度は400MPa以上であり、
バインダー樹脂は、ヒドロキシル基を有する樹脂であり、
反射防止層は基材側の界面とは反対側の表面に金属酸化物粒子により形成された凹凸形状からなるモスアイ構造を有する、反射防止フィルム、反射防止フィルムを含む偏光板、カバーガラス、及び画像表示装置、並びに反射防止フィルムの製造方法。
【選択図】なし
Disclosed is an antireflection film having a moth-eye structure on the surface, which has high durability against pressure in the thickness direction of the moth-eye structure, low reflectance, and low haze. Another object of the present invention is to provide a polarizing plate including an antireflection film, a cover glass, an image display device, and a method for producing the antireflection film.
An antireflection film comprising a base material, and an antireflection layer containing a binder resin and metal oxide particles having an average primary particle size of 50 nm or more and 250 nm or less,
The surface of the metal oxide particles has a hydroxyl group amount of 1.00 × 10 −1 or less,
The indentation hardness of the metal oxide particles is 400 MPa or more,
The binder resin is a resin having a hydroxyl group,
The antireflection layer has a moth-eye structure having a concavo-convex shape formed of metal oxide particles on the surface opposite to the substrate side interface, an antireflection film, a polarizing plate including the antireflection film, a cover glass, and an image Display device and method for producing antireflection film.
[Selection figure] None

Description

本発明は、反射防止フィルム、偏光板、カバーガラス、及び画像表示装置、並びに反射防止フィルムの製造方法に関する。   The present invention relates to an antireflection film, a polarizing plate, a cover glass, an image display device, and a method for producing an antireflection film.

陰極管表示装置(CRT)、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(ELD)、蛍光表示ディスプレイ(VFD)、フィールドエミッションディスプレイ(FED)、及び液晶表示装置(LCD)のような画像表示装置では、表示面での外光の反射によるコ
ントラスト低下や像の映り込みを防止するために反射防止フィルムを設けることがある。また、画像表示装置以外でも反射防止フィルムにより反射防止機能を付与する場合がある。
In image display devices such as cathode ray tube display (CRT), plasma display (PDP), electroluminescence display (ELD), fluorescent display (VFD), field emission display (FED), and liquid crystal display (LCD), An antireflection film may be provided in order to prevent a decrease in contrast and reflection of an image due to reflection of external light on the display surface. In addition to the image display device, an antireflection function may be provided by an antireflection film.

反射防止フィルムとして、基材表面に周期が可視光の波長以下の微細な凹凸形状を有する反射防止フィルム、いわゆるモスアイ(moth eye)構造を有する反射防止フィルムが知られている。モスアイ構造により、擬似的に空気から基材の内部のバルク材料に向かって屈折率が連続的に変化する屈折率傾斜層を作り出し、光の反射を防止することができる。   As an antireflection film, an antireflection film having a fine uneven shape with a period equal to or less than the wavelength of visible light on the surface of the substrate, that is, an antireflection film having a so-called moth eye structure is known. With the moth-eye structure, it is possible to create a refractive index gradient layer in which the refractive index continuously changes from air to the bulk material inside the substrate, thereby preventing light reflection.

モスアイ構造を有する反射防止フィルムとして、特許文献1には、透明樹脂モノマーと微粒子を含有する塗布液を透明基材上に塗布し、硬化して微粒子が分散した透明樹脂を形成し、その後、透明樹脂をエッチングすることにより製造された凹凸構造を有する反射防止フィルムが記載されている。   As an antireflection film having a moth-eye structure, Patent Document 1 discloses that a coating liquid containing a transparent resin monomer and fine particles is applied on a transparent substrate and cured to form a transparent resin in which the fine particles are dispersed. An antireflection film having an uneven structure manufactured by etching a resin is described.

特開2009−139796号公報JP 2009-139796 A

しかしながら、特許文献1に記載された反射防止フィルムは、粒子により形成されているモスアイ構造に厚み方向に高い圧力が加わると粒子がつぶれてしまい、反射防止機能が失われる問題が発生することが分かった。
本発明者らはこの問題について検討し、モスアイ構造を形成する粒子として、押し込み硬度が高く、表面のヒドロキシル基量が少ない金属酸化物粒子を用いたところ、厚み方向の圧力に対する耐久性は向上したものの、反射防止層に用いるバインダー樹脂中での粒子の分散性が低下し、バインダー樹脂中で粒子が凝集して、反射防止層のヘイズが高くなったり、反射率が高くなったりするという新たな問題が発生した。
However, it has been found that the antireflection film described in Patent Document 1 causes a problem that the antireflection function is lost when the moth-eye structure formed of particles is subjected to a high pressure in the thickness direction and the particles are crushed. It was.
The present inventors examined this problem, and used metal oxide particles having a high indentation hardness and a small amount of hydroxyl groups on the surface as particles forming a moth-eye structure. As a result, durability against pressure in the thickness direction was improved. However, the dispersibility of the particles in the binder resin used for the antireflection layer is lowered, the particles are aggregated in the binder resin, and the haze of the antireflection layer is increased or the reflectance is increased. Problem has occurred.

以上のようなことから、本発明の課題は、表面にモスアイ構造を有する反射防止フィルムにおいて、モスアイ構造の厚み方向の圧力に対する耐久性が高く、かつ反射率が低く、ヘイズが低い、反射防止フィルムを提供することにある。また、本発明の別の課題は、この反射防止フィルムを含む偏光板、カバーガラス、及び画像表示装置、並びに反射防止フィルムの製造方法を提供することにある。   In view of the above, an object of the present invention is to provide an antireflection film having a moth-eye structure on the surface, which has high durability against pressure in the thickness direction of the moth-eye structure, low reflectance, and low haze. Is to provide. Another object of the present invention is to provide a polarizing plate, a cover glass, an image display device, and a method for producing the antireflection film including the antireflection film.

本発明者らは、鋭意検討の結果、モスアイ構造を形成する粒子として、押し込み硬度が
高く、表面のヒドロキシル基量が少ない金属酸化物粒子を用い、かつ反射防止層のバインダー樹脂としてヒドロキシル基を有する樹脂を用いることにより、上記課題を解決できることを見出した。
すなわち、本発明は下記構成である。
As a result of intensive studies, the present inventors have used metal oxide particles having a high indentation hardness and a small amount of hydroxyl groups on the surface as particles forming the moth-eye structure, and having a hydroxyl group as a binder resin for the antireflection layer. It has been found that the above problems can be solved by using a resin.
That is, the present invention has the following configuration.

[1]
基材と、バインダー樹脂及び平均一次粒径が50nm以上250nm以下の金属酸化物粒子を含有する反射防止層とを有する反射防止フィルムであって、
上記金属酸化物粒子の表面は、ヒドロキシル基量が1.00×10−1以下であり、
上記金属酸化物粒子の押し込み硬度は400MPa以上であり、
上記バインダー樹脂は、ヒドロキシル基を有する樹脂であり、
上記反射防止層は上記基材側の界面とは反対側の表面に上記金属酸化物粒子により形成された凹凸形状からなるモスアイ構造を有する、反射防止フィルム。
[2]
上記反射防止層の凹凸形状は、隣り合う凸部の頂点間の距離Aと、隣り合う凸部の頂点間の中心と凹部との距離Bとの比であるB/Aが0.5以上である[1]に記載の反射防止フィルム。
[3]
上記金属酸化物粒子として、一次粒径が50nm以上250nm以下の金属酸化物粒子のみを含有する[1]又は[2]に記載の反射防止フィルム。
[4]
上記金属酸化物粒子がシリカ粒子である[1]〜[3]のいずれか1項に記載の反射防止フィルム。
[5]
上記金属酸化物粒子が焼成シリカ粒子である[1]〜[4]のいずれか1項に記載の反射防止フィルム。
[6]
上記金属酸化物粒子が、(メタ)アクリロイル基を有する化合物で表面修飾された焼成シリカ粒子である[1]〜[5]のいずれか1項に記載の反射防止フィルム。
[7]
上記距離Aの分布の半値幅が200nm以下である[2]に記載の反射防止フィルム。
[8]
上記バインダー樹脂は、重合性基としてエチレン性不飽和二重結合を有する基及びエポキシ基の少なくとも一方を有する重合性化合物を重合して得られた樹脂である[1]〜[7]のいずれか1項に記載の反射防止フィルム。
[9]
上記重合性化合物1分子のヒドロキシル基当量が1〜10000である[8]に記載の
反射防止フィルム。
[10]
上記基材と上記反射防止層との間にハードコート層を有する[1]〜[9]のいずれか1項に記載の反射防止フィルム。
[11]
偏光子と、偏光子を保護する少なくとも1枚の保護フィルムとを有する偏光板であって、保護フィルムの少なくとも1枚が[1]〜[10]のいずれか1項に記載の反射防止フィルムである偏光板。
[12]
[1]〜[10]のいずれか1項に記載の反射防止フィルムを保護フィルムとして有するカバーガラス。
[13]
[1]〜[10]のいずれか1項に記載の反射防止フィルム、又は[11]に記載の偏光板を有する画像表示装置。
[14]
基材と、バインダー樹脂及び平均一次粒径が50nm以上250nm以下の金属酸化物粒子を含有する反射防止層とを有する反射防止フィルムの製造方法であって、
上記金属酸化物粒子の表面は、ヒドロキシル基量が1.00×10−1以下であり、
上記金属酸化物粒子の押し込み硬度は400MPa以上であり、
上記バインダー樹脂は、ヒドロキシル基を有する樹脂であり、
上記反射防止層は上記基材側の界面とは反対側の表面に上記金属酸化物粒子により形成された凹凸形状からなるモスアイ構造を有し、
上記基材上に、重合性の官能基を有するバインダー樹脂形成用重合性化合物、及び上記平均一次粒径が50nm以上250nm以下の金属酸化物粒子を含有する反射防止層形成用組成物を塗布する工程を有する反射防止フィルムの製造方法。
[15]
上記金属酸化物粒子として、平均一次粒径が120nm以上250nm以下の金属酸化物微粒子と、平均一次粒径が50nm以上120nm未満の金属酸化物粒子とを両方含む[1]、[2]、[4]〜[10]のいずれか1項に記載の反射防止フィルム。
[16]
上記平均一次粒径が50nm以上120nm未満の金属酸化物粒子はヒドロキシル基量は1.00×10−1以下、かつ、押し込み硬度400MPa以上である[15]に記載の反射防止フィルム。
[17]
上記平均一次粒径が50nm以上120nm未満の金属酸化物粒子はヒドロキシル基量は1.00×10−1より多いか、または押し込み硬度400MPa未満である[15]に記載の反射防止フィルム。
[18]
上記平均一次粒径が120nm以上250nm以下の金属酸化物微粒子に対して、上記平均一次粒径が50nm以上120nm未満の金属酸化物粒子を2〜5倍の頻度で含む[15]〜[17]のいずれか1項に記載の反射防止フィルム。
[1]
An antireflection film comprising a base material, an antireflection layer containing a binder resin and metal oxide particles having an average primary particle size of 50 nm to 250 nm,
The surface of the metal oxide particles has a hydroxyl group amount of 1.00 × 10 −1 or less,
The indentation hardness of the metal oxide particles is 400 MPa or more,
The binder resin is a resin having a hydroxyl group,
The antireflection layer is an antireflection film having a moth-eye structure having a concavo-convex shape formed of the metal oxide particles on a surface opposite to the interface on the substrate side.
[2]
The concave-convex shape of the antireflection layer is such that B / A, which is a ratio of the distance A between the apexes of adjacent convex portions and the distance B between the centers of the adjacent convex portions and the concave portions, is 0.5 or more. The antireflection film according to [1].
[3]
The antireflection film according to [1] or [2], which contains only metal oxide particles having a primary particle size of 50 nm or more and 250 nm or less as the metal oxide particles.
[4]
The antireflection film according to any one of [1] to [3], wherein the metal oxide particles are silica particles.
[5]
The antireflection film according to any one of [1] to [4], wherein the metal oxide particles are calcined silica particles.
[6]
The antireflection film according to any one of [1] to [5], wherein the metal oxide particles are calcined silica particles whose surface is modified with a compound having a (meth) acryloyl group.
[7]
The antireflection film according to [2], wherein the half width of the distribution of the distance A is 200 nm or less.
[8]
The binder resin is a resin obtained by polymerizing a polymerizable compound having at least one of a group having an ethylenically unsaturated double bond and an epoxy group as a polymerizable group [1] to [7] 2. The antireflection film according to item 1.
[9]
The antireflection film as described in [8], wherein one molecule of the polymerizable compound has a hydroxyl group equivalent of 1 to 10,000.
[10]
The antireflection film according to any one of [1] to [9], which has a hard coat layer between the substrate and the antireflection layer.
[11]
A polarizing plate having a polarizer and at least one protective film for protecting the polarizer, wherein at least one of the protective films is the antireflection film according to any one of [1] to [10]. A polarizing plate.
[12]
A cover glass having the antireflection film according to any one of [1] to [10] as a protective film.
[13]
The image display apparatus which has an antireflection film of any one of [1]-[10], or a polarizing plate of [11].
[14]
A method for producing an antireflection film comprising a base material, and an antireflection layer containing a binder resin and metal oxide particles having an average primary particle size of 50 nm to 250 nm,
The surface of the metal oxide particles has a hydroxyl group amount of 1.00 × 10 −1 or less,
The indentation hardness of the metal oxide particles is 400 MPa or more,
The binder resin is a resin having a hydroxyl group,
The antireflection layer has a moth-eye structure having an uneven shape formed by the metal oxide particles on the surface opposite to the interface on the base material side,
An antireflection layer-forming composition containing a polymerizable compound for forming a binder resin having a polymerizable functional group and metal oxide particles having an average primary particle size of 50 nm to 250 nm is applied on the base material. The manufacturing method of the antireflection film which has a process.
[15]
[1], [2], [2] including both metal oxide fine particles having an average primary particle size of 120 nm to 250 nm and metal oxide particles having an average primary particle size of 50 nm to less than 120 nm as the metal oxide particles. The antireflection film according to any one of 4] to [10].
[16]
The antireflection film according to [15], wherein the metal oxide particles having an average primary particle diameter of 50 nm or more and less than 120 nm have a hydroxyl group amount of 1.00 × 10 −1 or less and an indentation hardness of 400 MPa or more.
[17]
The metal oxide particles having an average primary particle size of 50 nm or more and less than 120 nm have an amount of hydroxyl groups of more than 1.00 × 10 −1 or an indentation hardness of less than 400 MPa [15].
[18]
[15] to [17] containing the metal oxide particles having an average primary particle size of not less than 120 nm and not more than 250 nm in a frequency of 2 to 5 times the metal oxide particles having an average primary particle size of not less than 50 nm and less than 120 nm. The antireflection film according to any one of the above.

本発明によれば、表面にモスアイ構造を有する反射防止フィルムであって、モスアイ構造の厚み方向の圧力に対する耐久性が高く、かつ反射率が低く、ヘイズが低い、反射防止フィルムを提供することができる。また、本発明によれば、この反射防止フィルムを含む偏光板、カバーガラス、及び画像表示装置、並びに反射防止フィルムの製造方法を提供することができる。   According to the present invention, it is possible to provide an antireflection film having a moth-eye structure on the surface, having high durability against pressure in the thickness direction of the moth-eye structure, low reflectance, and low haze. it can. Moreover, according to this invention, the polarizing plate containing this antireflection film, a cover glass, an image display apparatus, and the manufacturing method of an antireflection film can be provided.

本発明の反射防止フィルムの一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the antireflection film of this invention.

[反射防止フィルム]
本発明の反射防止フィルムは、
基材と、バインダー樹脂及び平均一次粒径が50nm以上250nm以下の金属酸化物粒子を含有する反射防止層とを有する反射防止フィルムであって、
金属酸化物粒子の表面は、ヒドロキシル基量が1.00×10−1以下であり、
金属酸化物粒子の押し込み硬度は400MPa以上であり、
バインダー樹脂は、ヒドロキシル基を有する樹脂であり、
反射防止層は基材側の界面とは反対側の表面に金属酸化物粒子により形成された凹凸形状からなるモスアイ構造を有する、反射防止フィルムである。
[Antireflection film]
The antireflection film of the present invention is
An antireflection film comprising a base material, an antireflection layer containing a binder resin and metal oxide particles having an average primary particle size of 50 nm to 250 nm,
The surface of the metal oxide particles has a hydroxyl group amount of 1.00 × 10 −1 or less,
The indentation hardness of the metal oxide particles is 400 MPa or more,
The binder resin is a resin having a hydroxyl group,
The antireflection layer is an antireflection film having a moth-eye structure having a concavo-convex shape formed of metal oxide particles on the surface opposite to the interface on the substrate side.

以下、本発明の反射防止フィルムについて詳細に説明する。   Hereinafter, the antireflection film of the present invention will be described in detail.

本発明の反射防止フィルムの好ましい実施形態の一例を図1に示す。
図1の反射防止フィルム10は、基材1と反射防止層2とを有する。反射防止層2は、基材1と反対側の表面に金属酸化物粒子3により形成された凹凸形状からなるモスアイ構造を有する。
反射防止層2は、金属酸化物粒子3と、バインダー樹脂4とを含んでなる。
An example of a preferred embodiment of the antireflection film of the present invention is shown in FIG.
The antireflection film 10 in FIG. 1 has a base material 1 and an antireflection layer 2. The antireflection layer 2 has a moth-eye structure having a concavo-convex shape formed by metal oxide particles 3 on the surface opposite to the substrate 1.
The antireflection layer 2 includes metal oxide particles 3 and a binder resin 4.

