JP2016125837A - Control rod guide tube of fast reactor - Google Patents
Control rod guide tube of fast reactor Download PDFInfo
- Publication number
- JP2016125837A JP2016125837A JP2014264483A JP2014264483A JP2016125837A JP 2016125837 A JP2016125837 A JP 2016125837A JP 2014264483 A JP2014264483 A JP 2014264483A JP 2014264483 A JP2014264483 A JP 2014264483A JP 2016125837 A JP2016125837 A JP 2016125837A
- Authority
- JP
- Japan
- Prior art keywords
- control rod
- guide tube
- rod guide
- fast reactor
- recess
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Structure Of Emergency Protection For Nuclear Reactors (AREA)
Abstract
Description
本発明は、例えば液体金属ナトリウムなどの冷却材を使用する高速炉の制御棒案内管に係り、特に高速炉の炉心損傷事故において、溶融燃料(損傷炉心物質)が制御棒案内管の周壁を溶融して侵入した場合の溶融燃料(損傷炉心物質)の御棒案内管からの排出機構に関するものである。 The present invention relates to a control rod guide tube of a fast reactor that uses a coolant such as liquid metal sodium, for example, and particularly in a core damage accident of a fast reactor, molten fuel (damaged core material) melts the peripheral wall of the control rod guide tube. It is related with the discharge | emission mechanism from the rod guide tube of the molten fuel (damaged core material) at the time of entering.
ナトリウム冷却高速炉の炉心損傷事故において、燃料移動による再臨界を防止するためには、制御棒案内管を通じて損傷炉心物質を炉心外へ流出することが有効である。 In order to prevent recriticality due to fuel movement in a core damage accident of a sodium-cooled fast reactor, it is effective to flow the damaged core material out of the core through a control rod guide tube.
図4は、制御棒集合体の基本的な構造図である。同図に示すように制御棒集合体1は、制御棒2と、その制御棒2を個別に収容する制御棒案内管3から主に構成されている。 FIG. 4 is a basic structural diagram of the control rod assembly. As shown in the figure, the control rod assembly 1 is mainly composed of a control rod 2 and a control rod guide tube 3 that individually accommodates the control rod 2.
制御棒案内管3の下端部には先細り状になったエントランスノズル4が設けられ、制御棒案内管3の内側の軸方向途中には縮径になった段部5が設けられ、その段部5の上にはダッシュポット(緩衝器)6が設置されている。 A tapered entrance nozzle 4 is provided at the lower end portion of the control rod guide tube 3, and a step portion 5 having a reduced diameter is provided in the middle of the control rod guide tube 3 in the axial direction. A dashpot (buffer) 6 is installed on 5.
ダッシュポット6は凹部7を有し、全体の断面形状が略凹形をしており、凹部7の下部には円筒状の脚部8が設けられ、脚部8の内周部側から外周部側に向けて貫通した穴9が脚部8の周方向に沿って複数個形成されている。 The dashpot 6 has a recess 7, and the overall cross-sectional shape is substantially concave. A cylindrical leg portion 8 is provided at the lower portion of the recess 7, and an outer peripheral portion from the inner peripheral portion side of the leg portion 8. A plurality of holes 9 penetrating toward the side are formed along the circumferential direction of the leg portion 8.
ダッシュポット6の外径は、制御棒案内管3の内径よりも若干小さく、また、段部5の内径よりも若干大きく設計されており、ダッシュポット6を段部5の上に設置すると、制御棒案内管3とダッシュポット6の間に隙間10が形成される。 The outer diameter of the dash pot 6 is designed to be slightly smaller than the inner diameter of the control rod guide tube 3 and slightly larger than the inner diameter of the step portion 5. A gap 10 is formed between the bar guide tube 3 and the dashpot 6.
冷却材である液体金属ナトリウム11は、制御棒案内管3のエントランスノズル4側から流入し、制御棒案内管3の内側を上昇し、ダッシュポット6の穴9を通って、制御棒案内管3とダッシュポット6の間の隙間10に流入し、制御棒2を冷却しながら制御棒案内管3の上部に至る。 Liquid metal sodium 11 as a coolant flows in from the entrance nozzle 4 side of the control rod guide tube 3, rises inside the control rod guide tube 3, passes through the hole 9 of the dashpot 6, and passes through the control rod guide tube 3. And flows into the gap 10 between the dashpot 6 and reaches the upper portion of the control rod guide tube 3 while cooling the control rod 2.
図5は原子炉容器の内部の構造例を示す図で、図中の符号12は原子炉容器、13は液体金属ナトリウム流入配管、14は液体金属ナトリウム流出配管、15は炉心槽、16は上部炉心支持板、17は下部炉心支持板、18は連絡管であり、図に示すような配置、構造になっている。 FIG. 5 is a diagram showing an example of the internal structure of the reactor vessel. In the figure, reference numeral 12 denotes a reactor vessel, 13 denotes a liquid metal sodium inflow pipe, 14 denotes a liquid metal sodium outflow pipe, 15 denotes a core tank, and 16 denotes an upper part. A core support plate, 17 is a lower core support plate, and 18 is a connecting pipe, which is arranged and structured as shown in the figure.
