JP2016119822A - 電力変換装置、制御装置およびキャリア周波数の変更方法 - Google Patents
電力変換装置、制御装置およびキャリア周波数の変更方法 Download PDFInfo
- Publication number
- JP2016119822A JP2016119822A JP2014259736A JP2014259736A JP2016119822A JP 2016119822 A JP2016119822 A JP 2016119822A JP 2014259736 A JP2014259736 A JP 2014259736A JP 2014259736 A JP2014259736 A JP 2014259736A JP 2016119822 A JP2016119822 A JP 2016119822A
- Authority
- JP
- Japan
- Prior art keywords
- unit
- control
- frequency
- value
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 89
- 238000000034 method Methods 0.000 title claims abstract description 19
- 230000010354 integration Effects 0.000 claims abstract description 39
- 230000008859 change Effects 0.000 claims abstract description 38
- 238000001514 detection method Methods 0.000 claims description 23
- 230000033228 biological regulation Effects 0.000 claims description 10
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 4
- 230000001105 regulatory effect Effects 0.000 claims description 3
- 230000004043 responsiveness Effects 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 description 17
- 230000007423 decrease Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 230000004907 flux Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000018199 S phase Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters
- H02P27/08—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters with pulse width modulation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/0003—Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
- H02P21/0021—Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control using different modes of control depending on a parameter, e.g. the speed
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/06—Rotor flux based control involving the use of rotor position or rotor speed sensors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters
- H02P27/08—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters with pulse width modulation
- H02P27/085—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/16—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using AC to AC converters without intermediate conversion to DC
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P2205/00—Indexing scheme relating to controlling arrangements characterised by the control loops
- H02P2205/01—Current loop, i.e. comparison of the motor current with a current reference
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P2209/00—Indexing scheme relating to controlling arrangements characterised by the waveform of the supplied voltage or current
- H02P2209/13—Different type of waveforms depending on the mode of operation
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
【課題】制御応答性を高めることができる電力変換装置、制御装置およびキャリア周波数の変更方法を提供すること。【解決手段】実施形態の一態様に係る電力変換装置は、電力変換部とPWM制御部と、周波数変更部とを備える。電力変換部は、複数のスイッチング素子を有する。PWM制御部は、複数のスイッチング素子をPWM制御する。周波数変更部は、PWM制御のキャリア周波数を変更する。周波数変更部は、出力部と、積分部と、周波数決定部とを備える。出力部は、制御対象に対する制御偏差に応じた制御値を出力する。積分部は、出力部から出力される制御値を積分する。周波数決定部は、積分部の積分値に基づいて、キャリア周波数を決定する。【選択図】図1A
Description
開示の実施形態は、電力変換装置、制御装置およびキャリア周波数の変更方法に関する。
従来、PWM制御方式の電力変換装置(例えば、インバータ装置、コンバータ装置、マトリクスコンバータなど)が広く知られている。
この種の電力変換装置において、PWM制御のキャリア周期を制御偏差に応じて変更することによって制御応答性を高める技術が提案されている。例えば、電流指令と電流検出値との電流偏差である電流制御偏差の絶対値に反比例する周期変調係数を生成し、周期変調係数によりキャリア周波数と電流制御のゲインを変更するインバータ装置が提案されている(例えば、特許文献1参照)。
しかしながら、上記従来の電力変換装置では、制御偏差を検出する際にノイズなどによって生じる検出誤差により、キャリア周波数の調整を精度よく行うことができないおそれがある。
実施形態の一態様は、上記に鑑みてなされたものであって、制御応答性を高めることができる電力変換装置、制御装置およびキャリア周波数の変更方法を提供することを目的とする。
実施形態の一態様に係る電力変換装置は、電力変換部と、PWM制御部と、周波数変更部とを備える。前記電力変換部は、複数のスイッチング素子を有する。前記PWM制御部は、前記複数のスイッチング素子をPWM制御する。前記周波数変更部は、前記PWM制御のキャリア周波数を変更する。前記周波数変更部は、出力部と、積分部と、周波数決定部とを備える。前記出力部は、制御対象に対する制御偏差に応じた制御値を出力する。前記積分部は、前記出力部から出力される前記制御値を積分する。前記周波数決定部は、前記積分部の積分値に基づいて、前記キャリア周波数を決定する。