(モスアイ構造)
反射防止層の基材とは反対側の表面は、金属酸化物粒子によって形成された凹凸形状からなるモスアイ構造を有する。
ここで、モスアイ構造とは、光の反射を抑制するための物質(材料)の加工された表面であって、周期的な微細構造パターンをもった構造のことを指す。特に、可視光の反射を抑制する目的の場合には、780nm未満の周期の微細構造パターンをもった構造のことを指す。微細構造パターンの周期が380nm未満であると、反射光の色味がなくなり好ましい。また、周期が100nm以上であると波長380nmの光が微細構造パターンを認識でき、反射防止性に優れるため好ましい。モスアイ構造の有無は、走査型電子顕微鏡(SEM)、原子間力顕微鏡(AFM)等により表面形状を観察し、上記微細構造パターンが出来ているかどうか調べることによって確認することができる。
(Moth eye structure)
The surface of the antireflection layer opposite to the base material has a moth-eye structure having a concavo-convex shape formed by metal oxide particles.
Here, the moth-eye structure refers to a processed surface of a substance (material) for suppressing light reflection, and a structure having a periodic fine structure pattern. In particular, for the purpose of suppressing the reflection of visible light, it refers to a structure having a fine structure pattern with a period of less than 780 nm. It is preferable that the period of the fine structure pattern is less than 380 nm because the color of the reflected light is eliminated. A period of 100 nm or more is preferable because light with a wavelength of 380 nm can recognize a fine structure pattern and is excellent in antireflection properties. The presence or absence of the moth-eye structure can be confirmed by observing the surface shape with a scanning electron microscope (SEM), an atomic force microscope (AFM), or the like, and examining whether the fine structure pattern is formed.

本発明の反射防止フィルムの反射防止層の凹凸形状は、隣り合う凸部の頂点間の距離Aと、隣り合う凸部の頂点間の中心と凹部との距離Bとの比であるB/Aが0.5以上であることが好ましい。B/Aが0.5以上であると、凸部同士の距離に対して凹部の深さが大きくなり、空気から反射防止層内部にかけてより緩やかに屈折率が変化する屈折率傾斜層を作ることができるため、反射率をより低減できる。
B/Aは、硬化後の反射防止層におけるバインダー樹脂と金属酸化物粒子の体積比により制御することができる。そのため、バインダー樹脂と金属酸化物粒子の配合比を適切に設計することが重要である。また、バインダー樹脂がモスアイ構造を作製する工程の中で基材に浸透したり、揮発したりすることにより反射防止層におけるバインダー樹脂と金属酸化物粒子の体積比が反射防止層形成用組成物中の配合比と異なる場合もあるため、基材とのマッチングを適切に設定することも重要である。
更に、B/Aを0.5以上にし、反射率を低減させるためには凸部を形成する金属酸化物粒子は均一に、高い充填率で敷き詰められていることが好ましい。また充填率が高すぎないことも重要であり、充填率が高すぎると隣り合う粒子同士が接触して凹凸構造のB/Aを小さくしてしまうためである。上記観点から、凸部を形成する金属酸化物粒子の含有量は、反射防止層全体で均一になるように調整されるのが好ましい。充填率は、SEMなどにより表面から凸部を形成する金属酸化物粒子を観察したときの最も表面側に位置した粒子の面積占有率として測定することができ、30%〜95%が好ましく、40〜90%がより好ましく、50〜85%が更に好ましい。
金属酸化物粒子として焼成シリカ粒子などの表面のヒドロキシル基量が少ない粒子を用いると、反射防止層のバインダー樹脂としてヒドロキシル基を有さない樹脂を用いた場合、バインダー樹脂中での粒子の分散性が低下し、バインダー樹脂中で粒子が凝集して反射率が高くなる現象は、隣り合う粒子同士が接触してB/Aを小さくすることに起因すると推測できる。このとき、バインダー樹脂として本発明におけるヒドロキシル基を有する樹脂を用いることによりB/Aを大きくすることができる。
The concavo-convex shape of the antireflection layer of the antireflection film of the present invention is B / A, which is a ratio of the distance A between the apexes of adjacent convex portions and the distance B between the center and the concave portion between the apexes of adjacent convex portions. Is preferably 0.5 or more. When B / A is 0.5 or more, the depth of the concave portion increases with respect to the distance between the convex portions, and a refractive index gradient layer in which the refractive index changes more gradually from the air to the inside of the antireflection layer is formed. Therefore, the reflectance can be further reduced.
B / A can be controlled by the volume ratio of the binder resin and the metal oxide particles in the antireflection layer after curing. Therefore, it is important to appropriately design the blending ratio between the binder resin and the metal oxide particles. Further, the volume ratio of the binder resin and the metal oxide particles in the antireflection layer is increased in the composition for forming the antireflection layer by allowing the binder resin to permeate the substrate or volatilize in the process of producing the moth-eye structure. Therefore, it is also important to set the matching with the base material appropriately.
Furthermore, in order to make B / A 0.5 or more and reduce the reflectance, it is preferable that the metal oxide particles forming the convex portions are uniformly spread with a high filling rate. In addition, it is important that the filling rate is not too high. If the filling rate is too high, adjacent particles come into contact with each other and the B / A of the concavo-convex structure is reduced. From the above viewpoint, it is preferable that the content of the metal oxide particles forming the convex portion is adjusted so as to be uniform throughout the antireflection layer. The filling rate can be measured as the area occupancy of the particles located on the most surface side when observing the metal oxide particles forming the convex portions from the surface by SEM or the like, and is preferably 30% to 95%, -90% is more preferable, and 50-85% is still more preferable.
When particles with a small amount of hydroxyl groups on the surface, such as baked silica particles, are used as the metal oxide particles, the dispersibility of the particles in the binder resin when a resin having no hydroxyl groups is used as the binder resin for the antireflection layer. It can be presumed that the phenomenon in which the particles are aggregated in the binder resin and the reflectance is increased due to the decrease in B / A due to the contact between adjacent particles. At this time, B / A can be increased by using the resin having a hydroxyl group in the present invention as the binder resin.

隣り合う凸部の頂点間の距離Aと、隣り合う凸部の頂点間の中心と凹部との距離Bとの比であるB/Aの測定方法について、以下に、より具体的に説明する。
B/Aは、反射防止フィルムの断面SEM観察により測定することができる。反射防止
フィルム試料をミクロトームで切削して断面を出し、適切な倍率(5000倍程度)でSEM観察する。観察し易いように、試料にはカーボン蒸着、エッチング等適切な処理を施してもよい。B/Aは、空気と試料が作る界面において、隣り合う凸部の頂点間の距離をA、隣り合う凸部の頂点を含み基材面と垂直な面内にて、隣り合う凸部の頂点を結ぶ直線とその垂直二等分線が粒子またはバインダー樹脂に到達する点である凹部との距離をBとして、100点測長したとき、B/Aの平均値として算出する。
SEM写真においては、写っているすべての凹凸について、隣り合う凸部の頂点間の距離Aと、隣り合う凸部の頂点間の中心と凹部との距離Bとを正確に測長できない場合もあるが、その場合はSEM画像で手前側に写っている凸部と凹部に着目して測長すればよい。
なお、凹部は、SEM画像で測長する2つの隣り合う凸部を形成する粒子と同じ深度において測長することが必要である。より手前側に写っている粒子などまでの距離をBとして測長してしまうと、Bを小さく見積もってしまう場合があるからである。
A method for measuring B / A, which is a ratio of the distance A between the apexes of adjacent convex portions and the distance B between the center between the apexes of adjacent convex portions and the concave portion, will be described in more detail below.
B / A can be measured by cross-sectional SEM observation of the antireflection film. The antireflection film sample is cut with a microtome to obtain a cross section, and SEM observation is performed at an appropriate magnification (about 5000 times). For easy observation, the sample may be subjected to appropriate processing such as carbon deposition and etching. B / A is the distance between the vertices of adjacent protrusions at the interface between the air and the sample, and the vertices of adjacent protrusions in the plane perpendicular to the substrate surface including the vertices of the adjacent protrusions. The distance between the straight line connecting the two and the vertical bisector reaching the particle or the binder resin is B, and when 100 points are measured, the average value of B / A is calculated.
In the SEM photograph, there are cases where the distance A between the vertices of the adjacent convex portions and the distance B between the vertices of the adjacent convex portions and the concave portion B cannot be measured accurately with respect to all the projected and recessed portions. However, in that case, the length may be measured by paying attention to the convex portion and the concave portion shown on the near side in the SEM image.
Note that the concave portion needs to be measured at the same depth as the particles forming the two adjacent convex portions to be measured in the SEM image. This is because if the distance to a particle or the like reflected on the near side is measured as B, B may be estimated small.

B/Aは、0.5以上であることが好ましく、0.6以上であることがより好ましく、0.7以上であることが更に好ましい。また、モスアイ構造が強固に固定化でき、耐擦傷性に優れるという観点からは、0.9以下であることが好ましい。   B / A is preferably 0.5 or more, more preferably 0.6 or more, and still more preferably 0.7 or more. Moreover, from the viewpoint that the moth-eye structure can be firmly fixed and has excellent scratch resistance, it is preferably 0.9 or less.

金属酸化物粒子は均一に、高い充填率で敷き詰められていることが反射率を下げるためには好ましい。また充填率が高すぎないことも重要であり、充填率が高すぎると隣り合う粒子同士が接触して凹凸形状のB/Aを小さくしてしまい、反射率が高くなってしまうためである。
上記観点から、金属酸化物粒子の含有量は、反射防止層全体で均一になるように調整されるのが好ましい。充填率は、SEMなどにより表面から金属酸化物粒子を観察したときの最も表面側に位置した粒子の面積占有率として測定することが出来る。充填率は、30%〜95%が好ましく、40〜90%がより好ましく、50〜85%が更に好ましい。
In order to reduce the reflectance, it is preferable that the metal oxide particles are uniformly spread with a high filling rate. It is also important that the filling rate is not too high. If the filling rate is too high, adjacent particles come into contact with each other to reduce the uneven B / A, resulting in an increase in reflectance.
From the above viewpoint, the content of the metal oxide particles is preferably adjusted to be uniform throughout the antireflection layer. The filling factor can be measured as the area occupancy of the particles located on the most surface side when the metal oxide particles are observed from the surface by SEM or the like. The filling rate is preferably 30% to 95%, more preferably 40 to 90%, and still more preferably 50 to 85%.

(金属酸化物粒子)
反射防止層のモスアイ構造を形成する金属酸化物粒子について説明する。
金属酸化物粒子は、平均一次粒径が50nm以上250nm以下であり、表面のヒドロキシル基量が1.00×10−1以下であり、押し込み硬度が400MPa以上である。
(Metal oxide particles)
The metal oxide particles forming the moth-eye structure of the antireflection layer will be described.
The metal oxide particles have an average primary particle size of 50 nm or more and 250 nm or less, a surface hydroxyl group amount of 1.00 × 10 −1 or less, and an indentation hardness of 400 MPa or more.

金属酸化物粒子は、平均一次粒径が50nm以上250nm以下であり、さらに平均一次粒径の分散度Cv値が10%以下である金属酸化物粒子を好適に用いることが出来る。分散度Cv値は、Cv値=([平均一次粒径の標準偏差]/[平均平均粒径])×100
(1) によって計算して求めることができる値(単位:%)であり、小さいほど平均
一次粒径がそろっていることを意味する。平均一次粒径の測定は、走査型電子顕微鏡(SEM)を用いて行う。金属酸化物粒子の平均粒径及びその標準偏差は、200個以上の金属酸化物粒子の粒径の測定値に基づいて算出する。また、ここにいう平均粒径とは、粒子が球形でない場合には外接円の最大直径をいう。平均一次粒径の異なる複数種の粒子の混合物の場合も、粒子全体としてのCv値を算出する。
平均一次粒径が50nm以上であることによりモスアイ構造の反射防止層として機能でき、250nm以下であることにより金属酸化物粒子が規則的に配列することによるBragg回折が可視光領域で起こりにくいため、これに由来する発色(着色)現象を示さない。よって、Cv値が小さいほど粒子凝集が起こりにくく、着色がないまま低反射率で高透過率のモスアイ構造の反射防止層を形成できるため好ましい。平均一次粒径は、100nm以上220nm以下が好ましく、120nm以上200nm以下がより好ましい。Cv値としては、1〜10%が好ましく、1〜5%がより好ましい。
Cv値を小さく出来るという理由から、金属酸化物粒子として、一次粒径が50nm以上250nm以下の金属酸化物粒子のみを含有することが好ましく、一次粒径が100n
m以上220nm以下の金属酸化物粒子のみを含有することがより好ましく、一次粒径が120nm以上200nm以下の金属酸化物粒子のみを含有することが更に好ましい。
As the metal oxide particles, metal oxide particles having an average primary particle size of 50 nm or more and 250 nm or less and a dispersion degree Cv value of the average primary particle size of 10% or less can be preferably used. Dispersity Cv value is Cv value = ([standard deviation of average primary particle size] / [average average particle size]) × 100
(1) is a value (unit:%) that can be obtained by calculation, and the smaller the value, the greater the average primary particle size. The average primary particle size is measured using a scanning electron microscope (SEM). The average particle diameter of the metal oxide particles and the standard deviation thereof are calculated based on the measured values of the particle diameters of 200 or more metal oxide particles. In addition, the average particle diameter here means the maximum diameter of a circumscribed circle when the particles are not spherical. Also in the case of a mixture of a plurality of types of particles having different average primary particle sizes, the Cv value as a whole particle is calculated.
When the average primary particle size is 50 nm or more, it can function as an antireflection layer having a moth-eye structure, and when it is 250 nm or less, Bragg diffraction due to regular arrangement of metal oxide particles hardly occurs in the visible light region. The color development (coloring) phenomenon derived from this is not shown. Therefore, it is preferable that the Cv value is small because particle aggregation is less likely to occur and an antireflection layer having a low reflectance and a high transmittance can be formed without coloring. The average primary particle size is preferably from 100 nm to 220 nm, and more preferably from 120 nm to 200 nm. The Cv value is preferably 1 to 10%, more preferably 1 to 5%.
For the reason that the Cv value can be reduced, the metal oxide particles preferably contain only metal oxide particles having a primary particle size of 50 nm or more and 250 nm or less, and the primary particle size is 100 n.
It is more preferable to contain only metal oxide particles of m to 220 nm, and it is more preferable to contain only metal oxide particles having a primary particle size of 120 nm to 200 nm.

また別の態様として、金属酸化物微粒子は、平均一次粒径が120nm以上250nm以下の金属酸化物微粒子と平均一次粒径が50nm以上120nm未満の金属酸化物粒子とを両方含むことも好ましい。この場合は、より大きい粒径の粒子が主としてモスアイ構造に寄与し、より小さい粒径の粒子は大きい粒子同士の間に混在することで大きい粒子同士の凝集を抑制し、その結果、B/Aを大きくすることが出来て、反射率、ヘイズを良化する場合がある。
なお、一次粒径が50nm以上120nm未満の金属酸化物粒子はバインダー内により多く没入するため、反射防止層としての凸部は一次粒径が120nm以上200nm以下の金属酸化物微粒子によって形成されるものを指す。
平均一次粒径が120nm以上250nm以下の金属酸化物微粒子に対する平均一次粒径が50nm以上120nm未満の金属酸化物粒子の頻度は、2〜5倍の頻度で含むことが好ましい。この範囲にすることで、凝集抑制効果が高く、反射率を低くすることが出来る。平均一次粒径が50nm以上の金属酸化物粒子は、平均一次粒径が75nm以上110nm以下であることが反射率を特に低くすることが出来て好ましい。
平均一次粒径が異なる金属酸化物粒子同士を併用する場合は、両方の粒子の表面のヒドロキシル基量を近くすることが、より凝集しにくいため好ましい。
ただし、平均一次粒径が50nm以上120nm未満の金属酸化物粒子は、主に平均一次粒径が120nm以上250nm以下の金属酸化物粒子の凝集を抑止させて離間させるために用いられるため、入手が容易であるヒドロキシル基量が1.00×10−1より多いか、または押し込み硬度400MPa未満である金属酸化物粒子を用いても良い。
In another aspect, the metal oxide fine particles preferably include both metal oxide fine particles having an average primary particle size of 120 nm or more and 250 nm or less and metal oxide particles having an average primary particle size of 50 nm or more and less than 120 nm. In this case, particles having a larger particle size mainly contribute to the moth-eye structure, and particles having a smaller particle size are mixed between the large particles, thereby suppressing aggregation of the large particles. As a result, B / A May be increased, and the reflectance and haze may be improved.
Since metal oxide particles having a primary particle size of 50 nm or more and less than 120 nm are more immersed in the binder, the convex portion as the antireflection layer is formed by metal oxide fine particles having a primary particle size of 120 nm or more and 200 nm or less. Point to.
The frequency of metal oxide particles having an average primary particle size of 50 nm or more and less than 120 nm with respect to metal oxide fine particles having an average primary particle size of 120 nm or more and 250 nm or less is preferably 2 to 5 times as high. By setting this range, the aggregation suppressing effect is high and the reflectance can be lowered. The metal oxide particles having an average primary particle size of 50 nm or more are preferably an average primary particle size of 75 nm or more and 110 nm or less because the reflectance can be particularly lowered.
When metal oxide particles having different average primary particle sizes are used in combination, it is preferable to make the hydroxyl group amounts on the surfaces of both particles close to each other because aggregation is less likely.
However, since the metal oxide particles having an average primary particle size of 50 nm or more and less than 120 nm are mainly used for inhibiting the aggregation of metal oxide particles having an average primary particle size of 120 nm or more and 250 nm or less and separating them, they are available. Metal oxide particles having an easy hydroxyl group amount of more than 1.00 × 10 −1 or an indentation hardness of less than 400 MPa may be used.