図6は、原子炉容器内での液体金属ナトリウムの流れの一部を示す図である。同図に示すように上部炉心支持板16と下部炉心支持板17の間に連絡管18が架設されており、連絡管18の内側に液体金属ナトリウム11の流量を調整する流量調整部20が設置されている。 FIG. 6 is a diagram showing a part of the flow of liquid metal sodium in the reactor vessel. As shown in the figure, a connecting pipe 18 is installed between the upper core support plate 16 and the lower core support plate 17, and a flow rate adjusting unit 20 for adjusting the flow rate of the liquid metal sodium 11 is installed inside the connecting pipe 18. Has been.
この流量調整部20は、例えば、複数の孔21を開けた金属板22を連絡管18の内側に所定の間隔をおいて、孔21が互いに重ならないように複数枚軸方向に設置した構造になっている。 The flow rate adjusting unit 20 has, for example, a structure in which a plurality of metal plates 22 having a plurality of holes 21 are installed in the axial direction so that the holes 21 do not overlap each other with a predetermined interval inside the connecting pipe 18. It has become.
液体金属ナトリウム11は図5に示すように、液体金属ナトリウム流入配管13によって原子炉容器12内の下部に供給され、原子炉容器12の下部から上昇して、図6に示すように連絡管18の下部から入り込み、各金属板22の孔21を通過する際の流動抵抗により、液体金属ナトリウム11の通過流量が制限され、それによって液体金属ナトリウム11の流量調整がなされる。 As shown in FIG. 5, the liquid metal sodium 11 is supplied to the lower part of the reactor vessel 12 by the liquid metal sodium inflow pipe 13 and rises from the lower part of the reactor vessel 12, and as shown in FIG. The flow rate of the liquid metal sodium 11 is limited by the flow resistance when entering from the lower part of the metal plate 22 and passing through the holes 21 of the respective metal plates 22, thereby adjusting the flow rate of the liquid metal sodium 11.
図4に示すように、制御棒案内管3のエントランスノズル4が連絡管18の上部に差し込まれているから、流量調整された液体金属ナトリウム11は連絡管18を出て制御棒案内管3に入る。 As shown in FIG. 4, the entrance nozzle 4 of the control rod guide tube 3 is inserted into the upper portion of the connecting tube 18, so that the liquid metal sodium 11 whose flow rate has been adjusted exits the connecting tube 18 and enters the control rod guide tube 3. enter.
そして液体金属ナトリウム11は、ダッシュポット6の穴9を通って制御棒案内管3とダッシュポット6の間に形成された隙間10に流入して制御棒2を冷却し、制御棒案内管3の上部から排出される。 Then, the liquid metal sodium 11 flows into the gap 10 formed between the control rod guide tube 3 and the dashpot 6 through the hole 9 of the dashpot 6 to cool the control rod 2, and It is discharged from the top.
図7は炉心配置図で、図中の符号23は炉心燃料集合体、25は径方向ブランケット燃料集合体、26は遮蔽体、28は制御棒集合体であり、図に示すような配置になっている。 FIG. 7 is a core layout diagram. Reference numeral 23 in the figure is a core fuel assembly, 25 is a radial blanket fuel assembly, 26 is a shield, and 28 is a control rod assembly. ing.
図7に示すように、燃料集合体23の約10体に対して、制御棒集合体28が1体程度の割合で設けられており、各制御棒集合体28が燃料集合体23群の中に所定の間隔をおいて分散されている。 As shown in FIG. 7, about one control rod assembly 28 is provided for about 10 fuel assemblies 23, and each control rod assembly 28 is included in the group of fuel assemblies 23. Are distributed at predetermined intervals.
なお、原子炉でシビア・アクシデントが発生した場合の対応策に関する先行技術文献として、例えば特公平5−80636号公報(特許文献1)や特開平5−341081号公報(特許文献2)などを挙げることができる。 In addition, as prior art documents regarding countermeasures in the event of a severe accident in a nuclear reactor, for example, Japanese Patent Publication No. 5-80636 (Patent Document 1) and Japanese Patent Application Laid-Open No. 5-341081 (Patent Document 2) are cited. be able to.
原子炉の定格運転に際しては、制御棒集合体1に対する液体金属ナトリウム11の定格流量を確保する必要があり、そのために前述した流量調整部20が設けられている。しかしながら、設計基準を超える事故により炉心が損傷して溶融するシビア・アクシデントを考慮すると、図4に示す制御棒集合体1の構造では改善すべき問題点がある。 In the rated operation of the nuclear reactor, it is necessary to ensure the rated flow rate of the liquid metal sodium 11 with respect to the control rod assembly 1, and the flow rate adjusting unit 20 described above is provided for this purpose. However, considering the severe accident that the core is damaged and melts due to an accident exceeding the design standard, there is a problem to be improved in the structure of the control rod assembly 1 shown in FIG.
ナトリウム冷却高速炉でのシビア・アクシデントでは、炉心の核的な特性により、原子炉の出力が増加する可能性がある。原子炉の核的活性度を低下させて安定状態に移行させるためには、シビア・アクシデントにおいて生じた溶融燃料を炉心外へ流出させることが効果的である。 In severe accidents in sodium-cooled fast reactors, the nuclear power of the reactor may increase the reactor power. In order to reduce the nuclear activity of the nuclear reactor and shift it to a stable state, it is effective to let molten fuel generated in a severe accident flow out of the core.