実施形態の一態様によれば、制御応答性を高めることができる電力変換装置、制御装置およびキャリア周波数の変更方法を提供することができる。
以下、添付図面を参照して、本願の開示する電力変換装置、制御装置およびキャリア周波数の変更方法の実施形態を詳細に説明する。なお、以下に示す実施形態によりこの発明が限定されるものではない。
図1Aは、実施形態に係る電力変換装置を有する電力変換システムを示す図である。図1Aに示すように、実施形態に係る電力変換システム100は、電力変換装置1と、電源2と、回転電機3とを備える。電力変換装置1は、電源2と回転電機3との間に配置され、電源2と回転電機3との間の電力変換を行う。かかる電力変換装置1は、例えば、回転電機3の電流を制御することにより回転電機3を制御する電動機制御装置として機能する。
電源2は、例えば、太陽光や風力などの自然エネルギーを電気エネルギーに変換する発電装置や燃料電池などの直流電源や交流電源であり、回転電機3は、例えば、固定子と回転子を有する電動機である。なお、電源2は、例えば、電力系統でもよく、また、回転電機3は、例えば、固定子と回転子を有する発電機であってもよい。
電力変換装置1は、電力変換部10と、電流検出部11と、制御部20(制御装置の一例)とを備える。電力変換部10は、例えば、複数のスイッチング素子を有し、これらのスイッチング素子は、制御部20によってオン/オフが制御される。電流検出部11は、電力変換部10と回転電機3との間に流れる電流(以下、出力電流と記載する)を検出する。なお、以下、電力変換部10から回転電機3へ出力される電圧を出力電圧と記載する。
制御部20は、電力変換部10のスイッチング素子を制御し、電源2と回転電機3との間の電力変換を行う。かかる制御部20は、指令生成部21と、PWM制御部22と、周波数変更部23とを備える。
指令生成部21は、制御対象に対する制御指令を生成する。制御対象は、例えば、回転電機3の回転位置、回転電機3の回転速度、出力電流、出力電圧などである。例えば、指令生成部21は、電流検出部11によって検出された出力電流などに基づいて、出力電圧指令などの制御指令を生成する。
PWM制御部22は、指令生成部21によって生成される制御指令に基づいて、電力変換部10のスイッチング素子をPWM(Pulse Width Modulation)制御する駆動信号(以下、PWM信号と記載する)を生成する。例えば、PWM制御部22は、出力電圧指令とキャリア信号とを比較することによってPWM信号を生成する。
周波数変更部23は、制御対象に対する制御偏差Δcontに基づき、PWM制御部22によるPWM制御のキャリア周波数fcを変更する。キャリア周波数fcは、例えば、キャリア信号の周波数である。周波数変更部23は、例えば、指令生成部21が生成した出力電流指令と電流検出部11によって検出された出力電流との偏差(以下、電流偏差と記載する)を演算し、かかる電流偏差に基づき、キャリア周波数fcを変更する。
周波数変更部23は、出力部51と、積分部52と、周波数決定部53とを備える。出力部51は、制御偏差Δcontに応じた制御値を出力する。例えば、出力部51は、キャリア周期Tc(=1/fc)よりも短い周期Tsで制御偏差Δcontを閾値TH1(第1の閾値の一例)および閾値TH2(第2の閾値の一例)と比較する。
出力部51は、例えば、制御偏差Δcontが閾値TH1以上である場合に、キャリア周波数fcを上げるためのキャリアアップ値Δup(第1の制御値の一例)を出力する。また、出力部51は、制御偏差Δcontが閾値TH2以下である場合に、キャリア周波数fcを下げるためのキャリアダウン値Δdown(第2の制御値の一例)を出力する。
積分部52は、出力部51の出力を積分し、積分値Tcntを出力する。周波数決定部53は、積分部52の積分値Tcntに基づいて、キャリア周波数fcを決定する。PWM制御部22は、周波数決定部53によって決定されたキャリア周波数fcでPWM制御を行う。
図1Bは、制御偏差Δcont、積分値Tcntおよびキャリア周波数fcの関係を示す図であり、時刻t0において、Tcnt=Tmaxとし、fc=1/Tc1とする。また、時刻t0から制御偏差Δcontが徐々に大きくなり、キャリアアップ値Δupはマイナスの値とし、キャリアダウン値Δdownはプラス値であるとする。また、積分値Tcntは、上限値Tmaxと下限値Tminの範囲内に制限されるものとする。
出力部51は、キャリア周期Tcよりも短い周期Tsで制御偏差Δcontを閾値TH1および閾値TH2と比較する。図1Bに示す例では、時刻t0から制御偏差Δcontが徐々に大きくなってキャリア周期Tc1内の時刻t3〜t5では閾値TH1以上になる。そのため、時刻t3〜t5において、キャリアアップ値Δupが出力部51から繰り返し出力され、積分部52の積分値Tcntは、徐々に小さくなる。
周波数決定部53は、例えば、周期Tsでキャリア周波数fcを決定する。時刻t5において、キャリアアップ値Δupは3回連続で出力されているため、キャリア周波数fcを、例えば、3段階高い周波数fc4(=1/Tc4)に決定する。PWM制御部22は、キャリア信号の谷のタイミング(時刻t6)において、キャリア信号Scを周波数fc4のキャリア信号に切り替え、PWM制御を行う。
時刻t6においてキャリア信号Scを周波数fc4のキャリア信号に切り替えたあと、制御偏差Δcontが徐々に小さくなるが、時刻t7〜t9において制御偏差Δcontは閾値TH2以上であるため、積分値Tcntは下限値Tminになる。したがって、周波数決定部53は、さらに1段階高い周波数fc5(=1/Tc5)をキャリア周波数fcとして決定する。PWM制御部22は、キャリア信号の谷のタイミング(時刻t9)において、キャリア信号Scを周波数fc5のキャリア信号に切り替え、PWM制御を行う。
時刻t9においてキャリア信号Scを周波数fc5のキャリア信号に切り替えた後も継続的に制御偏差Δcontが小さくなっていき、時刻t10において制御偏差Δcontは閾値TH2以下になる。そのため、キャリアダウン値Δdownが出力部51から出力されて積分値Tcntは大きくなり、周波数決定部53は、1段階低い周波数fc4(1/Tc4)をキャリア周波数fcとして決定する。PWM制御部22は、キャリア信号の谷のタイミング(時刻t11)において、キャリア信号Scを周波数fc4のキャリア信号に切り替え、PWM制御を行う。
以降、同様に、周波数決定部53は、積分値Tcntに基づいてキャリア周波数fcを決定することで、制御偏差Δcontが小さくなるようにキャリア周波数fcが設定される。これにより、制御偏差が大きいほどPWM制御のキャリア周期Tcを短くできることから、制御応答性を高めることができる。しかも、積分値Tcntを用いてキャリア周波数fcを決定することから、ノイズなどによって検出誤差が生じた場合でも、キャリア周波数fcの調整を精度よく行うことができる。
以下、実施形態に係る電力変換装置1についてさらに詳細に説明する。図2は、図1Aに示す電力変換装置1の一つの構成例を示す図である。なお、図2は、制御偏差Δcontを出力電流の制御偏差とした場合の一例を示す。
図2に示すように、電力変換装置1は、電力変換部10と、電流検出部11と、制御部20とを備える。電力変換部10は、電源2と回転電機3との間の電力変換を行うことができるように複数のスイッチング素子を備える。なお、電源2は、例えば、直流電源や交流電源である。また、電力変換部10の接続対象として回転電機3に代えてその他の機器や電源系統としてもよい。
図3Aおよび図3Bは、電力変換部10の構成例を示す図である。図3Aに示す電力変換部10は、三相ブリッジ回路を有するインバータ回路である。また、図3Bは、電源2の各相(R相、S相、T相)と回転電機3の各相(U相、V相、W相)をそれぞれ接続する双方向スイッチを有するマトリクスコンバータ回路である。なお、電力変換部10は、電源2と回転電機3との間の電力変換を行うことができる構成であればよく、図3Aおよび図3Bに示す構成に限定されない。例えば、電力変換部10は、コンバータ回路であってもよい。
図2に戻って電力変換装置1の説明を続ける。図2に示すように、電流検出部11は、電力変換部10と回転電機3のU相、V相およびW相との間にそれぞれ流れる電流の瞬時値iu、iv、iw(以下、出力電流iu、iv、iwと記載する)を検出する。電流検出部11は、例えば、磁電変換素子であるホール素子を利用して電流を検出する。