金属酸化物粒子の平均一次粒径は、体積平均粒径の累積の50%粒径を指す。反射防止層中に含まれる金属酸化物粒子の平均一次粒径を測定する場合には、電子顕微鏡写真により測定することが出来る。例えば、反射防止フィルムを表面側からSEM観察により適切な倍率(5000倍程度)で観察し、一次粒子100個のそれぞれの直径を測長してその体積を算出し、累積の50%粒径を平均一次粒径とすることができる。粒子が球形でない場合には、長径と短径の平均値をその一次粒子の直径とみなす。このとき、観察し易いように、試料にはカーボン蒸着、エッチング処理などを適宜施してよい。   The average primary particle size of the metal oxide particles refers to the 50% cumulative particle size of the volume average particle size. When measuring the average primary particle diameter of the metal oxide particles contained in the antireflection layer, it can be measured by an electron micrograph. For example, the antireflection film is observed from the surface side by SEM observation at an appropriate magnification (about 5000 times), the diameter of each of the 100 primary particles is measured, the volume is calculated, and the cumulative 50% particle size is calculated. The average primary particle size can be obtained. When the particles are not spherical, the average value of the major and minor diameters is regarded as the diameter of the primary particles. At this time, for easy observation, the sample may be appropriately subjected to carbon deposition, etching, or the like.

本発明において、粒子表面のヒドロキシル基量を次のように定義する。ヒドロキシル基量は、固体29Si NMR(29Si CP/MAS)で測定する。金属酸化物微粒子の表面の金属元素Mがn個のヒドロキシル基と結合しているもののシグナル強度をQnとしたとき粒子表面の、ヒドロキシル基量は、存在するQn×n÷(粒子半径(単位nm:)の二乗)の総和とする。例えば、粒子がシリカ(粒子半径Rとする)の場合は、中性酸素4原子と結合したケイ素(シグナル強度Q0)、中性酸素3原子とヒドロキシル基1つに結合したケイ素(シグナル強度Q1)、中性酸素2原子とヒドロキシル基2つに結合したケイ素(シグナル強度Q2)が存在し、粒子表面のヒドロキシル基量は、(Q1×1+Q2×2)÷Rである。シリカの場合は、シグナル強度Q2を与えるシグナルは−91〜−94ppm、シグナル強度Q1を与えるシグナルは−100〜−102ppm、シグナル強度Q0を与えるシグナルは−109〜−111ppmの化学シフトを有する。 In the present invention, the amount of hydroxyl groups on the particle surface is defined as follows. The amount of hydroxyl groups is measured by solid 29 Si NMR ( 29 Si CP / MAS). Although the metal element M on the surface of the metal oxide fine particle is bonded to n hydroxyl groups, and the signal intensity is defined as Qn, the amount of hydroxyl groups on the particle surface is as follows: Qn × n ÷ (particle radius (unit: nm :) squared). For example, when the particle is silica (with a particle radius R), silicon bonded to 4 neutral oxygen atoms (signal intensity Q0), silicon bonded to 3 neutral oxygen atoms and one hydroxyl group (signal intensity Q1) , there silicon bonded to two neutral oxygen 2 atoms and hydroxyl groups (signal intensity Q2) is, the particle surface hydroxyl group content is (Q1 × 1 + Q2 × 2 ) ÷ R 2. In the case of silica, the signal giving signal intensity Q2 has a chemical shift of −91 to −94 ppm, the signal giving signal intensity Q1 has a chemical shift of −100 to −102 ppm, and the signal giving signal intensity Q0 has a chemical shift of −109 to −111 ppm.

粒子表面のヒドロキシル基量は焼成によって硬くなるほど小さくなり、1.00×10−5〜1.00×10−1が好ましく、1.00×10−4〜5.00×10−2がより好ましく、5.00×10−4〜1.00×10−3がさらに好ましい。 The amount of hydroxyl groups on the particle surface becomes smaller as it becomes harder by firing, preferably 1.00 × 10 −5 to 1.00 × 10 −1, more preferably 1.00 × 10 −4 to 5.00 × 10 −2. 5.00 × 10 −4 to 1.00 × 10 −3 is more preferable.

金属酸化物粒子の押し込み硬度は400MPa以上であり、450MPa以上であることが好ましく、550MPa以上であることがより好ましい。金属酸化物粒子の押し込み硬度が400MPa以上であるとモスアイ構造の厚み方向の圧力に対する耐久性が高くな
るため好ましい。また、脆くて割れやすくならないようにするために金属酸化物粒子の押し込み硬度は1000MPa以下であることが好ましい。
金属酸化物粒子の押し込み硬度は、ナノインデンター等によって測定することが出来る。具体的な測定手法としては、試料は、金属酸化物粒子をそれ自身より硬い基板(ガラス板、石英板等)に一段以上重なりが生じないように並べてダイヤモンド圧子で押し込んで測定することができる。この際、粒子が動かないように、樹脂などで固定することが好ましい。ただし、樹脂で固定する場合には粒子の一部が露出するように調節して行う。また、トライボインデンターにより押し込み位置を特定することが好ましい。
本発明においても、基板上に粒子を並べ、測定値に影響を及ぼさない様に微量の硬化性樹脂を用いて粒子同士を結着・固定させた試料を作成し、その試料を圧子による測定方法を用いて金属酸化物粒子の押し込み硬度を求めた。
The indentation hardness of the metal oxide particles is 400 MPa or more, preferably 450 MPa or more, and more preferably 550 MPa or more. The indentation hardness of the metal oxide particles is preferably 400 MPa or more because durability against pressure in the thickness direction of the moth-eye structure is increased. Further, the indentation hardness of the metal oxide particles is preferably 1000 MPa or less so as not to be brittle and easily broken.
The indentation hardness of the metal oxide particles can be measured with a nanoindenter or the like. As a specific measuring method, a sample can be measured by arranging metal oxide particles on a substrate (glass plate, quartz plate, etc.) harder than itself so that they do not overlap one or more steps and pressing them with a diamond indenter. At this time, it is preferable to fix with a resin or the like so that the particles do not move. However, when fixing with resin, it adjusts so that a part of particle | grain may be exposed. Moreover, it is preferable to specify a pushing position with a tribo indenter.
Also in the present invention, particles are arranged on a substrate, a sample in which particles are bound and fixed using a small amount of curable resin so as not to affect the measurement value, and the sample is measured by an indenter. Was used to determine the indentation hardness of the metal oxide particles.

金属酸化物粒子としては、シリカ粒子、チタニア粒子、ジルコニア粒子、五酸化アンチモン粒子などが挙げられるが、多くのバインダーと屈折率が近いためヘイズを発生しにくく、かつモスアイ構造が形成し易い観点からシリカ粒子が好ましい。   Examples of the metal oxide particles include silica particles, titania particles, zirconia particles, and antimony pentoxide particles. From the viewpoint that moth-eye structures are easily formed because haze is hardly generated because the refractive index is close to that of many binders. Silica particles are preferred.

金属酸化物粒子は、表面のヒドロキシル基量が適度に多く、かつ硬い粒子であるという理由から、焼成シリカ粒子であることが特に好ましい。
焼成シリカ粒子は、加水分解が可能なシリコン化合物を水と触媒とを含む有機溶媒中で加水分解、縮合させることによってシリカ粒子を得た後、シリカ粒子を焼成するという公知の技術により製造することができ、たとえば特開2003−176121号公報、特開2008−137854号公報などを参照することができる。
焼成シリカ粒子を製造する原料のシリコン化合物としては特に限定されないが、テトラクロロシラン、メチルトリクロロシラン、フェニルトリクロロシラン、ジメチルジクロロシラン、ジフェニルジクロロシラン、メチルビニルジクロロシラン、トリメチルクロロシラン、メチルジフェニルクロロシラン等のクロロシラン化合物;テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、テトラブトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、トリメトキシビニルシラン、トリエトキシビニルシラン、3−グリシドキシプロピルトリメトキシシラン、3−クロロプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−(2−アミノエチルアミノ)プロピルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−クロロプロピルメチルジメトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ジメトキシジエトキシシラン、トリメチルメトキシシラン、トリメチルエトキシシラン等のアルコキシシラン化合物;テトラアセトキシシラン、メチルトリアセトキシシラン、フェニルトリアセトキシシラン、ジメチルジアセトキシシラン、ジフェニルジアセトキシシラン、トリメチルアセトキシシラン等のアシロキシシラン化合物;ジメチルシランジオール、ジフェニルシランジオール、トリメチルシラノール等のシラノール化合物;等が挙げられる。上記例示のシラン化合物のうち、アルコキシシラン化合物が、より入手し易く、かつ、得られる焼成シリカ粒子に不純物としてハロゲン原子が含まれることが無いので特に好ましい。本発明にかかる焼成シリカ粒子の好ましい形態としては、ハロゲン原子の含有量が実質的に0%であり、ハロゲン原子が検出されないことが好ましい。
焼成温度は特に限定されないが、800〜1300℃が好ましく、1000℃〜1200℃がより好ましい。
The metal oxide particles are particularly preferably calcined silica particles because of the reasonably high amount of hydroxyl groups on the surface and hard particles.
The calcined silica particles are manufactured by a known technique in which silica particles are obtained by hydrolyzing and condensing a hydrolyzable silicon compound in an organic solvent containing water and a catalyst, and then the silica particles are calcined. For example, JP2003-176121A, JP2008-137854A, and the like can be referred to.
Although it does not specifically limit as a raw material silicon compound which manufactures a burning silica particle, Chlorosilanes, such as tetrachlorosilane, methyltrichlorosilane, phenyltrichlorosilane, dimethyldichlorosilane, diphenyldichlorosilane, methylvinyldichlorosilane, trimethylchlorosilane, methyldiphenylchlorosilane Compounds: tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, tetrabutoxysilane, methyltrimethoxysilane, methyltriethoxysilane, trimethoxyvinylsilane, triethoxyvinylsilane, 3-glycidoxypropyltrimethoxysilane, 3-chloro Propyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3- (2-aminoethylamino) propyltrimethoxy Silane, phenyltrimethoxysilane, phenyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-chloropropylmethyldimethoxysilane, Alkoxysilane compounds such as diphenyldimethoxysilane, diphenyldiethoxysilane, dimethoxydiethoxysilane, trimethylmethoxysilane, trimethylethoxysilane; tetraacetoxysilane, methyltriacetoxysilane, phenyltriacetoxysilane, dimethyldiacetoxysilane, diphenyldiacetoxysilane Acyloxysilane compounds such as trimethylacetoxysilane; dimethylsilanediol, diphenylsilanediol, tri Silanol compounds such as chill silanol; and the like. Of the above-exemplified silane compounds, the alkoxysilane compound is particularly preferred because it is more easily available and the resulting fired silica particles do not contain halogen atoms as impurities. As a preferred form of the calcined silica particles according to the present invention, it is preferred that the halogen atom content is substantially 0% and no halogen atoms are detected.
Although a calcination temperature is not specifically limited, 800-1300 degreeC is preferable and 1000 degreeC-1200 degreeC is more preferable.

焼成シリカ粒子としては、(メタ)アクリロイル基を有する化合物で表面修飾された焼成シリカ粒子であることが好ましい。(メタ)アクリロイル基を有する化合物で表面修飾された焼成シリカ粒子を用いることで、反射防止層を形成するための組成物中での分散性
向上、膜強度向上、凝集防止などの効果が期待できる。表面処理方法の具体例及びその好ましい例は、特開2007−298974号公報の[0119]〜[0147]の記載を参照できる。
The calcined silica particles are preferably calcined silica particles whose surface is modified with a compound having a (meth) acryloyl group. By using calcined silica particles whose surface is modified with a compound having a (meth) acryloyl group, effects such as improvement in dispersibility in the composition for forming an antireflection layer, improvement in film strength, and prevention of aggregation can be expected. . For specific examples of the surface treatment method and preferred examples thereof, reference can be made to the descriptions in [0119] to [0147] of JP-A-2007-298974.

金属酸化物粒子の形状は、球形が最も好ましいが、不定形等の球形以外であっても問題無い。   The shape of the metal oxide particles is most preferably spherical, but there is no problem even if the shape is not spherical such as indefinite.

金属酸化物粒子は市販されている粒子を焼成して用いてもよい。具体的な例としては、IPA−ST−L(平均一次粒径50nm、日産化学工業(株)製シリカゾル)、IPA−ST−ZL(平均一次粒径80nm、日産化学工業(株)製シリカゾル)、スノーテックスMP−1040(平均一次粒径100nm、日産化学工業(株)製シリカ)、スノーテックスMP−2040(平均一次粒径200nm、日産化学工業(株)製シリカ)、シーホスターKE−P10(平均一次粒径150nm、日本触媒(株)製アモルファスシリカ)、シーホスターKE−P20(平均一次粒径200nm、日本触媒(株)製アモルファスシリカ)、ASFP−20(平均一次粒径200nm、日本電気化学工業(株)製アルミナ)などを好ましく用いることができる。さらに、本発明の金属酸化物粒子の要件を満たすものであれば、市販されている粒子をそのまま用いても良い。   The metal oxide particles may be used by firing commercially available particles. As specific examples, IPA-ST-L (average primary particle size 50 nm, silica sol manufactured by Nissan Chemical Industries, Ltd.), IPA-ST-ZL (average primary particle size 80 nm, silica sol manufactured by Nissan Chemical Industries, Ltd.) , Snowtex MP-1040 (average primary particle size 100 nm, silica manufactured by Nissan Chemical Industries, Ltd.), Snowtex MP-2040 (average primary particle size 200 nm, silica manufactured by Nissan Chemical Industries, Ltd.), Seahoster KE-P10 ( Average primary particle size 150 nm, Nippon Shokubai Co., Ltd. amorphous silica), Seahoster KE-P20 (average primary particle size 200 nm, Nippon Shokubai Co., Ltd. amorphous silica), ASFP-20 (average primary particle size 200 nm, Nippon Electrochemical) (Alumina manufactured by Kogyo Co., Ltd.) and the like can be preferably used. Furthermore, as long as the requirements of the metal oxide particles of the present invention are satisfied, commercially available particles may be used as they are.

金属酸化物粒子とバインダー樹脂の含有比は、(金属酸化物粒子の質量/バインダー樹脂の質量)が10/90以上95/5以下が好ましく、20/80以上90/10以下がより好ましく、30/70以上85/15以下が更に好ましい。(金属酸化物粒子の質量/バインダー樹脂の質量)が10/90以上であるとモスアイ構造の凹凸形状のB/Aが大きくなり、反射率が低下するため好ましい。(金属酸化物粒子の質量/バインダー樹脂の質量)が95/5以下であると金属酸化物粒子と基材との密着性が高くなったり、製造過程で金属酸化物粒子が凝集しにくく、故障やヘイズの悪化を招かないため好ましい。   The content ratio of the metal oxide particles and the binder resin is preferably 10/90 or more and 95/5 or less, more preferably 20/80 or more and 90/10 or less, (mass of metal oxide particles / binder resin mass), 30 / 70 to 85/15 is more preferable. It is preferable that (the mass of the metal oxide particles / the mass of the binder resin) is 10/90 or more because B / A of the concavo-convex shape of the moth-eye structure increases and the reflectance decreases. If the mass of the metal oxide particles / the mass of the binder resin is 95/5 or less, the adhesion between the metal oxide particles and the substrate is increased, or the metal oxide particles are less likely to aggregate during the manufacturing process, resulting in failure. Or haze deterioration is preferable.

反射防止層における隣り合う凸部の頂点間の距離Aの分布は、200nm以下であることが好ましい。Aの分布のが200nm以下であることは、粒子間距離の分布が狭く(シャープで)、粒子同士が寄ったり極度に離れたりせずに均一に存在することを表しており、ヘイズの低下、反射率の低下の観点で好ましい。Aの分布の半値幅は、125nm以下であることがより好ましく、100nm以下であることが更に好ましい。   The distribution of the distance A between the vertices of adjacent convex portions in the antireflection layer is preferably 200 nm or less. When the distribution of A is 200 nm or less, the distribution of the distance between particles is narrow (sharp), which means that the particles are present uniformly without approaching or extremely separated from each other. It is preferable from the viewpoint of a decrease in reflectance. The half width of the A distribution is more preferably 125 nm or less, and further preferably 100 nm or less.

(バインダー樹脂)
反射防止層のバインダー樹脂について説明する。
反射防止層のバインダー樹脂はヒドロキシル基を有する樹脂である。反射防止層のバインダー樹脂がヒドロキシル基を有する樹脂であることにより、前述の表面ヒドロキシル基量が1.00×10−1以下である金属酸化物粒子であっても分散性が高く、バインダー樹脂中で金属酸化物粒子が凝集せず、反射防止層のヘイズを低くでき、反射率も低くできる。
(Binder resin)
The binder resin for the antireflection layer will be described.
The binder resin of the antireflection layer is a resin having a hydroxyl group. Since the binder resin of the antireflection layer is a resin having a hydroxyl group, the dispersibility is high even in the above-described metal oxide particles having a surface hydroxyl group amount of 1.00 × 10 −1 or less. Thus, the metal oxide particles do not aggregate, the haze of the antireflection layer can be lowered, and the reflectance can also be lowered.