ナトリウム冷却高速炉の燃料集合体は稠密ピン束で構成されており図7に示されているように、燃料集合体23の約10体に対して制御棒集合体28が1体程度の割合で燃料集合体23群中に分散されているから、制御棒集合体28が溶融燃料の有効な流出経路となる。 The fuel assembly of the sodium-cooled fast reactor is composed of dense pin bundles, and as shown in FIG. 7, the control rod assembly 28 is in a ratio of about 1 to about 10 fuel assemblies 23. Since the fuel rods 23 are dispersed in the group of fuel assemblies 23, the control rod assemblies 28 serve as an effective flow path for the molten fuel.
しかしながら、図4に示す下方に流量調整部20を備えた制御棒集合体1では溶融燃料の流出が妨げられて、原子炉が核的に安定状態に移行しない可能性があることが判明した。 However, it has been found that in the control rod assembly 1 provided with the flow rate adjusting unit 20 below shown in FIG. 4, the outflow of the molten fuel is hindered and the nuclear reactor may not shift to a nuclear stable state.
図8(a)〜(c)は、制御棒集合体1への溶融燃料(損傷炉心物質)31の侵入から流量調整部20による溶融燃料31の流出阻止までの経過を説明する図である。 FIGS. 8A to 8C are diagrams for explaining a process from the intrusion of the molten fuel (damaged core material) 31 to the control rod assembly 1 until the flow rate adjusting unit 20 prevents the molten fuel 31 from flowing out.
図8(a)に示すように、溶融燃料31が制御棒集合体1の周壁を溶融して侵入すると、制御棒集合体1内にある液体金属ナトリウム11と溶融燃料31の熱的相互作用32により、図8(b)に示すように制御棒集合体1内のダッシュポット6 の上方にナトリウムボイド領域33が形成され、それが発達する。 As shown in FIG. 8A, when the molten fuel 31 melts and enters the peripheral wall of the control rod assembly 1, the thermal interaction 32 between the liquid metal sodium 11 and the molten fuel 31 in the control rod assembly 1. As a result, a sodium void region 33 is formed above the dashpot 6 in the control rod assembly 1 as shown in FIG.
また、溶融燃料31の一部は制御棒案内管3とダッシュポット6の間の隙間10にも入り込むが、流量調整部20により下方の流動抵抗が大きいから、初期状態では溶融燃料31は制御棒2および制御棒2と制御棒案内管3の隙間を通って、制御棒集合体1内の上部に分散34する。 Further, a part of the molten fuel 31 also enters the gap 10 between the control rod guide tube 3 and the dashpot 6, but because the lower flow resistance is large by the flow rate adjusting unit 20, the molten fuel 31 is controlled by the control rod in the initial state. 2 and through the gap between the control rod 2 and the control rod guide tube 3, the dispersion 34 is distributed in the upper part of the control rod assembly 1.
図8(c)に示すように、制御棒2および制御棒2と制御棒案内管3の隙間に入り込んだ溶融燃料31が固化して隙間が閉塞35されても、溶融燃料31の侵入は引き続き起こり、溶融燃料31はダッシュポット6の周囲に溜り、溶融燃料31の固化とダッシュポット6の存在により閉塞35が起こる。
また、ダッシュポット6 の所で閉塞35しない場合、溶融燃料31はダッシュポット6の穴9を通って下方に移動36し、流量調整部20の上面まで流下しそこで停止して、固化による閉塞35が起こる。図8(c)は、この状態を示している。
As shown in FIG. 8C, even if the molten fuel 31 that has entered the gap between the control rod 2 and the control rod 2 and the control rod guide tube 3 is solidified to close the gap 35, the molten fuel 31 continues to enter. As a result, the molten fuel 31 accumulates around the dashpot 6, and a blockage 35 occurs due to the solidification of the molten fuel 31 and the presence of the dashpot 6.
When the dash pot 6 is not blocked 35, the molten fuel 31 moves downward 36 through the hole 9 of the dash pot 6, flows down to the upper surface of the flow rate adjusting unit 20, stops there, and is blocked by solidification 35. Happens. FIG. 8C shows this state.
このように図4に示す制御棒集合体1の構造では、特に流量調整部20で溶融燃料31の流出が妨げられて、原子炉が核的に安定状態に移行しない可能性があることが判明した。 As described above, in the structure of the control rod assembly 1 shown in FIG. 4, it is found that there is a possibility that the nuclear reactor may not shift to a nuclear stable state because the flow rate adjustment unit 20 prevents the molten fuel 31 from flowing out. did.
本発明はこのような技術背景においてなされたものであり、その目的は、炉心の核的活性度を低下させて原子炉を安定状態に移行させるために有効な手段である、溶融燃料の炉心外への流出を促進させることのできる高速炉の制御棒案内管を提供することにある。 The present invention has been made in such a technical background, and an object of the present invention is to provide an effective means for lowering the nuclear activity of the core and shifting the reactor to a stable state. The purpose of the present invention is to provide a control rod guide tube for a fast reactor that can promote the outflow to the reactor.
