[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2016113946A - Control device for vehicle - Google Patents

Control device for vehicle Download PDF

Info

Publication number
JP2016113946A
JP2016113946A JP2014252563A JP2014252563A JP2016113946A JP 2016113946 A JP2016113946 A JP 2016113946A JP 2014252563 A JP2014252563 A JP 2014252563A JP 2014252563 A JP2014252563 A JP 2014252563A JP 2016113946 A JP2016113946 A JP 2016113946A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
catalyst
compression ratio
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014252563A
Other languages
Japanese (ja)
Other versions
JP6428228B2 (en
Inventor
隆幸 須井
Takayuki Sui
隆幸 須井
英雄 三橋
Hideo Mihashi
英雄 三橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2014252563A priority Critical patent/JP6428228B2/en
Publication of JP2016113946A publication Critical patent/JP2016113946A/en
Application granted granted Critical
Publication of JP6428228B2 publication Critical patent/JP6428228B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To promptly raise an exhaust temperature to early raise a temperature of a catalyst for activation during catalyst warming-up and thus suppress deterioration of exhaust emission.SOLUTION: A control device for a vehicle includes: a spark ignition type internal combustion engine; a variable compression ratio mechanism that can change an engine compression ratio; and a catalyst provided in an exhaust passage to purify exhaust gas. During catalyst warming-up in which the temperature of the catalyst is lower than an activating temperature, such as at cold start or at restart of the engine after idle stop, an operation is performed in a catalyst warming-up mode in which an engine compression ratio is lowered while ignition timing is retarded.SELECTED DRAWING: Figure 3

Description

本発明は、機関圧縮比を変更可能な火花点火式内燃機関を備えた車両の制御装置に関し、特に、排気通路に設けられた触媒の暖機時の制御に関する。   The present invention relates to a control device for a vehicle including a spark ignition type internal combustion engine capable of changing an engine compression ratio, and more particularly to control during warm-up of a catalyst provided in an exhaust passage.

特許文献1には、内燃機関の冷間始動時に触媒を早期に昇温して活性化する技術として、火花点火式内燃機関の機関圧縮比を変更可能な可変圧縮比機構を備え、冷間始動時に機関圧縮比を低くすることにより膨張比を低くして、筒内から排出される排気ガス温度の低下を抑制する技術が記載されている。   Patent Document 1 includes a variable compression ratio mechanism capable of changing the engine compression ratio of a spark ignition type internal combustion engine as a technique for quickly raising the temperature of the catalyst and activating it when the internal combustion engine is cold started. A technique is described in which an expansion ratio is lowered by lowering an engine compression ratio sometimes to suppress a decrease in the temperature of exhaust gas discharged from the cylinder.

国際公開第09/091077号パンフレットWO09 / 091077 pamphlet

しかしながら、触媒暖機の際に単に機関圧縮比を低下させるだけでは、筒内の温度がある程度上昇するものの、排気通路に設けられた触媒を速やかに昇温するには十分と言えず、更なる改善が望まれていた。   However, simply lowering the engine compression ratio during catalyst warm-up raises the temperature in the cylinder to some extent, but it cannot be said that it is sufficient to quickly raise the temperature of the catalyst provided in the exhaust passage. Improvement was desired.

本発明は、このような事情に鑑みてなされたものであり、触媒を速やかに昇温することで、排気エミッションの悪化を抑制することができる新規な車両の制御装置を提供することを目的としている。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a novel vehicle control device that can suppress deterioration of exhaust emission by quickly raising the temperature of a catalyst. Yes.

そこで本発明は、火花点火式内燃機関と、この火花点火式内燃機関の機関圧縮比を変更可能な可変圧縮比手段と、上記火花点火式内燃機関の排気通路に設けられ、排気ガスを浄化する触媒と、を備えた車両の制御装置において、上記触媒の温度が活性温度よりも低い触媒暖機時に、点火時期を遅角しつつ、機関圧縮比を低くした触媒暖機モードで運転を行なうことを特徴としている。   Accordingly, the present invention provides a spark ignition type internal combustion engine, variable compression ratio means capable of changing the engine compression ratio of the spark ignition type internal combustion engine, and an exhaust passage of the spark ignition type internal combustion engine for purifying exhaust gas. In a vehicle control device equipped with a catalyst, when the catalyst temperature is lower than the activation temperature, operation is performed in a catalyst warm-up mode in which the engine compression ratio is lowered while retarding the ignition timing. It is characterized by.

本発明によれば、触媒暖機時に、機関圧縮比を低くすることにより膨張比を低くして排気温度の上昇を抑えることができるとともに、低圧縮比化によって燃焼安定性を確保しつつ点火時期を大きく遅角させることが可能となり、この点火時期の遅角により排気温度を更に迅速に上昇させることができる。   According to the present invention, when the catalyst is warmed up, it is possible to reduce the expansion ratio by lowering the engine compression ratio to suppress the rise in the exhaust temperature, and to reduce the ignition timing while ensuring the combustion stability by lowering the compression ratio. Can be greatly retarded, and the exhaust gas temperature can be increased more rapidly by retarding the ignition timing.

これによって、触媒暖機時に排気温度を速やかに上昇させて触媒を早期に昇温・活性化し、排気エミッションの悪化を抑制することができる。   As a result, the exhaust gas temperature can be quickly raised when the catalyst is warmed up so that the catalyst can be warmed up and activated early, and deterioration of exhaust emission can be suppressed.