バインダー樹脂は、エチレン性不飽和二重結合を有する基及びエポキシ基の少なくとも一方を有する重合性化合物を重合して得られた樹脂であることが好ましく、重合性基としてエチレン性不飽和二重結合を有する基のみを有する重合性化合物を重合して得られた樹脂であることが好ましい。
重合性化合物1分子のヒドロキシル基当量は、1〜10000が好ましく、100〜5000がより好ましく、200〜3000がさらに好ましい。本発明においてヒドロキシル基当量とは、ヒドロキシル基1個あたりの分子量であり、重合性化合物の分子量を1分子中に含まれるヒドロキシル基の数で除した値である。
エチレン性不飽和二重結合を有する基を有する重合性化合物としては、(メタ)アクリロイル基、ビニル基、スチリル基、又はアリル基を有する化合物が挙げられ、中でも、(
メタ)アクリロイル基及び−C(O)OCH=CHを有する化合物好ましく、(メタ)アクリロイル基を有する化合物がより好ましい。
The binder resin is preferably a resin obtained by polymerizing a polymerizable compound having at least one of a group having an ethylenically unsaturated double bond and an epoxy group, and the ethylenically unsaturated double bond as a polymerizable group It is preferable that it is resin obtained by superposing | polymerizing the polymeric compound which has only the group which has this.
1-10000 are preferable, as for the hydroxyl group equivalent of 1 molecule of polymeric compounds, 100-5000 are more preferable, and 200-3000 are more preferable. In the present invention, the hydroxyl group equivalent is a molecular weight per hydroxyl group, and is a value obtained by dividing the molecular weight of the polymerizable compound by the number of hydroxyl groups contained in one molecule.
Examples of the polymerizable compound having a group having an ethylenically unsaturated double bond include a compound having a (meth) acryloyl group, a vinyl group, a styryl group, or an allyl group.
A compound having a (meth) acryloyl group and —C (O) OCH═CH 2 is preferred, and a compound having a (meth) acryloyl group is more preferred.

重合性化合物の具体例としては、アルキレングリコールの(メタ)アクリル酸ジエステル類、ポリオキシアルキレングリコールの(メタ)アクリル酸ジエステル類、アルコールの(メタ)アクリル酸ジエステル類、エチレンオキシドあるいはプロピレンオキシド付加物の(メタ)アクリル酸ジエステル類、エポキシ(メタ)アクリレート類、ウレタン(メタ)アクリレート類、ポリエステル(メタ)アクリレート類等を挙げることができる。   Specific examples of the polymerizable compound include (meth) acrylic acid diesters of alkylene glycol, (meth) acrylic acid diesters of polyoxyalkylene glycol, (meth) acrylic acid diesters of alcohol, ethylene oxide or propylene oxide adducts. Examples include (meth) acrylic acid diesters, epoxy (meth) acrylates, urethane (meth) acrylates, and polyester (meth) acrylates.

中でも、アルコールと(メタ)アクリル酸とのエステル類が好ましく(例えばメタクリル酸2−ヒドロキシエチル)、(多価)アルコールと(メタ)アクリル酸とのエステル類が特に好ましい。例えば、アクリル酸2−ヒドロキシエチル(2−ヒドロキシエチルメタクリレート)(ヒドロキシル基当量:116)、ペンタエリスリトールトリアクリレート(ヒドロキシル基当量:538)、ジペンタエリスリトールテトラアクリレート(ヒドロキシル基当量:228)、ジペンタエリスリトールペンタアクリレート(ヒドロキシル基当量:524)、メタクリル酸2−ヒドロキシエチル(2−ヒドロキシエチルメタクリレート)(ヒドロキシル基当量:130)、ペンタエリスリトールトリメタクリレート(ヒドロキシル基当量:340)、ジペンタエリスリトールテトラメタクリレート(ヒドロキシル基当量:256)、ジペンタエリスリトールペンタメタクリレート(ヒドロキシル基当量:594)等が挙げられる。   Among these, esters of alcohol and (meth) acrylic acid are preferable (for example, 2-hydroxyethyl methacrylate), and esters of (poly) alcohol and (meth) acrylic acid are particularly preferable. For example, 2-hydroxyethyl acrylate (2-hydroxyethyl methacrylate) (hydroxyl group equivalent: 116), pentaerythritol triacrylate (hydroxyl group equivalent: 538), dipentaerythritol tetraacrylate (hydroxyl group equivalent: 228), dipenta Erythritol pentaacrylate (hydroxyl group equivalent: 524), 2-hydroxyethyl methacrylate (2-hydroxyethyl methacrylate) (hydroxyl group equivalent: 130), pentaerythritol trimethacrylate (hydroxyl group equivalent: 340), dipentaerythritol tetramethacrylate ( Hydroxyl group equivalent: 256), dipentaerythritol pentamethacrylate (hydroxyl group equivalent: 594) and the like.

重合性化合物としては、市販の化合物を使用することもできる。具体的には、例えば、NKエステル701A(新中村化学(株)社製)(ヒドロキシル基当量:200)、NKエステルACB−21(新中村化学(株)社製)(ヒドロキシル基当量:292)、KAYARAD PET30(日本化薬(株)社製)(ヒドロキシル基当量:533)、NKエステルA−TMM3(新中村化学(株)社製)(ヒドロキシル基当量:897)、KAYARAD DPHA(日本化薬(株)社製)(ヒドロキシル基当量:1102)、アロニックスM−402(東亜合成(株)社製)(ヒドロキシル基当量:1597)、アロニックスM−405(東亜合成(株)社製)(ヒドロキシル基当量:3799)、アロニックスM−450(東亜合成(株)社製)(ヒドロキシル基当量:6986)等が挙げられる。   A commercially available compound can also be used as the polymerizable compound. Specifically, for example, NK ester 701A (manufactured by Shin-Nakamura Chemical Co., Ltd.) (hydroxyl group equivalent: 200), NK ester ACB-21 (manufactured by Shin-Nakamura Chemical Co., Ltd.) (hydroxyl group equivalent: 292) , KAYARAD PET30 (manufactured by Nippon Kayaku Co., Ltd.) (hydroxyl group equivalent: 533), NK ester A-TMM3 (manufactured by Shin-Nakamura Chemical Co., Ltd.) (hydroxyl group equivalent: 897), KAYARAD DPHA (Nippon Kayaku) (Manufactured by Co., Ltd.) (hydroxyl group equivalent: 1102), Aronix M-402 (manufactured by Toa Gosei Co., Ltd.) (hydroxyl group equivalent: 1597), Aronix M-405 (manufactured by Toa Gosei Co., Ltd.) (hydroxyl) Group equivalent: 3799), Aronix M-450 (manufactured by Toagosei Co., Ltd.) (hydroxyl group equivalent: 6986), and the like.

重合性化合物は、複数の化合物を混合して用いてよい。このとき、重合性化合物の配合比によって分子量は平均した分子量とし、ヒドロキシル基当量もこれを1分子あたりの平均のヒドロキシル基の数で除した値とする。   A polymerizable compound may be used by mixing a plurality of compounds. At this time, the molecular weight is an average molecular weight depending on the blending ratio of the polymerizable compound, and the hydroxyl group equivalent is also a value obtained by dividing this by the average number of hydroxyl groups per molecule.

(基材)
本発明の反射防止フィルムにおける基材は、反射防止フィルムの基材として一般的に使用される透光性を有する基材であれは特に制限はないが、プラスチック基材やガラス基材が好ましい。
プラスチック基材としては、種々用いることができ、例えば、セルロース系樹脂;セルロースアシレート(トリアセテートセルロース、ジアセチルセルロース、アセテートブチレートセルロース)等、ポリエステル樹脂;ポリエチレンテレフタレート等、(メタ)アクリル系樹脂、ポリウレタン系樹脂、ポリカーボネート、ポリスチレン、オレフィン系樹脂等を含有する基材が挙げられ、セルロースアシレート、ポリエチレンテレフタレート、又は(メタ)アクリル系樹脂を含有する基材が好ましく、セルロースアシレートを含有する基材がより好ましい。セルロースアシレートとしては、特開2012−093723号公報に記載の基材等を好ましく用いることが出来る。
プラスチック基材の厚さは、通常、10μm〜1000μm程度であるが、取り扱い性が良好で、透光性が高く、かつ十分な強度が得られるという観点から20μm〜200μ
mが好ましく、25μm〜100μmがより好ましい。プラスチック基材の透光性としては、可視光の透過率が90%以上のものが好ましい。
(Base material)
The base material in the antireflection film of the present invention is not particularly limited as long as it is a base material having translucency generally used as the base material of the antireflection film, but a plastic base material and a glass base material are preferable.
Various plastic substrates can be used, such as cellulose resin; cellulose acylate (triacetate cellulose, diacetyl cellulose, acetate butyrate cellulose), polyester resin; polyethylene terephthalate, (meth) acrylic resin, polyurethane, etc. Base materials containing polycarbonate resins, polycarbonates, polystyrenes, olefin resins, etc., preferably cellulose acylates, polyethylene terephthalates, or substrates containing (meth) acrylic resins, and substrates containing cellulose acylates Is more preferable. As the cellulose acylate, the base material described in JP 2012-093723 A can be preferably used.
The thickness of the plastic substrate is usually about 10 μm to 1000 μm, but it is 20 μm to 200 μm from the viewpoint of good handleability, high translucency, and sufficient strength.
m is preferable, and 25 μm to 100 μm is more preferable. As a light-transmitting property of the plastic substrate, a material having a visible light transmittance of 90% or more is preferable.

(他の機能層)
本発明の反射防止フィルムは、反射防止層以外の機能層を有していてもよい。
たとえば、基材と反射防止層との間にハードコート層を有する態様が好ましく挙げられる。また、密着性を付与するための易接着層、帯電防止性を付与するための層等を備えていても良く、これらを複数備えていても良い。
(Other functional layers)
The antireflection film of the present invention may have a functional layer other than the antireflection layer.
For example, the aspect which has a hard-coat layer between a base material and an antireflection layer is mentioned preferably. Further, an easy adhesion layer for imparting adhesion, a layer for imparting antistatic properties, or the like may be provided, or a plurality of these may be provided.

[反射防止フィルムの製造方法]
本発明の反射防止フィルムの製造方法は特に限定されないが、生産効率の観点からは塗布法を用いた製造方法が好ましい。
すなわち、反射防止フィルムの製造方法は、
基材と、バインダー樹脂及び平均一次粒径が50nm以上250nm以下の金属酸化物粒子を含有する反射防止層とを有する反射防止フィルムの製造方法であって、
金属酸化物粒子の表面は、ヒドロキシル基量が1.00×10−1以下であり、
金属酸化物粒子の押し込み硬度は400MPa以上であり、
バインダー樹脂は、ヒドロキシル基を有する樹脂であり、
反射防止層は基材側の界面とは反対側の表面に金属酸化物粒子により形成された凹凸形状からなるモスアイ構造を有し、
基材上に、重合性の官能基を有するバインダー樹脂形成用重合性化合物、及び平均一次粒径が50nm以上250nm以下の金属酸化物粒子を含有する反射防止層形成用組成物を塗布する工程を有する反射防止フィルムの製造方法である。
[Method for producing antireflection film]
Although the manufacturing method of the antireflection film of the present invention is not particularly limited, a manufacturing method using a coating method is preferable from the viewpoint of production efficiency.
That is, the manufacturing method of the antireflection film is:
A method for producing an antireflection film comprising a base material, and an antireflection layer containing a binder resin and metal oxide particles having an average primary particle size of 50 nm to 250 nm,
The surface of the metal oxide particles has a hydroxyl group amount of 1.00 × 10 −1 or less,
The indentation hardness of the metal oxide particles is 400 MPa or more,
The binder resin is a resin having a hydroxyl group,
The antireflection layer has a moth-eye structure composed of irregularities formed of metal oxide particles on the surface opposite to the substrate side interface,
A step of applying a composition for forming an antireflection layer containing a polymerizable compound for forming a binder resin having a polymerizable functional group and metal oxide particles having an average primary particle size of 50 nm to 250 nm on a substrate. It is a manufacturing method of the antireflection film which has.

反射防止層形成用組成物に含まれる重合性の官能基を有するバインダー樹脂形成用重合性化合物、及び平均一次粒径が50nm以上250nm以下の金属酸化物粒子は前述したものと同様である。
反射防止層形成用組成物は、溶媒、重合開始剤、粒子の分散剤、レベリング剤、防汚剤等を含んでいてもよい。
溶媒としては、微粒子と極性が近い物を選ぶのが分散性を向上させる観点で好ましい。具体的には、例えば微粒子が金属酸化物粒子の場合にはアルコール系の溶剤が好ましく、メタノール、エタノール、2−プロパノール、1−プロパノール、ブタノールなどが挙げられる。また、例えば微粒子が疎水化表面修飾がされた金属樹脂粒子や樹脂粒子の場合には、ケトン系、エステル系、カーボネート系、アルカン、芳香族系等の溶剤が好ましく、メチルエチルケトン(MEK)、炭酸ジメチル、酢酸メチル、アセトン、メチレンクロライド、シクロヘキサノンなどが挙げられる。これらの溶剤は、分散性を著しく悪化させない範囲で複数種混ぜて用いてもかまわない。
粒子の分散剤は、粒子同士の凝集力を低下させることにより、粒子を均一に配置させ易くすることができる。分散剤としては、特に限定されないが、硫酸塩、リン酸塩などのアニオン性化合物、脂肪族アミン塩、四級アンモニウム塩などのカチオン性化合物、非イオン性化合物、高分子化合物が好ましく、吸着基と立体反発基それぞれの選択の自由度が高いため高分子化合物がより好ましい。分散剤としては市販品を用いることもできる。例えば、ビックケミー・ジャパン(株)製のDISPERBYK160、DISPERBYK161、DISPERBYK162、DISPERBYK163、DISPERBYK164、DISPERBYK166、DISPERBYK167、DISPERBYK171、DISPERBYK180、DISPERBYK182、DISPERBYK2000、DISPERBYK2001、DISPERBYK2164、Bykumen、BYK−2009、BYK−P104、BYK−P104S、BYK−220S、Anti−Terra203、Anti−Terra204、Anti−Terra205(以上商品名)などが挙げられる。
レベリング剤は、塗布液の表面張力を低下させることにより、塗布後の液を安定させ粒子やバインダー樹脂を均一に配置させ易くすることができる。例えば、特開2004−331812号公報、特開2004−163610号公報に記載の化合物等を用いることができる。
防汚剤は、モスアイ構造に撥水撥油性を付与することにより、汚れや指紋の付着を抑制することができる。例えば、特開2012−88699号公報に記載の化合物等を用いることができる。
The polymerizable compound for forming a binder resin having a polymerizable functional group and the metal oxide particles having an average primary particle size of 50 nm or more and 250 nm or less contained in the composition for forming an antireflection layer are the same as those described above.
The composition for forming an antireflection layer may contain a solvent, a polymerization initiator, a particle dispersing agent, a leveling agent, an antifouling agent and the like.
A solvent having a polarity close to that of the fine particles is preferably selected from the viewpoint of improving dispersibility. Specifically, for example, when the fine particles are metal oxide particles, an alcohol solvent is preferable, and examples thereof include methanol, ethanol, 2-propanol, 1-propanol, and butanol. For example, when the fine particles are metal resin particles or resin particles having a hydrophobic surface modified, ketone-based, ester-based, carbonate-based, alkane, aromatic-based solvents are preferable, and methyl ethyl ketone (MEK), dimethyl carbonate , Methyl acetate, acetone, methylene chloride, cyclohexanone and the like. These solvents may be used in a mixture of a plurality of types as long as the dispersibility is not significantly deteriorated.
The particle dispersing agent can facilitate uniform arrangement of the particles by reducing the cohesive force between the particles. The dispersant is not particularly limited, but is preferably an anionic compound such as a sulfate or phosphate, a cationic compound such as an aliphatic amine salt or a quaternary ammonium salt, a nonionic compound or a polymer compound. And a steric repulsion group are more preferred because they have a high degree of freedom in selection. A commercial item can also be used as a dispersing agent. For example, BYK Japan made of (stock) DISPERBYK160, DISPERBYK161, DISPERBYK162, DISPERBYK163, DISPERBYK164, DISPERBYK166, DISPERBYK167, DISPERBYK171, DISPERBYK180, DISPERBYK182, DISPERBYK2000, DISPERBYK2001, DISPERBYK2164, Bykumen, BYK-2009, BYK-P104, BYK-P104S, BYK-220S, Anti-Terra 203, Anti-Terra 204, Anti-Terra 205 (above product names) and the like can be mentioned.
By reducing the surface tension of the coating solution, the leveling agent can stabilize the solution after coating and facilitate the uniform arrangement of particles and binder resin. For example, the compounds described in JP-A-2004-331812 and JP-A-2004-163610 can be used.
The antifouling agent can suppress adhesion of dirt and fingerprints by imparting water and oil repellency to the moth-eye structure. For example, compounds described in JP 2012-88699 A can be used.

(重合開始剤)
バインダー樹脂形成用重合性化合物が光重合性化合物である場合は、反射防止層形成用組成物は光重合開始剤を含むことが好ましい。
光重合開始剤としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類、2,3−ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類、芳香族スルホニウム類、ロフィンダイマー類、オニウム塩類、ボレート塩類、活性エステル類、活性ハロゲン類、無機錯体、クマリン類などが挙げられる。光重合開始剤の具体例、及び好ましい態様、市販品などは、特開2009−098658号公報の段落[0133]〜[0151]に記載されており、本発明においても同様に好適に用いることができる。
「最新UV硬化技術」{(株)技術情報協会}(1991年)、p.159、及び、「紫外線硬化システム」加藤清視著(平成元年、総合技術センター発行)、p.65〜148にも種々の例が記載されており本発明に有用である。
(Polymerization initiator)
When the polymerizable compound for forming a binder resin is a photopolymerizable compound, the composition for forming an antireflection layer preferably contains a photopolymerization initiator.
As photopolymerization initiators, acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thioxanthones, azo compounds, peroxides, 2,3-dialkyldione compounds, disulfide compounds, Examples include fluoroamine compounds, aromatic sulfoniums, lophine dimers, onium salts, borate salts, active esters, active halogens, inorganic complexes, and coumarins. Specific examples, preferred embodiments, commercially available products, and the like of the photopolymerization initiator are described in paragraphs [0133] to [0151] of JP-A-2009-098658, and can be suitably used in the present invention as well. it can.
“Latest UV Curing Technology” {Technical Information Association, Inc.} (1991), p. 159, and “UV Curing System” written by Kiyomi Kato (published by the General Technology Center in 1989), p. Various examples are also described in 65-148 and are useful in the present invention.