前記目的を達成するため、本発明の第1の手段は、断面形状が略凹形の例えばダッシュポットなどの流路内構造物を内側に収容した高速炉の制御棒案内管において、
前記流路内構造物の略凹形を形成する凹部内に流入・堆積した溶融燃料の熱容量により昇温して溶断することのできる肉薄部を、前記凹部の周壁に当該凹部の周方向に沿って連続して設けたことを特徴とするものである。
In order to achieve the above object, the first means of the present invention is a control rod guide tube of a fast reactor in which a structure in a flow channel such as a dashpot having a substantially concave cross section is accommodated inside, for example,
A thin portion that can be heated and melted by the heat capacity of the molten fuel that has flowed into and deposited in the concave portion that forms the substantially concave shape of the structure in the flow path is formed along the circumferential direction of the concave portion on the peripheral wall of the concave portion. It is characterized by being provided continuously.
本発明の第2の手段は前記第1の手段において、前記肉薄部を前記凹部の底部近傍に設けたことを特徴とするものである。 According to a second means of the present invention, in the first means, the thin portion is provided in the vicinity of the bottom of the recess.
本発明の第3の手段は前記第1または第2の手段において、当該制御棒案内管の前記流路内構造物の収容位置より下方に、前記凹部の底部の外径D3より径大の内径D4を有する排出筒部が下方に向けて形成され、前記凹部の底部が排出筒部側に臨んでいることを特徴とするものである。 According to a third means of the present invention, in the first or second means, an inner diameter larger than the outer diameter D3 of the bottom portion of the concave portion below the housing position of the flow passage structure of the control rod guide tube. A discharge cylinder portion having D4 is formed downward, and the bottom of the recess faces the discharge cylinder portion side.
本発明の第4の手段は前記第1ないし第3のいずれかの手段において、当該制御棒案内管の内側途中に縮径されて内径D2の段部が形成され、前記段部の内径D2よりも小径の外径D1を有する前記流路内構造物の凹部を前記段部の内側に収容して、前記段部と前記凹部の間に隙間が形成され、前記隙間により当該制御棒案内管内を流通する冷却材の流量が調整されることを特徴とするものである。 According to a fourth means of the present invention, in any one of the first to third means, a diameter is reduced in the middle of the control rod guide tube to form a step portion having an inner diameter D2. From the inner diameter D2 of the step portion, A recess in the flow passage structure having a small outer diameter D1 is accommodated inside the stepped portion, and a gap is formed between the stepped portion and the recessed portion. The flow rate of the circulating coolant is adjusted.
本発明の第5の手段は前記第1ないし第4のいずれかの手段において、前記冷却材が液体金属ナトリウムであることを特徴とするものである。 According to a fifth means of the present invention, in any one of the first to fourth means, the coolant is liquid metal sodium.
本発明の第6の手段は前記第1ないし第5のいずれかの手段において、前記流路内構造物がダッシュポットであることを特徴とするものである。 According to a sixth means of the present invention, in any one of the first to fifth means, the structure in the flow path is a dashpot.
本発明は前述のような構成になっており、溶融燃料の炉心外への流出を促進させることのできる高速炉の制御棒案内管を提供することができる。 The present invention is configured as described above, and can provide a control rod guide tube for a fast reactor capable of promoting the outflow of molten fuel to the outside of the core.
次に本発明の実施例を図面とともに説明する。図1は本発明の実施例に係る制御棒集合体の構造図、図2は本発明の実施例に係る制御棒案内管の要部拡大断面図である。 Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a structural diagram of a control rod assembly according to an embodiment of the present invention, and FIG. 2 is an enlarged cross-sectional view of a main part of a control rod guide tube according to an embodiment of the present invention.
制御棒集合体40は、制御棒2と、その制御棒2を個別に収容する制御棒案内管41から主に構成されている。 The control rod assembly 40 is mainly composed of a control rod 2 and a control rod guide tube 41 that individually accommodates the control rod 2.
制御棒案内管41の下端部には先細り状になったエントランスノズル42が設けられ、制御棒案内管41の内側途中には縮径になった段部43と、その段部43の下部からエントランスノズル42の下端開口部までストレートに真下に延びた排出筒部44が形成され、段部43の内側にダッシュポット(緩衝器)45が収容される。 A tapered entrance nozzle 42 is provided at the lower end of the control rod guide tube 41, and a stepped portion 43 having a reduced diameter is provided in the middle of the control rod guide tube 41, and an entrance from the lower portion of the stepped portion 43. A discharge cylinder portion 44 is formed that extends straight down to the lower end opening of the nozzle 42, and a dash pot (buffer) 45 is accommodated inside the step portion 43.
なお、高速炉の通常運転時には排出筒部44は、図1に示すように液体金属ナトリウム11の流通路の一部を形成している。 During normal operation of the fast reactor, the discharge cylinder portion 44 forms a part of the flow path of the liquid metal sodium 11 as shown in FIG.
ダッシュポット45の全体の断面形状は略凹形をしており、ダッシュポット45の上端外周につば部46が設けられ、つば部46の下部に前記略凹形を形成する凹部47が一体に形成されている。 The entire cross-sectional shape of the dashpot 45 is substantially concave, and a collar portion 46 is provided on the outer periphery of the upper end of the dashpot 45, and a concave portion 47 that forms the substantially concave shape is formed integrally with the lower portion of the collar portion 46. Has been.