本発明の一実施例に係るハイブリッド車両のパワートレーンを示す構成図。The block diagram which shows the power train of the hybrid vehicle which concerns on one Example of this invention. 上記実施例の可変圧縮比機構を示す断面図。Sectional drawing which shows the variable compression ratio mechanism of the said Example. 本実施例の触媒暖機時の制御の流れを示すフローチャート。The flowchart which shows the flow of control at the time of catalyst warming-up of a present Example. 触媒暖機時の制御内容の一例を示すタイミングチャート。The timing chart which shows an example of the control content at the time of catalyst warming-up. 同じく触媒暖機時の制御内容の他の例を示すタイミングチャート。The timing chart which similarly shows the other example of the control content at the time of catalyst warm-up. 同じく触媒暖機時の制御内容の他の例を示すタイミングチャート。The timing chart which similarly shows the other example of the control content at the time of catalyst warm-up. 同じく触媒暖機時の制御内容の他の例を示すタイミングチャート。The timing chart which similarly shows the other example of the control content at the time of catalyst warm-up. 同じく触媒暖機時の制御内容の他の例を示すタイミングチャート。The timing chart which similarly shows the other example of the control content at the time of catalyst warm-up.

以下、本発明の一実施例を図面に基づいて詳細に説明する。初めに、本発明が適用されるハイブリッド車両の基本的な構成を説明する。図1は、本発明が適用されるハイブリッド車両の一例として、フロントエンジン・リヤホイールドライブ(FR)式の構成としたハイブリッド車両のパワートレーンを示している。  Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. First, a basic configuration of a hybrid vehicle to which the present invention is applied will be described. FIG. 1 shows a power train of a hybrid vehicle having a front engine / rear wheel drive (FR) configuration as an example of a hybrid vehicle to which the present invention is applied.

図1に示すハイブリッド車両のパワートレーンは、後輪が駆動輪2とされた後輪駆動車であり、火花点火式内燃機関(以下、単に「内燃機関」と呼ぶ)1の車両前後方向の後方に自動変速機3がタンデムに配置されている。また、内燃機関1のクランクシャフト1aからの回転を自動変速機3の入力軸3aへ伝達するシャフト4に、内燃機関1とともに車両駆動源を構成するモータジェネレータ5が一体に設けられている。   The power train of the hybrid vehicle shown in FIG. 1 is a rear wheel drive vehicle whose rear wheels are drive wheels 2, and is behind a spark ignition type internal combustion engine (hereinafter simply referred to as “internal combustion engine”) 1 in the vehicle front-rear direction. The automatic transmission 3 is arranged in tandem. A motor generator 5 that constitutes a vehicle drive source together with the internal combustion engine 1 is integrally provided on the shaft 4 that transmits the rotation of the internal combustion engine 1 from the crankshaft 1 a to the input shaft 3 a of the automatic transmission 3.

モータジェネレータ5は、ロータに永久磁石を用いた同期型モータからなり、モータとして作用(いわゆる「力行」)するとともに、ジェネレータ(発電機)としても作用(いわゆる「回生」)するものであり、上記のように内燃機関1と自動変速機3との間に位置している。このモータジェネレータ5にはバッテリ9が電気的に接続されている。このバッテリ9は、モータジェネレータ5の力行運転時にモータジェネレータ5へ電力を供給し、モータジェネレータ5の回生運転時にモータジェネレータ5から供給される電力を充電する。   The motor generator 5 is composed of a synchronous motor using a permanent magnet as a rotor, and acts as a motor (so-called “powering”) and also acts as a generator (so-called “regeneration”). Thus, the engine is located between the internal combustion engine 1 and the automatic transmission 3. A battery 9 is electrically connected to the motor generator 5. The battery 9 supplies electric power to the motor generator 5 during the power running operation of the motor generator 5, and charges the electric power supplied from the motor generator 5 during the regenerative operation of the motor generator 5.

そして、このモータジェネレータ5と内燃機関1との間、より詳しくは、シャフト4とクランクシャフト1aとの間に第1クラッチ6が介挿されており、この第1クラッチ6が内燃機関1とモータジェネレータ5との間を切り離し可能に結合している。   A first clutch 6 is inserted between the motor generator 5 and the internal combustion engine 1, more specifically, between the shaft 4 and the crankshaft 1a. The first clutch 6 is connected to the internal combustion engine 1 and the motor. The generator 5 is detachably coupled.

また、モータジェネレータ5と駆動輪2との間、より詳しくは、シャフト4と変速機入力軸3aとの間には、第2クラッチ7が介挿されており、この第2クラッチ7がモータジェネレータ5と自動変速機3との間を切り離し可能に結合している。   Further, a second clutch 7 is interposed between the motor generator 5 and the drive wheel 2, more specifically, between the shaft 4 and the transmission input shaft 3a. The second clutch 7 is connected to the motor generator. 5 and the automatic transmission 3 are detachably coupled.

自動変速機3は、入力軸3aから入力された回転を選択変速段に応じたギヤ比で変速して出力軸3bに出力する。この出力回転は、ディファレンシャルギヤ装置8を介して左右の駆動輪(後輪)2へ分配して伝達される。この自動変速機3は、セレクトレバー等を介して運転者により選択されるレンジとして、非走行レンジであるP(パーキング)レンジおよびN(ニュートラル)レンジ、走行レンジであるD(ドライブ)レンジおよびR(リバース)レンジ、を少なくとも備えている。   The automatic transmission 3 shifts the rotation input from the input shaft 3a at a gear ratio corresponding to the selected shift speed and outputs it to the output shaft 3b. This output rotation is distributed and transmitted to the left and right drive wheels (rear wheels) 2 via the differential gear device 8. The automatic transmission 3 has a P (parking) range and N (neutral) range which are non-traveling ranges, and a D (drive) range and R which are traveling ranges as ranges selected by the driver via a select lever or the like. (Reverse) range at least.