反射防止層形成用組成物の塗布方法としては、特に限定されず公知の方法を用いることができる。例えば、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、ダイコート法等が挙げられる。   A method for applying the composition for forming an antireflection layer is not particularly limited, and a known method can be used. Examples include dip coating, air knife coating, curtain coating, roller coating, wire bar coating, gravure coating, and die coating.

均一に塗布しやすい観点から、反射防止層形成用組成物の固形分濃度は、10質量%以上80質量%以下であることが好ましく、20質量%以上60質量%以下であることがより好ましい。   From the viewpoint of easy application uniformly, the solid content concentration of the composition for forming an antireflection layer is preferably 10% by mass or more and 80% by mass or less, and more preferably 20% by mass or more and 60% by mass or less.

(その他の添加物)
反射防止層には、前述の金属酸化物粒子とは別の微粒子を含有してもよい。この場合は、モスアイ構造の形を阻害しないために、金属酸化物微粒子よりも小さいことが必要である。上記別の微粒子としては、平均一次粒径が50nm以上120nm未満の粒子であれば、金属酸化物微粒子同士の凝集を抑制し、反射率、ヘイズを低減させる場合もあるため好ましい。上記別の微粒子の具体的な例としては、例えば、オルガノシリカゾルIPA−ST、IPA−ST−L、IPA−ST−ZL、MEK−ST、MEK−ST−L、MEK−ST−ZL、MEK−AC−4130Y、MEK−AC−5140Z、スルーリア2320、4320、5320、(以上、日産化学(株)社製未焼成シリカ粒子分散液)、シーホスターKE−P10((株)日本触媒社製未焼成シリカ粒子)、XX−242S(積水化成品工業(株)社製架橋ポリメタクリル酸メチル粒子)などが挙げられる。
(Other additives)
The antireflection layer may contain fine particles different from the metal oxide particles described above. In this case, in order not to disturb the shape of the moth-eye structure, it is necessary to be smaller than the metal oxide fine particles. As the other fine particles, particles having an average primary particle size of 50 nm or more and less than 120 nm are preferable because aggregation of metal oxide fine particles may be suppressed and reflectance and haze may be reduced. Specific examples of the other fine particles include, for example, organosilica sol IPA-ST, IPA-ST-L, IPA-ST-ZL, MEK-ST, MEK-ST-L, MEK-ST-ZL, MEK- AC-4130Y, MEK-AC-5140Z, Thruria 2320, 4320, 5320 (above, unfired silica particle dispersion manufactured by Nissan Chemical Co., Ltd.), Seahoster KE-P10 (unfired silica manufactured by Nippon Shokubai Co., Ltd.) Particles), XX-242S (crosslinked polymethyl methacrylate particles manufactured by Sekisui Plastics Co., Ltd.), and the like.

[偏光板]
本発明の偏光板は、偏光子と、偏光子を保護する少なくとも1枚の保護フィルムとを有する偏光板であって、保護フィルムの少なくとも1枚が本発明の反射防止フィルムである。
[Polarizer]
The polarizing plate of the present invention is a polarizing plate having a polarizer and at least one protective film for protecting the polarizer, and at least one of the protective films is the antireflection film of the present invention.

偏光子には、ヨウ素系偏光膜、二色性染料を用いる染料系偏光膜やポリエン系偏光膜が
ある。ヨウ素系偏光膜及び染料系偏光膜は、一般にポリビニルアルコール系フィルムを用いて製造することができる。
Examples of the polarizer include an iodine polarizing film, a dye polarizing film using a dichroic dye, and a polyene polarizing film. The iodine-based polarizing film and the dye-based polarizing film can be generally produced using a polyvinyl alcohol film.

[カバーガラス]
本発明のカバーガラスは、本発明の反射防止フィルムを保護フィルムとして有する。反射防止フィルムの基材がガラスのものであってもよいし、プラスチックフィルム基材を有する反射防止フィルムをガラス支持体上に貼り付けたものであってもよい。
[cover glass]
The cover glass of the present invention has the antireflection film of the present invention as a protective film. The base material of the antireflection film may be made of glass, or an antireflection film having a plastic film base material may be pasted on a glass support.

[画像表示装置]
本発明の画像表示装置は、本発明の反射防止フィルム又は偏光板を有する。
本発明の反射防止フィルム及び偏光板は液晶表示装置(LCD)、プラズマディスプレイパネル(PDP)、エレクトロルミネッセンスディスプレイ(ELD)や陰極管表示装置(CRT)のような画像表示装置に好適に用いることができ、特に液晶表示装置が好ましい。
一般的に、液晶表示装置は、液晶セル及びその両側に配置された2枚の偏光板を有し、液晶セルは、2枚の電極基板の間に液晶を担持している。更に、光学異方性層が、液晶セルと一方の偏光板との間に一枚配置されるか、又は液晶セルと双方の偏光板との間に2枚配置されることもある。液晶セルは、TNモード、VAモード、OCBモード、IPSモード又はECBモードであることが好ましい。
[Image display device]
The image display device of the present invention has the antireflection film or the polarizing plate of the present invention.
The antireflection film and polarizing plate of the present invention are preferably used for image display devices such as liquid crystal display devices (LCD), plasma display panels (PDP), electroluminescence displays (ELD), and cathode ray tube display devices (CRT). In particular, a liquid crystal display device is preferable.
In general, a liquid crystal display device has a liquid crystal cell and two polarizing plates arranged on both sides thereof, and the liquid crystal cell carries a liquid crystal between two electrode substrates. Furthermore, one optically anisotropic layer may be disposed between the liquid crystal cell and one polarizing plate, or two optically anisotropic layers may be disposed between the liquid crystal cell and both polarizing plates. The liquid crystal cell is preferably in TN mode, VA mode, OCB mode, IPS mode or ECB mode.

以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、試薬、物質量とその割合、操作等は本発明の趣旨から逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下の具体例に制限されるものではない。   The present invention will be described more specifically with reference to the following examples. The materials, reagents, amounts and ratios of substances, operations, and the like shown in the following examples can be appropriately changed without departing from the gist of the present invention. Therefore, the scope of the present invention is not limited to the following specific examples.

[シリカ粒子a−1の合成]
撹拌機、滴下装置および温度計を備えた容量200Lの反応器に、メチルアルコール67.54kgと、28質量%アンモニア水(水および触媒)26.33kgとを仕込み、撹拌しながら液温を33℃に調節した。一方、滴下装置に、テトラメトキシシラン12.70kgをメチルアルコール5.59kgに溶解させた溶液を仕込んだ。反応器中の液温を33℃に保持しながら、滴下装置から上記溶液を1時間かけて滴下し、滴下終了後、さらに1時間、液温を上記温度に保持しながら撹拌することにより、テトラメトキシシランの加水分解および縮合を行い、シリカ粒子前駆体を含有する分散液を得た。この分散液を、瞬間真空蒸発装置((ホソカワミクロン(株)社製クラックス・システムCVX−8B型)を用いて加熱管温度175℃、減圧度200torr(27kPa)の条件で気流乾燥させることにより、シリカ粒子a−1を得た。平均粒子径は200nm、粒子径の分散度(Cv値):3.5%であった。
[Synthesis of Silica Particles a-1]
A 200 L reactor equipped with a stirrer, a dropping device and a thermometer was charged with 67.54 kg of methyl alcohol and 26.33 kg of 28% by mass aqueous ammonia (water and catalyst), and the liquid temperature was kept at 33 ° C. while stirring. Adjusted. Meanwhile, a dropping device was charged with a solution prepared by dissolving 12.70 kg of tetramethoxysilane in 5.59 kg of methyl alcohol. While maintaining the liquid temperature in the reactor at 33 ° C., the above solution was dropped from the dropping device over 1 hour, and after completion of the dropping, stirring was further performed for 1 hour while maintaining the liquid temperature at the above temperature. Hydrolysis and condensation of methoxysilane was performed to obtain a dispersion containing a silica particle precursor. This dispersion was subjected to air-drying under the conditions of a heating tube temperature of 175 ° C. and a reduced pressure of 200 torr (27 kPa) using an instantaneous vacuum evaporation apparatus (Crox System CVX-8B type manufactured by Hosokawa Micron Co., Ltd.). Particle a-1 was obtained, and the average particle size was 200 nm, and the degree of particle size dispersion (Cv value) was 3.5%.

[焼成シリカ粒子b−1の作製]
シリカ粒子a−1 5kgをルツボに入れ、電気炉を用いて900℃で1時間焼成した後、冷却して、次いで粉砕機を用いて粉砕し、分級前焼成シリカ粒子を得た。さらにジェット粉砕分級機(日本ニューマ社製IDS−2型)を用いて解砕および分級を行うことにより焼成シリカ粒子b−1を得た。得られたシリカ粒子の平均粒径は200nm、粒径の分散度(Cv値):3.5%であった。
[Preparation of calcined silica particles b-1]
5 kg of silica particles a-1 were placed in a crucible, fired at 900 ° C. for 1 hour using an electric furnace, cooled, and then ground using a grinder to obtain pre-classified fired silica particles. Furthermore, calcination silica classification b-1 was obtained by performing crushing and classification using a jet crushing and classifying machine (IDS-2 type, manufactured by Nippon Puma Co., Ltd.). The average particle diameter of the obtained silica particles was 200 nm, and the degree of dispersion (Cv value) of the particle diameter was 3.5%.

[焼成シリカ粒子b−2の作製]
シリカ粒子a−1 5kgをルツボに入れ、電気炉を用いて900℃で2時間焼成した後、冷却して、次いで粉砕機を用いて粉砕し、分級前焼成シリカ粒子を得た。さらにジェット粉砕分級機(日本ニューマ社製IDS−2型)を用いて解砕および分級を行うことにより焼成シリカ粒子b−2を得た。得られたシリカ粒子の平均粒径は200nm、粒径の
分散度(Cv値):3.5%であった。
[Preparation of calcined silica particles b-2]
5 kg of silica particles a-1 were put in a crucible, fired at 900 ° C. for 2 hours using an electric furnace, cooled, and then ground using a grinder to obtain pre-classified fired silica particles. Furthermore, the pulverized silica particles b-2 were obtained by crushing and classifying using a jet pulverizing and classifying machine (IDS-2 type manufactured by Nippon Puma Co., Ltd.). The average particle diameter of the obtained silica particles was 200 nm, and the degree of dispersion (Cv value) of the particle diameter was 3.5%.

[焼成シリカ粒子b−3の作製]
シリカ粒子a−1 5kgをルツボに入れ、電気炉を用いて1050℃で1時間焼成した後、冷却して、次いで粉砕機を用いて粉砕し、分級前焼成シリカ粒子を得た。さらにジェット粉砕分級機(日本ニューマ社製IDS−2型)を用いて解砕および分級を行うことにより焼成シリカ粒子b−3を得た。得られたシリカ粒子の平均粒径は200nm、粒径の分散度(Cv値):3.5%であった。
[Preparation of calcined silica particles b-3]
5 kg of silica particles a-1 were put into a crucible, fired at 1050 ° C. for 1 hour using an electric furnace, cooled, and then pulverized using a pulverizer to obtain pre-classified sintered silica particles. Furthermore, the pulverized silica particles b-3 were obtained by performing crushing and classification using a jet pulverization classifier (IDS-2 type, manufactured by Nippon Puma Co., Ltd.). The average particle diameter of the obtained silica particles was 200 nm, and the degree of dispersion (Cv value) of the particle diameter was 3.5%.

[焼成シリカ粒子b−4の作製]
シリカ粒子b−1、b−3それぞれ2kgを高速撹拌混合機スパルタンミキサー(DULTON製)に投入し、30分間攪拌した後取り出して焼成シリカ粒子b−4を得た。得られたシリカ粒子の平均粒径は200nm、粒径の分散度(Cv値):23%であった。
[Preparation of calcined silica particles b-4]
2 kg each of silica particles b-1 and b-3 were put into a high-speed stirring mixer Spartan mixer (manufactured by DULTON), stirred for 30 minutes and then taken out to obtain calcined silica particles b-4. The average particle diameter of the obtained silica particles was 200 nm, and the degree of dispersion (Cv value) of the particle diameter was 23%.

[焼成シリカ粒子b−5の作製]
シリカ系中空微粒子分散ゾル(触媒化成工業(株)製:スルーリア1420−120、平均粒径120nm、濃度20.5重量%、分散媒:イソプロパノ−ル、粒子屈折率1.20)25kgをルツボに入れ、100℃のオーブンでイソプロパノールを蒸発させた。次に、電気炉を用いて1050℃で1時間焼成した後、冷却して、次いで粉砕機を用いて粉砕し、分級前焼成シリカ粒子を得た。さらにジェット粉砕分級機(日本ニューマ社製IDS−2型)を用いて解砕および分級を行うことにより焼成シリカ粒子b−5を得た。得られたシリカ粒子の平均粒径は120nm、粒径の分散度(Cv値):5.0%であった。
[Preparation of calcined silica particles b-5]
25 kg of silica-based hollow fine particle dispersion sol (Catalyst Kasei Kogyo Co., Ltd .: Thruria 1420-120, average particle size 120 nm, concentration 20.5 wt%, dispersion medium: isopropanol, particle refractive index 1.20) in a crucible The isopropanol was evaporated in an oven at 100 ° C. Next, after baking for 1 hour at 1050 ° C. using an electric furnace, the mixture was cooled and then pulverized using a pulverizer to obtain pre-classified baked silica particles. Furthermore, pulverized silica particles b-5 were obtained by crushing and classifying using a jet pulverization classifier (IDS-2 type, manufactured by Nippon Puma Co., Ltd.). The average particle diameter of the obtained silica particles was 120 nm, and the degree of dispersion (Cv value) of the particle diameter was 5.0%.

[シランカップリング剤処理シリカ粒子c−1の作製]
分級前焼成シリカ粒子b−2 5kgを、加熱ジャケットを備えた容量20Lのヘンシェルミキサ(三井鉱山株式会社製FM20J型)に仕込んだ。焼成シリカ粒子b−2を撹拌しているところに、3−アクリロキシプロピルトリメトキシシラン(信越化学工業株式会社製KBM5103)45gを、メチルアルコール90gに溶解させた溶液を滴下して混合した。その後、混合撹拌しながら150℃まで約1時間かけて昇温し、150℃で12時間保持して加熱処理を行った。加熱処理では、掻き落とし装置を撹拌羽根とは逆方向に常時回転させながら、壁面付着物の掻き落としを行った。また、適宜、へらを用いて壁面付着物を掻き落とすことも行った。加熱後、冷却し、ジェット粉砕分級機を用いて解砕および分級を行い、シランカップリング剤処理シリカ粒子c−1を得た。平均粒径は210nm、粒径の分散度(Cv値):3.7%であった。
[Production of Silane Coupling Agent-treated Silica Particles c-1]
5 kg of pre-classified sintered silica particles b-2 were charged into a 20 L Henschel mixer (FM20J type, manufactured by Mitsui Mining Co., Ltd.) equipped with a heating jacket. A solution prepared by dissolving 45 g of 3-acryloxypropyltrimethoxysilane (KBM5103 manufactured by Shin-Etsu Chemical Co., Ltd.) in 90 g of methyl alcohol was added dropwise to the stirred silica particles b-2. Then, it heated up to 150 degreeC over about 1 hour, mixing and stirring, and hold | maintained at 150 degreeC for 12 hours, and heat-processed. In the heat treatment, scrapes on the wall surface were scraped while the scraping device was always rotated in the direction opposite to the stirring blade. Moreover, the wall deposits were also scraped off using a spatula as appropriate. After heating, the mixture was cooled and pulverized and classified using a jet pulverizer to obtain silane coupling agent-treated silica particles c-1. The average particle size was 210 nm, and the degree of dispersion (Cv value) of the particle size was 3.7%.

[粒子表面のヒドロキシル基量の測定]
固体29Si NMRを用いて、次の条件でシグナル強度Q2、Q1を測定し、ヒドロキシル基量(Q1×3+Q2×2)を算出した。
測定法: 29Si CP/MAS
観測周波数: 29Si : 59.63 MHz
スペクトル幅: 22675.74 Hz
積算回数: 2000回
コンタクトタイム: 5ms
90°パルス: 4.8μs
測定待ち時間: 2秒
MAS回転数: 3kHz
化学シフト: Q2は−91〜−94ppm、Q1は−100〜−102ppm
[Measurement of hydroxyl group content on particle surface]
Using solid 29Si NMR, signal intensity Q2 and Q1 were measured under the following conditions to calculate the amount of hydroxyl groups (Q1 × 3 + Q2 × 2).
Measuring method: 29 Si CP / MAS
Observation frequency: 29 Si: 59.63 MHz
Spectral width: 22675.74 Hz
Total number of times: 2000 times Contact time: 5 ms
90 ° pulse: 4.8 μs
Measurement waiting time: 2 seconds MAS rotation speed: 3 kHz
Chemical shift: Q2 is -91 to -94 ppm, Q1 is -100 to -102 ppm

[金属酸化物粒子の押し込み硬度の測定]
各金属酸化物粒子8g、イルガキュア184(BASFジャパン(株)社製)0.3g、KAYARAD PET30(日本化薬(株)社製)7.7gをエタノール91gに投入し、10分間攪拌後、超音波分散機により10分間分散して15質量%の分散液を得た。この分散W期をガラス板にWet塗布量約3ml/mで塗布し、酸素濃度が0.1体積%以下の雰囲気になるように窒素パージしながら空冷メタルハライドランプで照射量600mJ/cmの紫外線を照射して硬化した。その後、金属酸化物粒子が一段以上に積み重なっていないことをSEMで観察した。この試料をトライボインデンター(ハイジトロン社製TI−950)を用いて直径1μmのダイヤモンド圧子、押し込み荷重0.05mNの測定条件で金属酸化物粒子の押し込み硬度を測定した。
[Measurement of indentation hardness of metal oxide particles]
8 g of each metal oxide particle, 0.3 g of Irgacure 184 (manufactured by BASF Japan Ltd.), 7.7 g of KAYARAD PET30 (manufactured by Nippon Kayaku Co., Ltd.) were added to 91 g of ethanol, and after stirring for 10 minutes, The dispersion was carried out for 10 minutes with a sonic disperser to obtain a 15% by mass dispersion. This dispersion W period was applied to a glass plate at a wet application amount of about 3 ml / m 2 , and an irradiation amount of 600 mJ / cm 2 was applied with an air-cooled metal halide lamp while purging with nitrogen so that the oxygen concentration was 0.1 vol% or less. Cured by UV irradiation. Thereafter, it was observed with SEM that the metal oxide particles were not stacked in one or more stages. This sample was measured for indentation hardness of the metal oxide particles using a triboindenter (TI-950 manufactured by Heiditron Co., Ltd.) under the measurement conditions of a diamond indenter with a diameter of 1 μm and an indentation load of 0.05 mN.