図2に示すように、凹部47の周壁の外径D1は段部43の内径D2よりも若干小径(D1<D2)で、凹部47の周壁には周方向に沿って複数個の穴48が形成されている。 As shown in FIG. 2, the outer diameter D1 of the peripheral wall of the recess 47 is slightly smaller than the inner diameter D2 of the stepped portion 43 (D1 <D2), and the peripheral wall of the recess 47 has a plurality of holes 48 along the circumferential direction. Is formed.
図1に示すように、制御棒案内管41の上部からダッシュポット45を制御棒案内管41の内側に挿入し、ダッシュポット45のつば部46を制御棒案内管41の段部43の上に載置すると、ダッシュポット45の凹部47が段部43の内側に収容され、炉心の下部付近に設置される。 As shown in FIG. 1, the dash pot 45 is inserted into the control rod guide tube 41 from the top of the control rod guide tube 41, and the collar portion 46 of the dash pot 45 is placed on the stepped portion 43 of the control rod guide tube 41. When placed, the concave portion 47 of the dash pot 45 is accommodated inside the stepped portion 43 and installed near the lower portion of the core.
このようにしてダッシュポット45を収容すると、凹部47の周壁と段部43との間に、冷却材である液体金属ナトリウム11が流通する隙間49(図2参照)が形成される。この隙間49は、凹部47の周壁の穴48を介して凹部47の内部と連通している。 When the dashpot 45 is housed in this way, a gap 49 (see FIG. 2) is formed between the peripheral wall of the recess 47 and the stepped portion 43 in which the liquid metal sodium 11 as the coolant flows. The gap 49 communicates with the inside of the recess 47 through a hole 48 in the peripheral wall of the recess 47.
この隙間49はそこを流通する液体金属ナトリウム11の流量を調整(規制)する機能を有しており、従って制御棒案内管41の段部43と、ダッシュポット45の凹部47とで液体金属ナトリウム11の流量調整部を構成している。従って図4に示すように、連絡管18内に流量調整部20を設ける必要がなく、部品点数の削減と、組み立て工数の削減が図れる。 The gap 49 has a function of adjusting (restricting) the flow rate of the liquid metal sodium 11 flowing therethrough. Therefore, the liquid metal sodium is formed by the step 43 of the control rod guide tube 41 and the recess 47 of the dashpot 45. 11 flow rate adjusters. Therefore, as shown in FIG. 4, it is not necessary to provide the flow rate adjusting unit 20 in the connecting pipe 18, and the number of parts and the number of assembly steps can be reduced.
また、図2に示すように、制御棒案内管41内にダッシュポット45を装着した状態で凹部47の底部50は、制御棒案内管41の段部43と排出筒部44の連結部付近に位置している。 Further, as shown in FIG. 2, the bottom 50 of the recess 47 with the dashpot 45 mounted in the control rod guide tube 41 is located near the connecting portion between the step 43 of the control rod guide tube 41 and the discharge tube portion 44. positioned.
そして制御棒案内管41の排出筒部44の内径D4は、ダッシュポット45の底部50の外径D3よりも十分に大きく設計されており(D3≪D4)、底部50が排出筒部44側に臨んでいる。 The inner diameter D4 of the discharge tube portion 44 of the control rod guide tube 41 is designed to be sufficiently larger than the outer diameter D3 of the bottom portion 50 of the dash pot 45 (D3 << D4), and the bottom portion 50 is located on the discharge tube portion 44 side. I'm here.
さらに、凹部47の周壁の外周面で底部50の直上近傍には、凹部47の周方向に連続して延びた凹溝51が設けられ、それによって凹部47の周方向に連続して延びた肉薄部52が形成されている。 Further, a groove 51 extending continuously in the circumferential direction of the recess 47 is provided in the vicinity of the outer peripheral surface of the peripheral wall of the recess 47 and immediately above the bottom 50, thereby thinning continuously extending in the circumferential direction of the recess 47. A portion 52 is formed.
図3(a),(b)は、制御棒集合体40への溶融燃料(損傷炉心物質)31の侵入から流出までの経過を説明する図である。 FIGS. 3A and 3B are views for explaining the course from the intrusion of molten fuel (damaged core material) 31 to the control rod assembly 40 until the outflow.
図3(a)に示すように、溶融燃料31が制御棒集合体1の周壁を溶融して侵入すると、ダッシュポット45の凹部47内に流入して堆積する。 As shown in FIG. 3A, when the molten fuel 31 melts and enters the peripheral wall of the control rod assembly 1, it flows into the recess 47 of the dashpot 45 and accumulates.
図2に示すダッシュポット45のつば部46の内周面に形成された傾斜面53は、侵入した溶融燃料31をダッシュポット45の凹部47内に導くガイドとして機能する。 An inclined surface 53 formed on the inner peripheral surface of the collar portion 46 of the dash pot 45 shown in FIG. 2 functions as a guide for guiding the intruded molten fuel 31 into the recess 47 of the dash pot 45.