制御部20は、指令生成部21と、PWM制御部22と、周波数変更部23と、ゲイン設定部24と、推定部25と、規制部26とを備える。指令生成部21は、出力電圧指令vu*、vv*、vw*を所定の演算周期Ts(以下、指令演算周期Tsと記載する)で生成する。PWM制御部22は、キャリア比較法または空間ベクトル法によりキャリア周期Tc(=1/fc)毎にPWM信号を生成し、かかるPWM信号により、電力変換部10のスイッチング素子を制御する。例えば、PWM制御部22は、出力電圧指令vu*、vv*、vw*とキャリア信号Scとを比較することによってPWM信号を生成する。
指令生成部21は、微分部30と、減算部31、35、36と、速度制御部32と、電流指令生成部33と、座標変換部34、45と、d軸電流制御部37と、q軸電流制御部38と、非干渉制御部39と、加算部40、41、44と、振幅指令生成部42と、位相指令生成部43とを備える。
微分部30は、回転電機3の回転位置θ(電気角)を微分して回転電機3の回転速度ω(電気角速度)を求める。なお、回転電機3の回転位置θは、例えば、回転電機3に取り付けられた回転位置検出部4(例えば、エンコーダ)によって検出される。減算部31は、速度指令ω*から回転速度ωを減算する。速度指令ω*は、例えば、図示しない速度指令生成部によって生成される。速度制御部32は、例えば、速度指令ω*と回転速度ωとの偏差(速度偏差)がゼロになるようにトルク指令T*を生成する。
電流指令生成部33は、トルク指令T*に基づいてd軸電流指令id*およびq軸電流指令iq*を生成する。d軸電流指令id*は、d−q軸座標系におけるd軸成分であり、q軸電流指令iq*は、d−q軸座標系におけるq軸成分である。d−q軸座標系は、電力変換部10が出力する交流電圧の出力周波数に同期して回転する直交座標系である。d軸成分は、dq座標系において、回転電機3の磁束に平行な軸の成分であり、q軸成分は、dq座標系において、d軸に直交するq軸の成分である。
座標変換部34は、出力電流iu、iv、iwを固定座標上の直交した2軸のαβ成分へ変換して、αβ軸座標系の固定座標電流ベクトルiαβを求め、さらに、回転位置θを用いて、固定座標電流ベクトルiαβをd−q軸座標系のdq成分へ変換する。これにより、座標変換部34は、d軸方向の電流成分であるd軸電流idとq軸方向の電流成分であるq軸電流iqとを求める。
減算部35は、d軸電流指令id*からd軸電流idを減算し、減算部36は、q軸電流指令iq*からq軸電流iqを減算する。d軸電流制御部37は、例えば、d軸電流指令id*とd軸電流idとのd軸電流偏差Δidをゼロにするようにd軸電圧指令vd1*を生成する。q軸電流制御部38は、q軸電流指令iq*とq軸電流iqとのq軸電流偏差Δiqをゼロにするようにq軸電圧指令vq1*を生成する。
非干渉制御部39は、d軸とq軸間の干渉および誘起電圧を補償するものであり、d軸電流id、q軸電流iq、回転速度ωおよび誘起電圧定数φに基づき、d軸電圧補償値vdffおよびq軸電圧補償値vqffを生成して出力する。非干渉制御部39は、例えば、id×ωLd+ωφを演算してq軸電圧補償値vqffを求め、−iq×ωLqを演算してd軸電圧補償値vdffを求める。なお、Ldは回転電機3のd軸インダクタンス値、Lqは回転電機3のq軸インダクタンス値である。また、回転電機3に代えて電力系統などが電力変換部10に接続される場合、非干渉制御部39は設けなくてよい。
加算部40は、d軸電圧指令vd1*にd軸電圧補償値vdffを加算してd軸電圧指令vd*を生成し、加算部41は、q軸電圧指令vq1*にq軸電圧補償値vqffを加算してq軸電圧指令vq*を生成する。
振幅指令生成部42は、d軸電圧指令vd*とq軸電圧指令vq*とに基づき、振幅指令Mを求める。例えば、振幅指令生成部42は、下記式(1)の演算により振幅指令Mを求める。また、位相指令生成部43は、d軸電圧指令vd*とq軸電圧指令vq*とに基づき、出力位相指令θaを求める。例えば、位相指令生成部43は、下記式(2)の演算により出力位相指令θaを求める。加算部44は、位相指令生成部43から出力される出力位相指令θaに回転位置θを加算して位相θvを演算し、座標変換部45へ出力する。
M=√(vd*2+vq*2) ・・・(1)
θa=tan-1(vq*/vd*) ・・・(2)
M=√(vd*2+vq*2) ・・・(1)
θa=tan-1(vq*/vd*) ・・・(2)
座標変換部45は、振幅指令Mおよび位相θvに基づいて、出力電圧指令vu*、vv*、vw*を生成する。例えば、座標変換部45は、vu*=M×sin(θv)、vv*=M×sin(θv−2/3π)、vw*=M×sin(θv−4/3π)などの演算式を用いて、出力電圧指令vu*、vv*、vw*を生成することができる。
PWM制御部22は、PWM信号生成部80を備える。かかるPWM信号生成部80は、出力電圧指令vu*、vv*、vw*に基づき三角波比較法または空間ベクトル法によりPWM信号を生成して電力変換部10へ出力する。これにより、電力変換部10を構成する半導体スイッチング素子がオン/オフ制御され、出力電圧指令vu*、vv*、vw*に応じた3相交流電力が電力変換部10から回転電機3へ出力される。
周波数変更部23は、指令演算周期Ts(=1/fs)で繰り返しPWM制御のキャリア周波数fcを決定する。周波数変更部23は、例えば、キャリア信号Scの谷のタイミングで、PWM制御部22のキャリア周波数fcを変更する。
ゲイン設定部24は、制御対象のフィードバック制御を行うためのゲインをキャリア周波数fcに応じて調整する。指令生成部21は、ゲイン設定部24によって調整されたゲインで制御対象のフィードバック制御を行う。
ここで、周波数変更部23およびゲイン設定部24の構成例について説明する。図4は、周波数変更部23およびゲイン設定部24の構成例を示す図である。図4に示すように、出力部51は、減算部61、65(差分演算部の一例)と、絶対値演算部62、66と、比較部63、67(第1比較部の一例)と、比較部64、68(第2比較部の一例)と、論理和演算部69と、論理積演算部70と、乗算部71、72と、加算部73とを備える。
減算部61は、d軸電流指令id*からd軸電流idを減算して、d軸電流偏差Δidを求める。絶対値演算部62は、d軸電流偏差Δidの絶対値を演算する。比較部63は、d軸電流偏差Δidの絶対値が第1d軸閾値ΔUpd(第1の閾値の一例)以上である場合に、d軸キャリアアップ値Sudを出力する。比較部64は、d軸電流偏差Δidの絶対値が第2d軸閾値ΔDownd(第2の閾値の一例)以下である場合に、d軸キャリアダウン値Sddを出力する。
減算部65は、q軸電流指令iq*からq軸電流iqを減算して、q軸電流偏差Δiqを求める。絶対値演算部66は、q軸電流偏差Δiqの絶対値を演算する。比較部67は、q軸電流偏差Δiqの絶対値が第1q軸閾値ΔUpq(第1の閾値の一例)以上である場合に、q軸キャリアアップ値Suqを出力する。比較部68は、q軸電流偏差Δiqの絶対値が第2q軸閾値ΔDownq(第2の閾値の一例)以下である場合に、q軸キャリアダウン値Sdqを出力する。
論理和演算部69は、比較部63の比較結果と比較部67の比較結果との論理和を演算し、d軸キャリアアップ値Sudおよびq軸キャリアアップ値Suqの少なくとも一方が入力された場合に、キャリアアップ値Suを出力する。
乗算部71(第1乗算部の一例)は、キャリアアップ値Suに対してキャリアアップゲインKup(第1係数の一例)を乗算し、かかる乗算結果をキャリアアップ値Δupとして出力する。キャリアアップ値Δupは、キャリア周波数fcを上げるための制御値(第1の制御値の一例)であり、例えば、Su=1、Kup=−2の場合、Δup=−2である。
論理積演算部70は、比較部64の比較結果と比較部68の比較結果との論理積を演算し、d軸キャリアダウン値Sddとq軸キャリアダウン値Sdqとのいずれもが入力された場合に、キャリアダウン値Sdを出力する。
乗算部72(第2乗算部の一例)は、キャリアダウン値Sdに対してキャリアダウンゲインKdown(第2係数の一例)を乗算し、かかる乗算結果をキャリアダウン値Δdownとして出力する。キャリアダウン値Δdownは、キャリア周波数fcを下げるための制御値(第2の制御値の一例)であり、例えば、Sd=1、Kup=1の場合、Δdown=1の値である。
加算部73は、乗算部71の乗算結果と乗算部72の乗算結果とを加算し、かかる加算結果をキャリア変更値として積分部52へ出力する。したがって、出力部51は、例えば、d軸電流偏差Δidの絶対値が第1d軸閾値ΔUpd以上、または、q軸電流偏差Δiqの絶対値が第1q軸閾値ΔUpq以上である場合に、キャリアアップ値Δupをキャリア変更値として出力する。