[反射防止フィルムA−1及びA−2の作製]
ガラス容器中に入れた10gのエタノール中にシリカ粒子a−1 10gを加え、目視にて固形物が確認できなくなるまで超音波を印加して、乳白色の懸濁液を得た。次いで、ガラス容器中の懸濁液に対して、15gのアクリルモノマー(東亞合成社製M−350)加え、よく攪拌し、その後、ガラス容器ごと45℃に保持された乾燥機に入れて、懸濁液からエタノールを約5g蒸発させた後、光重合開始剤(チバ・スペシャリティ・ケミカルズ製の商品名「DAROCUR1173」)を0.2g加えることにより、シリカ粒子がアクリルモノマー中に分散された反射防止層形成用塗布液A−1を得た。
[Preparation of antireflection films A-1 and A-2]
10 g of silica particles a-1 were added to 10 g of ethanol placed in a glass container, and ultrasonic waves were applied until no solid matter could be visually confirmed to obtain a milky white suspension. Subsequently, 15 g of acrylic monomer (M-350 manufactured by Toagosei Co., Ltd.) was added to the suspension in the glass container, stirred well, and then placed in a dryer maintained at 45 ° C. together with the glass container. After evaporating about 5 g of ethanol from the suspension, 0.2 g of photopolymerization initiator (trade name “DAROCUR1173” manufactured by Ciba Specialty Chemicals) was added to prevent the silica particles from being dispersed in the acrylic monomer. A layer forming coating solution A-1 was obtained.

次に、反射防止層形成用塗布液A−1を、予めUV/オゾンクリーナーにて表面クリーニングを行った100mm角のガラス基板(アサヒテクノグラス社製のアルカリガラス)の表面に滴下し、スピンコーターを用いて、200rpmで120秒、引き続き600rpmで120秒という条件でガラス基板を回転させてガラス基板の表面全体に反射防止層形成用塗布液A−1を塗布した。その後、反射防止層形成用塗布液A−1を塗布した基板を、窒素雰囲気のグローブボックスに搬送し、グローブボックス内でUVキュアランプを1分間照射することによってアクリルモノマーを光重合により硬化させ、ガラス基板上にアクリル樹脂中にシリカ粒子が分散された透明樹脂膜を得た。   Next, the coating liquid A-1 for forming an antireflection layer is dropped on the surface of a 100 mm square glass substrate (alkali glass manufactured by Asahi Techno Glass Co., Ltd.) that has been surface cleaned with a UV / ozone cleaner in advance, and a spin coater. , The glass substrate was rotated under the conditions of 200 rpm for 120 seconds and then 600 rpm for 120 seconds to apply the coating solution A-1 for forming an antireflection layer over the entire surface of the glass substrate. Thereafter, the substrate coated with the antireflection layer forming coating solution A-1 is conveyed to a glove box in a nitrogen atmosphere, and the acrylic monomer is cured by photopolymerization by irradiating with a UV cure lamp in the glove box for 1 minute. A transparent resin film in which silica particles were dispersed in an acrylic resin on a glass substrate was obtained.

次いで、得られた透明樹脂膜の表面に対して、高周波プラズマ装置を用いて13.56MHzの条件でプラズマ処理して、透明樹脂膜中のアクリル樹脂をエッチングし、表面に凹凸形状を顕在化させることにより、反射防止フィルムA−1を得た。プラズマ処理は、酸素:アルゴン=1:1の組成のガスを導入しながら、圧力2.7Paの条件下において50Wの高周波を30秒間印加して行った。また、得られた反射防止層の膜厚は、20μmであった。   Next, the surface of the obtained transparent resin film is subjected to plasma treatment using a high-frequency plasma apparatus under conditions of 13.56 MHz to etch the acrylic resin in the transparent resin film, thereby revealing the uneven shape on the surface. Thus, an antireflection film A-1 was obtained. The plasma treatment was performed by applying a high frequency of 50 W for 30 seconds under a pressure of 2.7 Pa while introducing a gas having a composition of oxygen: argon = 1: 1. Moreover, the film thickness of the obtained antireflection layer was 20 μm.

シリカ粒子a−1の代わりにシリカ粒子b−1を用いた(反射防止層形成用塗布液A−2)以外は反射防止フィルムA−1と同じ方法で反射防止フィルムA−2を作製した。得られた反射防止膜の膜厚は、20μmであった。   An antireflection film A-2 was produced in the same manner as the antireflection film A-1, except that the silica particles b-1 were used instead of the silica particles a-1 (coating liquid A-2 for forming an antireflection layer). The film thickness of the obtained antireflection film was 20 μm.

[反射防止フィルムB−1〜B−4、C−1〜C−11の作製]
(反射防止層形成用塗布液の調製)
下記表1の組成となるように各成分をミキシングタンクに投入し、60分間攪拌し、30分間超音波分散機により分散し、孔径5μmのポリプロピレン製フィルターで濾過して反射防止層形成用塗布液とした。
下記表1において、各成分の数値は添加した量(質量部)を表す。また、塗布液濃度の単位は「質量%」である。金属酸化物粒子については、ヒドロキシル基等量、押し込み硬度、及び平均一次粒径の分散度Cv値を記載した。
[Preparation of Antireflection Films B-1 to B-4, C-1 to C-11]
(Preparation of coating solution for antireflection layer formation)
Each component is put into a mixing tank so as to have the composition shown in Table 1 below, stirred for 60 minutes, dispersed with an ultrasonic disperser for 30 minutes, and filtered through a polypropylene filter having a pore size of 5 μm to form a coating solution for forming an antireflection layer. It was.
In the following Table 1, the numerical value of each component represents the added amount (parts by mass). The unit of the coating solution concentration is “mass%”. For metal oxide particles, the hydroxyl group equivalent, indentation hardness, and average primary particle size dispersity Cv value are listed.

Figure 2016136228
Figure 2016136228

それぞれ使用した化合物を以下に示す。
KAYARAD PET30(日本化薬(株)社製):ペンタエリストールトリアクリレート60%とペンタエリストールテトラアクリレート40%の混合物
KAYARAD DPHA(日本化薬(株)社製):ジペンタエリスリトールペンタアクリレート50%とジペンタエリスリトールヘキサアクリレート50%の混合物
アロニックス M−405(東亞合成(株)社製) :ジペンタエリスリトールペンタア
クリレート15%とジペンタエリスリトールヘキサアクリレート85%の混合物
アロニックス M−450(東亞合成(株)社製) :ペンタエリストールトリアクリレ
ート5%とペンタエリストールテトラアクリレート95%の混合物
シーホスターKE−S30((株)日本触媒社製):平均一次粒径 約300nm
イルガキュア184:光重合開始剤(BASFジャパン(株)製)
The compounds used are shown below.
KAYARAD PET30 (manufactured by Nippon Kayaku Co., Ltd.): a mixture of 60% pentaerythritol triacrylate and 40% pentaerythritol tetraacrylate KAYARAD DPHA (manufactured by Nippon Kayaku Co., Ltd.): 50% dipentaerythritol pentaacrylate Aronix M-405 (manufactured by Toagosei Co., Ltd.): A mixture of 15% dipentaerythritol pentaacrylate and 85% dipentaerythritol hexaacrylate Aronix M-450 (Toagosei Co., Ltd.) ) Manufactured by :) Mixture of 5% pentaerythritol triacrylate and 95% pentaerythritol tetraacrylate Seahoster KE-S30 (manufactured by Nippon Shokubai Co., Ltd.): average primary particle size of about 300 nm
Irgacure 184: Photopolymerization initiator (manufactured by BASF Japan Ltd.)

(反射防止フィルムB−1〜B−4の作製)
厚さ60μmの透明基材としてセルローストリアセテートフィルム(TDH60UF、富士フイルム(株)製)上に、反射防止層形成用塗布液B−1をグラビアコーターを用いてWet塗布量約2.8ml/mで塗布、120℃で5分間乾燥した後、酸素濃度が0.1体積%以下の雰囲気になるように窒素パージしながら空冷メタルハライドランプで照射量600mJ/cmの紫外線を照射して硬化し、反射防止フィルムB−1を作製した。このとき、Wet塗布量は微調整して粒子占有率を測定し、最も高くなったものを反射防止フィルムB−1として採用した。反射防止層形成用塗布液B−1の代わりに反射防止層形成用塗布液B−2〜B−4を用いた以外は同様の方法で反射防止フィルムB−2〜B−4を作製した。
(Preparation of antireflection films B-1 to B-4)
On a cellulose triacetate film (TDH60UF, manufactured by FUJIFILM Corporation) as a transparent substrate having a thickness of 60 μm, an anti-reflection layer-forming coating solution B-1 is applied at a wet coating amount of about 2.8 ml / m 2 using a gravure coater. After being coated with and dried at 120 ° C. for 5 minutes, it was cured by irradiating with an ultraviolet ray with an irradiation amount of 600 mJ / cm 2 with an air-cooled metal halide lamp while purging with nitrogen so that the atmosphere had an oxygen concentration of 0.1% by volume or less. An antireflection film B-1 was produced. At this time, the amount of wet coating was finely adjusted to measure the particle occupancy, and the highest was adopted as the antireflection film B-1. Antireflection films B-2 to B-4 were produced in the same manner except that the antireflection layer forming coating solutions B-2 to B-4 were used instead of the antireflection layer forming coating solution B-1.

(ハードコート層形成用組成物の調製)
ミキシングタンクに酢酸メチル10.5質量部、MEK10.5質量部、NKエステルA−TMMT(新中村化学(株)社製)22.52質量部、AD−TMP(新中村化学(株)社製)6.30質量部、イルガキュア184 0.84質量部を投入し、攪拌して、孔径0.4μmのポリプロピレン製フィルターで濾過してハードコート層用塗布液(固形分濃度58質量%)とした。
(Preparation of composition for forming hard coat layer)
Methyl acetate 10.5 parts by mass, MEK 10.5 parts by mass, NK ester A-TMMT (made by Shin-Nakamura Chemical Co., Ltd.) 22.52 parts by mass, AD-TMP (made by Shin-Nakamura Chemical Co., Ltd.) ) 6.30 parts by mass and 0.84 parts by mass of Irgacure 184 were added, stirred, and filtered through a polypropylene filter having a pore size of 0.4 μm to obtain a hard coat layer coating solution (solid content concentration: 58% by mass). .

(反射防止フィルムC−1〜C−11の作製)
セルローストリアセテートフィルム(TDH60UF、富士フイルム(株)製)上に、ハードコート層形成用塗布液を塗布し、窒素パージしながら空冷メタルハライドランプで照射量30mJ/cmの紫外線を照射して硬化し、膜厚6μmのハードコート層を形成した。このようにしてハードコート層付き基材を作製した。
ハードコート層付き基材のハードコート層上に、反射防止層形成用塗布液C−1をグラビアコーターを用いてWet塗布量約2.8ml/mで塗布し、120℃で5分間乾燥した後、酸素濃度が0.1体積%以下の雰囲気になるように窒素パージしながら空冷メタルハライドランプで照射量600mJ/cmの紫外線を照射して硬化し、反射防止フィルムC−1を作製した。このとき、Wet塗布量は微調整して粒子占有率を測定し、最も高くなったものを反射防止フィルムC−1として採用した。反射防止層形成用塗布液C−1の代わりに反射防止層形成用塗布液C−2〜C−11を用い、Wet塗布量を反射防止フィルムC−1を形成したときと同じにした以外は同様の方法で反射防止フィルムC−2〜C−11を作製した。
(Preparation of antireflection films C-1 to C-11)
A cellulose triacetate film (TDH60UF, manufactured by Fuji Film Co., Ltd.) is coated with a coating solution for forming a hard coat layer and cured by irradiating an ultraviolet ray with an irradiation amount of 30 mJ / cm 2 with an air-cooled metal halide lamp while purging with nitrogen. A hard coat layer having a thickness of 6 μm was formed. Thus, the base material with a hard-coat layer was produced.
On the hard coat layer of the substrate with a hard coat layer, the antireflection layer forming coating solution C-1 was applied at a wet application amount of about 2.8 ml / m 2 using a gravure coater, and dried at 120 ° C. for 5 minutes. Thereafter, the film was cured by irradiating with an ultraviolet ray with an irradiation amount of 600 mJ / cm 2 with an air-cooled metal halide lamp while purging with nitrogen so that the atmosphere had an oxygen concentration of 0.1% by volume or less to produce an antireflection film C-1. At this time, the amount of wet coating was finely adjusted to measure the particle occupancy, and the highest was adopted as the antireflection film C-1. The coating liquids C-2 to C-11 for forming the antireflection layer were used in place of the coating liquid C-1 for forming the antireflection layer, and the wet coating amount was the same as when the antireflection film C-1 was formed. Antireflection films C-2 to C-11 were produced in the same manner.

(反射防止フィルムの評価)
以下の方法により反射防止フィルムの諸特性の評価を行った。結果を表2に示す。
(Evaluation of antireflection film)
Various characteristics of the antireflection film were evaluated by the following methods. The results are shown in Table 2.

(積分反射率)
反射防止フィルムの裏面(セルローストリアセテートフィルム側)をサンドペーパーで粗面化した後に黒色インクで処理し、裏面反射をなくした状態で、分光光度計V−550(日本分光(株)製)にアダプターARV−474を装着して、380〜780nmの波長領域において、入射角5°における積分反射率を測定し、平均反射率を算出して反射防止性を評価した。
(Integral reflectance)
The back surface of the antireflection film (cellulose triacetate film side) is roughened with sandpaper, then treated with black ink, and the back surface reflection is eliminated. The ARV-474 was attached, and the integrated reflectance at an incident angle of 5 ° was measured in the wavelength region of 380 to 780 nm, and the average reflectance was calculated to evaluate the antireflection property.

(ヘイズ)
面の均一性をヘイズ値で評価した。粒子同士が凝集し不均一であるものは、ヘイズが高くなる。JIS−K7136に準じて、得られたフィルムの全ヘイズ値(%)を測定した。装置には日本電色工業(株)製ヘーズメーターNDH4000を用いた。
ヘイズ値が2%以下・・・白濁感が無く、面の均一性に優れている。
ヘイズ値が5%以下・・・やや白濁感があるが、外観に問題はない。
ヘイズ値が5%より大きい・・・白濁感が強く、外観を損ねている。
(Haze)
The uniformity of the surface was evaluated by the haze value. When the particles are aggregated and non-uniform, the haze increases. The total haze value (%) of the obtained film was measured according to JIS-K7136. Nippon Denshoku Industries Co., Ltd. haze meter NDH4000 was used for the apparatus.
Haze value is 2% or less: No cloudiness and excellent surface uniformity.
The haze value is 5% or less, although there is a slight cloudiness, but there is no problem in appearance.
The haze value is larger than 5% ... The cloudiness is strong and the appearance is impaired.

(モスアイ構造の厚み方向の圧力に対する耐久性)
反射防止フィルム試料の基材側をガラス板に貼り付け、直径25μmのダイヤモンド圧子を用い、20g荷重、810mm/分の条件で反射防止層表面に対して引っかき試験を行った後、反射防止層表面を観察し、下記の基準で評価した。
A:試験後にあとが見られない
B:試験後に弱いあとが見えるが問題にならない
C:試験後に著しいあとが見えて目立つ
(Durability to pressure in the thickness direction of the moth-eye structure)
The substrate side of the antireflection film sample is attached to a glass plate, and a scratch test is performed on the antireflection layer surface using a diamond indenter with a diameter of 25 μm under the conditions of 20 g load and 810 mm / min. Were observed and evaluated according to the following criteria.
A: After the test you can't see the rest B: You can see the weak after the test but there is no problem

(B/A、Aの分布の半値幅)
反射防止フィルム試料をミクロトームで切削して断面を出し、断面にカーボン蒸着後10分間エッチング処理した。走査型電子顕微鏡(SEM)を用いて5000倍で20視野観察、撮影した。得られた画像で、空気と試料が作る界面において、隣り合う凸部の頂点間の距離A、隣り合う凸部の頂点間の中心と凹部との距離Bを100点測長し、B/Aの平均値として算出した。またAの分布の半値幅も算出した。
(B / A, half width of A distribution)
The antireflection film sample was cut with a microtome to obtain a cross section, and the cross section was etched for 10 minutes after carbon deposition. Using a scanning electron microscope (SEM), 20 fields of view were observed and photographed at a magnification of 5000 times. In the obtained image, at the interface between the air and the sample, the distance A between the vertices of the adjacent convex portions and the distance B between the vertices of the adjacent convex portions and the concave portion are measured by 100 points, and B / A It was calculated as an average value. The half-value width of the A distribution was also calculated.