ダッシュポット45の肉薄部52は、凹部47内に堆積した高温の溶融燃料31の熱容量効果で昇温して、溶断する。換言すれば、肉薄部52の厚さは、凹部47内に堆積した溶融燃料31の熱容量によって溶断できる程度の厚さに設計されていることになる。 The thin portion 52 of the dash pot 45 is heated and melted by the heat capacity effect of the high-temperature molten fuel 31 deposited in the recess 47. In other words, the thickness of the thin portion 52 is designed to a thickness that can be melted by the heat capacity of the molten fuel 31 deposited in the recess 47.
そして図3(b)に示すように、肉薄部52の溶断に伴い、ダッシュポット45の下部50はダッシュポット45の本体から離れ、堆積した溶融燃料31と一緒に排出筒部44から入口プレナムに向かって落下54して、溶融燃料31を排出することができる。 As shown in FIG. 3 (b), the lower part 50 of the dash pot 45 is separated from the main body of the dash pot 45 as the thin part 52 is melted, and is discharged from the discharge cylinder part 44 to the inlet plenum together with the accumulated molten fuel 31. The molten fuel 31 can be discharged by dropping 54 toward the end.
前述のように、制御棒案内管41の排出筒部44の内径D4は、ダッシュポット45の下部50の外径D3よりも十分に大きく設計されているから(D3≪D4)、堆積した溶融燃料(溶融炉心物質)31は従来のように停滞することなくスムーズに排出でき、制御棒案内管41は再臨界を排除するための有効な排出手段となる。 As described above, the inner diameter D4 of the discharge cylinder portion 44 of the control rod guide tube 41 is designed to be sufficiently larger than the outer diameter D3 of the lower portion 50 of the dash pot 45 (D3 << D4). The (melting core material) 31 can be discharged smoothly without stagnation as in the prior art, and the control rod guide tube 41 becomes an effective discharging means for eliminating recriticality.
なお、原子炉容器の内部構造ならびに炉心の配置などは図5ならびに図7と同様であるので、それらの重複する説明は省略する。 The internal structure of the nuclear reactor vessel and the arrangement of the reactor core are the same as those shown in FIGS.
前記実施例では冷却材として液体金属ナトリウムを使用したが、水などの他の冷却材を使用することも可能である。 In the above embodiment, liquid metal sodium is used as the coolant, but other coolants such as water can also be used.
前記実施例では図2に示すように、ダッシュポット45の周壁に、それの軸方向と直交する方向に延びた穴48を形成したが、ダッシュポット45の周壁に、それの軸方向に対して斜め上方向に延びた穴を形成することも可能である。 In the embodiment, as shown in FIG. 2, the hole 48 extending in the direction perpendicular to the axial direction of the dash pot 45 is formed in the peripheral wall of the dash pot 45. It is also possible to form a hole extending obliquely upward.
前記実施例では流路内構造物としてダッシュポット45を用いたが、本発明はダッシュポットに限定されるものではなく、断面形状が略凹形の他の流路内構造物の周壁に肉薄部を設けることも可能である。 In the above embodiment, the dash pot 45 is used as the flow channel structure. However, the present invention is not limited to the dash pot, and the thin wall portion is formed on the peripheral wall of another flow channel structure having a substantially concave cross section. It is also possible to provide.
11:液体金属ナトリウム、
16:上部炉心支持板、
17:下部炉心支持板、
18:連絡管、
31:溶融燃料(損傷炉心物質)、
40:制御棒集合体、
41:制御棒案内管、
42:エントランスノズル、
43:段部、
44:排出筒部、
45:ダッシュポット(緩衝器)、
46:つば部、
47:凹部、
48:穴、
49:隙間、
50:下部、
51:凹溝、
52:肉薄部、
54:落下、
D1:凹部の外径、
D2:段部の内径、
D3:底部の外径、
D4:排出筒部の内径。
11: Liquid metal sodium,
16: Upper core support plate,
17: Lower core support plate,
18: Connecting pipe,
31: Molten fuel (damaged core material),
40: Control rod assembly,
41: Control rod guide tube,
42: Entrance nozzle,
43: Step,
44: discharge cylinder part,
45: Dashpot (buffer),
46: collar part,
47: recess,
48: hole,
49: gap,
50: bottom,
51: groove,
52: Thin part,
54: Falling,
D1: outer diameter of the recess,
D2: inner diameter of the step,
D3: outer diameter of the bottom,
D4: inner diameter of the discharge cylinder.
Claims (6)
前記流路内構造物の略凹形を形成する凹部内に流入・堆積した溶融燃料の熱容量により昇温して溶断することのできる肉薄部を、前記凹部の周壁に当該凹部の周方向に沿って連続して設けたことを特徴とする高速炉の制御棒案内管。 In the control rod guide tube of the fast reactor in which the structure in the flow path having a substantially concave cross section is housed inside
A thin portion that can be heated and melted by the heat capacity of the molten fuel that has flowed into and deposited in the concave portion that forms the substantially concave shape of the structure in the flow path is formed along the circumferential direction of the concave portion on the peripheral wall of the concave portion. A control rod guide tube for a fast reactor characterized by being provided continuously.