上記のパワートレーンにおいては、モータジェネレータ5の動力のみを動力源として走行する電気自動車走行モード(EVモード)と、内燃機関1をモータジェネレータ5とともに動力源に含みながら走行するハイブリッド走行モード(HEVモード)と、が可能である。   In the power train described above, an electric vehicle traveling mode (EV mode) that travels using only the power of the motor generator 5 as a power source, and a hybrid traveling mode (HEV mode) that travels while the internal combustion engine 1 is included in the power source together with the motor generator 5. ) Is possible.

EVモードでは、内燃機関1からの動力が不要であるからこれを停止させておくとともに第1クラッチ6を解放し、かつ第2クラッチ7を締結させておくととともに自動変速機3を動力伝達状態にする。この状態でモータジェネレータ5のみによって車両の走行がなされる。   In the EV mode, since the power from the internal combustion engine 1 is unnecessary, it is stopped, the first clutch 6 is released, the second clutch 7 is engaged, and the automatic transmission 3 is in the power transmission state. To. In this state, the vehicle is driven only by the motor generator 5.

HEVモードでは、第1クラッチ6および第2クラッチ7をともに締結し、自動変速機3を動力伝達状態にする。この状態では、内燃機関1からの出力回転およびモータジェネレータ5からの出力回転の双方が変速機入力軸3aに入力されることとなり、双方によるハイブリッド走行がなされる。   In the HEV mode, both the first clutch 6 and the second clutch 7 are engaged, and the automatic transmission 3 is set in the power transmission state. In this state, both the output rotation from the internal combustion engine 1 and the output rotation from the motor generator 5 are input to the transmission input shaft 3a, and hybrid traveling by both is performed.

HEVモードにおいて、所定のアイドルストップ条件が成立すると、内燃機関1を停止するアイドルストップを実施する。例えば、冷却水温が所定温度以上、ブレーキ油圧が所定圧以上、車速が所定速度以下、アクセル開度が所定開度以下、及び機関回転速度がアイドル回転速度と等しいときにアイドルストップ条件が成立したものとして、アイドルストップを実施する。そして、アイドルストップ中に、所定のアイドルストップ解除条件が成立すると、内燃機関を再始動する。例えば、アクセルON、ブレーキOFF、バッテリの充電量が所定量以下、ブレーキ油圧が所定圧以下、自動変速機3内の油温が所定温度以下、自動変速機3内の油温が所定圧以下、のうちのいずれかの条件がアイドルストップ中に成立すると、アイドルストップ解除条件が成立したものとして、内燃機関1を自動的に再始動する。   In the HEV mode, when a predetermined idle stop condition is satisfied, an idle stop for stopping the internal combustion engine 1 is performed. For example, the idle stop condition is satisfied when the coolant temperature is equal to or higher than the predetermined temperature, the brake hydraulic pressure is equal to or higher than the predetermined pressure, the vehicle speed is equal to or lower than the predetermined speed, the accelerator opening is equal to or lower than the predetermined opening, and the engine speed is equal to the idle speed. As an idle stop. Then, when a predetermined idle stop cancellation condition is satisfied during the idle stop, the internal combustion engine is restarted. For example, the accelerator is ON, the brake is OFF, the battery charge is a predetermined amount or less, the brake hydraulic pressure is a predetermined pressure or less, the oil temperature in the automatic transmission 3 is a predetermined temperature or less, the oil temperature in the automatic transmission 3 is a predetermined pressure or less, If any of the above conditions is satisfied during idle stop, the internal combustion engine 1 is automatically restarted assuming that the idle stop cancellation condition is satisfied.

モータジェネレータ5は、車両減速時に制動エネルギを回生して回収できるほか、HEVモードでは、内燃機関1の余剰のエネルギを電力として回収することができる。   The motor generator 5 can recover and recover braking energy when the vehicle decelerates, and can recover surplus energy of the internal combustion engine 1 as electric power in the HEV mode.

ここで、EVモードからHEVモードへ遷移するときには、第1クラッチ6を締結し、モータジェネレータ5のトルクを用いて内燃機関1を始動する。また、アイドルストップ中の内燃機関1を再始動する際にも、第1クラッチ6を締結し、モータジェネレータ5のトルクを用いて始動する。   Here, when transitioning from the EV mode to the HEV mode, the first clutch 6 is engaged, and the internal combustion engine 1 is started using the torque of the motor generator 5. Further, when restarting the internal combustion engine 1 during idling stop, the first clutch 6 is engaged and the motor generator 5 is started using the torque.

なお、第2クラッチ7は、いわゆる発進クラッチとして機能し、車両発進時に伝達トルク容量を可変制御してスリップ締結させることにより、トルクコンバータを具備しないパワートレーンにあってもトルク変動を吸収し円滑な発進を可能としている。   Note that the second clutch 7 functions as a so-called starting clutch, and by variably controlling the transmission torque capacity at the time of starting the vehicle and slip-engaging, the second clutch 7 absorbs torque fluctuations smoothly even in a power train that does not include a torque converter. It is possible to start.