また、出力部51は、例えば、d軸電流偏差Δidの絶対値が第2d軸閾値ΔDownd以下、かつ、q軸電流偏差Δiqの絶対値が第2q軸閾値ΔDownq以下である場合に、キャリアダウン値Δdownをキャリア変更値として出力する。一方、出力部51は、例えば、d軸電流偏差Δidの絶対値およびq軸電流偏差Δiqの絶対値が上述した状態ではない場合、キャリア変更値を出力せず、例えば、「0」の値を出力する。
積分部52は、指令演算周期Tsで繰り返し出力部51の出力を積分する。積分部52の積分結果である積分値Tcntは、リミッタ54を介して周波数決定部53に入力される。リミッタ54は、積分値Tcntを上限値Tmaxと下限値Tminとの間の範囲内に制限する。
例えば、リミッタ54は、積分値Tcntが上限値Tmaxを上回った場合、上限値Tmaxを積分値Tcntとして出力し、積分部52の積分値Tcntを上限値Tmaxに置き換える。また、リミッタ54は、積分値Tcntが下限値Tminを下回った場合、下限値Tminを積分値Tcntとして出力し、積分部52の積分値Tcntを下限値Tminに置き換える。
周波数決定部53は、積分値Tcntに基づいて、キャリア周波数fcを決定する。周波数決定部53は、例えば、下記式(3)の演算により、指令演算周波数fsを積分値Tcntで除算することによって、キャリア周波数fcを決定する。したがって、指令演算周波数fsは、キャリア周波数fcのTcnt倍の周波数である。なお、fs=fc×n(nは2以上の整数)であってもよい。
fc=fs/Tcnt ・・・(3)
fc=fs/Tcnt ・・・(3)
ここで、指令演算周波数fsを30kHzとし、上限値Tmaxを「10」とし、下限値Tminを「2」とし、周波数決定部53が上記式(3)の演算によりキャリア周波数fcを決定するものとする。この場合、キャリア周波数fcは、周波数決定部53によって、3kHzから15kHzの間に設定される。例えば、積分値Tcntが「6」である場合、周波数決定部53は、5kHzをキャリア周波数fcとして決定し、積分値Tcntが「2」である場合、周波数決定部53は、15kHzをキャリア周波数fcとして決定する。
周波数変更部23は、キャリア分割数レジスタ55と、キャリア周波数レジスタ56と、レジスタ設定部57とを備える。キャリア分割数レジスタ55は、リミッタ54から出力される積分値Tcntをキャリアカウンタ分割値Divとして記憶し、キャリア周波数レジスタ56は、キャリア周波数fcをキャリア周波数設定値Cfcとして記憶する。
レジスタ設定部57は、キャリア周波数レジスタ56に記憶されたキャリア周波数設定値Cfcに基づき、キャリアカウンタ設定値Ctc(=1/Cfc)を求め、キャリアカウンタレジスタ78にキャリアカウンタ設定値Ctcを設定する。PWM制御部22は、例えば、キャリア信号Scの谷のタイミングで、キャリアカウンタレジスタ78に記憶されたキャリアカウンタ設定値Ctcに基づいたキャリア周波数fcのキャリア信号Scを生成する。
また、レジスタ設定部57は、キャリア周波数レジスタ56に記憶されたキャリア周波数設定値Cfcをキャリア分割数レジスタ55に記憶されたキャリアカウンタ分割値Divで除算することによって、演算周期設定値Ctu(=Cfc/Div)を求める。レジスタ設定部57は、求めた演算周期設定値Ctuを演算周期カウンタレジスタ79に記憶する。
図5は、キャリア周期カウンタ、演算周期カウンタ、指令演算周期Ts(=1/fs)、電流偏差Δiおよび積分値Tcntの関係を示す図である。図5に示す例では、Sudq=1、Sddq=1、Kup=−2、Kdown=1、fs=30kHz、Tmax=10、Tmin=2とする。時刻t0において、Tcnt=Tmaxであり、このとき、fc=30k/10=3kHzであるものとする。以下においては、説明を容易にするため、電流偏差Δid、Δiqを電流偏差Δiとする。また、|Δid|≧|ΔUpd|かつ|Δiq|≧|ΔUpq|である場合に、Δi≧THi1であるとし、|Δid|≦ΔDownd、かつ、|Δiq|≦ΔDownqである場合に、Δi≦THi2であるとする。
PWM制御部22は、キャリアカウンタを有し、キャリアカウンタレジスタ78に記憶されたキャリアカウンタ設定値Ctcに応じたキャリア周波数fc(=3kHz)のキャリア信号Scを生成する。指令生成部21は、演算周期カウンタを有し、演算周期設定値Ctuに応じた指令演算周期Tsで、出力電流iu、iv、iwからd軸電流idおよびq軸電流iqを検出し、出力電圧指令vu*、vv*、vw*などの指令を演算する。指令生成部21は、例えば、演算周期カウンタ値Ssがゼロになるタイミングでd軸電流idおよびq軸電流iqの検出を開始する。
図5に示すように、時刻t0から電流偏差Δiが徐々に大きくなってキャリア周期Tc1内の時刻t6〜t9では閾値THi1以上になる。そのため、各時刻t6〜t9において、出力部51は、キャリアアップ値Δup(=−2)を繰り返し出力する。これにより、積分部52の積分値Tcntは、図5に示すように、10→8→6→4→2というように徐々に小さくなる。
周波数決定部53は、積分値Tcntに基づき、指令演算周期Tsで繰り返しキャリア周波数fcを決定する。周波数決定部53は、積分値Tcntが10→8→6→4→2と小さくなると、3kHz→3.75kHz→5kHz→7.5Kz→15kHzと高くなるようにキャリア周波数fcを決定する。周波数決定部53は、決定したキャリア周波数fcに応じたキャリアカウンタ設定値Ctcをキャリア周波数レジスタ56に設定する。PWM制御部22は、キャリア信号Scの谷のタイミングである時刻t10において、キャリアカウンタ設定値Ctcに基づいて、キャリア信号Scを15kHzのキャリア信号に切り替え、PWM制御を行う。
時刻t10においてキャリア信号Scを15kHzのキャリア信号に切り替えたあと、電流偏差Δiが徐々に小さくなるが、時刻t11〜t12において電流偏差Δiは閾値THi2以上であるため、積分値Tcntは下限値Tminのままである。したがって、周波数決定部53は、キャリア信号Scの谷のタイミングである時刻t13において、キャリア周波数fcを15kHzに維持する。
時刻t14〜t15において電流偏差Δiが第2閾値THi2以下になり、各時刻t14〜t15において、出力部51は、キャリアダウン値Δdown(=1)を繰り返し出力する。そのため、積分部52の積分値Tcntは、図5に示すように、2→3→4というように徐々に大きくなる。
周波数決定部53は、積分値Tcntが2→3→4と大きくなると、15kHz→7.5kHz→5kHzと低くなるようにキャリア周波数fcを決定する。周波数決定部53は、決定したキャリア周波数fcに応じたキャリアカウンタ設定値Ctcをキャリア周波数レジスタ56に設定する。PWM制御部22は、キャリア信号Scの谷のタイミングである時刻t16において、キャリアカウンタ設定値Ctcに基づいて、キャリア信号Scを5kHzのキャリア信号に切り替え、PWM制御を行う。
以降、同様に、周波数決定部53は、積分値Tcntに基づいてキャリア周波数fcを決定することで、電流偏差Δiが小さくなるようにキャリア周波数fcが設定される。これにより、電流偏差Δiが大きいほどPWM制御のキャリア周期Tcを短くできることから、制御応答性を高めることができる。しかも、積分値Tcntを用いてキャリア周波数fcを決定することから、ノイズなどによって検出誤差や推定誤差が生じた場合でも、キャリア周波数fcの調整を精度よく行うことができる。また、キャリア周期Tcに対して演算周期Tsが短くなるほど、ノイズなどの影響をより抑えることができる。
なお、キャリアアップゲインKupおよびキャリアダウンゲインKdownは、図示しない入力部から設定可能なパラメータであり、かかるパラメータを調整することによって、電力変換装置1の設置環境に応じて、制御応答性を精度よく高めることができる。上述した例では、キャリアアップゲインKupの大きさをキャリアダウンゲインKdownの大きさよりも大きくしており、これにより、キャリア周波数fcをより迅速に高くすることができる。
図4に戻ってゲイン設定部24について説明する。ゲイン設定部24は、遅延部82と、変化検出部83と、制御ゲイン設定部84とを備える。遅延部82は、キャリアカウンタレジスタ78に設定されたキャリアカウンタ設定値Ctcを遅延させて出力する。変化検出部83は、キャリアカウンタレジスタ78に設定されたキャリアカウンタ設定値Ctcと遅延部82から出力されるキャリアカウンタ設定値Ctcとが異なる場合に、キャリアカウンタ設定値Ctcが変化したと判定する。
制御ゲイン設定部84は、キャリアカウンタ設定値Ctcが変化したと変化検出部83が判定した場合、周波数決定部53が決定したキャリア周波数fcに応じた電流制御ゲインおよび速度制御ゲインを選択する。制御ゲイン設定部84は、選択した電流制御ゲインをd軸電流制御部37およびq軸電流制御部38に設定し、選択した速度制御ゲインを速度制御部32に設定する。これにより、例えば、キャリア周波数fcが高くなるほど電流制御ゲインや速度制御ゲインが高くなるように設定される。
制御ゲイン設定部84は、例えば、キャリア周波数fcと電流制御ゲインおよび速度制御ゲインとを関連付けた制御ゲイン設定テーブルを有している。制御ゲイン設定部84は、かかる制御ゲイン設定テーブルに基づいて、キャリア周波数fcに応じた電流制御ゲインおよび速度制御ゲインを選択することができる。
このように、制御部20は、周波数変更部23によってPWM制御部22のキャリア周波数fcが変更された場合、キャリア周波数fcに応じた制御ゲインを指令生成部21に設定するゲイン設定部24を備える。そのため、キャリア周波数fcに応じて適切に制御応答性を高めることができる。
図2に戻って推定部25および規制部26について説明する。推定部25は、例えば、単位時間当たりに電力変換部10にかかる負荷を推定する。推定部25は、例えば、電力変換部10の出力電流とキャリア周波数fcとに基づいて電力変換部10にかかる負荷を推定する。電力変換部10にかかる負荷は、例えば、電力変換部10を構成するスイッチング素子で消費する電力である。なお、推定部25は、電流検出部11の検出結果に基づいて電力変換部10の出力電流を判定したり、トルク指令T*やq軸電流指令iq*に基づいて電力変換部10の出力電流を判定したりすることができる。
規制部26は、電力変換部10にかかる負荷の大きさに基づいて、周波数変更部23によるキャリア周波数fcの変更を規制する。電力変換部10にかかる負荷は、上述のように、推定部25によって判定され、規制部26は、推定部25による判定結果に基づいて、周波数変更部23によるキャリア周波数fcの変更を規制する。
規制部26は、例えば、所定期間内において電力変換部10にかかる負荷の合計が第1制限値(所定値の一例)以上である場合、周波数変更部23の動作を停止することにより、周波数変更部23によるキャリア周波数fcの変更を規制することができる。なお、上述した制限値は、例えば、電力変換部10が故障しない値などに設定される。
また、規制部26は、例えば、電力変換部10にかかる負荷の大きさに応じて、周波数変更部23によるキャリア周波数fcの変更範囲を制限することもできる。規制部26は、例えば、所定期間内において電力変換部10にかかる負荷が第1制限値よりも小さい第2制限値以上である場合、キャリア周波数fcを所定値(例えば、キャリア周波数fcの上限値の1/2)以下に低くすることができる。これにより、電力変換部10にかかる負荷を抑えることができる。
図6は、図1Aに示す電力変換装置1の他の構成例を示す図である。なお、図6は、制御偏差Δcontを出力電流の制御偏差および回転位置の制御偏差とした場合の一例を示す。図6に示す電力変換装置1は、エンコーダレスの電力変換装置である。また、図6に示す回転電機3は、例えば、磁気突極性を有する回転電機であり、埋込構造永久磁石同期電動機(Interior Permanent Magnet Synchronous Motor)や、同期リラクタンス電動機などである。
図6に示す電力変換装置1の制御部20は、磁束軸(d軸)と磁束軸に直交する軸(q軸)のインダクタンス値の差(磁気突極性)を利用して、回転電機3の回転子の磁極位置(電気角)を推定することができる。かかる制御部20は、高周波発生部90と、加算部91と、バンドパスフィルタ(BPF)92と、45度座標変換部93と、速度・磁極位置推定部94と、ノッチフィルタ95とを備える。なお、図2に示す制御部20と同様の機能を有する構成要素については同一符号を付しており説明を省略する。
高周波発生部90は、出力電圧の周波数ωよりも高い周波数ωinjの高周波電圧信号vinjを生成して出力する。加算部91は、高周波発生部90が出力した高周波電圧信号vinjをd軸電圧指令vd*に加算して出力する。d軸電圧指令vd*は、制御上の磁束軸であるγ軸(仮想d軸)の電圧指令であり、かかるd軸電圧指令vd*に高周波電圧信号vinjが重畳され、これにより、回転電機3に高周波電流成分が流れる。
バンドパスフィルタ92は、d軸電流idおよびq軸電流iqから周波数ωinjの帯域の成分を抽出することにより、回転電機3に流れる高周波電流成分を抽出し、d軸電流idbpfおよびq軸電流iqbpfとして出力する。45度座標変換部93は、d軸電流idbpfおよびq軸電流iqbpfを、d−q軸座標系を45度回転させたdm−qm軸座標系へ変換して、d軸電流idmおよびq軸電流iqmとして出力する。
速度・磁極位置推定部94は、回転位置(電気角)の推定偏差(以下、推定位置偏差Δθ^と記載する)、回転速度ωの推定値(以下、推定速度ω^と記載する)、回転位置(磁極位置)の推定値(以下、推定位置θ^と記載する)を指令演算周期Tsで繰り返し求める。
速度・磁極位置推定部94は、d軸電流idmの振幅とq軸電流iqmの振幅とが一致するように推定速度ω^および推定位置θ^を調整することで、推定速度ω^および推定位置θ^を求める。例えば、速度・磁極位置推定部94は、d軸電流idmの振幅とq軸電流iqmの振幅を求め、d軸電流idmの振幅とq軸電流iqmの振幅との偏差をPI制御器によってPI(比例積分)制御を行い、PI制御器の出力がゼロになるような推定速度ω^を求める。また、速度・磁極位置推定部94は、推定速度ω^を積分して、推定位置θ^を求める。
また、速度・磁極位置推定部94は、d軸電流idmの振幅I1とq軸電流iqmの振幅I2との差ΔI(=(I1−I2)/2)から、例えば、下記式(4)の演算を行うことにより推定位置偏差Δθ^を求めることができる。なお、下記式(4)において、Ldは回転電機3のd軸インダクタンス値、Lqは回転電機3のq軸インダクタンス値、Vinjは高周波電圧信号vinjの振幅である。
Δθ^=√2×(ωinj/Vinj)×Ld×Lq/(Lq−Ld)×ΔI・・・(4)
Δθ^=√2×(ωinj/Vinj)×Ld×Lq/(Lq−Ld)×ΔI・・・(4)
なお、速度・磁極位置推定部94は、例えば、誘起電圧オブザーバなどによって、推定位置偏差Δθ^、推定速度ω^および推定位置θ^を求めることもできる。この場合、高周波発生部90と、加算部91、バンドパスフィルタ92および45度座標変換部93は設けなくてもよい。なお、速度指令ω*と推定速度ω^との偏差を推定位置偏差Δθ^として求める速度偏差演算部を設けることもできる。
ノッチフィルタ95は、座標変換部34によって変換されたd軸電流idおよびq軸電流iqからら周波数ωinjの帯域の成分を除去し、減算部35、36や出力部51へ出力する。周波数変更部23は、d軸電流指令id*、q軸電流指令iq*、d軸電流id、q軸電流iqおよび推定位置偏差Δθ^に基づいて、キャリア周波数fcを決定する。図7は、図6に示す周波数変更部23およびゲイン設定部24の構成例を示す図である。
図7に示す周波数変更部23は、制御偏差として電流偏差に加えて推定位置偏差Δθ^も考慮してキャリア周波数fcを変更する点で、図4に示す周波数変更部23と異なる。図4に示す周波数変更部23と同様の機能を有する構成要素については同一符号を付しており説明を省略する。
図7に示す周波数変更部23は、比較部74(第1比較部の一例)と、比較部75(第2比較部の一例)とを備える。比較部74は、推定位置偏差Δθ^が第1位置閾値ΔUpθ以上である場合に、キャリアアップ値Suθを出力する。比較部75は、推定位置偏差Δθ^が第2位置閾値ΔDownθ以下である場合に、キャリアダウン値Sdθを出力する。
論理和演算部69は、比較部63の比較結果と比較部67の比較結果と比較部74の比較結果の論理和を演算する。論理和演算部69は、d軸キャリアアップ値Sud、q軸キャリアアップ値Suqおよびキャリアアップ値Suθの少なくとも一方が入力された場合に、キャリアアップ値Suを出力する。乗算部71は、キャリアアップ値Suに対してキャリアアップゲインKupを乗算し、かかる乗算結果をキャリアアップ値Δupとして出力する。
論理積演算部70は、比較部64の比較結果と比較部68の比較結果と比較部75の比較結果の論理積を演算する。論理積演算部70は、d軸キャリアダウン値Sdd、q軸キャリアダウン値Sdqおよびキャリアアップ値Suθのいずれもが入力された場合に、キャリアダウン値Sdを出力する。乗算部72は、キャリアダウン値Sdに対してキャリアダウンゲインKdownを乗算し、かかる乗算結果をキャリアダウン値Δdownとして出力する。
このように、電流偏差Δiおよび推定位置偏差Δθ^に基づき、キャリア周波数fcを変更することができる。電流偏差Δiに加え、推定位置偏差Δθ^が大きくなるほどキャリア周期Tcを短くできることから、制御応答性をより高めることができる。しかも、積分値Tcntを用いてキャリア周波数fcを決定することから、ノイズなどによって検出誤差が生じた場合でも、キャリア周波数fcの調整を精度よく行うことができる。
なお、図2〜7に示す例では、制御偏差として、電流偏差Δiおよび推定位置偏差Δθ^を例に挙げて説明したが、制御偏差は、出力電圧の制御偏差でもよく、また、回転速度の制御偏差であってもよい。回転速度の制御偏差の場合、例えば、周波数変更部23は、図2に示す回転速度ωと速度指令ω*との偏差(速度偏差)に基づき、キャリア周波数fcを決定することができる。このように、周波数変更部23は、電流偏差、電圧偏差、位置偏差(位相偏差)、および、速度偏差のうち1以上の制御偏差によってキャリア周波数fcを決定することができる。
上述した制御部20は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、入出力ポートなどを有するマイクロコンピュータや各種の回路を含む。マイクロコンピュータのCPUは、ROMに記憶されたプログラムを読み出して実行することにより、指令生成部21、PWM制御部22、周波数変更部23、ゲイン設定部24、推定部25および規制部26として機能する。
また、指令生成部21、PWM制御部22、周波数変更部23、ゲイン設定部24、推定部25および規制部26の少なくともいずれかまたは全部をASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等のハードウェアで構成することもできる。
図8は、制御部20の制御処理の流れの一例を示すフローチャートである。制御部20は、図8に示す制御処理を繰り返し実行する。ステップS10〜S13は、例えば、周波数変更部23の処理であり、ステップS14、S15は、例えば、PWM制御部22の処理であり、ステップS16は、例えば、ゲイン設定部24の処理である。
図8に示すように、周波数変更部23の出力部51は、制御偏差Δcontを検出し(ステップS10)、かかる制御偏差Δcontに応じた制御値を生成する(ステップS11)。制御偏差Δcontは、例えば、電流偏差、位置偏差(位相偏差)、速度偏差などである。また、制御偏差は、検出値に基づくものでもよく、推定値であってもよい。
周波数変更部23の積分部52は、例えば、出力部51から出力される制御値を積算することにより、出力部51の出力を積分する(ステップS12)。周波数変更部23の周波数決定部53は、例えば、積分部52の積分値Tcntに応じたキャリア周波数fcを決定する(ステップS13)。
PWM制御部22は、キャリア周波数fcの変更タイミングであるか否かを判定する(ステップS14)。例えば、PWM制御部22は、キャリア信号Scの谷のタイミングになった場合に、キャリア周波数fcの変更タイミングであると判定する。
PWM制御部22は、キャリア周波数fcの変更タイミングである場合(ステップS14;Yes)、ステップS13で周波数決定部53が決定した最新のキャリア周波数fcをキャリア信号Scのキャリア周波数fcとして更新する(ステップS15)。なお、ステップS14、S15の処理は、PWM制御部22が周波数変更部として機能することによって行われるが、周波数変更部23がステップS14、S15の処理を実行することもきる。
キャリア周波数fcが更新された場合、ゲイン設定部24は、制御ゲインを更新する(ステップS16)。かかる処理において、ゲイン設定部24は、ステップS15で更新されたキャリア周波数fcに応じた制御ゲインとして、電流制御ゲインおよび速度制御ゲインを決定する。ゲイン設定部24は、決定した電流制御ゲインをd軸電流制御部37およびq軸電流制御部38に設定し、決定した速度制御ゲインを速度制御部32に設定する。
一方、キャリア周波数fcの変更タイミングではない場合(ステップS14;No)、周波数変更部23は、ステップS10〜S13の処理を行う。なお、ステップS10〜S13の処理は、指令演算周期Tsで繰り返し実行される処理である。
上述した実施形態では、一つの指令演算周期Tsでキャリアアップ値Δupまたはキャリアダウン値Δdownが生成されるが、キャリアアップ値Δupおよびキャリアダウン値Δdownは、一つに限られず、多段階であってもよい。例えば、出力部51は、制御偏差Δcontが閾値TH1以上である場合、制御偏差Δcontが大きいほどキャリアアップ値Δupを正側(または負側)に大きくすることができる。また、出力部51は、制御偏差Δcontが閾値TH2以下である場合、制御偏差Δcontが小さいほどキャリアアップ値Δupを負側(または正側)に大きくすることができる。
また、上述した実施形態では、指令演算周波数fsがキャリア周波数fcのTcnt倍の周波数である例を説明した。しかし、指令演算周波数fsはキャリア周波数fcよりも高い周波数であればよく、これにより、ノイズなどによって検出誤差が生じた場合でも、キャリア周波数fcの調整を精度よく行うことができる。
また、上述した実施形態では、出力電圧が3相交流電圧である例を説明したが、出力電圧は3相交流電圧に限定されない。例えば、出力電圧は単相交流電圧であってもよい。
また、上述した実施形態では、キャリア信号Scの山でPWM制御部22のキャリア周波数fcを変更する例を説明したが、PWM制御部22や周波数変更部23は、キャリア信号Scの谷でPWM制御部22のキャリア周波数fcを変更することもできる。また、PWM制御部22や周波数変更部23は、キャリア信号Scの山と谷とでPWM制御部22のキャリア周波数fcを変更することもできる。また、PWM制御部22や周波数変更部23は、キャリア信号Scの山と谷とをカウントタイミングとし、m回(mは3以上の整数)のカウント毎にPWM制御部22のキャリア周波数fcを変更することもできる。
また、上述した実施形態では、d軸電流偏差Δidとq軸電流偏差Δiqとをそれぞれ、第1および第2の閾値と比較する例を説明したが、比較対象はかかる例に限定されない。例えば、出力部51は、d軸電流偏差Δidとq軸電流偏差Δiqとの二乗平均平方根を算出し、かかる算出結果と第1および第2の閾値とを比較することもできる。また、q軸電流偏差Δiqを第1および第2の閾値と比較することもできる。
また、上述した実施形態では、キャリアアップ値Δupを負値とし、キャリアダウン値ΔDownを正値としたが、キャリアアップ値Δupを正値とし、キャリアダウン値ΔDownを負値とすることもできる。この場合、周波数決定部53は、例えば、fc=fs/−Tcntの演算式によりキャリア周波数fcを決定することができる。この場合、上限値Tmaxおよび下限値Tminは負値であり、Tmax<Tminである。
さらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の特許請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。
1 電力変換装置
2 電源
3 回転電機
4 回転位置検出部
10 電力変換部
11 電流検出部
20 制御部
21 指令生成部
22 PWM制御部
23 周波数変更部
24 ゲイン設定部
25 推定部
26 規制部
51 出力部
52 積分部
53 周波数決定部
54 リミッタ
63、64、67、68、74、75 比較部
71、72 乗算部
73 加算部
80 PWM信号生成部
2 電源
3 回転電機
4 回転位置検出部
10 電力変換部
11 電流検出部
20 制御部
21 指令生成部
22 PWM制御部
23 周波数変更部
24 ゲイン設定部
25 推定部
26 規制部
51 出力部
52 積分部
53 周波数決定部
54 リミッタ
63、64、67、68、74、75 比較部
71、72 乗算部
73 加算部
80 PWM信号生成部
Claims (16)
- 複数のスイッチング素子を有する電力変換部と、
前記複数のスイッチング素子をPWM制御するPWM制御部と、
前記PWM制御のキャリア周波数を変更する周波数変更部と、を備え、
前記周波数変更部は、
制御対象に対する制御偏差に応じた制御値を出力する出力部と、
前記出力部から出力される前記制御値を積分する積分部と、
前記積分部の積分値に基づいて、前記キャリア周波数を決定する周波数決定部と、を備える
ことを特徴とする電力変換装置。 - 前記出力部は、
前記制御対象に対する制御偏差が第1の閾値以上である場合に、前記キャリア周波数を上げるための第1の制御値を出力し、前記制御偏差が第2の閾値以下である場合に、前記キャリア周波数を下げるための第2の制御値を出力する
ことを特徴とする請求項1に記載の電力変換装置。 - 前記制御偏差に基づいて制御指令を演算する指令生成部を備え、
前記PWM制御部は、
前記制御指令に基づいてPWM信号を生成するPWM信号生成部を備える
ことを特徴とする請求項1または2に記載の電力変換装置。 - 前記指令生成部の演算周波数は、前記キャリア周波数よりも高く、
前記出力部は、
前記指令生成部の演算周期毎に、前記制御偏差に応じた制御値を出力する
ことを特徴とする請求項3に記載の電力変換装置。 - 前記演算周波数は、前記キャリア周波数のn倍(nは2以上の正数)であり、
前記周波数決定部は、
前記演算周波数を前記積分部の積分結果で除算することにより求めた周波数を前記キャリア周波数として決定する
ことを特徴とする請求項4に記載の電力変換装置。 - 前記PWM制御の前記キャリア周波数が変更された場合、前記キャリア周波数に応じた制御ゲインを前記指令生成部に設定するゲイン設定部を備える
ことを特徴とする請求項3〜5のいずれか1つに記載の電力変換装置。 - 前記電力変換部の出力電流を検出する電流検出部を備え、
前記制御偏差は、出力電流指令と前記電流検出部の検出結果との偏差を含む
ことを特徴とする請求項3〜6のいずれか1つに記載の電力変換装置。 - 前記制御対象には、前記電力変換部の出力電力によって制御される回転電機の回転位置が含まれ、
前記制御偏差は、前記回転位置の制御偏差を含む
ことを特徴とする請求項3〜7のいずれか1つに記載の電力変換装置。 - 前記制御対象には、前記電力変換部の出力電力によって制御される回転電機の回転速度が含まれ、
前記制御偏差は、前記回転速度の制御偏差を含む
ことを特徴とする請求項3〜8のいずれか1つに記載の電力変換装置。 - 前記出力部は、
前記制御偏差を演算する差分演算部と、
前記制御偏差と前記第1の閾値とを比較する第1比較部と、
前記制御偏差と前記第2の閾値とを比較する第2比較部と、
前記第1比較部の出力に第1係数を乗算する第1乗算部と、
前記第2比較部の出力に第2係数を乗算する第2乗算部と、
前記第1乗算部の出力と前記第2乗算部の出力とを加算する加算部と、を備える
ことを特徴とする請求項2に記載の電力変換装置。 - 前記積分部の積分値が上限値よりも高い場合に上限値を出力し、前記積分部の積分値が下限値よりも低い場合に下限値を出力するリミッタを備え、
前記周波数変更部は、前記リミッタの出力に基づいて、前記キャリア周波数を変更する ことを特徴とする請求項1〜10のいずれか1つに記載の電力変換装置。 - 前記電力変換部にかかる負荷に基づいて、前記周波数変更部による前記キャリア周波数の変更を規制する規制部を備える
ことを特徴とする請求項1〜11のいずれか1つに記載の電力変換装置。 - 前記規制部は、
所定期間内における前記電力変換部にかかる負荷の合計が所定値を超えた場合に、前記周波数変更部による前記キャリア周波数の変更を規制する
ことを特徴とする請求項12に記載の電力変換装置。 - 前記電力変換部の出力電流と前記キャリア周波数とに基づいて前記電力変換部にかかる前記負荷を推定する推定部を備え、
前記規制部は、
前記推定部によって推定された前記負荷に基づいて、前記周波数変更部による前記キャリア周波数の変更を規制する
ことを特徴とする請求項12または13に記載の電力変換装置。 - PWM制御のキャリア周波数を変更する制御装置であって、
制御対象に対する制御偏差に応じた制御値を出力する出力部と、
前記出力部から出力される前記制御値を積分する積分部と、
前記積分部の積分値に基づいて、前記キャリア周波数を決定する周波数決定部と、を備える
ことを特徴とする制御装置。 - PWM制御のキャリア周波数を変更する方法であって、
制御対象に対する制御偏差に応じた制御値を生成し、
前記生成された前記制御値を積分し、
前記積分の結果に基づいて、前記キャリア周波数を決定する
ことを特徴とするキャリア周波数の変更方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014259736A JP2016119822A (ja) | 2014-12-24 | 2014-12-24 | 電力変換装置、制御装置およびキャリア周波数の変更方法 |
CN201510767707.XA CN105743414B (zh) | 2014-12-24 | 2015-11-11 | 电力转换装置、控制装置及载波频率的改变方法 |
EP15200018.8A EP3038250A1 (en) | 2014-12-24 | 2015-12-15 | Power convertor, controller, and method for changing carrier frequency |
US14/757,846 US9755562B2 (en) | 2014-12-24 | 2015-12-24 | Power convertor, controller, and method for changing carrier frequency |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014259736A JP2016119822A (ja) | 2014-12-24 | 2014-12-24 | 電力変換装置、制御装置およびキャリア周波数の変更方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016119822A true JP2016119822A (ja) | 2016-06-30 |
Family
ID=54849883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014259736A Pending JP2016119822A (ja) | 2014-12-24 | 2014-12-24 | 電力変換装置、制御装置およびキャリア周波数の変更方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9755562B2 (ja) |
EP (1) | EP3038250A1 (ja) |
JP (1) | JP2016119822A (ja) |
CN (1) | CN105743414B (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018055671A1 (ja) * | 2016-09-20 | 2018-03-29 | 三菱電機株式会社 | インバータ装置、圧縮機駆動装置及び空気調和機 |
WO2020225860A1 (ja) * | 2019-05-07 | 2020-11-12 | 三菱電機株式会社 | ヒートポンプ装置、ヒートポンプシステム、空気調和機および冷凍機 |
JPWO2019188876A1 (ja) * | 2018-03-29 | 2021-03-25 | パナソニックIpマネジメント株式会社 | 電力変換システム、電圧変換回路の制御方法 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6331925B2 (ja) * | 2014-09-25 | 2018-05-30 | 株式会社安川電機 | マトリクスコンバータ、発電システムおよび電力変換方法 |
JP2018046712A (ja) * | 2016-09-16 | 2018-03-22 | 株式会社ジェイテクト | モータ制御装置 |
JP2018148772A (ja) * | 2017-03-09 | 2018-09-20 | アイシン精機株式会社 | ポンプ制御装置 |
JP6905669B2 (ja) * | 2017-08-29 | 2021-07-21 | 株式会社ジェイテクト | モータ制御装置 |
CN107465700A (zh) * | 2017-09-26 | 2017-12-12 | 江苏和升智能科技有限公司 | 一种基于传输矩阵的电力线载波传输路由技术 |
CN107612402B (zh) * | 2017-09-27 | 2019-02-19 | 奥克斯空调股份有限公司 | 功率变换电路谐振抑制方法及装置 |
JP6695405B1 (ja) * | 2018-11-21 | 2020-05-20 | 三菱電機株式会社 | 電力変換装置 |
CN111435823B (zh) * | 2018-12-25 | 2022-05-31 | 沈阳新松机器人自动化股份有限公司 | 一种电机的控制方法及控制系统 |
WO2020152830A1 (ja) * | 2019-01-24 | 2020-07-30 | 三菱電機株式会社 | 太陽光発電駆動システムおよび太陽光発電駆動システムの制御方法 |
JP7225986B2 (ja) * | 2019-03-20 | 2023-02-21 | Tdk株式会社 | 送電装置およびワイヤレス電力伝送システム |
EP4044421A4 (en) * | 2019-11-05 | 2023-11-01 | Kabushiki Kaisha Yaskawa Denki | POWER CONVERTER, POWER CONVERSION METHOD AND SYSTEM |
JP6819769B1 (ja) * | 2019-12-27 | 2021-01-27 | 株式会社安川電機 | 電力変換装置、電力変換方法及びプログラム |
CN114050605B (zh) * | 2021-11-18 | 2023-08-15 | 山东大学 | 一种基于本地电网相位的变频脉宽调制同步系统及方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001037248A (ja) | 1999-07-23 | 2001-02-09 | Meidensha Corp | インバータ装置 |
JP4988329B2 (ja) * | 2006-12-28 | 2012-08-01 | 株式会社日立産機システム | 永久磁石モータのビートレス制御装置 |
GB0717958D0 (en) * | 2007-09-14 | 2007-10-24 | Motorola Inc | Power supply controller circuitry |
CN102349230B (zh) * | 2009-03-11 | 2014-07-16 | 三菱电机株式会社 | 交流旋转电机的控制装置 |
JP2010221856A (ja) * | 2009-03-24 | 2010-10-07 | Hitachi Automotive Systems Ltd | 操舵制御装置 |
JP5549384B2 (ja) * | 2010-06-03 | 2014-07-16 | 日産自動車株式会社 | 電動機の制御装置および電動機制御システム |
-
2014
- 2014-12-24 JP JP2014259736A patent/JP2016119822A/ja active Pending
-
2015
- 2015-11-11 CN CN201510767707.XA patent/CN105743414B/zh active Active
- 2015-12-15 EP EP15200018.8A patent/EP3038250A1/en not_active Withdrawn
- 2015-12-24 US US14/757,846 patent/US9755562B2/en active Active
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018055671A1 (ja) * | 2016-09-20 | 2018-03-29 | 三菱電機株式会社 | インバータ装置、圧縮機駆動装置及び空気調和機 |
JPWO2019188876A1 (ja) * | 2018-03-29 | 2021-03-25 | パナソニックIpマネジメント株式会社 | 電力変換システム、電圧変換回路の制御方法 |
WO2020225860A1 (ja) * | 2019-05-07 | 2020-11-12 | 三菱電機株式会社 | ヒートポンプ装置、ヒートポンプシステム、空気調和機および冷凍機 |
JPWO2020225860A1 (ja) * | 2019-05-07 | 2021-12-09 | 三菱電機株式会社 | ヒートポンプ装置、ヒートポンプシステム、空気調和機および冷凍機 |
US20220136753A1 (en) * | 2019-05-07 | 2022-05-05 | Mitsubishi Electric Corporation | Heat pump device, heat pump system, air conditioner, and refrigeration machine |
JP7175389B2 (ja) | 2019-05-07 | 2022-11-18 | 三菱電機株式会社 | ヒートポンプ装置、ヒートポンプシステム、空気調和機および冷凍機 |
Also Published As
Publication number | Publication date |
---|---|
US9755562B2 (en) | 2017-09-05 |
US20160190970A1 (en) | 2016-06-30 |
EP3038250A1 (en) | 2016-06-29 |
CN105743414A (zh) | 2016-07-06 |
CN105743414B (zh) | 2018-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9755562B2 (en) | Power convertor, controller, and method for changing carrier frequency | |
JP4988329B2 (ja) | 永久磁石モータのビートレス制御装置 | |
JP5549384B2 (ja) | 電動機の制御装置および電動機制御システム | |
US9112436B2 (en) | System for controlling controlled variable of rotary machine | |
JP5794274B2 (ja) | マトリクスコンバータ | |
US9166513B2 (en) | Inverter apparatus, method of controlling inverter apparatus, and electric motor drive system | |
JP6269355B2 (ja) | マトリクスコンバータ、発電システムおよび力率制御方法 | |
US11218107B2 (en) | Control device for power converter | |
CA3042156C (en) | Method of controlling motor and device of controlling motor | |
US20160352269A1 (en) | Apparatus for controlling rotary electric machine | |
JP2014180148A (ja) | モータ制御装置 | |
JP6287715B2 (ja) | 回転機の制御装置 | |
JP2013150498A (ja) | 同期電動機の制御装置及び制御方法 | |
JP2012138982A (ja) | モータ制御装置及び電気機器 | |
JP2011234452A (ja) | 同期電動機の制御装置 | |
JP2011217575A (ja) | 電力変換装置 | |
JP2014239583A (ja) | 永久磁石式同期モータ用制御装置 | |
Zhang et al. | Research on a sensorless SVM-DTC strategy for induction motors based on modified stator model | |
JP7073799B2 (ja) | モータ制御方法、及び、モータ制御装置 | |
JP6680104B2 (ja) | モータの制御装置、及び、制御方法 | |
JP5640452B2 (ja) | 電力変換器の制御装置 | |
JP2009022085A (ja) | モータ制御装置とその制御方法 | |
CA3028337A1 (en) | Motor control device and control method | |
JP2010063311A (ja) | 回転機の制御装置 | |
JP4446688B2 (ja) | 多相電流供給回路及びその制御方法 |