前記肉薄部を前記凹部の底部近傍に設けたことを特徴とする高速炉の制御棒案内管。 In the control rod guide tube of the fast reactor according to claim 1,
A control rod guide tube for a fast reactor, wherein the thin portion is provided near the bottom of the recess.
当該制御棒案内管の前記流路内構造物の収容位置より下方に、前記凹部の底部の外径D3より径大の内径D4を有する排出筒部が下方に向けて形成され、前記凹部の底部が排出筒部側に臨んでいることを特徴とする高速炉の制御棒案内管。 In the control rod guide tube of the fast reactor according to claim 1 or 2,
A discharge cylinder portion having an inner diameter D4 larger than the outer diameter D3 of the bottom portion of the concave portion is formed downward from the accommodation position of the structure in the flow path of the control rod guide tube, and the bottom portion of the concave portion A control rod guide tube for a fast reactor, characterized by facing the discharge tube side.
当該制御棒案内管の内側途中に縮径されて内径D2の段部が形成され、前記段部の内径D2よりも小径の外径D1を有する前記流路内構造物の凹部を前記段部の内側に収容して、前記段部と前記凹部の間に隙間が形成され、前記隙間により当該制御棒案内管内を流通する冷却材の流量が調整されることを特徴とする高速炉の制御棒案内管。 In the control rod guide tube of the fast reactor according to any one of claims 1 to 3,
The control rod guide tube is reduced in diameter in the middle to form a step portion having an inner diameter D2, and the recess in the flow passage structure having an outer diameter D1 smaller than the inner diameter D2 of the step portion is formed in the step portion. A control rod guide for a fast reactor characterized in that a clearance is formed between the step portion and the recess, and the flow rate of the coolant flowing through the control rod guide tube is adjusted by the clearance. tube.
前記冷却材が液体金属ナトリウムであることを特徴とする高速炉の制御棒案内管。 In the control rod guide tube of the fast reactor according to any one of claims 1 to 4,
A control rod guide tube for a fast reactor, wherein the coolant is liquid metal sodium.
前記流路内構造物がダッシュポットであることを特徴とする高速炉の制御棒案内管。 In the control rod guide tube of the fast reactor according to any one of claims 1 to 5,
A control rod guide tube for a fast reactor, wherein the flow passage structure is a dashpot.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014264483A JP6434305B2 (en) | 2014-12-26 | 2014-12-26 | Control rod guide tube for fast reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014264483A JP6434305B2 (en) | 2014-12-26 | 2014-12-26 | Control rod guide tube for fast reactor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016125837A true JP2016125837A (en) | 2016-07-11 |
JP6434305B2 JP6434305B2 (en) | 2018-12-05 |
Family
ID=56356998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014264483A Active JP6434305B2 (en) | 2014-12-26 | 2014-12-26 | Control rod guide tube for fast reactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6434305B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020112389A (en) * | 2019-01-09 | 2020-07-27 | 三菱Fbrシステムズ株式会社 | Control rod guide pipe of fast reactor |
WO2021152951A1 (en) * | 2020-01-31 | 2021-08-05 | 三菱Fbrシステムズ株式会社 | Fast reactor molten fuel outflow pipe and fast reactor |
JP7373611B2 (en) | 2021-06-25 | 2023-11-02 | 阿波▲羅▼智▲聯▼(北京)科技有限公司 | Log auditing methods, equipment, electronic equipment, media and computer programs |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58191988A (en) * | 1982-04-30 | 1983-11-09 | ウエスチングハウス エレクトリック コ−ポレ−ション | Fuel assembly for lmfbr type reactor |
JPH06258473A (en) * | 1993-03-05 | 1994-09-16 | Mitsubishi Atom Power Ind Inc | Melting time output suppression type fuel element |
JPH06324179A (en) * | 1993-05-10 | 1994-11-25 | Power Reactor & Nuclear Fuel Dev Corp | Self-operating type reactor stopping device for fast reactor |
JPH07128469A (en) * | 1993-11-09 | 1995-05-19 | Tokyo Electric Power Co Inc:The | Core of fast reactor |
JPH10227884A (en) * | 1997-02-17 | 1998-08-25 | Hitachi Ltd | Control rod assembly of fast reactor |
JP2002055187A (en) * | 2000-08-09 | 2002-02-20 | Japan Nuclear Cycle Development Inst States Of Projects | Fuel assembly for fast reactor |
JP2003262691A (en) * | 2002-03-07 | 2003-09-19 | Tokyo Electric Power Co Inc:The | Fuel assembly for fast breeder reactor |
JP2006126147A (en) * | 2004-11-01 | 2006-05-18 | Japan Nuclear Cycle Development Inst States Of Projects | Core fuel assembly for liquid metal cooling fast reactor |
JP2009085650A (en) * | 2007-09-28 | 2009-04-23 | Hitachi-Ge Nuclear Energy Ltd | Core component or fast reactor, core fuel assembly, core, and reactor structure |
US20100266085A1 (en) * | 2009-04-16 | 2010-10-21 | Ahlfeld Charles E | Nuclear fission reactor, flow control assembly, methods therefor and a flow control assembly system |
-
2014
- 2014-12-26 JP JP2014264483A patent/JP6434305B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58191988A (en) * | 1982-04-30 | 1983-11-09 | ウエスチングハウス エレクトリック コ−ポレ−ション | Fuel assembly for lmfbr type reactor |