内燃機関1の排気通路10Aには、排気を浄化するための三元触媒10(以下、単に「触媒」と呼ぶ)が設けられている。   A three-way catalyst 10 (hereinafter simply referred to as “catalyst”) for purifying exhaust gas is provided in the exhaust passage 10A of the internal combustion engine 1.

図2は、可変圧縮比手段の一例として、上記の内燃機関1に設けられる可変圧縮比機構11を示す断面図である。この可変圧縮比機構11は、ピストン1Bとクランクシャフト1aのクランクピン13とを複数のリンク部品で連結した複リンク式ピストン−クランク機構を利用したものであって、基本的な構造は上記の特開2012−67758等にも記載のように公知であるので、ここでは簡単に説明する。   FIG. 2 is a cross-sectional view showing a variable compression ratio mechanism 11 provided in the internal combustion engine 1 as an example of the variable compression ratio means. This variable compression ratio mechanism 11 uses a multi-link type piston-crank mechanism in which the piston 1B and the crank pin 13 of the crankshaft 1a are connected by a plurality of link parts, and the basic structure is the above-mentioned special structure. Since it is publicly known as described in Japanese Unexamined Patent Application Publication No. 2012-67758, etc., it will be briefly described here.

この可変圧縮比機構11は、クランクピン13に回転可能に取り付けられるロアーリンク14と、このロアーリンク14とピストン1Bとを連結するアッパーリンク15と、機関本体としてのシリンダーブロック1Cに回転可能に支持されるコントロールシャフト16と、このコントロールシャフト16とロアーリンク14とを連結するコントロールリンク17と、を有している。   The variable compression ratio mechanism 11 is rotatably supported by a lower link 14 rotatably attached to the crankpin 13, an upper link 15 connecting the lower link 14 and the piston 1B, and a cylinder block 1C as an engine body. And a control link 17 that connects the control shaft 16 and the lower link 14 to each other.

ピストン1Bとアッパーリンク15の上端とはピストンピン18により相対回転可能に連結されており、アッパーリンク15の下端とロアーリンク14とは第1連結ピン19により相対回転可能に連結されており、コントロールリンク17の上端とロアーリンク14とは第2連結ピン20により相対回転可能に連結されており、コントロールリンク17の下端はコントロールシャフト16に偏心して設けられた偏心軸部16Aに相対回転可能に取り付けられている。   The piston 1B and the upper end of the upper link 15 are connected to each other by a piston pin 18 so as to be relatively rotatable, and the lower end of the upper link 15 and the lower link 14 are connected to each other by a first connecting pin 19 so as to be relatively rotatable. The upper end of the link 17 and the lower link 14 are connected to each other by a second connecting pin 20 so as to be relatively rotatable, and the lower end of the control link 17 is attached to an eccentric shaft portion 16A provided eccentric to the control shaft 16. It has been.

また、コントロールシャフト16には、その回転位置を変更可能な可変圧縮比モータ21が接続しており、この可変圧縮比モータ21によりコントロールシャフト16の回転位置を変更することによって、ピストン1Bの上死点位置及び下死点位置を含むピストン1Bのストローク特性を変化させ、ひいては機関圧縮比を変更する。アクチュエータの動作は制御部22によって機関運転状態に応じて制御される。   Further, the control shaft 16 is connected to a variable compression ratio motor 21 whose rotation position can be changed. By changing the rotation position of the control shaft 16 by the variable compression ratio motor 21, the top dead center of the piston 1B is reached. The stroke characteristics of the piston 1B including the point position and the bottom dead center position are changed, and consequently the engine compression ratio is changed. The operation of the actuator is controlled by the control unit 22 according to the engine operating state.

また制御部22は、点火時期制御や燃料噴射制御の他、後述するように触媒暖機制御を記憶及び実行する機能を有している。   The control unit 22 has a function of storing and executing catalyst warm-up control, as will be described later, in addition to ignition timing control and fuel injection control.

図3は、本実施例の要部をなす触媒暖機時の制御の流れを示すフローチャートである。本ルーチンは、上記の制御部22により所定期間毎(例えば、10ms毎)に繰り返し実行される。   FIG. 3 is a flowchart showing a control flow when the catalyst warms up, which is a main part of the present embodiment. This routine is repeatedly executed by the control unit 22 every predetermined period (for example, every 10 ms).

ステップS11では、触媒10の温度が活性温度に達しておらず、触媒10を昇温して活性化するための触媒暖機運転を行なう運転状態であるか否かを判定する。すなわち、冷機始動時、及び長期のアイドルストップ後の機関再始動時など、触媒10の温度が活性温度よりも低い触媒暖機時であるか否かを判定する。触媒暖機時でなければステップS11の判定が否定され、本ルーチンを終了する。   In step S11, it is determined whether or not the temperature of the catalyst 10 has not reached the activation temperature, and the catalyst warm-up operation is performed to raise the temperature of the catalyst 10 and activate it. That is, it is determined whether or not the temperature of the catalyst 10 is lower than the activation temperature, such as when the engine is cold and when the engine is restarted after a long idle stop. If the catalyst is not warmed up, the determination in step S11 is negative, and this routine ends.

ステップS11で触媒暖機時と判定されると、ステップS12へ進み、機関運転状態に応じた通常の設定に対し、点火時期を遅角しつつ、機関圧縮比を低くした触媒暖機モードとして運転を行なう。この際、スロットル開度は例えばアクセル開度が0であれば全閉付近とされる。   If it is determined in step S11 that the catalyst is warming up, the process proceeds to step S12, and the operation is performed in the catalyst warming-up mode in which the engine compression ratio is lowered while retarding the ignition timing with respect to the normal setting according to the engine operating state. To do. At this time, if the throttle opening is 0, for example, the throttle opening is close to full closure.

続くステップS13では、バッテリ9のSOC(充電状態)に基づいて、バッテリ9が充電可能な状態であるか否かを判定する。バッテリ9が満充電近傍であれば、バッテリ9の過充電を防ぐために、バッテリ9が充電不可能であると判定されて、本ルーチンを終了する。   In continuing step S13, based on SOC (charge condition) of the battery 9, it is determined whether the battery 9 is in a chargeable state. If the battery 9 is in the vicinity of full charge, in order to prevent overcharging of the battery 9, it is determined that the battery 9 cannot be charged, and this routine is terminated.

一方、バッテリ9の充電量(SOC)が少なく充電可能な状態であれば、ステップS13からステップS14へ進み、スロットル開度を大きくして内燃機関1の駆動トルクを大きくするとともに、モータジェネレータ5を回生運転する。この際のスロットル開度(内燃機関の駆動トルクに相当)及びモータジェネレータ5の回生トルクは、後述するようにバッテリ9の充電状態に応じて設定される。   On the other hand, if the state of charge (SOC) of the battery 9 is small and chargeable, the process proceeds from step S13 to step S14, the throttle opening is increased to increase the driving torque of the internal combustion engine 1, and the motor generator 5 is turned on. Regenerative operation. The throttle opening (corresponding to the driving torque of the internal combustion engine) and the regenerative torque of the motor generator 5 at this time are set according to the state of charge of the battery 9 as will be described later.

ステップS15では、触媒暖機運転中に、内燃機関1の要求トルクの有無を判定する。例えば、触媒暖機運転中に運転者がアクセルペダルを踏み込んだ場合に、内燃機関の要求トルクが有となる。この場合、触媒暖機モードでの設定に対し、機関圧縮比を低圧縮比に固定・維持しつつ、点火時期を進角し、かつ、スロットル開度(内燃機関の駆動トルク)を大きくする。   In step S15, it is determined whether or not there is a required torque of the internal combustion engine 1 during the catalyst warm-up operation. For example, when the driver depresses the accelerator pedal during the catalyst warm-up operation, the required torque of the internal combustion engine becomes valid. In this case, the ignition timing is advanced and the throttle opening (driving torque of the internal combustion engine) is increased while the engine compression ratio is fixed and maintained at a low compression ratio with respect to the setting in the catalyst warm-up mode.

図4〜図8は、本実施例の制御を適用した場合の触媒暖機時の制御内容の幾つかの例を示すタイミングチャートである。これら図4〜図8を参照して、本実施例の作用効果について説明する。   4 to 8 are timing charts showing some examples of control contents during catalyst warm-up when the control of this embodiment is applied. With reference to these FIGS. 4-8, the effect of a present Example is demonstrated.

[1]図4に示すように、触媒10の温度が活性温度に満たない触媒暖機時には、触媒暖機要求がONとなり、機関圧縮比を低下するとともに、点火時期を遅角する触媒暖機モードで運転を行なうようにしている(図3のステップS12参照)。   [1] As shown in FIG. 4, at the time of catalyst warm-up when the temperature of the catalyst 10 is less than the activation temperature, the catalyst warm-up request is turned on, the engine compression ratio is lowered, and the catalyst warm-up that retards the ignition timing The operation is performed in the mode (see step S12 in FIG. 3).

このように機関圧縮比を低下することで、膨張比の低下により排気温度の上昇を抑制するとともに、HCが少なく高温の排ガスを排気通路10Aへ多く送り込むことが可能となり、排気温度の上昇が促進される。また、低圧縮比化により燃焼ガス量が多くなるため、燃焼が安定し、その分、燃焼安定性を確保しつつ点火時期の遅角量を大きく確保することができ、点火時期の大幅な遅角化により排気温度を更に迅速に上昇させて、触媒10の早期活性化を図ることができる。   By reducing the engine compression ratio in this way, it is possible to suppress an increase in the exhaust temperature due to a decrease in the expansion ratio, and to send a large amount of high-temperature exhaust gas with less HC into the exhaust passage 10A, thereby promoting an increase in the exhaust temperature. Is done. Further, since the amount of combustion gas increases due to the low compression ratio, the combustion is stabilized, and accordingly, a large amount of ignition timing retardation can be secured while ensuring combustion stability, and the ignition timing is greatly retarded. The exhaust gas temperature can be increased more rapidly by the keratinization, and the catalyst 10 can be activated early.

[2]また本実施例では、機関冷機始動時のみならず、長期間アイドルストップを行なった後の機関再始動時など、運転中に触媒温度が活性温度以下に低下した場合にも、上述した触媒暖機モードでの運転が行なわれるので、触媒10を速やかに活性化することができる。   [2] Further, in this embodiment, the above-described operation is performed not only when starting the engine cooler but also when the catalyst temperature falls below the activation temperature during operation, such as when the engine is restarted after idling stop for a long time. Since the operation in the catalyst warm-up mode is performed, the catalyst 10 can be activated quickly.

[3]図5及び図6に示すように、触媒暖機時に、バッテリ9の充電量(SOC)が低く充電可能なON状態にある場合には、スロットル開度を大きくするとともに、モータジェネレータ5の回生運転を行なう。このように、スロットル開度の増加による余剰の駆動トルクをモータジェネレータ5の回生運転により吸収・相殺することで、トルク変動を招くことなく、スロットル開度(駆動トルク)の増加分、筒内温度ひいては排気温度の上昇を促進して、触媒10の更なる早期活性化を図ることができる。また、モータジェネレータ5の発電によりバッテリ9の充電量を増加しつつ、発電によるバッテリ9への電力入力によりバッテリ9の昇温をも促進することができる。   [3] As shown in FIGS. 5 and 6, when the catalyst 9 is warmed up, if the charge amount (SOC) of the battery 9 is in a low chargeable ON state, the throttle opening is increased and the motor generator 5 is increased. Perform regenerative operation. In this way, surplus drive torque due to the increase in throttle opening is absorbed and offset by the regenerative operation of the motor generator 5, so that the increase in throttle opening (drive torque), in-cylinder temperature, without causing torque fluctuations. As a result, the rise in the exhaust temperature can be promoted, and the catalyst 10 can be further activated earlier. Further, while the amount of charge of the battery 9 is increased by the power generation of the motor generator 5, the temperature rise of the battery 9 can be promoted by the power input to the battery 9 by the power generation.

[4]この際のスロットル開度(内燃機関の駆動トルク)及びモータジェネレータ5の回生トルクは、バッテリ9のSOCに応じて設定される。つまり、バッテリ9のSOC(充電量)が少ない場合には、図6に示すように、スロットル開度及び回生トルクを大きくするとともに、点火時期を進角することにより、発電を積極的に実施して、バッテリ9を早期に満充電に近づけつつ触媒10の早期活性化を促進することができるとともに、発電によるバッテリ9への電力入力によりバッテリ9の昇温を促進することもできる。一方、バッテリ9のSOCが満充電近傍の場合には、モータジェネレータ5の回生運転を禁止もしくは回生トルク(発電量)を抑制することで、バッテリ9を過充電から保護することができる。   [4] The throttle opening (driving torque of the internal combustion engine) and the regenerative torque of the motor generator 5 at this time are set according to the SOC of the battery 9. In other words, when the SOC (charge amount) of the battery 9 is small, as shown in FIG. 6, the throttle opening and the regenerative torque are increased, and the ignition timing is advanced to actively generate power. Thus, early activation of the catalyst 10 can be promoted while the battery 9 is brought close to full charge at an early stage, and the temperature rise of the battery 9 can be promoted by power input to the battery 9 by power generation. On the other hand, when the SOC of the battery 9 is near full charge, the battery 9 can be protected from overcharging by prohibiting the regenerative operation of the motor generator 5 or suppressing the regenerative torque (power generation amount).

[5]図7に示すように、触媒暖機運転中に、例えば運転者のアクセルペダルの操作による内燃機関の要求トルクが生じた場合には、上記の触媒暖機モードでの設定に対し、機関圧縮比を低圧縮比に維持しつつ、点火時期を進角し、かつ、内燃機関の駆動トルクを大きくする。つまり、上記の触媒暖機モードでは、触媒の早期活性化を優先するように点火時期を大幅に遅角化しているが、要求トルクが生じた場合には、車両駆動力を確保するように点火時期を進角側へ戻して熱効率を向上させ、かつ、内燃機関の駆動トルクを増加させている。点火時期の進角分、熱効率の向上により排気温度の上昇は抑制されるものの、内燃機関の駆動トルクは増加しているために、排気温度の上昇が阻害されることはない。   [5] As shown in FIG. 7, during the catalyst warm-up operation, for example, when the required torque of the internal combustion engine is generated by the driver's operation of the accelerator pedal, the setting in the catalyst warm-up mode is as follows. While maintaining the engine compression ratio at a low compression ratio, the ignition timing is advanced and the driving torque of the internal combustion engine is increased. In other words, in the above-mentioned catalyst warm-up mode, the ignition timing is greatly retarded so as to give priority to early activation of the catalyst, but when required torque occurs, ignition is performed so as to ensure vehicle driving force. The timing is returned to the advance side to improve the thermal efficiency, and the driving torque of the internal combustion engine is increased. Although an increase in the exhaust temperature is suppressed by the advancement of the ignition timing by improving the thermal efficiency, the increase in the exhaust temperature is not hindered because the driving torque of the internal combustion engine is increasing.

[6]図8に示すように、触媒暖機運転中に、例えば運転者がアクセルペダルを急激に踏み込んだような場合、所定値以上の大きな内燃機関の要求トルクが急激に生じる。このような場合には、上述した触媒暖機モードでの設定に対し、図7の場合と同様、機関圧縮比を低圧縮比に維持しつつ、点火時期を進角し、かつ、内燃機関の駆動トルクを大きくする。これに加えて、要求トルクに見合った駆動力が得られるように、点火時期を制御する。つまり、触媒暖機運転中には、点火時期を大幅に遅角しており、点火時期の進角側への変更に十分余裕があることから、応答性の高い点火時期を制御することで、要求トルクに見合った駆動力を速やかに確保することができる。   [6] As shown in FIG. 8, during the catalyst warm-up operation, for example, when the driver suddenly depresses the accelerator pedal, a large required torque of the internal combustion engine greater than a predetermined value is abruptly generated. In such a case, in contrast to the setting in the catalyst warm-up mode described above, as in the case of FIG. 7, the ignition timing is advanced while the engine compression ratio is maintained at a low compression ratio, and the internal combustion engine Increase the drive torque. In addition, the ignition timing is controlled so that a driving force corresponding to the required torque can be obtained. In other words, during the catalyst warm-up operation, the ignition timing is greatly retarded, and there is a sufficient margin for changing the ignition timing to the advance side, so by controlling the ignition timing with high responsiveness, The driving force commensurate with the required torque can be quickly secured.

以上のように本発明を具体的な実施例に基づいて説明してきたが、本発明は上記実施例に限定されるものではなく、種々の変形・変更を含むものである。例えば、上記実施例ではハイブリッド車両に本発明を適用しているが、車両駆動源として内燃機関のみを具備したアイドルストップを実施可能な車両にも本発明を同様に適用することができる。   As described above, the present invention has been described based on the specific embodiments. However, the present invention is not limited to the above-described embodiments, and includes various modifications and changes. For example, although the present invention is applied to a hybrid vehicle in the above-described embodiment, the present invention can be similarly applied to a vehicle capable of performing an idle stop having only an internal combustion engine as a vehicle drive source.

1…火花点火式内燃機関
5…モータジェネレータ
9…バッテリ
10…触媒
11…可変圧縮比機構
22…制御部
DESCRIPTION OF SYMBOLS 1 ... Spark ignition internal combustion engine 5 ... Motor generator 9 ... Battery 10 ... Catalyst 11 ... Variable compression ratio mechanism 22 ... Control part

Claims (6)

火花点火式内燃機関と、
この火花点火式内燃機関の機関圧縮比を変更可能な可変圧縮比手段と、
上記火花点火式内燃機関の排気通路に設けられ、排気ガスを浄化する触媒と、を備えた車両の制御装置において、
上記触媒の温度が活性温度よりも低い触媒暖機時に、点火時期を遅角しつつ、機関圧縮比を低くした触媒暖機モードで運転を行なうことを特徴とする車両の制御装置。
A spark ignition internal combustion engine,
Variable compression ratio means capable of changing the engine compression ratio of the spark ignition type internal combustion engine;
In a control device for a vehicle, comprising a catalyst for purifying exhaust gas, provided in an exhaust passage of the spark ignition internal combustion engine,
A control apparatus for a vehicle, characterized in that when the catalyst temperature is lower than the activation temperature, the operation is performed in a catalyst warm-up mode in which the engine compression ratio is lowered while retarding the ignition timing.
車両運転中に上記火花点火式内燃機関を一時的に停止するアイドルストップを実現可能であり、
上記冷機始動時及びアイドルストップ後の機関再始動時に、上記触媒暖機モードでの運転が行なわれることを特徴とする請求項1に記載の車両の制御装置。
It is possible to realize an idle stop that temporarily stops the spark ignition internal combustion engine during vehicle operation,
2. The vehicle control device according to claim 1, wherein the operation in the catalyst warm-up mode is performed when the cold engine is started and when the engine is restarted after an idle stop. 3.
車両駆動源として上記内燃機関とともに設けられるモータジェネレータと、
このモータジェネレータと電気的に接続されるバッテリと、を有し、
上記触媒暖機モードで、かつ、上記バッテリが充電可能な状態にある場合、上記内燃機関の駆動トルクを大きくするとともに、上記モータジェネレータを回生運転することを特徴とする請求項1又は2に記載の車両の制御装置。
A motor generator provided with the internal combustion engine as a vehicle drive source;
A battery electrically connected to the motor generator,
3. The regenerative operation of the motor generator is performed while increasing the driving torque of the internal combustion engine and when the battery is in a chargeable state in the catalyst warm-up mode. Vehicle control device.
上記触媒暖機モードで、かつ、上記バッテリが充電可能な状態にある場合、上記バッテリの充電状態に応じて、上記内燃機関の駆動トルク及び上記モータジェネレータの回生トルクを設定することを特徴とする請求項3に記載の車両の制御装置。   In the catalyst warm-up mode and when the battery is in a chargeable state, the drive torque of the internal combustion engine and the regenerative torque of the motor generator are set according to the charge state of the battery. The vehicle control device according to claim 3. 上記触媒暖機時であって、かつ内燃機関の要求トルクが有る場合、上記触媒暖機モードでの設定に対し、上記機関圧縮比を低圧縮比に維持しつつ、上記点火時期を進角するとともに、上記内燃機関の駆動トルクを大きくすることを特徴とする請求項1〜4のいずれかに記載の車両の制御装置。   When the catalyst is warmed up and there is a required torque of the internal combustion engine, the ignition timing is advanced while maintaining the engine compression ratio at a low compression ratio with respect to the setting in the catalyst warmup mode. The vehicle control device according to claim 1, wherein the driving torque of the internal combustion engine is increased. 上記触媒暖機時に、所定値以上の急激な内燃機関の要求トルクが生じた場合、上記触媒暖機モードでの設定に対し、上記機関圧縮比を低圧縮比に維持しつつ、上記内燃機関の駆動トルクを大きくし、かつ、上記要求トルクに応じて点火時期を制御することを特徴とする請求項1〜5のいずれかに記載の車両の制御装置。   If the required torque of the internal combustion engine suddenly exceeds a predetermined value during the catalyst warm-up, the engine compression ratio is maintained at a low compression ratio with respect to the setting in the catalyst warm-up mode, and the internal combustion engine 6. The vehicle control device according to claim 1, wherein the driving torque is increased and the ignition timing is controlled in accordance with the required torque.
JP2014252563A 2014-12-15 2014-12-15 Vehicle control device Active JP6428228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014252563A JP6428228B2 (en) 2014-12-15 2014-12-15 Vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014252563A JP6428228B2 (en) 2014-12-15 2014-12-15 Vehicle control device

Publications (2)

Publication Number Publication Date
JP2016113946A true JP2016113946A (en) 2016-06-23
JP6428228B2 JP6428228B2 (en) 2018-11-28

Family

ID=56141185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014252563A Active JP6428228B2 (en) 2014-12-15 2014-12-15 Vehicle control device

Country Status (1)

Country Link
JP (1) JP6428228B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111661029A (en) * 2019-02-05 2020-09-15 丰田自动车株式会社 Control device and control method for hybrid vehicle
EP3848263A4 (en) * 2018-09-04 2021-08-25 Nissan Motor Co., Ltd. Control method and control device for hybrid vehicle
US11485349B2 (en) * 2018-09-21 2022-11-01 Toyota Jidosha Kabushiki Kaisha Control device for a hybrid vehicle
US11560136B2 (en) 2018-03-02 2023-01-24 Toyota Jidosha Kabushiki Kaisha Control device
GB2619763A (en) * 2022-06-17 2023-12-20 Jaguar Land Rover Ltd Control of hybrid vehicle engine idling torque
JP7581981B2 (en) 2021-03-09 2024-11-13 トヨタ自動車株式会社 Hybrid Vehicles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0886236A (en) * 1994-09-19 1996-04-02 Toyota Motor Corp Air-fuel ratio controller of internal combustion engine
JP2003328794A (en) * 2002-05-16 2003-11-19 Nissan Motor Co Ltd Control device of internal combustion engine
JP2009108720A (en) * 2007-10-29 2009-05-21 Nissan Motor Co Ltd Apparatus and method for controlling warm-up of exhaust cleaning catalyst
JP2011202607A (en) * 2010-03-26 2011-10-13 Toyota Motor Corp Device for controlling internal combustion engine
JP2012081886A (en) * 2010-10-13 2012-04-26 Toyota Motor Corp Vehicle drive control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0886236A (en) * 1994-09-19 1996-04-02 Toyota Motor Corp Air-fuel ratio controller of internal combustion engine
JP2003328794A (en) * 2002-05-16 2003-11-19 Nissan Motor Co Ltd Control device of internal combustion engine
JP2009108720A (en) * 2007-10-29 2009-05-21 Nissan Motor Co Ltd Apparatus and method for controlling warm-up of exhaust cleaning catalyst
JP2011202607A (en) * 2010-03-26 2011-10-13 Toyota Motor Corp Device for controlling internal combustion engine
JP2012081886A (en) * 2010-10-13 2012-04-26 Toyota Motor Corp Vehicle drive control device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11560136B2 (en) 2018-03-02 2023-01-24 Toyota Jidosha Kabushiki Kaisha Control device
EP3848263A4 (en) * 2018-09-04 2021-08-25 Nissan Motor Co., Ltd. Control method and control device for hybrid vehicle
US11485349B2 (en) * 2018-09-21 2022-11-01 Toyota Jidosha Kabushiki Kaisha Control device for a hybrid vehicle
CN111661029A (en) * 2019-02-05 2020-09-15 丰田自动车株式会社 Control device and control method for hybrid vehicle
JP7581981B2 (en) 2021-03-09 2024-11-13 トヨタ自動車株式会社 Hybrid Vehicles
GB2619763A (en) * 2022-06-17 2023-12-20 Jaguar Land Rover Ltd Control of hybrid vehicle engine idling torque
GB2619763B (en) * 2022-06-17 2024-11-13 Jaguar Land Rover Ltd Control of hybrid vehicle engine idling torque

Also Published As

Publication number Publication date
JP6428228B2 (en) 2018-11-28

Similar Documents

Publication Publication Date Title
JP3719339B2 (en) Variable valve controller for internal combustion engine
JP5699520B2 (en) Vehicle idle control device
JP6476839B2 (en) Vehicle control device
JP4197038B2 (en) Hybrid vehicle and control method thereof
JP5897885B2 (en) Hybrid vehicle
JP4519085B2 (en) Control device for internal combustion engine
JP5708819B2 (en) Vehicle control device
JP6004106B2 (en) Control device for internal combustion engine
JP6428228B2 (en) Vehicle control device
WO2013021504A1 (en) Hybrid vehicle control device
JP2013194584A (en) Starting device of vehicle-mounted engine
CN111278700A (en) Control method and control device for hybrid vehicle
WO2013042217A1 (en) Vehicle and method for controlling vehicle
JP2016037252A (en) Control system of hybrid vehicle
JP2013155605A (en) Engine control device
JP5617301B2 (en) Vehicle drive control device
JP3574120B2 (en) Hybrid vehicle
JP2013124083A (en) Controller of hybrid electric vehicle
JP5954859B2 (en) Control device for hybrid electric vehicle
JP2004324442A (en) Control method in starting engine of diesel hybrid vehicle
JP6464940B2 (en) Vehicle control device
JP6409559B2 (en) Vehicle control device
JP6028724B2 (en) Hybrid vehicle control device
JP6369209B2 (en) Control device for hybrid vehicle
JP2014136530A (en) Control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181015

R151 Written notification of patent or utility model registration

Ref document number: 6428228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151