(鉛筆硬度)
JIS K5400に記載の鉛筆硬度評価を行った。反射防止フィルム試料を温度25℃、湿度60%RHで3時間調湿した後、JIS S6006に規定する試験用鉛筆を用いて反射防止層表面に対して試験を行い、下記の基準で評価した。
A:試験後にあとが見られない
B:試験後に弱いあとが見えるが問題にならない
C:試験後に著しいあとが見えて目立つ
(Pencil hardness)
The pencil hardness evaluation described in JIS K5400 was performed. The antireflection film sample was conditioned at a temperature of 25 ° C. and a humidity of 60% RH for 3 hours, then tested on the antireflection layer surface using a test pencil specified in JIS S6006, and evaluated according to the following criteria.
A: After the test you can't see the rest B: You can see the weak after the test but there is no problem

Figure 2016136228
Figure 2016136228

Figure 2016136228
Figure 2016136228

比較例試料A−1、A−2を比較すると、粒子の押し込み硬度を高くすることによってモスアイ構造の厚み方向の圧力に対する耐久性は向上し、粒子のつぶれは抑制できるが、バインダー樹脂がヒドロキシル基を有していないために分散性が悪く、ヘイズ、反射率の悪化を招いていることがわかる。一方、本発明の実施例試料B−1〜B−4、C−1〜C−4ではバインダー樹脂がヒドロキシル基を有していることによって、反射率とヘイズに優れ、B−1、B−2、C−1、C−2試料が特に優れていることがわかる。
粒子の押し込み硬度に関しては、実施例試料C−2が厚み方向に対して良好な耐久性を示しており、C−5、C−6試料においてはさらに優れており、鉛筆硬度試験においても
優れた効果があることを確認した。また比較例試料C−11を同時に比較することにより、この効果が焼成による粒子表面のヒドロキシル量の減少ではなく、粒子の押し込み硬度に依存していることも確認できた。
実施例試料C−8では反射率において最も優れており、これはB/Aが大きいことによると考えられる。
When Comparative Samples A-1 and A-2 are compared, the durability against pressure in the thickness direction of the moth-eye structure is improved by increasing the indentation hardness of the particles, and the collapsing of the particles can be suppressed. Thus, it can be seen that the dispersibility is poor due to the absence of haze and haze and reflectance are deteriorated. On the other hand, in the example samples B-1 to B-4 and C-1 to C-4 of the present invention, the binder resin has a hydroxyl group, so that the reflectance and haze are excellent, and B-1, B- It can be seen that the 2, C-1, and C-2 samples are particularly excellent.
Regarding the indentation hardness of the particles, Example Sample C-2 showed good durability in the thickness direction, C-5 and C-6 samples were more excellent, and the pencil hardness test was also excellent. It was confirmed that there was an effect. Further, by comparing the comparative sample C-11 at the same time, it was confirmed that this effect was dependent on the indentation hardness of the particles, not on the decrease in the amount of hydroxyl on the particle surface by firing.
In Example Sample C-8, the reflectance is most excellent, which is considered to be due to the large B / A.

[実施例2]
[シリカ粒子a−7の合成]
撹拌機、滴下装置および温度計を備えた容量200Lの反応器に、メチルアルコール101.01kgと、28質量%アンモニア水(水および触媒)6.58kgとを仕込み、撹拌しながら液温を33℃に調節した。一方、滴下装置に、テトラメトキシシラン3.18kgをメチルアルコール1.40kgに溶解させた溶液を仕込んだ。反応器中の液温を33℃に保持しながら、滴下装置から上記溶液を45分かけて滴下してテトラメトキシシランの加水分解および縮合を行い、シリカ粒子前駆体を含有する分散液を得た。この分散液を、瞬間真空蒸発装置((ホソカワミクロン(株)社製クラックス・システムCVX−8B型)を用いて加熱管温度175℃、減圧度200torr(27kPa)の条件で気流乾燥させることにより、シリカ粒子a−7を得た。平均粒子径は90nm、粒子径の分散度(Cv値):8%であった。
[Example 2]
[Synthesis of Silica Particles a-7]
A 200-liter reactor equipped with a stirrer, a dropping device and a thermometer was charged with 101.01 kg of methyl alcohol and 6.58 kg of 28% by mass aqueous ammonia (water and catalyst), and the liquid temperature was kept at 33 ° C. while stirring. Adjusted. Meanwhile, a dropping device was charged with a solution obtained by dissolving 3.18 kg of tetramethoxysilane in 1.40 kg of methyl alcohol. While maintaining the liquid temperature in the reactor at 33 ° C., the above solution was dropped from a dropping device over 45 minutes to hydrolyze and condense tetramethoxysilane, thereby obtaining a dispersion containing a silica particle precursor. . This dispersion was subjected to air-drying under the conditions of a heating tube temperature of 175 ° C. and a reduced pressure of 200 torr (27 kPa) using an instantaneous vacuum evaporation apparatus (Crox System CVX-8B type manufactured by Hosokawa Micron Co., Ltd.). Particle a-7 was obtained, and the average particle diameter was 90 nm, and the degree of dispersion of particle diameter (Cv value) was 8%.

[シリカ粒子a−8の合成]
撹拌機、滴下装置および温度計を備えた容量200Lの反応器に、メチルアルコール108.93kgと、28質量%アンモニア水(水および触媒)2.37kgとを仕込み、撹拌しながら液温を25℃に調節した。一方、滴下装置に、テトラメトキシシラン1.14kgをメチルアルコール0.50kgに溶解させた溶液を仕込んだ。反応器中の液温を33℃に保持しながら、滴下装置から上記溶液を1時間かけて滴下し、滴下終了後、さらに1時間、液温を上記温度に保持しながら撹拌することにより、テトラメトキシシランの加水分解および縮合を行い、シリカ粒子前駆体を含有する分散液を得た。この分散液を、瞬間真空蒸発装置((ホソカワミクロン(株)社製クラックス・システムCVX−8B型)を用いて加熱管温度175℃、減圧度200torr(27kPa)の条件で気流乾燥させることにより、シリカ粒子a−8を得た。
[Synthesis of Silica Particles a-8]
A 200 L reactor equipped with a stirrer, a dropping device and a thermometer was charged with 108.93 kg of methyl alcohol and 2.37 kg of 28% by mass ammonia water (water and catalyst), and the liquid temperature was kept at 25 ° C. while stirring. Adjusted. On the other hand, a dropping device was charged with a solution prepared by dissolving 1.14 kg of tetramethoxysilane in 0.50 kg of methyl alcohol. While maintaining the liquid temperature in the reactor at 33 ° C., the above solution was dropped from the dropping device over 1 hour, and after completion of the dropping, stirring was further performed for 1 hour while maintaining the liquid temperature at the above temperature. Hydrolysis and condensation of methoxysilane was performed to obtain a dispersion containing a silica particle precursor. This dispersion was subjected to air-drying under the conditions of a heating tube temperature of 175 ° C. and a reduced pressure of 200 torr (27 kPa) using an instantaneous vacuum evaporation apparatus (Crox System CVX-8B type manufactured by Hosokawa Micron Co., Ltd.). Particle a-8 was obtained.

[シリカ粒子a−9〜a−11の合成]
テトラメトキシシランの加水分解および縮合を、滴下装置から上記溶液の滴下時間を、それぞれ8分、20分、50分に変更して行った以外は、シリカ粒子a−7の合成と同様の方法でシリカ粒子a−9〜a−11を得た。
[Synthesis of Silica Particles a-9 to a-11]
Tetramethoxysilane was hydrolyzed and condensed by the same method as the synthesis of silica particles a-7, except that the dropping time of the above solution was changed from a dropping device to 8 minutes, 20 minutes, and 50 minutes, respectively. Silica particles a-9 to a-11 were obtained.

[シリカ粒子a−12の合成]
テトラメトキシシランの加水分解および縮合を、滴下装置から上記溶液の滴下時間を60分に変更し、滴下終了後、さらに20分液温を上記温度に保持しながら撹拌することにより行った以外は、シリカ粒子a−7の合成と同様の方法でシリカ粒子a−12を得た。
[Synthesis of Silica Particles a-12]
Except for performing the hydrolysis and condensation of tetramethoxysilane by changing the dropping time of the above solution from the dropping device to 60 minutes, and stirring for 20 minutes while maintaining the liquid temperature at the above temperature after the completion of dropping. Silica particles a-12 were obtained in the same manner as in the synthesis of silica particles a-7.

[シリカ粒子a−13の合成]
滴下終了後の撹拌時間をさらに40分に変更した以外は、シリカ粒子a−12の合成と同様の方法でシリカ粒子a−13を得た。
[Synthesis of Silica Particles a-13]
Silica particles a-13 were obtained by the same method as the synthesis of silica particles a-12, except that the stirring time after the completion of dropping was further changed to 40 minutes.

[焼成シリカ粒子b−7の作製]
シリカ粒子a−7 5kgをルツボに入れ、電気炉を用いて900℃で1時間焼成した後、冷却して、次いで粉砕機を用いて粉砕し、分級前焼成シリカ粒子を得た。さらにジェット粉砕分級機(日本ニューマ社製IDS−2型)を用いて解砕および分級を行うことにより焼成シリカ粒子b−7を得た。得られたシリカ粒子の平均粒径は90nm、粒径の分
散度(Cv値):8%であった。
[Preparation of calcined silica particles b-7]
5 kg of silica particles a-7 were put in a crucible, fired at 900 ° C. for 1 hour using an electric furnace, cooled, and then ground using a grinder to obtain pre-classified fired silica particles. Furthermore, the pulverized silica particles b-7 were obtained by crushing and classifying using a jet pulverization classifier (IDS-2 type manufactured by Nippon Pneumatic Co., Ltd.). The average particle diameter of the obtained silica particles was 90 nm, and the degree of dispersion (Cv value) of the particle diameter was 8%.

[焼成シリカ粒子b−8〜b−13の作製]
シリカ粒子a−7を、それぞれシリカ粒子a−8〜a−13にし、焼成時間を2時間に変更した以外は、焼成シリカ粒子b−7と同様の方法で焼成シリカ粒子b−8〜b−13を作製した。
[Preparation of calcined silica particles b-8 to b-13]
The silica particles a-7 were changed to silica particles a-8 to a-13, respectively, and the calcined silica particles b-8 to b- were prepared in the same manner as the calcined silica particles b-7, except that the firing time was changed to 2 hours. 13 was produced.

[シランカップリング剤処理シリカ粒子c−8の作製]
分級前焼成シリカ粒子b−8 5kgを、加熱ジャケットを備えた容量20Lのヘンシェルミキサ(三井鉱山株式会社製FM20J型)に仕込んだ。焼成シリカ粒子b−8を撹拌しているところに、3−アクリロキシプロピルトリメトキシシラン(信越化学工業株式会社製KBM5103)600gを、メチルアルコール1200gに溶解させた溶液を滴下して混合した。その後、混合撹拌しながら150℃まで約1時間かけて昇温し、150℃で12時間保持して加熱処理を行った。加熱処理では、掻き落とし装置を撹拌羽根とは逆方向に常時回転させながら、壁面付着物の掻き落としを行った。また、適宜、へらを用いて壁面付着物を掻き落とすことも行った。加熱後、冷却し、ジェット粉砕分級機を用いて解砕および分級を行い、シランカップリング剤処理シリカ粒子c−8を得た。
[Preparation of Silane Coupling Agent-treated Silica Particles c-8]
5 kg of pre-classified sintered silica particles b-8 were charged into a 20 L Henschel mixer (FM20J type, manufactured by Mitsui Mining Co., Ltd.) equipped with a heating jacket. While the calcined silica particles b-8 were being stirred, a solution prepared by dissolving 600 g of 3-acryloxypropyltrimethoxysilane (KBM5103 manufactured by Shin-Etsu Chemical Co., Ltd.) in 1200 g of methyl alcohol was added dropwise and mixed. Then, it heated up to 150 degreeC over about 1 hour, mixing and stirring, and hold | maintained at 150 degreeC for 12 hours, and heat-processed. In the heat treatment, scrapes on the wall surface were scraped while the scraping device was always rotated in the direction opposite to the stirring blade. Moreover, the wall deposits were also scraped off using a spatula as appropriate. After heating, the mixture was cooled and pulverized and classified using a jet pulverizer to obtain silane coupling agent-treated silica particles c-8.

[シランカップリング剤処理シリカ粒子c−9〜c−13の作製]
焼成シリカ粒子b−8を、それぞれ焼成シリカ粒子b−9〜b−13に、3−アクリロキシプロピルトリメトキシシランをそれぞれ180g、129g、95g、82g、75gに、メチルアルコールをそれぞれ360g、257g、189g、164g、150gに変更した以外は、シランカップリング剤処理シリカ粒子c−8と同様の方法で焼成シリカ粒子シランカップリング剤処理シリカ粒子c−9〜c−13を作製した。
[Preparation of Silica Coupling Agent-treated Silica Particles c-9 to c-13]
The calcined silica particles b-8, the calcined silica particles b-9 to b-13, the 3-acryloxypropyltrimethoxysilane 180 g, 129 g, 95 g, 82 g, and 75 g, respectively, and the methyl alcohol 360 g and 257 g, respectively. Except having changed into 189g, 164g, 150g, the baking silica particle silane coupling agent process silica particle c-9 to c-13 was produced by the method similar to the silane coupling agent process silica particle c-8.

[反射防止フィルムB−5〜B−6、C−12〜C−24の作製]
(反射防止層形成用塗布液の調製)
下記表4の組成となるように各成分をミキシングタンクに投入し、60分間攪拌し、30分間超音波分散機により分散し、孔径5μmのポリプロピレン製フィルターで濾過して反射防止層形成用塗布液とした。
[Preparation of Antireflection Films B-5 to B-6, C-12 to C-24]
(Preparation of coating solution for antireflection layer formation)
Each component is put into a mixing tank so as to have the composition shown in Table 4 below, stirred for 60 minutes, dispersed by an ultrasonic disperser for 30 minutes, and filtered through a polypropylene filter having a pore size of 5 μm to form a coating solution for forming an antireflection layer. It was.

下記表4において、各成分の数値は添加した量(質量部)を表す。また、塗布液濃度の単位は「質量%」である。金属酸化物粒子、及びそれ以外の粒子については、平均一次粒径、ヒドロキシル基等量、押し込み硬度、及び平均一次粒径の分散度Cv値を記載した。   In the following Table 4, the numerical value of each component represents the amount (parts by mass) added. The unit of the coating solution concentration is “mass%”. For the metal oxide particles and other particles, the average primary particle size, hydroxyl group equivalent, indentation hardness, and dispersion degree Cv value of the average primary particle size are described.

(微粒子の頻度)
微粒子の頻度は、配合する金属酸化物微粒子がすべて平均一次粒径の粒径をもつとみなしたときの、個数の比率として算出する。すなわち、例えば平均一次粒径r1(r1は120nm以上250nm以下)、比重s1の微粒子を1重量部に対して、平均一次粒径r2(r2は50nm以上120nm未満)、比重s2の微粒子をX重量部配合した場合は、頻度は、(r1・s1・X)/(r2・s2) で表される。
また、反射防止層中に含まれる金属酸化物粒子の頻度を測定する場合には、電子顕微鏡写真により測定することが出来る。例えば、反射防止フィルムを表面側からSEM観察により適切な倍率(5000倍程度)で観察し、一次粒子100個のそれぞれの直径を測長してその体積を算出し、120nm以上250nmの微粒子の平均一次粒径をr1、50nm以上120nm未満の微粒子の平均一次粒径をr2として求めることができる。
(Frequency of fine particles)
The frequency of the fine particles is calculated as a ratio of the numbers when all the metal oxide fine particles to be blended are regarded as having an average primary particle size. That is, for example, with respect to 1 part by weight of fine particles having an average primary particle size r1 (r1 is 120 nm to 250 nm) and specific gravity s1, fine particles having an average primary particle size r2 (r2 is 50 nm to less than 120 nm) and specific gravity s2 are X weight. In the case of partial blending, the frequency is represented by (r1 3 · s1 · X) / (r2 3 · s2).
Moreover, when measuring the frequency of the metal oxide particle contained in an antireflection layer, it can measure with an electron micrograph. For example, the antireflection film is observed from the surface side by SEM observation at an appropriate magnification (about 5000 times), the diameter of each of the 100 primary particles is measured, the volume is calculated, and the average of fine particles of 120 nm to 250 nm is calculated. The primary particle size can be determined as r1, and the average primary particle size of fine particles having a particle size of 50 nm or more and less than 120 nm can be determined as r2.

Figure 2016136228
Figure 2016136228

それぞれ使用した化合物を以下に示す。
MEK−AC−5140Z(日産化学(株)社製):メタクリロイル基修飾、平均一次粒径85nmの未焼成シリカ粒子の40%MEK分散液
XX−242S(積水化成品工業(株)社製):平均一次粒径100nmの架橋ポリメタクリル酸メチル粒子
The compounds used are shown below.
MEK-AC-5140Z (manufactured by Nissan Chemical Co., Ltd.): methacryloyl group modification, 40% MEK dispersion of unfired silica particles having an average primary particle size of 85 nm XX-242S (manufactured by Sekisui Plastics Co., Ltd.): Crosslinked polymethyl methacrylate particles having an average primary particle size of 100 nm

反射防止フィルムB−1〜B−4と同様の方法で反射防止フィルムB−5〜B−6を作製した。   Antireflection films B-5 to B-6 were produced in the same manner as the antireflection films B-1 to B-4.

反射防止フィルムC−1〜C−11と同様の方法で反射防止フィルムC−12〜C−24を作製した。   Antireflection films C-12 to C-24 were produced in the same manner as the antireflection films C-1 to C-11.

(反射防止フィルムの評価)
以下の方法により反射防止フィルムの諸特性の評価を行った。結果を表5に示す。
(Evaluation of antireflection film)
Various characteristics of the antireflection film were evaluated by the following methods. The results are shown in Table 5.

Figure 2016136228
Figure 2016136228

実施試料B−2、B−5、B−6を比較すると、平均一次粒径200nmの微粒子に平均一次粒径50nm以上120nm未満の微粒子を組み合せた方が反射率、ヘイズが良化し、200nm微粒子の分散性が向上していることがわかる。実施試料C−12〜C−18を比較すると、ハードコートを有する場合であっても平均一次粒径210nmの微粒子に平均一次粒径50nm以上120nm未満の微粒子を組み合わせた方が反射率、ヘイズが良化することがわかり、さらに、その粒径が70〜110nmのときに特に優れていることがわかる。さらに、これらと実施試料C−19、C−20とを比較すると、反射率、ヘイズに優れることもわかる。この結果より、210nmの微粒子と50nm以上120nm未満の微粒子の表面のヒドロキシル基量並びに焼成条件がほぼ同等にしたもののほうが、異なるものを用いるよりも凝集を抑制する効果が高いことがわかる。実施試料C−16、C−21〜C−23を比較することにより、120以上250nm以下の微粒子に対
する50nm以上120nm未満の微粒子の頻度は2倍〜5倍が最も優れていることもわかる。
When the working samples B-2, B-5, and B-6 were compared, the reflectance and haze were improved when the fine particles having an average primary particle size of 200 nm and the fine particles having an average primary particle size of 50 nm or more and less than 120 nm were combined. It can be seen that the dispersibility of is improved. When the working samples C-12 to C-18 are compared, the reflectance and haze are better when the fine primary particles having an average primary particle size of 210 nm and the fine particles having an average primary particle size of 50 nm or more and less than 120 nm are combined even when the hard coat is provided. It turns out that it improves, and also it turns out that it is especially excellent when the particle size is 70-110 nm. Furthermore, when these are compared with execution sample C-19, C-20, it turns out that it is excellent in a reflectance and a haze. From this result, it can be seen that those having approximately the same hydroxyl group amount and firing conditions on the surfaces of the fine particles of 210 nm and fine particles of 50 nm or more and less than 120 nm have a higher effect of suppressing aggregation than using different ones. By comparing the working samples C-16 and C-21 to C-23, it can be seen that the frequency of fine particles of 50 nm or more and less than 120 nm with respect to fine particles of 120 or more and 250 nm or less is best 2 to 5 times.

1 基材
2 反射防止層
3 金属酸化物粒子
4 バインダー樹脂
10 反射防止フィルム
A 隣り合う凸部の頂点間の距離
B 隣り合う凸部の頂点間の中心と凹部との距離
DESCRIPTION OF SYMBOLS 1 Base material 2 Antireflection layer 3 Metal oxide particle 4 Binder resin 10 Antireflection film A Distance between the vertices of the adjacent convex portions B Distance between the centers of the adjacent convex portions and the concave portions

Claims (18)

基材と、バインダー樹脂及び平均一次粒径が50nm以上250nm以下の金属酸化物粒子を含有する反射防止層とを有する反射防止フィルムであって、
前記金属酸化物粒子の表面は、ヒドロキシル基量が1.00×10−1以下であり、
前記金属酸化物粒子の押し込み硬度は400MPa以上であり、
前記バインダー樹脂は、ヒドロキシル基を有する樹脂であり、
前記反射防止層は前記基材側の界面とは反対側の表面に前記金属酸化物粒子により形成された凹凸形状からなるモスアイ構造を有する、反射防止フィルム。
An antireflection film comprising a base material, an antireflection layer containing a binder resin and metal oxide particles having an average primary particle size of 50 nm to 250 nm,
The surface of the metal oxide particles has a hydroxyl group amount of 1.00 × 10 −1 or less,
The indentation hardness of the metal oxide particles is 400 MPa or more,
The binder resin is a resin having a hydroxyl group,
The antireflection layer is an antireflection film having a moth-eye structure having a concavo-convex shape formed by the metal oxide particles on a surface opposite to the interface on the substrate side.
前記反射防止層の凹凸形状は、隣り合う凸部の頂点間の距離Aと、隣り合う凸部の頂点間の中心と凹部との距離Bとの比であるB/Aが0.5以上である請求項1に記載の反射防止フィルム。   The concave-convex shape of the antireflection layer is such that B / A, which is a ratio of the distance A between the apexes of adjacent convex portions and the distance B between the centers of the adjacent convex portions and the concave portions, is 0.5 or more. The antireflection film according to claim 1. 前記金属酸化物粒子として、一次粒径が50nm以上250nm以下の金属酸化物粒子のみを含有する請求項1又は2に記載の反射防止フィルム。   The antireflection film according to claim 1 or 2, wherein the metal oxide particles contain only metal oxide particles having a primary particle size of 50 nm or more and 250 nm or less. 前記金属酸化物粒子がシリカ粒子である請求項1〜3のいずれか1項に記載の反射防止フィルム。   The antireflection film according to claim 1, wherein the metal oxide particles are silica particles. 前記金属酸化物粒子が焼成シリカ粒子である請求項1〜4のいずれか1項に記載の反射防止フィルム。   The antireflection film according to claim 1, wherein the metal oxide particles are fired silica particles. 前記金属酸化物粒子が、(メタ)アクリロイル基を有する化合物で表面修飾された焼成シリカ粒子である請求項1〜5のいずれか1項に記載の反射防止フィルム。   The antireflection film according to any one of claims 1 to 5, wherein the metal oxide particles are fired silica particles whose surface is modified with a compound having a (meth) acryloyl group. 前記距離Aの分布の半値幅が200nm以下である請求項2に記載の反射防止フィルム。   The antireflection film according to claim 2, wherein the half width of the distribution of the distance A is 200 nm or less. 前記バインダー樹脂は、重合性基としてエチレン性不飽和二重結合を有する基及びエポキシ基の少なくとも一方を有する重合性化合物を重合して得られた樹脂である請求項1〜7のいずれか1項に記載の反射防止フィルム。   The binder resin is a resin obtained by polymerizing a polymerizable compound having at least one of a group having an ethylenically unsaturated double bond and an epoxy group as a polymerizable group. The antireflection film as described in 1. 前記重合性化合物1分子のヒドロキシル基当量が1〜10000である請求項8に記載
の反射防止フィルム。
The antireflection film according to claim 8, wherein one molecule of the polymerizable compound has a hydroxyl group equivalent of 1 to 10,000.
前記基材と前記反射防止層との間にハードコート層を有する請求項1〜9のいずれか1項に記載の反射防止フィルム。   The antireflection film according to claim 1, further comprising a hard coat layer between the substrate and the antireflection layer. 偏光子と、偏光子を保護する少なくとも1枚の保護フィルムとを有する偏光板であって、保護フィルムの少なくとも1枚が請求項1〜10のいずれか1項に記載の反射防止フィルムである偏光板。   Polarized light having a polarizer and at least one protective film for protecting the polarizer, wherein at least one of the protective films is the antireflection film according to any one of claims 1 to 10. Board. 請求項1〜10のいずれか1項に記載の反射防止フィルムを保護フィルムとして有するカバーガラス。   The cover glass which has an antireflection film of any one of Claims 1-10 as a protective film. 請求項1〜10のいずれか1項に記載の反射防止フィルム、又は請求項11に記載の偏光板を有する画像表示装置。   The image display apparatus which has an antireflection film of any one of Claims 1-10, or a polarizing plate of Claim 11. 基材と、バインダー樹脂及び平均一次粒径が50nm以上250nm以下の金属酸化物
粒子を含有する反射防止層とを有する反射防止フィルムの製造方法であって、
前記金属酸化物粒子の表面は、ヒドロキシル基量が1.00×10−1以下であり、
前記金属酸化物粒子の押し込み硬度は400MPa以上であり、
前記バインダー樹脂は、ヒドロキシル基を有する樹脂であり、
前記反射防止層は前記基材側の界面とは反対側の表面に前記金属酸化物粒子により形成された凹凸形状からなるモスアイ構造を有し、
前記基材上に、重合性の官能基を有するバインダー樹脂形成用重合性化合物、及び前記平均一次粒径が50nm以上250nm以下の金属酸化物粒子を含有する反射防止層形成用組成物を塗布する工程を有する反射防止フィルムの製造方法。
A method for producing an antireflection film comprising a base material, and an antireflection layer containing a binder resin and metal oxide particles having an average primary particle size of 50 nm to 250 nm,
The surface of the metal oxide particles has a hydroxyl group amount of 1.00 × 10 −1 or less,
The indentation hardness of the metal oxide particles is 400 MPa or more,
The binder resin is a resin having a hydroxyl group,
The antireflection layer has a moth-eye structure consisting of a concavo-convex shape formed by the metal oxide particles on the surface opposite to the interface on the substrate side,
On the base material, a composition for forming an antireflection layer containing a polymerizable compound for forming a binder resin having a polymerizable functional group and metal oxide particles having an average primary particle size of 50 nm to 250 nm is applied. The manufacturing method of the antireflection film which has a process.
前記金属酸化物粒子として、平均一次粒径が120nm以上250nm以下の金属酸化物微粒子と、平均一次粒径が50nm以上120nm未満の金属酸化物粒子とを両方含む請求項1、2、4〜10のいずれか1項に記載の反射防止フィルム。   The metal oxide particles include both metal oxide fine particles having an average primary particle size of 120 nm to 250 nm and metal oxide particles having an average primary particle size of 50 nm to less than 120 nm. The antireflection film according to any one of the above. 前記平均一次粒径が50nm以上120nm未満の金属酸化物粒子はヒドロキシル基量は1.00×10−1以下、かつ、押し込み硬度400MPa以上である請求項15に記載の反射防止フィルム。 The antireflection film according to claim 15, wherein the metal oxide particles having an average primary particle size of 50 nm or more and less than 120 nm have a hydroxyl group amount of 1.00 × 10 −1 or less and an indentation hardness of 400 MPa or more. 前記平均一次粒径が50nm以上120nm未満の金属酸化物粒子はヒドロキシル基量は1.00×10−1より多いか、または押し込み硬度400MPa未満である請求項15に記載の反射防止フィルム。 The antireflection film according to claim 15, wherein the metal oxide particles having an average primary particle size of 50 nm or more and less than 120 nm have a hydroxyl group amount of more than 1.00 × 10 −1 or an indentation hardness of less than 400 MPa. 前記平均一次粒径が120nm以上250nm以下の金属酸化物微粒子に対して、前記平均一次粒径が50nm以上120nm未満の金属酸化物粒子を2〜5倍の頻度で含む請求項15〜17のいずれか1項に記載の反射防止フィルム。   18. The metal oxide fine particles having an average primary particle size of 120 nm or more and 250 nm or less, the metal oxide particles having an average primary particle size of 50 nm or more and less than 120 nm at a frequency of 2 to 5 times. 2. The antireflection film according to item 1.
JP2015074247A 2014-03-31 2015-03-31 Antireflection film, polarizing plate, cover glass, image display device, and production method of antireflection film Active JP6095238B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014074784 2014-03-31
JP2014074784 2014-03-31
JP2015008713 2015-01-20
JP2015008713 2015-01-20

Publications (2)

Publication Number Publication Date
JP2016136228A true JP2016136228A (en) 2016-07-28
JP6095238B2 JP6095238B2 (en) 2017-03-15

Family

ID=56512583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015074247A Active JP6095238B2 (en) 2014-03-31 2015-03-31 Antireflection film, polarizing plate, cover glass, image display device, and production method of antireflection film

Country Status (1)

Country Link
JP (1) JP6095238B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018034126A1 (en) * 2016-08-15 2018-02-22 富士フイルム株式会社 Antireflective film, antireflective article, polarizing plate, image display device, module, touch panel liquid crystal display device, and method for manufacturing antireflective film
JP2018132751A (en) * 2016-08-15 2018-08-23 富士フイルム株式会社 Antireflection film, antireflection article, polarizing plate, image display device, module, liquid crystal display device with touch panel, and production method of antireflection film
CN114709273A (en) * 2022-06-06 2022-07-05 陕西半导体先导技术中心有限公司 A kind of heterojunction ultraviolet field effect phototransistor and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06155652A (en) * 1992-11-26 1994-06-03 Nitto Denko Corp Low reflection material
JP2005250309A (en) * 2004-03-08 2005-09-15 Optimax Technology Corp Antireflection film
JP2007286554A (en) * 2006-04-20 2007-11-01 Kaneka Corp Antireflection film, antireflection base material and photoelectric converter provided with antireflection base material
JP2012136363A (en) * 2010-12-24 2012-07-19 Kao Corp Hollow silica particle
JP2012145748A (en) * 2011-01-12 2012-08-02 Dainippon Printing Co Ltd Antireflection film and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06155652A (en) * 1992-11-26 1994-06-03 Nitto Denko Corp Low reflection material
JP2005250309A (en) * 2004-03-08 2005-09-15 Optimax Technology Corp Antireflection film
JP2007286554A (en) * 2006-04-20 2007-11-01 Kaneka Corp Antireflection film, antireflection base material and photoelectric converter provided with antireflection base material
JP2012136363A (en) * 2010-12-24 2012-07-19 Kao Corp Hollow silica particle
JP2012145748A (en) * 2011-01-12 2012-08-02 Dainippon Printing Co Ltd Antireflection film and method of manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018034126A1 (en) * 2016-08-15 2018-02-22 富士フイルム株式会社 Antireflective film, antireflective article, polarizing plate, image display device, module, touch panel liquid crystal display device, and method for manufacturing antireflective film
JP2018132751A (en) * 2016-08-15 2018-08-23 富士フイルム株式会社 Antireflection film, antireflection article, polarizing plate, image display device, module, liquid crystal display device with touch panel, and production method of antireflection film
KR20190026022A (en) * 2016-08-15 2019-03-12 후지필름 가부시키가이샤 An antireflection film, an antireflection article, a polarizing plate, an image display device, a module, a liquid crystal display device with a touch panel, and a method of manufacturing an antireflection film
CN109642963A (en) * 2016-08-15 2019-04-16 富士胶片株式会社 Antireflection film, reflection preventing article, polarizing film, image display device, module, the manufacturing method of the liquid crystal display device with touch panel and antireflection film
US10871596B2 (en) 2016-08-15 2020-12-22 Fujifilm Corporation Antireflection film, antireflection product, polarizing plate, image display device, module, liquid crystal display device with touch panel, and method of manufacturing antireflection film
KR102253371B1 (en) * 2016-08-15 2021-05-20 후지필름 가부시키가이샤 Antireflection film, antireflection article, polarizing plate, image display device, module, liquid crystal display device with touch panel, and manufacturing method of antireflection film
CN114709273A (en) * 2022-06-06 2022-07-05 陕西半导体先导技术中心有限公司 A kind of heterojunction ultraviolet field effect phototransistor and preparation method thereof
CN114709273B (en) * 2022-06-06 2022-09-16 陕西半导体先导技术中心有限公司 A kind of heterojunction ultraviolet field effect phototransistor and preparation method thereof

Also Published As

Publication number Publication date
JP6095238B2 (en) 2017-03-15

Similar Documents

Publication Publication Date Title
KR102713528B1 (en) Antireflective film, polarizing plate, cover glass, image display device, and method of manufacturing antireflective film
US10399309B2 (en) Antireflection film, polarizing plate, cover glass, and image display device, and method for producing antireflection film
TWI663063B (en) Anti-reflective film
CN106338783B (en) A kind of anti-dazzle antireflective optical film and its preparation method and application
JP6131284B2 (en) Antireflection film, polarizing plate, cover glass, image display device, and production method of antireflection film
KR101194180B1 (en) Antireflection laminate
JP5264605B2 (en) Antiglare film, antireflection film, polarizing plate and image display device
US20030096102A1 (en) Coating composition, coating film thereof, antireflection coating, antireflection film, image display, and intermediate product
JP6167005B2 (en) Antireflection film, polarizing plate, cover glass, and image display device
WO2015152308A1 (en) Anti-reflection film, polarizing plate, cover glass, image display device and method for producing anti-reflection film
JP2009098654A (en) Optical laminate, polarizer and image display device
JP2010060743A (en) Antiglare film, antireflection film, polarizing plate, and image display device
TWI718535B (en) Anti-reflective film, polarizing plate, and display apparatus
JP6095238B2 (en) Antireflection film, polarizing plate, cover glass, image display device, and production method of antireflection film
JP2009160755A (en) Transparently coated base material
JP2009258602A (en) Optical film, polarizing plate and image display device
JP2016061794A (en) Antireflection film, polarizing plate, cover glass, image display device, and production method of antireflection film
JP2009175722A (en) Optical film, polarizing plate, and image display device
JP2009265651A (en) Optical film, polarizing plate, and image display apparatus
JP6343540B2 (en) Antireflection film, polarizing plate, cover glass, image display device, and production method of antireflection film
JP2010237584A (en) Anti-glare hard coat film
WO2018025818A1 (en) Layered body, antireflective article, and method for manufacturing same
KR101109172B1 (en) Optical laminate
JP2010223985A (en) METAL OXIDE FINE PARTICLE, COATING, OPTICAL LAMINATE, AND METHOD FOR PRODUCING THE SAME
WO2017163861A1 (en) Method for manufacturing anti-reflection film, anti-reflection film, polarizing plate, cover glass, and image display apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170213

R150 Certificate of patent or registration of utility model

Ref document number: 6095238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250