JPH06258473A (en) * | 1993-03-05 | 1994-09-16 | Mitsubishi Atom Power Ind Inc | Melting time output suppression type fuel element |
JPH06324179A (en) * | 1993-05-10 | 1994-11-25 | Power Reactor & Nuclear Fuel Dev Corp | Self-operating type reactor stopping device for fast reactor |
JPH07128469A (en) * | 1993-11-09 | 1995-05-19 | Tokyo Electric Power Co Inc:The | Core of fast reactor |
JPH10227884A (en) * | 1997-02-17 | 1998-08-25 | Hitachi Ltd | Control rod assembly of fast reactor |
JP2002055187A (en) * | 2000-08-09 | 2002-02-20 | Japan Nuclear Cycle Development Inst States Of Projects | Fuel assembly for fast reactor |
JP2003262691A (en) * | 2002-03-07 | 2003-09-19 | Tokyo Electric Power Co Inc:The | Fuel assembly for fast breeder reactor |
JP2006126147A (en) * | 2004-11-01 | 2006-05-18 | Japan Nuclear Cycle Development Inst States Of Projects | Core fuel assembly for liquid metal cooling fast reactor |
JP2009085650A (en) * | 2007-09-28 | 2009-04-23 | Hitachi-Ge Nuclear Energy Ltd | Core component or fast reactor, core fuel assembly, core, and reactor structure |
US20100266085A1 (en) * | 2009-04-16 | 2010-10-21 | Ahlfeld Charles E | Nuclear fission reactor, flow control assembly, methods therefor and a flow control assembly system |
Non-Patent Citations (1)
Title |
---|
丹羽 元、栗坂 健一、栗原 国寿、藤田 朋子, 安全設計方針に関する検討 −安全性の目標と再臨界問題の排除について−, vol. JNC TN9400 2000-043, JPN7007001022, March 2000 (2000-03-01), JP, pages 全頁, ISSN: 0003850667 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020112389A (en) * | 2019-01-09 | 2020-07-27 | 三菱Fbrシステムズ株式会社 | Control rod guide pipe of fast reactor |
WO2021152951A1 (en) * | 2020-01-31 | 2021-08-05 | 三菱Fbrシステムズ株式会社 | Fast reactor molten fuel outflow pipe and fast reactor |
JP2021120668A (en) * | 2020-01-31 | 2021-08-19 | 三菱Fbrシステムズ株式会社 | Molten fuel outflow pipe of fast reactor and fast reactor |
JP7200153B2 (en) | 2020-01-31 | 2023-01-06 | 三菱Fbrシステムズ株式会社 | Molten fuel outflow tube of fast reactor and fast reactor |
JP7373611B2 (en) | 2021-06-25 | 2023-11-02 | 阿波▲羅▼智▲聯▼(北京)科技有限公司 | Log auditing methods, equipment, electronic equipment, media and computer programs |
Also Published As
Publication number | Publication date |
---|---|
JP6434305B2 (en) | 2018-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7711079B2 (en) | Lower and upper end plugs of an annular fuel rod | |
JP6434305B2 (en) | Control rod guide tube for fast reactor | |
TWI437578B (en) | Atomic furnace storage container drainage tank | |
CN103871487B (en) | A kind of graphite guide pipe for HTGR | |
TW200847191A (en) | Bottom end-piece having an anti-debris device with a baffle for a nuclear fuel assembly and corresponding assembly | |
JP2011174897A (en) | Molten material cooling structure, reactor containment vessel provided with cooling structure, and nuclear power plant provided with containment vessel | |
KR101677357B1 (en) | Fuel bundle for a liquid metal cooled nuclear reactor | |
JP2009074960A (en) | Fast reactor having reflector control system | |
JP2009047637A (en) | Core melt holding device and containment vessel | |
JPH07140288A (en) | Column shielding body | |
JP5443199B2 (en) | Fast breeder reactor core structure | |
JP6529918B2 (en) | Reactor containment vessel and its drain sump mechanism | |
KR101535357B1 (en) | A bottom end plate in a dual-cooled annular nuclear fuel assembly | |
JP6808765B2 (en) | Control rod guide pipe for fast reactor | |
JP7200153B2 (en) | Molten fuel outflow tube of fast reactor and fast reactor | |
JP4301604B2 (en) | Pressurized water reactor | |
KR102076899B1 (en) | Cooling system using nano-particle for nuclear power plant | |
JP6101185B2 (en) | Reactor | |
KR101085102B1 (en) | A lower end plug for annular fuel rod along with a function of inner coolant channel blockage prevention due to debris | |
JPH10227884A (en) | Control rod assembly of fast reactor | |
JP6462501B2 (en) | Drain sump protection structure and containment vessel | |
JP6825987B2 (en) | Melt core retention cooling system and reactor containment vessel | |
JP6590770B2 (en) | Core catcher | |
JP2017090400A (en) | Nuclear reactor core catcher | |
JPH07104091A (en) | Vessel wall cooling structure for reactor vessel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170912 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180807 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180831 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181030 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181108 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6434305 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |