[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2016109996A - Liquid crystal sealant and liquid crystal cells using the same - Google Patents

Liquid crystal sealant and liquid crystal cells using the same Download PDF

Info

Publication number
JP2016109996A
JP2016109996A JP2014249663A JP2014249663A JP2016109996A JP 2016109996 A JP2016109996 A JP 2016109996A JP 2014249663 A JP2014249663 A JP 2014249663A JP 2014249663 A JP2014249663 A JP 2014249663A JP 2016109996 A JP2016109996 A JP 2016109996A
Authority
JP
Japan
Prior art keywords
liquid crystal
meth
acrylate
liquid
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014249663A
Other languages
Japanese (ja)
Inventor
英之 太田
Hideyuki Ota
英之 太田
伸彦 内藤
Nobuhiko Naito
伸彦 内藤
正弘 内藤
Masahiro Naito
正弘 内藤
正嘉 武藤
Masayoshi Muto
正嘉 武藤
英照 亀谷
Hideteru Kametani
英照 亀谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2014249663A priority Critical patent/JP2016109996A/en
Publication of JP2016109996A publication Critical patent/JP2016109996A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Sealing Material Composition (AREA)
  • Polymerisation Methods In General (AREA)
  • Epoxy Resins (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a liquid crystal sealant for use in a liquid crystal dropping process, which features superior adhesiveness and low liquid crystal contamination, and thus does not peel off even when thin line width is used in liquid crystal cells and is suitably used in a liquid crystal dropping process because of the low liquid crystal contamination.SOLUTION: A liquid crystal sealant for use in a liquid crystal dropping process contains (A) urethane di(meth)acrylate that is obtained through reaction of (a-1) a (meth)acrylate having a hydroxy group with (a-2) diisocyanate and does not contain a polyol component as a base material.SELECTED DRAWING: None

Description

本発明は、液晶滴下工法に使用される液晶シール剤に関する。より詳細には、接着性に優れ、液晶汚染性が低い液晶シール剤及びその硬化物でシールされた液晶表示セルに関する。   The present invention relates to a liquid crystal sealing agent used in a liquid crystal dropping method. More specifically, the present invention relates to a liquid crystal sealing agent having excellent adhesiveness and low liquid crystal contamination, and a liquid crystal display cell sealed with a cured product thereof.

近年の液晶表示セルの大型化に伴い、液晶表示セルの製造法として、より量産性の高い、いわゆる液晶滴下工法が提案されていた(特許文献1、特許文献2参照)。具体的には、一方の基板に形成された液晶シール剤の内側に液晶を滴下した後、もう一方の基板を貼り合わせることにより液晶が封止される液晶表示セルの製造方法である。しかし、液晶滴下工法は、液晶シール剤がまず未硬化の状態で液晶に接触するため、その際に液晶シール剤の成分が液晶に溶解して液晶の比抵抗を低下させてしまう不良が発生する問題点がある。   With the recent increase in size of liquid crystal display cells, a so-called liquid crystal dropping method with higher mass productivity has been proposed as a method for manufacturing liquid crystal display cells (see Patent Document 1 and Patent Document 2). Specifically, it is a method of manufacturing a liquid crystal display cell in which liquid crystal is sealed by dropping liquid crystal inside a liquid crystal sealant formed on one substrate and then bonding the other substrate. However, in the liquid crystal dropping method, the liquid crystal sealant first contacts the liquid crystal in an uncured state, and at this time, the liquid crystal sealant component dissolves in the liquid crystal and the specific resistance of the liquid crystal is lowered. There is a problem.

液晶滴下工法での液晶シール剤の貼り合わせの硬化方法として、熱硬化法、光熱硬化併用法、光硬化法が考えられている。
熱硬化法では、加熱による液晶の膨張により硬化途中の低粘度化した液晶シール剤から液晶が漏れてしまう問題と低粘度化した液晶シール剤の成分が液晶に溶解してしまう問題が解決困難である。また、特許文献3、特許文献4には、部分アクリル化エポキシアクリレートと加熱によりラジカルが発生する有機過酸化物と熱硬化剤からなる液晶シール剤で、加熱硬化型液晶シール剤があげられているが、この液晶シール剤を液晶滴下工法に使用した場合、加熱時に接触している液晶に有機過酸化物が溶出して不良が発生してしまう。
As a curing method for laminating a liquid crystal sealant in the liquid crystal dropping method, a thermosetting method, a photothermal curing combined method, and a photocuring method are considered.
In the thermosetting method, it is difficult to solve the problem that the liquid crystal leaks from the liquid crystal sealant whose viscosity is reduced during the curing due to the expansion of the liquid crystal due to heating and the problem that the components of the liquid crystal sealant whose viscosity is reduced are dissolved in the liquid crystal. is there. Further, Patent Document 3 and Patent Document 4 include a liquid crystal sealant composed of a partially acrylated epoxy acrylate, an organic peroxide that generates radicals upon heating, and a thermosetting agent. However, when this liquid crystal sealing agent is used in the liquid crystal dropping method, the organic peroxide is eluted into the liquid crystal that is in contact with the heating, resulting in defects.

光硬化法に用いられる液晶シール剤としては、光ラジカル重合開始剤によりカチオン重合型とラジカル重合型の2種類があげられる。カチオン重合型の液晶シール剤については特許文献5に記載があるが、この液晶シール剤は光硬化の際にイオンが発生するため、接触状態の液晶中にイオン成分が溶出し、液晶の比抵抗を低下させる問題がある。また、ラジカル重合型の液晶シール剤については特許文献6に記載があるが、ラジカル重合型の液晶シール剤は光硬化時の硬化収縮が大きいために、接着強度が弱いという問題点がある。   As the liquid crystal sealing agent used in the photocuring method, there are two types of cationic polymerization type and radical polymerization type depending on the radical photopolymerization initiator. The cationic polymerization type liquid crystal sealant is described in Patent Document 5. However, since this liquid crystal sealant generates ions during photocuring, an ionic component is eluted in the liquid crystal in the contact state, and the specific resistance of the liquid crystal There is a problem of lowering. Moreover, although the radical polymerization type liquid crystal sealing agent is described in Patent Document 6, the radical polymerization type liquid crystal sealing agent has a problem that the adhesive strength is weak because the curing shrinkage during photocuring is large.

光熱硬化併用型液晶シール剤は、信頼性の優れたシール剤が製造し易いと言われ、この分野では最も開発が進んでいる。例としては、特許文献7、特許文献8に記載があるが、未硬化の状態での液晶シール剤の液晶への接触による低分子成分の溶出が問題となる。この光熱硬化併用型液晶シール剤は光硬化成分と熱硬化成分が共存しており、光硬化成分をカチオン重合型にすると上述したように液晶の比抵抗を低下させる問題がある。また、光硬化成分をラジカル重合型にすると上述したように接着力が弱いという問題がある。   The photothermographic liquid crystal sealant is said to be easy to produce a highly reliable sealant, and is most developed in this field. Examples thereof are described in Patent Document 7 and Patent Document 8, but elution of low molecular components due to contact of liquid crystal sealant with liquid crystal in an uncured state becomes a problem. This photothermosetting liquid crystal sealing agent coexists with a photocuring component and a thermosetting component. When the photocuring component is a cationic polymerization type, there is a problem that the specific resistance of the liquid crystal is lowered as described above. Further, when the photocuring component is a radical polymerization type, there is a problem that the adhesive force is weak as described above.

以上、述べてきたように液晶滴下工法での液晶シール剤の貼り合わせの硬化方法として、熱硬化法、光カチオン硬化法、光ラジカル硬化法、光熱硬化併用法がそれぞれ鋭意研究されているが、現在のところ、液晶汚染性、接着性について充分に満足の得られるものではない。   As described above, as the curing method for bonding the liquid crystal sealant in the liquid crystal dropping method, a thermosetting method, a photocationic curing method, a photoradical curing method, and a photothermal curing combined method have been studied earnestly, At present, sufficient satisfaction with respect to liquid crystal contamination and adhesion cannot be obtained.

特開昭63−179323号公報JP-A 63-179323 特開平10−239694号公報JP-A-10-239694 特開平9−194567号公報JP-A-9-194567 特開平10−3084号公報Japanese Patent Laid-Open No. 10-3084 特開2001−89743号公報JP 2001-89743 A 特開平01−243029号公報JP-A-01-243029 特許第3162179号公報Japanese Patent No. 3162179 特許第2846842号公報Japanese Patent No. 2846842

本発明は、加熱のみ、又は光熱併用によって硬化する液晶シール剤に関するものであり、接着性、低液晶汚染性に優れる液晶滴下工法用液晶シール剤を提案するものである。   The present invention relates to a liquid crystal sealant that is cured only by heating or by combined use of light and heat, and proposes a liquid crystal sealant for a liquid crystal dropping method that is excellent in adhesion and low liquid crystal contamination.

本発明者らは、鋭意検討の結果、ヒドロキシ基を有する(メタ)アクリレート化合物とジイソシアネート化合物を反応して得られるウレタン(メタ)アクリレート化合物を含有する液晶滴下工法用液晶シール剤が接着性、耐液晶汚染性に優れることを見出し、本発明を完成するに至った。
即ち本発明は、次の1)〜15)に関するものである。
As a result of intensive studies, the present inventors have found that a liquid crystal sealing agent for a liquid crystal dropping method containing a urethane (meth) acrylate compound obtained by reacting a (meth) acrylate compound having a hydroxy group and a diisocyanate compound has an adhesive property and resistance to resistance. The present inventors have found that the liquid crystal contamination is excellent and have completed the present invention.
That is, the present invention relates to the following 1) to 15).

1)
(a−1)ヒドロキシ基を有する(メタ)アクリレートと(a−2)ジイソシアネートを反応して得られ、かつ原料としてポリオール成分を使用しない(A)ウレタンジ(メタ)アクリレートを含有する液晶滴下工法用液晶シール剤。
2)
上記成分(a−1)が2−ヒドロキシエチル(メタ)アクリレートである上記1)に記載の液晶滴下工法用液晶シール剤。
3)
上記成分(a−2)がトリレンジイソシアネート、イソホロンジイソシアネート、1,6−ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネートから選択される1種又は2種以上である上記1)又は2)に記載の液晶滴下工法用液晶シール剤。
4)
更に、(B)熱ラジカル重合開始剤を含有する上記1)及至3)のいずれか一項に記載の液晶滴下工法用液晶シール剤。
5)
更に、(C)(メタ)アクリル化合物を含有する上記1)及至4)のいずれか一項に記載の液晶滴下工法用液晶シール剤。
6)
更に、(D)有機フィラーを含有する上記1)及至5)のいずれか一項に記載の液晶滴下工法用液晶シール剤。
7)
上記成分(D)が、ウレタン微粒子、アクリル微粒子、スチレン微粒子、スチレンオレフィン微粒子、及びシリコーン微粒子からなる群より選択される1又は2以上の有機フィラーである上記6)に記載の液晶滴下工法用液晶シール剤。
8)
更に、(E)無機フィラーを含有する上記1)及至7)のいずれか一項に記載の液晶滴下工法用液晶シール剤。
9)
更に、(F)シランカップリング剤を含有する上記1)及至8)のいずれか一項に記載の液晶滴下工法用液晶シール剤。
10)
更に、(G)エポキシ化合物を含有する上記1)及至9)のいずれか一項に記載の液晶滴下工法用液晶シール剤。
11)
更に、(H)熱硬化剤を含有する上記1)及至10)のいずれか一項に記載の液晶滴下工法用液晶シール剤。
12)
上記成分(H)が有機酸ヒドラジド化合物である上記11)に記載の液晶滴下工法用液晶シール剤。
13)
更に、(I)光ラジカル重合開始剤を含有する上記1)及至12)のいずれか一項に記載の液晶滴下工法用液晶シール剤。
14)
2枚の基板により構成される液晶表示セルにおいて、一方の基板に形成された上記1)乃至13)のいずれか一項に記載の液晶滴下工法用液晶シール剤の堰の内側に液晶を滴下した後、もう一方の基板を貼り合わせ、その後熱により硬化することを特徴とする液晶表示セルの製造方法。
15)
上記1)乃至13)のいずれか一項に記載の液晶シール剤を硬化して得られ、硬化物でシールされた液晶表示セル。
1)
(A-1) obtained by reacting (meth) acrylate having a hydroxy group with (a-2) diisocyanate and not using a polyol component as a raw material (A) for liquid crystal dropping method containing urethane di (meth) acrylate Liquid crystal sealant.
2)
The liquid crystal sealing agent for liquid crystal dropping method according to 1) above, wherein the component (a-1) is 2-hydroxyethyl (meth) acrylate.
3)
Liquid crystal dropping according to 1) or 2) above, wherein the component (a-2) is one or more selected from tolylene diisocyanate, isophorone diisocyanate, 1,6-hexamethylene diisocyanate, and trimethylhexamethylene diisocyanate. Liquid crystal sealant for construction methods.
4)
Furthermore, the liquid-crystal sealing compound for liquid crystal dropping methods as described in any one of said 1) to 3) containing (B) thermal radical polymerization initiator.
5)
Furthermore, the liquid-crystal sealing compound for liquid crystal dropping methods as described in any one of said 1) to 4) containing (C) (meth) acrylic compound.
6)
Furthermore, (D) Liquid crystal sealing agent for liquid crystal dropping methods as described in any one of said 1) to 5) containing an organic filler.
7)
Liquid crystal for liquid crystal dropping method according to 6), wherein the component (D) is one or more organic fillers selected from the group consisting of urethane fine particles, acrylic fine particles, styrene fine particles, styrene olefin fine particles, and silicone fine particles. Sealing agent.
8)
Furthermore, (E) Liquid crystal sealing agent for liquid crystal dropping methods as described in any one of said 1) to 7) containing an inorganic filler.
9)
Furthermore, (F) Liquid crystal sealing agent for liquid crystal dropping methods as described in any one of said 1) to 8) containing a silane coupling agent.
10)
Furthermore, the liquid-crystal sealing compound for liquid crystal dropping methods as described in any one of said 1) to 9) containing (G) epoxy compound.
11)
Furthermore, (H) Liquid crystal sealing agent for liquid crystal dropping methods as described in any one of said 1) to 10) containing a thermosetting agent.
12)
The liquid crystal sealing agent for a liquid crystal dropping method according to the above 11), wherein the component (H) is an organic acid hydrazide compound.
13)
Furthermore, (I) Liquid crystal sealing agent for liquid crystal dropping methods as described in any one of said 1) to 12) containing radical photopolymerization initiator.
14)
In a liquid crystal display cell composed of two substrates, the liquid crystal was dropped inside the liquid crystal sealing agent weir of the liquid crystal dropping method according to any one of 1) to 13) formed on one substrate. Then, another substrate is bonded together, and then cured by heat, a method for producing a liquid crystal display cell.
15)
A liquid crystal display cell obtained by curing the liquid crystal sealing agent according to any one of 1) to 13) and sealed with a cured product.

本発明の液晶シール剤は、接着性に優れるため、液晶シール剤の線幅を細くして使用することが可能であり、かつ液晶汚染性も低い為、液晶滴下工法に特に好適な液晶シール剤を提案するものである。   Since the liquid crystal sealing agent of the present invention is excellent in adhesiveness, it can be used with a narrow line width of the liquid crystal sealing agent, and also has low liquid crystal contamination, so that it is particularly suitable for the liquid crystal dropping method. This is a proposal.

本発明は(a−1)ヒドロキシ基を有する(メタ)アクリレート化合物と(a−2)ジイソシアネート化合物を反応して得られ、かつ原料としてポリオール成分を使用しない(A)ウレタン(メタ)アクリレート化合物を含有する。
当該ウレタン(メタ)アクリレート化合物は、ウレタン結合を有するため極性が高く基材へ接着強度が非常に高いという特徴を有する。また、原料としてポリオール成分を含有しない為、ガラス転移温度が高く、高温環境下に置かれても高信頼性を維持することできる。
当該ウレタン(メタ)アクリレート化合物は常法で合成することにより得ることができ、(a−2)成分のイソシアネート基1当量あたり、(a−1)成分のヒドロキシ基0.95〜1.1当量を反応させることが好ましい。反応温度は、室温〜100℃が好ましい。
The present invention provides (A) a urethane (meth) acrylate compound obtained by reacting (a-1) a (meth) acrylate compound having a hydroxy group and (a-2) a diisocyanate compound and not using a polyol component as a raw material. contains.
Since the urethane (meth) acrylate compound has a urethane bond, it has a characteristic that the polarity is high and the adhesive strength to the substrate is very high. Moreover, since it does not contain a polyol component as a raw material, the glass transition temperature is high, and high reliability can be maintained even when placed in a high temperature environment.
The urethane (meth) acrylate compound can be obtained by synthesizing by a conventional method, and 0.95 to 1.1 equivalent of the hydroxy group of the component (a-1) per equivalent of the isocyanate group of the component (a-2). Is preferably reacted. The reaction temperature is preferably room temperature to 100 ° C.

(a−1)ヒドロキシ基を有する(メタ)アクリレートとしては、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、1,4−ブタンジオール(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレートのε−カプロラクトン付加物、2−ヒドロキシ−3−フェニルオキシプロピル(メタ)アクリレート等が挙げられる。このうち好ましくは2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレートであり、さらに好ましくは2−ヒドロキシエチル(メタ)アクリレートである。   (A-1) As the (meth) acrylate having a hydroxy group, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 1,4-butanediol (meth) acrylate, polyethylene glycol mono (meth) ) Acrylate, polypropylene glycol mono (meth) acrylate, pentaerythritol tri (meth) acrylate, ε-caprolactone adduct of 2-hydroxyethyl (meth) acrylate, 2-hydroxy-3-phenyloxypropyl (meth) acrylate, and the like. It is done. Of these, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, and polypropylene glycol mono (meth) acrylate are preferable, and 2-hydroxyethyl (meth) is more preferable. Acrylate.

(a−2)ジイソシアネートとしては、分子内に2つのイソシアネート基(−NCO)を有する化合物であれば特に限定されるものでは無いが、例えばトリレンジイソシアネート、イソホロンジイソシアネート、1,6−ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、キシリレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、4、4’−シクロヘキシルメタンジイソシアネート、キシリレンジイソシアネート、1,3−ビス(イソシアナトメチル)シクロヘキサン、トリメチルヘキサメチレンジイソシアネート、ジメリルジイソシアネート、1,5−ナフタレンジイソシアネート、3、3’−ジメチル−4,4’−ジフェニレンジイソシアネート等が挙げられる。このうち好ましくはトリレンジイソシアネート、イソホロンジイソシアネート、1,6−ヘキサメチレンジイソシアネート、キシリレンジイソシアネートであり、更に好ましくはイソホロンジイソシアネートである。   (A-2) The diisocyanate is not particularly limited as long as it is a compound having two isocyanate groups (—NCO) in the molecule. For example, tolylene diisocyanate, isophorone diisocyanate, 1,6-hexamethylene diisocyanate. , Trimethylhexamethylene diisocyanate, xylylene diisocyanate, 4,4′-diphenylmethane diisocyanate, 4,4′-cyclohexylmethane diisocyanate, xylylene diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, trimethylhexamethylene diisocyanate, dimethylyl Examples include diisocyanate, 1,5-naphthalene diisocyanate, 3,3′-dimethyl-4,4′-diphenylene diisocyanate. Of these, tolylene diisocyanate, isophorone diisocyanate, 1,6-hexamethylene diisocyanate and xylylene diisocyanate are preferable, and isophorone diisocyanate is more preferable.

上記ウレタン(メタ)アクリレートの合成時に原料として使用しないポリオール成分とは、分子内に2以上のヒドロキシ基を有する化合物であり、例えば、エチレングリコール、グリセリン、ソルビトール、トリメチロールプロパン、(ポリ)プロピレングリコール等が挙げられる。   The polyol component that is not used as a raw material during the synthesis of the urethane (meth) acrylate is a compound having two or more hydroxy groups in the molecule, such as ethylene glycol, glycerin, sorbitol, trimethylolpropane, (poly) propylene glycol. Etc.

成分(A)の合成には、触媒、重合禁止材、溶剤等を適宜使用しても良い。
触媒としては、ジブチルスズラウリレート、トリエチレンジアミン、トリエチルホスフィン等が挙げられるが、ジブチルスズラウリレートが好適に用いられる。
重合禁止剤としては、BHT(ジブチルヒドロキシトルエン)、ベンゾキノン、ハイドロキノン、ハイドロキノンモノメチルエーテル等が挙げられるが、BHTが好適に用いられる。
溶剤はトルエン、メチルイソブチルケトン等を用いることが出来るが、無溶剤で行う方が簡便である。
成分(A)の含有量としては、液晶シール剤の総量中、1〜50質量%であることが好ましく、さらに好ましくは3〜30質量%であり、5〜20質量%が特に好ましい。
For the synthesis of component (A), a catalyst, a polymerization inhibitor, a solvent, or the like may be used as appropriate.
Examples of the catalyst include dibutyltin laurate, triethylenediamine, triethylphosphine and the like, and dibutyltin laurate is preferably used.
Examples of the polymerization inhibitor include BHT (dibutylhydroxytoluene), benzoquinone, hydroquinone, hydroquinone monomethyl ether and the like, and BHT is preferably used.
As the solvent, toluene, methyl isobutyl ketone or the like can be used, but it is easier to carry out without solvent.
As content of a component (A), it is preferable that it is 1-50 mass% in the total amount of a liquid-crystal sealing compound, More preferably, it is 3-30 mass%, and 5-20 mass% is especially preferable.

本発明の液晶シール剤は、成分(B)として、熱ラジカル重合開始剤を含有しても良い。当該熱ラジカル重合開始剤は、加熱によりラジカルを生じ、連鎖重合反応を開始させる化合物であれば特に限定されないが、有機過酸化物、アゾ化合物、ベンゾイン化合物、ベンゾインエーテル化合物、アセトフェノン化合物、ベンゾピナコール等が挙げられ、ベンゾピナコールが好適に用いられる。例えば、有機過酸化物としては、カヤメックRTMA、M、R、L、LH、SP-30C、パーカドックスCH−50L、BC−FF、カドックスB−40ES、パーカドックス14、トリゴノックスRTM22−70E、23−C70、121、121−50E、121−LS50E、21−LS50E、42、42LS、カヤエステルRTMP−70、TMPO−70、CND−C70、OO−50E、AN、カヤブチルRTMB、パーカドックス16、カヤカルボンRTMBIC−75、AIC−75(化薬アクゾ株式会社製)、パーメックRTMN、H、S、F、D、G、パーヘキサRTMH、HC、パTMH、C、V、22、MC、パーキュアーRTMAH、AL、HB、パーブチルRTMH、C、ND、L、パークミルRTMH、D、パーロイルRTMIB、IPP、パーオクタRTMND、(日油株式会社製)などが市販品として入手可能である。また、アゾ化合物としては、VA−044、V−070、VPE−0201、VSP−1001(和光純薬工業株式会社製)等が市販品として入手可能である。なお、本明細書中、上付きのRTMは登録商標を意味する。 The liquid crystal sealing agent of the present invention may contain a thermal radical polymerization initiator as the component (B). The thermal radical polymerization initiator is not particularly limited as long as it is a compound that generates radicals by heating and initiates a chain polymerization reaction, but is not limited to organic peroxides, azo compounds, benzoin compounds, benzoin ether compounds, acetophenone compounds, benzopinacols, etc. And benzopinacol is preferably used. For example, examples of the organic peroxide include Kayamek RTM A, M, R, L, LH, SP-30C, Parkadox CH-50L, BC-FF, Kadox B-40ES, Parkadox 14, Trigonox RTM 22-70E, 23-C70, 121, 121-50E, 121-LS50E, 21-LS50E, 42, 42LS, Kaya Ester RTM P-70, TMPO-70, CND-C70, OO-50E, AN, Kayabutyl RTM B, Parkardox 16 , Kayacaron RTM BIC-75, AIC-75 (manufactured by Kayaku Akzo Co., Ltd.), Permec RTM N, H, S, F, D, G, Perhexa RTM H, HC, Pat TMH, C, V, 22, MC, Percure RTM AH, AL, HB, Perbutyl RTM H, C, ND, L, Parkmill RT M H, D, Peroyl RTM IB, IPP, Perocta RTM ND, is available as such is a commercially available product (manufactured by NOF Co., Ltd.). Moreover, as an azo compound, VA-044, V-070, VPE-0201, VSP-1001 (made by Wako Pure Chemical Industries Ltd.), etc. are available as a commercial item. In the present specification, the superscript RTM means a registered trademark.

成分(B)として好ましいものは、分子内に酸素−酸素結合(−O−O−)又は窒素−窒素結合(−N=N−)を有さない熱ラジカル重合開始剤である。分子内に酸素−酸素結合(−O−O−)や窒素−窒素結合(−N=N−)を有する熱ラジカル重合開始剤は、ラジカル発生時に多量の酸素や窒素を発するため、液晶シール剤中に気泡を残した状態で硬化し、接着強度等の特性を低下させる虞がある。ベンゾピナコール系の熱ラジカル重合開始剤(ベンゾピナコールを化学的に修飾したものを含む)が特に好適である。具体的には、ベンゾピナコール、1,2−ジメトキシ−1,1,2,2−テトラフェニルエタン、1,2−ジエトキシ−1,1,2,2−テトラフェニルエタン、1,2−ジフェノキシ−1,1,2,2−テトラフェニルエタン、1,2−ジメトキシ−1,1,2,2−テトラ(4−メチルフェニル)エタン、1,2−ジフェノキシ−1,1,2,2−テトラ(4−メトキシフェニル)エタン、1,2−ビス(トリメチルシロキシ)−1,1,2,2−テトラフェニルエタン、1,2−ビス(トリエチルシロキシ)−1,1,2,2−テトラフェニルエタン、1,2−ビス(t−ブチルジメチルシロキシ)−1,1,2,2−テトラフェニルエタン、1−ヒドロキシ−2−トリメチルシロキシ−1,1,2,2−テトラフェニルエタン、1−ヒドロキシ−2−トリエチルシロキシ−1,1,2,2−テトラフェニルエタン、1−ヒドロキシ−2−t−ブチルジメチルシロキシ−1,1,2,2−テトラフェニルエタン等、が挙げられ、好ましくは1−ヒドロキシ−2−トリメチルシロキシ−1,1,2,2−テトラフェニルエタン、1−ヒドロキシ−2−トリエチルシロキシ−1,1,2,2−テトラフェニルエタン、1−ヒドロキシ−2−t−ブチルジメチルシロキシ−1,1,2,2−テトラフェニルエタン、1,2−ビス(トリメチルシロキシ)−1,1,2,2−テトラフェニルエタンであり、さらに好ましくは1−ヒドロキシ−2−トリメチルシロキシ−1,1,2,2−テトラフェニルエタン、1,2−ビス(トリメチルシロキシ)−1,1,2,2−テトラフェニルエタンであり、特に好ましくは1,2−ビス(トリメチルシロキシ)−1,1,2,2−テトラフェニルエタンである。
上記ベンゾピナコールは東京化成工業株式会社、和光純薬工業株式会社等から市販されている。また、ベンゾピナコールのヒドロキシ基をエーテル化することは、周知の方法によって容易に合成可能である。また、ベンゾピナコールのヒドロキシ基をシリルエーテル化することは、対応するベンゾピナコールと各種シリル化剤をピリジン等の塩基性触媒下で加熱させる方法により合成して得ることができる。シリル化剤としては、一般に知られているトリメチルシリル化剤であるトリメチルクロロシラン(TMCS)、ヘキサメチルジシラザン(HMDS)、N,O−ビス(トリメチルシリル)トリフルオロアセトアミド(BSTFA)やトリエチルシリル化剤としてトリエチルクロロシラン(TECS)、t−ブチルジメチルシリル化剤としてt−ブチルメチルシラン(TBMS)等が挙げられる。これらの試薬はシリコン誘導体メーカー等の市場から容易に入手することが出来る。シリル化剤の反応量としては対象化合物のヒドロキシ基1モルに対して1.0〜5.0倍モルが好ましい。さらに好ましくは1.5〜3.0倍モルである。1.0倍モルより少ないと反応効率が悪く、反応時間が長くなるため熱分解を促進してしまう。5.0倍モルより多いと回収の際に分離が悪くなったり、精製が困難になったりしてしまう。
A preferable component (B) is a thermal radical polymerization initiator having no oxygen-oxygen bond (—O—O—) or nitrogen-nitrogen bond (—N═N—) in the molecule. A thermal radical polymerization initiator having an oxygen-oxygen bond (—O—O—) or a nitrogen-nitrogen bond (—N═N—) in the molecule emits a large amount of oxygen or nitrogen when a radical is generated. There exists a possibility that it hardens | cures in the state which left the bubble inside, and characteristics, such as adhesive strength, may be reduced. Particularly preferred are benzopinacol-based thermal radical polymerization initiators (including those obtained by chemically modifying benzopinacol). Specifically, benzopinacol, 1,2-dimethoxy-1,1,2,2-tetraphenylethane, 1,2-diethoxy-1,1,2,2-tetraphenylethane, 1,2-diphenoxy- 1,1,2,2-tetraphenylethane, 1,2-dimethoxy-1,1,2,2-tetra (4-methylphenyl) ethane, 1,2-diphenoxy-1,1,2,2-tetra (4-methoxyphenyl) ethane, 1,2-bis (trimethylsiloxy) -1,1,2,2-tetraphenylethane, 1,2-bis (triethylsiloxy) -1,1,2,2-tetraphenyl Ethane, 1,2-bis (t-butyldimethylsiloxy) -1,1,2,2-tetraphenylethane, 1-hydroxy-2-trimethylsiloxy-1,1,2,2-tetraphenylethane, 1- Hydroxy-2-trie Lucyloxy-1,1,2,2-tetraphenylethane, 1-hydroxy-2-t-butyldimethylsiloxy-1,1,2,2-tetraphenylethane and the like can be mentioned, and preferably 1-hydroxy-2 -Trimethylsiloxy-1,1,2,2-tetraphenylethane, 1-hydroxy-2-triethylsiloxy-1,1,2,2-tetraphenylethane, 1-hydroxy-2-t-butyldimethylsiloxy-1 1,2,2-tetraphenylethane, 1,2-bis (trimethylsiloxy) -1,1,2,2-tetraphenylethane, more preferably 1-hydroxy-2-trimethylsiloxy-1,1. 2,2-tetraphenylethane, 1,2-bis (trimethylsiloxy) -1,1,2,2-tetraphenylethane, particularly preferably 1,2-biphenyl. It is (trimethylsiloxy) 1,1,2,2-phenylethane.
The benzopinacol is commercially available from Tokyo Chemical Industry Co., Ltd., Wako Pure Chemical Industries, Ltd. Moreover, etherification of the hydroxy group of benzopinacol can be easily synthesized by a known method. Moreover, silyl etherification of the hydroxy group of benzopinacol can be obtained by synthesizing by a method of heating the corresponding benzopinacol and various silylating agents under a basic catalyst such as pyridine. Examples of silylating agents include trimethylchlorosilane (TMCS), hexamethyldisilazane (HMDS), N, O-bis (trimethylsilyl) trifluoroacetamide (BSTFA) and triethylsilylating agents, which are generally known trimethylsilylating agents. Examples of triethylchlorosilane (TECS) and t-butyldimethylsilylating agent include t-butylmethylsilane (TBMS). These reagents can be easily obtained from markets such as silicon derivative manufacturers. The reaction amount of the silylating agent is preferably 1.0 to 5.0 times mol for 1 mol of the hydroxy group of the target compound. More preferably, it is 1.5-3.0 times mole. When the amount is less than 1.0 times mol, the reaction efficiency is poor and the reaction time is prolonged, so that thermal decomposition is promoted. When the amount is more than 5.0 times mol, separation may be deteriorated during collection or purification may be difficult.

成分(B)は粒径を細かくし、均一に分散することが好ましい。その平均粒径は、大きすぎると狭ギャップの液晶表示セル製造時に上下ガラス基板を貼り合わせる際のギャップ形成が上手くできない等の不良要因となるため、5μm以下が好ましく、より好ましくは3μm以下である。また、際限なく細かくしても差し支えないが、通常下限は0.1μm程度である。粒径はレーザー回折・散乱式粒度分布測定器(乾式)(株式会社セイシン企業製;LMS−30)により測定できる。   It is preferable that the component (B) has a fine particle size and is uniformly dispersed. The average particle size is preferably 5 μm or less, more preferably 3 μm or less, because if the average particle size is too large, it becomes a cause of defects such as inability to successfully form a gap when the upper and lower glass substrates are bonded together during the production of a narrow gap liquid crystal display cell. . Moreover, although it does not matter even if it makes it infinitely small, usually a minimum is about 0.1 micrometer. The particle size can be measured by a laser diffraction / scattering particle size distribution analyzer (dry type) (manufactured by Seishin Enterprise Co., Ltd .; LMS-30).

成分(B)の含有量としては、液晶シール剤の総量中、0.0001〜10質量%であることが好ましく、さらに好ましくは0.0005〜5質量%であり、0.001〜3質量%が特に好ましい。   As content of a component (B), it is preferable that it is 0.0001-10 mass% in the total amount of a liquid-crystal sealing compound, More preferably, it is 0.0005-5 mass%, 0.001-3 mass%. Is particularly preferred.

本願発明の液晶シール剤は、成分(C)として(メタ)アクリル化合物を含有しても良い。(ここで「(メタ)アクリル」とは「アクリル」及び/又は「メタクリル」を意味する。以下同様。)成分(C)としては、例えば、(メタ)アクリルエステル化合物、エポキシ(メタ)アクリレート化合物等が挙げられる。   The liquid-crystal sealing compound of this invention may contain a (meth) acryl compound as a component (C). (Here, “(meth) acryl” means “acryl” and / or “methacryl”. The same shall apply hereinafter.) Examples of component (C) include (meth) acrylic ester compounds and epoxy (meth) acrylate compounds. Etc.

(メタ)アクリルエステル化合物の具体例としては、N−アクリロイルオキシエチルヘキサヒドロフタルイミド、アクリロイルモルホリン、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、シクロヘキサン−1,4−ジメタノールモノ(メタ)アクリレート、テトラヒドロフロフリル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェニルポリエトキシ(メタ)アクリレート、2−ヒドロキシ−3−フェニルオキシプロピル(メタ)アクリレート、o−フェニルフェノールモノエトキシ(メタ)アクリレート、o−フェニルフェノールポリエトキシ(メタ)アクリレート、p−クミルフェノキシエチル(メタ)アクリレート、イソボニル(メタ)アクリレート、トリブロモフェニルオキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、トリシクロデカンジメタノール(メタ)アクリレート、ビスフェノールAポリエトキシジ(メタ)アクリレート、ビスフェノールAポリプロポキシジ(メタ)アクリレート、ビスフェノールFポリエトキシジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールペンタ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンポリエトキシトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ネオペンチルグリコールとヒドロキシピバリン酸のエステルジアクリレートやネオペンチルグリコールとヒドロキシピバリン酸のエステルのε−カプロラクトン付加物のジアクリレート等のモノマー類を挙げることができる。好ましくは、N−アクリロイルオキシエチルヘキサヒドロフタルイミド、フェノキシエチル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレートを挙げることができる。
エポキシ(メタ)アクリレート化合物は、エポキシ樹脂と(メタ)アクリル酸との反応により公知の方法で得られる。原料となるエポキシ樹脂としては、特に限定されるものではないが、2官能以上のエポキシ樹脂が好ましく、例えば、レゾルシンジグリシジルエーテル、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、イソシアヌレート型エポキシ樹脂、トリフェノールメタン骨格を有するフェノールノボラック型エポキシ樹脂、その他、カテコール、レゾルシノール等の二官能フェノール類のジグリシジルエーテル化物、二官能アルコール類のジグリシジルエーテル化物、およびそれらのハロゲン化物、水素添加物などが挙げられる。これらのうち液晶汚染性の観点から、ビスフェノールA型エポキシ樹脂やレゾルシンジグリシジルエーテルが好ましい。また、エポキシ基と(メタ)アクリロイル基との比率は限定されるものではなく、工程適合性及び液晶汚染性の観点から適切に選択される。
成分(C)は単独で用いても良いし、2種類以上を混合しても良い。本発明の液晶シール剤において、成分(C)を使用する場合には、液晶シール剤の総量中、通常10〜80質量%、好ましくは20〜70質量%である。
Specific examples of the (meth) acrylic ester compound include N-acryloyloxyethyl hexahydrophthalimide, acryloylmorpholine, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and cyclohexane-1,4-dimethanol. Mono (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, phenoxyethyl (meth) acrylate, phenyl polyethoxy (meth) acrylate, 2-hydroxy-3-phenyloxypropyl (meth) acrylate, o-phenylphenol monoethoxy ( (Meth) acrylate, o-phenylphenol polyethoxy (meth) acrylate, p-cumylphenoxyethyl (meth) acrylate, isobornyl (meth) acrylate, tribromophenol Nyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6 -Hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, tricyclodecane dimethanol (meth) acrylate, bisphenol A polyethoxydi (meth) acrylate, bisphenol A polypropoxy di (meth) acrylate, bisphenol F Polyethoxydi (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, tris (acryloxyethyl) isocyanurate, pentaerythris Tall tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, tripentaerythritol hexa (meth) acrylate, tripentaerythritol penta (meth) acrylate, trimethylolpropane tri (meth) Acrylate, trimethylolpropane polyethoxytri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, neopentyl glycol and hydroxypivalic acid ester diacrylate and neopentyl glycol and hydroxypivalic acid ester ε-caprolactone adduct Mention may be made of monomers such as diacrylate. Preferred examples include N-acryloyloxyethyl hexahydrophthalimide, phenoxyethyl (meth) acrylate, and dicyclopentenyloxyethyl (meth) acrylate.
An epoxy (meth) acrylate compound is obtained by a well-known method by reaction with an epoxy resin and (meth) acrylic acid. Although it does not specifically limit as an epoxy resin used as a raw material, An epoxy resin more than bifunctional is preferable, for example, resorcin diglycidyl ether, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin , Phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, bisphenol F novolac type epoxy resin, alicyclic epoxy resin, aliphatic chain epoxy resin, glycidyl ester type epoxy resin, glycidyl amine type epoxy Resin, hydantoin type epoxy resin, isocyanurate type epoxy resin, phenol novolac type epoxy resin having triphenolmethane skeleton, catechol, resorcinol, etc. Diglycidyl ethers of bifunctional phenol, difunctional alcohols diglycidyl ethers of, and their halides, and the like hydrogenated product. Among these, bisphenol A type epoxy resin and resorcin diglycidyl ether are preferable from the viewpoint of liquid crystal contamination. Further, the ratio of the epoxy group to the (meth) acryloyl group is not limited, and is appropriately selected from the viewpoint of process compatibility and liquid crystal contamination.
A component (C) may be used independently and may mix 2 or more types. In the liquid crystal sealing agent of the present invention, when component (C) is used, it is usually 10 to 80% by mass, preferably 20 to 70% by mass, based on the total amount of the liquid crystal sealing agent.

本願発明の液晶シール剤は、成分(D)として有機フィラーを含有しても良い。上記有機フィラーとしては、例えばウレタン微粒子、アクリル微粒子、スチレン微粒子、スチレンオレフィン微粒子及びシリコーン微粒子が挙げられる。なおシリコーン微粒子としてはKMP−594、KMP−597、KMP−598(信越化学工業製)、トレフィルRTME−5500、9701、EP−2001(東レダウコーニング社製)が好ましく、ウレタン微粒子としてはJB−800T、HB−800BK(根上工業株式会社)、スチレン微粒子としてはラバロンRTMT320C、T331C、SJ4400、SJ5400、SJ6400、SJ4300C、SJ5300C、SJ6300C(三菱化学製)が好ましく、スチレンオレフィン微粒子としてはセプトンRTMSEPS2004、SEPS2063が好ましい。
これら有機フィラーは単独で用いても良いし、2種以上を併用しても良い。また2種以上を用いてコアシェル構造としても良い。これらのうち、好ましくは、アクリル微粒子、シリコーン微粒子である。
上記アクリル微粒子を使用する場合、2種類のアクリルゴムからなるコアシェル構造のアクリルゴムである場合が好ましく、特に好ましくはコア層がn−ブチルアクリレートであり、シェル層がメチルメタクリレートであるものが好ましい。これはゼフィアックRTMF−351としてアイカ工業株式会社から販売されている。
また、上記シリコーン微粒子としては、オルガノポリシロキサン架橋物粉体、直鎖のジメチルポリシロキサン架橋物粉体等があげられる。また、複合シリコーンゴムとしては、上記シリコーンゴムの表面にシリコーン樹脂(例えば、ポリオルガノシルセスキオキサン樹脂)を被覆したものがあげられる。これらの微粒子のうち、特に好ましいのは、直鎖のジメチルポリシロキサン架橋粉末のシリコーンゴム又はシリコーン樹脂被覆直鎖ジメチルポリシロキサン架橋粉末の複合シリコーンゴム微粒子である。これらのものは、単独で用いても良いし、2種以上を併用しても良い。また、好ましくは、ゴム粉末の形状は、添加後の粘度の増粘が少ない球状が良い。本発明の液晶シール剤において、成分(D)を使用する場合には、液晶シール剤の総量中、通常5〜50質量%、好ましくは5〜40質量%である。
The liquid-crystal sealing compound of this invention may contain an organic filler as a component (D). Examples of the organic filler include urethane fine particles, acrylic fine particles, styrene fine particles, styrene olefin fine particles, and silicone fine particles. The silicone fine particles are preferably KMP-594, KMP-597, KMP-598 (manufactured by Shin-Etsu Chemical Co., Ltd.), Trefil RTM E-5500, 9701, EP-2001 (manufactured by Toray Dow Corning), and the urethane fine particles are JB- 800T, HB-800BK (Negami Industrial Co., Ltd.), Lavalon RTM T320C, T331C, SJ4400, SJ5400, SJ6400, SJ4300C, SJ5300C, SJ6300C (Mitsubishi Chemical) are preferable as styrene fine particles, and Septon RTM SEPS2004 as styrene olefin fine particles. SEPS 2063 is preferred.
These organic fillers may be used alone or in combination of two or more. Moreover, it is good also as a core-shell structure using 2 or more types. Of these, acrylic fine particles and silicone fine particles are preferable.
When the above acrylic fine particles are used, it is preferable that the acrylic rubber has a core-shell structure composed of two kinds of acrylic rubbers, and particularly preferably a core layer is n-butyl acrylate and a shell layer is methyl methacrylate. This is sold by Aika Industries as Zefiac RTM F-351.
Examples of the silicone fine particles include crosslinked organopolysiloxane powders and linear dimethylpolysiloxane crosslinked powders. Examples of the composite silicone rubber include those obtained by coating the surface of the silicone rubber with a silicone resin (for example, polyorganosilsesquioxane resin). Among these fine particles, a silicone rubber of a linear dimethylpolysiloxane crosslinked powder or a composite silicone rubber fine particle of a silicone resin-coated linear dimethylpolysiloxane crosslinked powder is particularly preferable. These may be used alone or in combination of two or more. Preferably, the rubber powder has a spherical shape with little viscosity increase after addition. In the liquid crystal sealing agent of the present invention, when component (D) is used, it is usually 5 to 50% by mass, preferably 5 to 40% by mass, based on the total amount of the liquid crystal sealing agent.

本発明の液晶シール剤は、成分(E)として、無機フィラーを含有しても良い。本発明で含有する無機フィラーとしては、シリカ、シリコンカーバイド、窒化珪素、窒化ホウ素、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、硫酸カルシウム、マイカ、タルク、クレー、アルミナ、酸化マグネシウム、酸化ジルコニウム、水酸化アルミニウム、水酸化マグネシウム、珪酸カルシウム、珪酸アルミニウム、珪酸リチウムアルミニウム、珪酸ジルコニウム、チタン酸バリウム、硝子繊維、炭素繊維、二硫化モリブデン、アスベスト等が挙げられ、好ましくは溶融シリカ、結晶シリカ、窒化珪素、窒化ホウ素、炭酸カルシウム、硫酸バリウム、硫酸カルシウム、マイカ、タルク、クレー、アルミナ、水酸化アルミニウム、珪酸カルシウム、珪酸アルミニウムが挙げられるが、好ましくはシリカ、アルミナ、タルクである。これら無機フィラーは2種以上を混合して用いても良い。
無機フィラーの平均粒子径は、大きすぎると狭ギャップの液晶セル製造時に上下ガラス基板の貼り合わせ時のギャップ形成がうまくできない等の不良要因となるため、2000nm以下が適当であり、好ましくは1000nm以下、さらに好ましくは300nm以下である。また好ましい下限は10nm程度であり、さらに好ましくは100nm程度である。粒子径はレーザー回折・散乱式粒度分布測定器(乾式)(株式会社セイシン企業製;LMS−30)により測定することができる。
本発明の液晶シール剤において、無機フィラーを使用する場合には、液晶シール剤の総量中、通常5〜50質量%、好ましくは5〜40質量%である。無機フィラーの含有量が5質量%より低い場合、ガラス基板に対する接着強度が低下し、また耐湿信頼性も劣るために、吸湿後の接着強度の低下も大きくなる場合がある。又、無機フィラーの含有量が50質量%より多い場合、フィラー含有量が多すぎるため、つぶれにくく液晶セルのギャップ形成ができなくなってしまう場合がある。
The liquid crystal sealing agent of the present invention may contain an inorganic filler as the component (E). Examples of the inorganic filler contained in the present invention include silica, silicon carbide, silicon nitride, boron nitride, calcium carbonate, magnesium carbonate, barium sulfate, calcium sulfate, mica, talc, clay, alumina, magnesium oxide, zirconium oxide, and aluminum hydroxide. , Magnesium hydroxide, calcium silicate, aluminum silicate, lithium aluminum silicate, zirconium silicate, barium titanate, glass fiber, carbon fiber, molybdenum disulfide, asbestos, etc., preferably fused silica, crystalline silica, silicon nitride, nitriding Examples thereof include boron, calcium carbonate, barium sulfate, calcium sulfate, mica, talc, clay, alumina, aluminum hydroxide, calcium silicate, and aluminum silicate, and silica, alumina, and talc are preferable. These inorganic fillers may be used in combination of two or more.
If the average particle size of the inorganic filler is too large, 2000 nm or less is suitable, preferably 1000 nm or less, because it may cause failure such as inability to form a gap when the upper and lower glass substrates are bonded together during the production of a narrow gap liquid crystal cell. More preferably, it is 300 nm or less. Moreover, a preferable minimum is about 10 nm, More preferably, it is about 100 nm. The particle diameter can be measured by a laser diffraction / scattering particle size distribution analyzer (dry type) (manufactured by Seishin Enterprise Co., Ltd .; LMS-30).
In the liquid crystal sealing agent of the present invention, when an inorganic filler is used, it is usually 5 to 50% by mass, preferably 5 to 40% by mass, in the total amount of the liquid crystal sealing agent. When the content of the inorganic filler is lower than 5% by mass, the adhesive strength to the glass substrate is lowered, and the moisture resistance reliability is inferior, so that the decrease in the adhesive strength after moisture absorption may be increased. Moreover, when there is more content of an inorganic filler than 50 mass%, since there is too much filler content, it may become difficult to collapse and it will become impossible to form the gap of a liquid crystal cell.

本発明の液晶シール剤は、成分(F)としてシランカップリング剤を添加して、接着強度や耐湿性の向上を図ることができる。
成分(F)としては、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)3−アミノプロピルメチルジメトキシシラン、N−(2−アミノエチル)3−アミノプロピルメチルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−メルカプトプロピルトリメトキシシラン、ビニルトリメトキシシラン、N−(2−(ビニルベンジルアミノ)エチル)3−アミノプロピルトリメトキシシラン塩酸塩、3−メタクリロキシプロピルトリメトキシシラン、3−クロロプロピルメチルジメトキシシラン、3−クロロプロピルトリメトキシシラン等が挙げられる。これらのシランカップリング剤はKBMシリーズ、KBEシリーズ等として信越化学工業株式会社等によって販売されている為、市場から容易に入手可能である。本発明の液晶シール剤において、成分(F)を使用する場合には、液晶シール剤総量中、0.05〜3質量%が好適である。
The liquid crystal sealant of the present invention can be improved in adhesion strength and moisture resistance by adding a silane coupling agent as component (F).
Component (F) includes 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltri Methoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyltrimethoxysilane, 3- Aminopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, vinyltrimethoxysilane, N- (2- (vinylbenzylamino) ethyl) 3-aminopropyltrimethoxysilane hydrochloride, 3-methacryloxypropyltrimethoxysilane, 3-chloropropyl Chill dimethoxysilane, 3-chloropropyl trimethoxy silane, and the like. Since these silane coupling agents are sold by Shin-Etsu Chemical Co., Ltd. as KBM series, KBE series, etc., they are easily available from the market. In the liquid crystal sealing agent of the present invention, when component (F) is used, 0.05 to 3% by mass is preferable in the total amount of the liquid crystal sealing agent.

本願発明の液晶シール剤は、成分(G)としてエポキシ化合物を含有しても良い。エポキシ化合物としては特に限定されるものではないが、2官能以上のエポキシ化合物が好ましく、例えば、レゾルシンジグリシジルエーテル、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、イソシアヌレート型エポキシ樹脂、トリフェノールメタン骨格を有するフェノールノボラック型エポキシ樹脂、その他、カテコール、レゾルシノール等の二官能フェノール類のジグリシジルエーテル化物、二官能アルコール類のジグリシジルエーテル化物、およびそれらのハロゲン化物、水素添加物などが挙げられる。これらのうち液晶汚染性の観点から、ビスフェノールA型エポキシ樹脂やレゾルシンジグリシジルエーテルが好ましい。
成分(G)は単独で用いても良いし、2種類以上を混合しても良い。本発明の液晶シール剤において、成分(G)を使用する場合には、液晶シール剤総量中、通常5〜50質量%、好ましくは5〜30質量%である。
The liquid crystal sealing agent of the present invention may contain an epoxy compound as the component (G). Although it does not specifically limit as an epoxy compound, The epoxy compound more than bifunctional is preferable, for example, resorcin diglycidyl ether, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolak type Epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, bisphenol F novolac type epoxy resin, alicyclic epoxy resin, aliphatic chain epoxy resin, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin, hydantoin type Epoxy resin, isocyanurate type epoxy resin, phenol novolak type epoxy resin having triphenolmethane skeleton, and other bifunctional catechol, resorcinol, etc. Diglycidyl ethers of Nord acids, difunctional alcohols diglycidyl ethers of, and their halides, and the like hydrogenated product. Among these, bisphenol A type epoxy resin and resorcin diglycidyl ether are preferable from the viewpoint of liquid crystal contamination.
A component (G) may be used independently and may mix 2 or more types. In the liquid crystal sealing agent of the present invention, when the component (G) is used, it is usually 5 to 50% by mass, preferably 5 to 30% by mass in the total amount of the liquid crystal sealing agent.

本発明の液晶シール剤は、成分(H)として熱硬化剤を含有する。成分(H)は、上記成分(B)熱ラジカル重合開始剤とは異なり、加熱によってラジカルを発生しない熱硬化剤を意味する。具体的には、非共有電子対や分子内のアニオンによって、求核的に反応するものであって、例えば多価アミン類、多価フェノール類、有機酸ヒドラジド化合物等を挙げる事ができる。ただしこれらに限定されるものではない。これらのうち有機酸ヒドラジド化合物が特に好適に用いられる。例えば、芳香族ヒドラジドであるテレフタル酸ジヒドラジド、イソフタル酸ジヒドラジド、2,6−ナフトエ酸ジヒドラジド、2,6−ピリジンジヒドラジド、1,2,4−ベンゼントリヒドラジド、1,4,5,8−ナフトエ酸テトラヒドラジド、ピロメリット酸テトラヒドラジド等をあげることが出来る。また、脂肪族ヒドラジド化合物であれば、例えば、ホルムヒドラジド、アセトヒドラジド、プロピオン酸ヒドラジド、シュウ酸ジヒドラジド、マロン酸ジヒドラジド、コハク酸ジヒドラジド、グルタル酸ジヒドラジド、アジピン酸ジヒドラジド、ピメリン酸ジヒドラジド、セバシン酸ジヒドラジド、1,4−シクロヘキサンジヒドラジド、酒石酸ジヒドラジド、リンゴ酸ジヒドラジド、イミノジ酢酸ジヒドラジド、N,N’−ヘキサメチレンビスセミカルバジド、クエン酸トリヒドラジド、ニトリロ酢酸トリヒドラジド、シクロヘキサントリカルボン酸トリヒドラジド、1,3−ビス(ヒドラジノカルボノエチル)−5−イソプロピルヒダントイン等のヒダントイン骨格、好ましくはバリンヒダントイン骨格(ヒダントイン環の炭素原子がイソプロピル基で置換された骨格)を有するジヒドラジド化合物、トリス(1−ヒドラジノカルボニルメチル)イソシアヌレート、トリス(2−ヒドラジノカルボニルエチル)イソシアヌレート、トリス(1−ヒドラジノカルボニルエチル)イソシアヌレート、トリス(3−ヒドラジノカルボニルプロピル)イソシアヌレート、ビス(2−ヒドラジノカルボニルエチル)イソシアヌレート等をあげることができる。硬化反応性と潜在性のバランスから好ましくは、イソフタル酸ジヒドラジド、マロン酸ジヒドラジド、アジピン酸ジヒドラジド、トリス(1−ヒドラジノカルボニルメチル)イソシアヌレート、トリス(1−ヒドラジノカルボニルエチル)イソシアヌレート、トリス(2−ヒドラジノカルボニルエチル)イソシアヌレート、トリス(3−ヒドラジノカルボニルプロピル)イソシアヌレートであり、特に好ましくはトリス(2−ヒドラジノカルボニルエチル)イソシアヌレートである。
成分(H)は単独で用いても良いし、2種類以上を混合しても良い。本発明の液晶シール剤において、成分(H)を使用する場合には、液晶シール剤総量中、通常0.1〜10質量%、好ましくは1〜5質量%である。
The liquid crystal sealing agent of the present invention contains a thermosetting agent as the component (H). The component (H) means a thermosetting agent that does not generate radicals by heating, unlike the component (B) thermal radical polymerization initiator. Specifically, it reacts nucleophilically with an unshared electron pair or an anion in the molecule, and examples thereof include polyvalent amines, polyhydric phenols, and organic acid hydrazide compounds. However, it is not limited to these. Of these, organic acid hydrazide compounds are particularly preferably used. For example, the aromatic hydrazide terephthalic acid dihydrazide, isophthalic acid dihydrazide, 2,6-naphthoic acid dihydrazide, 2,6-pyridinedihydrazide, 1,2,4-benzenetrihydrazide, 1,4,5,8-naphthoic acid Examples thereof include tetrahydrazide and pyromellitic acid tetrahydrazide. Examples of aliphatic hydrazide compounds include form hydrazide, acetohydrazide, propionic acid hydrazide, oxalic acid dihydrazide, malonic acid dihydrazide, succinic acid dihydrazide, glutaric acid dihydrazide, adipic acid dihydrazide, pimelic acid dihydrazide, sebacic acid dihydrazide. 1,4-cyclohexanedihydrazide, tartaric acid dihydrazide, malic acid dihydrazide, iminodiacetic acid dihydrazide, N, N'-hexamethylenebissemicarbazide, citric acid trihydrazide, nitriloacetic acid trihydrazide, cyclohexanetricarboxylic acid trihydrazide, 1,3-bis ( Hydantoin skeleton such as hydrazinocarbonoethyl) -5-isopropylhydantoin, preferably valine hydantoin skeleton (where the carbon atom of the hydantoin ring is iso Dihydrazide compounds having a skeleton substituted with a propyl group), tris (1-hydrazinocarbonylmethyl) isocyanurate, tris (2-hydrazinocarbonylethyl) isocyanurate, tris (1-hydrazinocarbonylethyl) isocyanurate, tris (3-hydrazinocarbonylpropyl) isocyanurate, bis (2-hydrazinocarbonylethyl) isocyanurate and the like can be mentioned. Preferably, from the balance of curing reactivity and latency, isophthalic acid dihydrazide, malonic acid dihydrazide, adipic acid dihydrazide, tris (1-hydrazinocarbonylmethyl) isocyanurate, tris (1-hydrazinocarbonylethyl) isocyanurate, tris ( 2-Hydrazinocarbonylethyl) isocyanurate and tris (3-hydrazinocarbonylpropyl) isocyanurate, particularly preferably tris (2-hydrazinocarbonylethyl) isocyanurate.
A component (H) may be used independently and may mix 2 or more types. In the liquid crystal sealing agent of the present invention, when component (H) is used, it is usually 0.1 to 10% by mass, preferably 1 to 5% by mass in the total amount of the liquid crystal sealing agent.

本願発明の液晶シール剤は、成分(I)として光ラジカル重合開始剤を含有しても良い。光ラジカル重合開始剤としては、紫外線や可視光の照射によって、ラジカルや酸を発生し、連鎖重合反応を開始させる化合物であれば特に限定されないが、例えば、ベンジルジメチルケタール、1−ヒドロキシシクロヘキシルフェニルケトン、ジエチルチオキサントン、ベンゾフェノン、2−エチルアンスラキノン、2−ヒドロキシ−2−メチルプロピオフェノン、2−メチル−〔4−(メチルチオ)フェニル〕−2−モルフォリノ−1−プロパン、2,4,6−トリメチルベンゾイルジフェニルホスヒンオキサイド、カンファーキノン、9−フルオレノン、ジフェニルジスルヒド等を挙げることができる。具体的には、IRGACURERTM 651、184、2959、127、907、369、379EG、819、784、754、500、OXE01、OXE02、DAROCURERTM1173、LUCIRINRTM TPO(いずれもBASF社製)、セイクオールRTMZ、BZ、BEE、BIP、BBI(いずれも精工化学株式会社製)等を挙げることができる。
また、液晶汚染性の観点から、分子内に(メタ)アクリル基を有するものを使用する事が好ましく、例えば2−メタクリロイルオキシエチルイソシアネートと1−[4−(2−ヒドロキシエトキシ)−フェニル]−2−ヒドロキシ−2メチル−1−プロパン−1−オンとの反応生成物が好適に用いられる。この化合物は国際公開第2006/027982号記載の方法にて製造して得ることができる。
本発明の液晶シール剤において、成分(I)を使用する場合には、液晶シール剤総量中、通常0.001〜3質量%、好ましくは0.002〜2質量%である。
The liquid crystal sealing agent of the present invention may contain a radical photopolymerization initiator as component (I). The radical photopolymerization initiator is not particularly limited as long as it is a compound that generates a radical or an acid upon irradiation with ultraviolet rays or visible light, and initiates a chain polymerization reaction. For example, benzyldimethyl ketal, 1-hydroxycyclohexyl phenyl ketone , Diethylthioxanthone, benzophenone, 2-ethylanthraquinone, 2-hydroxy-2-methylpropiophenone, 2-methyl- [4- (methylthio) phenyl] -2-morpholino-1-propane, 2,4,6- Examples thereof include trimethylbenzoyldiphenylphosphine oxide, camphorquinone, 9-fluorenone, diphenyldisulfide and the like. Specifically, IRGACURE RTM 651, 184, 2959, 127, 907, 369, 379EG, 819, 784, 754, 500, OXE01, OXE02, DAROCURE RTM 1173, LUCIRIN RTM TPO (all manufactured by BASF), Sequol RTM Z, BZ, BEE, BIP, BBI (all of which are manufactured by Seiko Chemical Co., Ltd.) and the like.
Moreover, it is preferable to use what has a (meth) acryl group in a molecule | numerator from a liquid crystal contamination viewpoint, for example, 2-methacryloyloxyethyl isocyanate and 1- [4- (2-hydroxyethoxy) -phenyl]- The reaction product with 2-hydroxy-2methyl-1-propan-1-one is preferably used. This compound can be obtained by the method described in International Publication No. 2006/027982.
In the liquid crystal sealing agent of the present invention, when component (I) is used, it is usually 0.001 to 3% by mass, preferably 0.002 to 2% by mass in the total amount of the liquid crystal sealing agent.

本発明の液晶シール剤には、さらに必要に応じて、有機酸やイミダゾール等の硬化促進剤、ラジカル重合防止剤、顔料、レベリング剤、消泡剤、溶剤などの添加剤を配合することができる。   If necessary, the liquid crystal sealant of the present invention may further contain additives such as curing accelerators such as organic acids and imidazoles, radical polymerization inhibitors, pigments, leveling agents, antifoaming agents and solvents. .

上記硬化促進剤としては、有機酸やイミダゾール等を挙げることができる。
有機酸としては、有機カルボン酸や有機リン酸等が挙げられるが、有機カルボン酸である場合が好ましい。具体的には、フタル酸、イソフタル酸、テレフタル酸、トリメリット酸、ベンゾフェノンテトラカルボン酸、フランジカルボン酸等の芳香族カルボン酸、コハク酸、アジピン酸、ドデカン二酸、セバシン酸、チオジプロピオン酸、シクロヘキサンジカルボン酸、トリス(2−カルボキシメチル)イソシアヌレート、トリス(2−カルボキシエチル)イソシアヌレート、トリス(2−カルボキシプロピル)イソシアヌレート、ビス(2−カルボキシエチル)イソシアヌレート等を挙げることができる。
また、イミダゾール化合物としては、2−メチルイミダゾール、2−フェニルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、2,4−ジアミノ−6(2’−メチルイミダゾール(1’))エチル−s−トリアジン、2,4−ジアミノ−6(2’−ウンデシルイミダゾール(1’))エチル−s−トリアジン、2 ,4−ジアミノ−6(2 ’−エチル−4−メチルイミダゾール(1’))エチル−s−トリアジン、2,4− ジアミノ−6(2’−メチルイミダゾール(1 ’))エチル−s−トリアジン・イソシアヌル酸付加物、2−メチルイミダゾールイソシアヌル酸の2:3付加物、2−フェニルイミダゾールイソシアヌル酸付加物、2−フェニル−3,5−ジヒドロキシメチルイミダゾール、2−フェニル−4−ヒドロキシメチル−5−メチルイミダゾール、1−シアノエチル−2−フェニル−3,5−ジシアノエトキシメチルイミダゾール等が挙げられる。
本発明の液晶シール剤において、硬化促進剤を使用する場合には、液晶シール剤の総量中、通常0.1〜10質量%、好ましくは1〜5質量%である。
Examples of the curing accelerator include organic acids and imidazoles.
Examples of the organic acid include organic carboxylic acids and organic phosphoric acids, but organic carboxylic acids are preferred. Specifically, aromatic carboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid, benzophenone tetracarboxylic acid, furandicarboxylic acid, succinic acid, adipic acid, dodecanedioic acid, sebacic acid, thiodipropionic acid , Cyclohexanedicarboxylic acid, tris (2-carboxymethyl) isocyanurate, tris (2-carboxyethyl) isocyanurate, tris (2-carboxypropyl) isocyanurate, bis (2-carboxyethyl) isocyanurate and the like. .
Examples of imidazole compounds include 2-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-phenylimidazole, and 1-benzyl. 2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole, 2,4-diamino-6 (2′-methylimidazole (1 ′ )) Ethyl-s-triazine, 2,4-diamino-6 (2′-undecylimidazole (1 ′)) ethyl-s-triazine, 2,4-diamino-6 (2′-ethyl-4-methylimidazole) (1 ′)) Ethyl-s-triazine, 2,4-diamino-6 (2′- Methylimidazole (1 ′)) ethyl-s-triazine isocyanuric acid adduct, 2-methylimidazole isocyanuric acid 2: 3 adduct, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl-3,5-dihydroxymethyl Examples include imidazole, 2-phenyl-4-hydroxymethyl-5-methylimidazole, and 1-cyanoethyl-2-phenyl-3,5-dicyanoethoxymethylimidazole.
In the liquid crystal sealant of the present invention, when a curing accelerator is used, it is usually 0.1 to 10% by mass, preferably 1 to 5% by mass, based on the total amount of the liquid crystal sealant.

上記ラジカル重合防止剤としては、光ラジカル重合開始剤や熱ラジカル重合開始剤等から発生するラジカルと反応して重合を防止する化合物であれば特に限定されるものではなく、キノン系、ピペリジン系、ヒンダードフェノール系、ニトロソ系等を用いることができる。具体的には、ナフトキノン、2−ヒドロキシナフトキノン、2−メチルナフトキノン、2−メトキシナフトキノン、2,2,6,6,−テトラメチルピペリジン−1−オキシル、2,2,6,6,−テトラメチル−4−ヒドロキシピペリジン−1−オキシル、2,2,6,6,−テトラメチル−4−メトキシピペリジン−1−オキシル、2,2,6,6,−テトラメチル−4−フェノキシピペリジン−1−オキシル、ハイドロキノン、2−メチルハイドロキノン、2−メトキシハイドロキノン、パラベンゾキノン、ブチル化ヒドロキシアニソール、2,6−ジ−t−ブチル−4−エチルフェノール、2,6−ジ−t−ブチルクレゾール、ステアリルβ−(3,5−ジt−ブチル−4−ヒドロキシフェニル)プロピオネート、2,2’−メチレンビス(4−エチル−6−t−ブチルフェノール)、4,4’−チオビス−3−メチル−6−t−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェノール)、3,9−ビス[1,1−ジメチル−2−[β―(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]エチル]、2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、テトラキス−[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニルプロピオネート)メタン、1,3,5−トリス(3’,5’−ジ−t−ブチル−4’−ヒドロキシベンジル)−sec−トリアジン−2,4,6−(1H,3H,5H)トリオン、パラメトキシフェノール、4−メトキシ−1−ナフトール、チオジフェニルアミン、N−ニトロソフェニルヒドロキシアミンのアルミニウム塩、商品名アデカスタブLA−81、商品名アデカスタブLA−82(株式会社アデカ製)等が挙げられるが、これらに限定されるものではない。これらのうちナフトキノン系、ハイドロキノン系、ニトロソ系ピペラジン系のラジカル重合防止剤が好ましく、ナフトキノン、2−ヒドロキシナフトキノン、ハイドロキノン、2,6−ジ−tert−ブチル−P−クレゾール、ポリストップ7300P(伯東株式会社製)が更に好ましく、ポリストップ7300P(伯東株式会社製)が最も好ましい。
ラジカル重合防止剤の含有量としては本発明の液晶シール剤総量中、0.0001〜1質量%が好ましく、0.001〜0.5質量%が更に好ましく、0.01〜0.2質量%が特に好ましい。
The radical polymerization inhibitor is not particularly limited as long as it is a compound that prevents polymerization by reacting with radicals generated from a photo radical polymerization initiator or a thermal radical polymerization initiator, and is not limited to quinone, piperidine, A hindered phenol type, a nitroso type, etc. can be used. Specifically, naphthoquinone, 2-hydroxynaphthoquinone, 2-methylnaphthoquinone, 2-methoxynaphthoquinone, 2,2,6,6, -tetramethylpiperidine-1-oxyl, 2,2,6,6, -tetramethyl -4-hydroxypiperidine-1-oxyl, 2,2,6,6, -tetramethyl-4-methoxypiperidine-1-oxyl, 2,2,6,6, -tetramethyl-4-phenoxypiperidine-1- Oxyl, hydroquinone, 2-methylhydroquinone, 2-methoxyhydroquinone, parabenzoquinone, butylated hydroxyanisole, 2,6-di-t-butyl-4-ethylphenol, 2,6-di-t-butylcresol, stearyl β -(3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2,2'-methylene (4-ethyl-6-tert-butylphenol), 4,4′-thiobis-3-methyl-6-tert-butylphenol), 4,4′-butylidenebis (3-methyl-6-tert-butylphenol), 3 , 9-bis [1,1-dimethyl-2- [β- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] ethyl], 2,4,8,10-tetraoxaspiro [ 5,5] undecane, tetrakis- [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenylpropionate) methane, 1,3,5-tris (3 ′, 5′- Di-t-butyl-4′-hydroxybenzyl) -sec-triazine-2,4,6- (1H, 3H, 5H) trione, paramethoxyphenol, 4-methoxy-1-naphthol, thiodiphenylamine, N-nitroso Examples include, but are not limited to, an aluminum salt of phenylhydroxyamine, trade name ADK STAB LA-81, trade name ADK STAB LA-82 (manufactured by Adeka Corporation), and the like. Of these, naphthoquinone, hydroquinone, and nitroso piperazine radical polymerization inhibitors are preferred, and naphthoquinone, 2-hydroxynaphthoquinone, hydroquinone, 2,6-di-tert-butyl-P-cresol, Polystop 7300P (Hakuto Co., Ltd.) Company-made) is more preferred, and Polystop 7300P (made by Hakuto Co., Ltd.) is most preferred.
The content of the radical polymerization inhibitor is preferably 0.0001 to 1% by mass, more preferably 0.001 to 0.5% by mass, and 0.01 to 0.2% by mass in the total amount of the liquid crystal sealant of the present invention. Is particularly preferred.

本発明の液晶シール剤を得る方法の一例としては、次に示す方法がある。まず、(A)成分、必要に応じて(C)成分、(G)成分、(I)成分を加熱溶解する。次いで室温まで冷却後、必要に応じて(B)成分、(D)成分、(E)成分、(F)成分、(H)成分、消泡剤、及びレベリング剤、溶剤等を添加し、公知の混合装置、例えば3本ロール、サンドミル、ボールミル等により均一に混合し、金属メッシュにて濾過することにより本発明の液晶シール剤を製造することができる。   An example of a method for obtaining the liquid crystal sealant of the present invention is the following method. First, the component (A) and, if necessary, the component (C), the component (G), and the component (I) are dissolved by heating. Next, after cooling to room temperature, (B) component, (D) component, (E) component, (F) component, (H) component, antifoaming agent, leveling agent, solvent, etc. are added as necessary, and known The liquid crystal sealant of the present invention can be produced by uniformly mixing with a mixing apparatus such as a three-roller, a sand mill, a ball mill or the like and filtering with a metal mesh.

本発明の液晶表示セルは、基板に所定の電極を形成した一対の基板を所定の間隔に対向配置し、周囲を本発明の液晶シール剤でシールし、その間隙に液晶が封入されたものである。封入される液晶の種類は特に限定されない。ここで、基板とはガラス、石英、プラスチック、シリコン等からなる少なくとも一方に光透過性がある組み合わせの基板から構成される。その製法としては、本発明の液晶シール剤に、グラスファイバー等のスペーサ(間隙制御材)を添加後、該一対の基板の一方にディスペンサー、またはスクリーン印刷装置等を用いて該液晶シール剤を塗布した後、必要に応じて、80〜120℃で仮硬化を行う。その後、該液晶シール剤の堰の内側に液晶を滴下し、真空中にてもう一方のガラス基板を重ね合わせ、ギャップ出しを行う。ギャップ形成後、90〜130℃で1時間〜2時間硬化することにより本発明の液晶表示セルを得ることができる。また光熱併用型として使用する場合は、紫外線照射機により液晶シール剤部に紫外線を照射させて光硬化させる。紫外線照射量は、好ましくは500〜6000mJ/cm、より好ましくは1000〜4000mJ/cmの照射量が好ましい。その後必要に応じて、90〜130℃で1〜2時間硬化することにより本発明の液晶表示セルを得ることができる。このようにして得られた本発明の液晶表示セルは、液晶汚染による表示不良が無く、接着性、耐湿信頼性に優れたものである。スペーサとしては、例えばグラスファイバー、シリカビーズ、ポリマービーズ等があげられる。その直径は、目的に応じ異なるが、通常2〜8μm、好ましくは4〜7μmである。その使用量は、本発明の液晶シール剤100質量部に対し通常0.1〜4質量部、好ましくは0.5〜2質量部、更に、好ましくは0.9〜1.5質量部程度である。 The liquid crystal display cell of the present invention is a cell in which a pair of substrates having predetermined electrodes formed on a substrate are arranged opposite to each other at a predetermined interval, the periphery is sealed with the liquid crystal sealant of the present invention, and the liquid crystal is sealed in the gap. is there. The kind of liquid crystal to be sealed is not particularly limited. Here, the substrate is composed of a combination of substrates made of at least one of glass, quartz, plastic, silicon, etc. and having light transmission properties. As a manufacturing method thereof, after adding a spacer (gap control material) such as glass fiber to the liquid crystal sealant of the present invention, the liquid crystal sealant is applied to one of the pair of substrates using a dispenser or a screen printing device. Then, if necessary, temporary curing is performed at 80 to 120 ° C. Thereafter, a liquid crystal is dropped inside the weir of the liquid crystal sealant, and the other glass substrate is overlaid in a vacuum to create a gap. After forming the gap, the liquid crystal display cell of the present invention can be obtained by curing at 90 to 130 ° C. for 1 to 2 hours. When used as a photothermal combination type, the liquid crystal sealant is irradiated with ultraviolet rays by an ultraviolet irradiator and photocured. UV irradiation dose is preferably 500~6000mJ / cm 2, more preferably the dose of 1000~4000mJ / cm 2 is preferred. Then, if necessary, the liquid crystal display cell of the present invention can be obtained by curing at 90 to 130 ° C. for 1 to 2 hours. The liquid crystal display cell of the present invention thus obtained has no display defects due to liquid crystal contamination, and has excellent adhesion and moisture resistance reliability. Examples of the spacer include glass fiber, silica beads, and polymer beads. The diameter varies depending on the purpose, but is usually 2 to 8 μm, preferably 4 to 7 μm. The amount used is usually 0.1 to 4 parts by weight, preferably 0.5 to 2 parts by weight, more preferably about 0.9 to 1.5 parts by weight with respect to 100 parts by weight of the liquid crystal sealant of the present invention. is there.

本発明の液晶シール剤は、熱硬化性が非常に良好であり、液晶滴下工法における加熱工程において速やかに硬化し、その硬化物は接着性に優れ、且つ液晶汚染性が良好なため、本発明の液晶シール剤を用いることにより、信頼性に優れる液晶表示セルを作成することが可能である。   The liquid crystal sealant of the present invention has a very good thermosetting property, and quickly cures in the heating step in the liquid crystal dropping method, and the cured product is excellent in adhesiveness and liquid crystal contamination. By using the liquid crystal sealant, it is possible to produce a liquid crystal display cell having excellent reliability.

以下合成例、実施例により本発明を更に詳細に説明するが、本発明は実施例に限定されるものではない。尚、特別の記載のない限り、本文中「部」及び「%」とあるのは質量基準である。   EXAMPLES Hereinafter, the present invention will be described in more detail with reference to synthesis examples and examples, but the present invention is not limited to the examples. Unless otherwise specified, “part” and “%” in the text are based on mass.

[合成例1]
[ウレタンアクリレートの合成]
(a−1)として2−ヒドロキシエチルアクリレート111.8g、(a−2)としてイソホロンジイソシアネート102.0g、BHT0.8g、ジブチルスズラウリレート0.41gを仕込み、室温で30分混合した後、80℃で約5時間反応を行い、イソシアネート基が0.1%以下になったところで反応を終了することにより、目的とするウレタンアクリレート210gを得た。
なお、イソシアネート基の残存率は、ウレタンアクリレートをトルエンに溶解し、ジブチルアミンを添加してイソシアネート基と反応させ、アルコールで希釈後、未反応のジブチルアミンを塩酸で滴定することで求めた。
[Synthesis Example 1]
[Synthesis of urethane acrylate]
After charging 111.8 g of 2-hydroxyethyl acrylate as (a-1) and 102.0 g of isophorone diisocyanate, 0.8 g of BHT and 0.41 g of dibutyltin laurate as (a-2), mixing at room temperature for 30 minutes, then 80 ° C. And the reaction was terminated when the isocyanate group became 0.1% or less to obtain 210 g of the target urethane acrylate.
The residual ratio of isocyanate groups was determined by dissolving urethane acrylate in toluene, adding dibutylamine to react with isocyanate groups, diluting with alcohol, and titrating unreacted dibutylamine with hydrochloric acid.

[合成例2]
[熱ラジカル重合開始剤の合成]
市販ベンゾピナコール(東京化成工業株式会社製)100部(0.28モル)をジメチルホルムアルデヒド350部に溶解させた。これに塩基触媒としてピリジン32部(0.4モル)、シリル化剤としてBSTFA(信越化学工業株式会社製)150部(0.58モル)を加え70℃まで昇温し、2時間攪拌した。得られた反応液を冷却し、攪拌しながら、水200部を入れ、生成物を沈殿させると共に未反応シリル化剤を失活させた。沈殿した生成物をろ別分離した後十分に水洗した。次いで得られた生成物をアセトンに溶解し、水を加えて再結晶させ、精製した。目的の1, 2−ビス(トリメチルシロキシ)−1,1, 2,2−テトラフェニルエタンを105.6部(収率88.3%)得た。
HPLC(高速液体クロマトグラフィー)で分析した結果、純度は99.0%(面積百分率)であった。
[Synthesis Example 2]
[Synthesis of thermal radical polymerization initiator]
100 parts (0.28 mol) of commercially available benzopinacol (manufactured by Tokyo Chemical Industry Co., Ltd.) was dissolved in 350 parts of dimethylformaldehyde. To this were added 32 parts (0.4 mol) of pyridine as a base catalyst and 150 parts (0.58 mol) of BSTFA (manufactured by Shin-Etsu Chemical Co., Ltd.) as a silylating agent, and the mixture was heated to 70 ° C. and stirred for 2 hours. The obtained reaction solution was cooled and stirred while adding 200 parts of water to precipitate the product and deactivate the unreacted silylating agent. The precipitated product was separated by filtration and thoroughly washed with water. Subsequently, the obtained product was dissolved in acetone, recrystallized by adding water and purified. 105.6 parts (yield 88.3%) of the desired 1,2-bis (trimethylsiloxy) -1,1,2,2-tetraphenylethane were obtained.
As a result of analysis by HPLC (high performance liquid chromatography), the purity was 99.0% (area percentage).

[合成例3]
[ビスフェノールA型エポキシ樹脂のエポキシアクリレートの合成]
ビスフェノールA型エポキシ樹脂282.5g(製品名:YD−8125、新日鉄化学株式会社製)をトルエン266.8gに溶解し、これに重合禁止剤としてジブチルヒドロキシトルエン0.8gを加え、60℃まで昇温した。その後、エポキシ基の100%当量のアクリル酸117.5gを加え更に80℃まで昇温し、これに反応触媒であるトリメチルアンモニウムクロライド0.6gを添加して、98℃で約30時間攪拌し、反応液を得た。この反応液を水洗し、トルエンを留去することにより、目的とするビスフェノールA型のエポキシアクリレート(アクリル化ビスフェノールA型エポキシ樹脂)395gを得た(KAYARADRTMR−93100)。
[Synthesis Example 3]
[Synthesis of epoxy acrylate of bisphenol A type epoxy resin]
282.5 g of bisphenol A type epoxy resin (product name: YD-8125, manufactured by Nippon Steel Chemical Co., Ltd.) was dissolved in 266.8 g of toluene, and 0.8 g of dibutylhydroxytoluene was added to this as a polymerization inhibitor, and the temperature was raised to 60 ° C. Warm up. Thereafter, 117.5 g of acrylic acid with 100% equivalent of epoxy group was added and the temperature was further raised to 80 ° C., 0.6 g of trimethylammonium chloride as a reaction catalyst was added thereto, and the mixture was stirred at 98 ° C. for about 30 hours, A reaction solution was obtained. The reaction solution was washed with water and toluene was distilled off to obtain 395 g of the desired bisphenol A type epoxy acrylate (acrylated bisphenol A type epoxy resin) (KAYARAD RTM R-93100).

[実施例1、比較例1〜3]
下記表1に示す割合でウレタン(メタ)アクリレート(成分(A))、(メタ)アクリル樹脂(成分(C))エポキシ樹脂(成分(G))、光ラジカル重合開始剤(成分(I))、を90℃で加熱溶解させた後、室温まで冷却し、シランカップリング剤(成分(F))、無機フィラー(成分(E))、有機フィラー(成分(D))、熱ラジカル重合開始剤(成分(B))、硬化剤(成分(H))を添加し、攪拌した後、3本ロールミルにて分散させ、金属メッシュ(635メッシュ)で濾過し、液晶滴下工法用シール剤実施例1、2、比較例1〜3を調製した。
[Example 1, Comparative Examples 1-3]
Urethane (meth) acrylate (component (A)), (meth) acrylic resin (component (C)) epoxy resin (component (G)), radical photopolymerization initiator (component (I)) in the proportions shown in Table 1 below Are heated and dissolved at 90 ° C., and then cooled to room temperature. A silane coupling agent (component (F)), an inorganic filler (component (E)), an organic filler (component (D)), and a thermal radical polymerization initiator. (Component (B)) and a curing agent (component (H)) were added and stirred, then dispersed with a three-roll mill, filtered through a metal mesh (635 mesh), and a sealing agent for liquid crystal dropping method Example 1 2 and Comparative Examples 1 to 3 were prepared.

評価試験は下記の方法で実施した。   The evaluation test was carried out by the following method.

(接着強度の測定)
得られた液晶シール剤100gにスペーサとして5μmのグラスファイバー1gを添加して混合撹拌を行う。この液晶シール剤を25mm×25mmのガラス基板上にディスペンサーまたはスクリーン印刷機でシール剤を塗布し、25mm×30mmのガラス基板を貼り合わせた後、オーブンに投入して120℃1時間熱硬化させた。得られた試験片をボンドテスター(SS−30WD:西進商事株式会社製)にてシール端から直線で5mmの位置をピンで押し込む接着強度を測定した。結果を表1に示す。
(Measurement of adhesive strength)
To 100 g of the obtained liquid crystal sealant, 1 g of 5 μm glass fiber is added as a spacer and mixed and stirred. The liquid crystal sealant was applied to a 25 mm × 25 mm glass substrate with a dispenser or a screen printer, and the glass substrate of 25 mm × 30 mm was bonded together, and then placed in an oven and thermally cured at 120 ° C. for 1 hour. . The adhesion strength of the test piece obtained by pushing a 5 mm straight line from the seal end with a pin was measured with a bond tester (SS-30WD: manufactured by Seishin Shoji Co., Ltd.). The results are shown in Table 1.

(ガラス転移温度)
得られた液晶シール剤をポリエチレンテレフタレート(PET)フィルムに挟み、厚み100μmの薄膜としたものをオーブンに投入して120℃1時間熱硬化させた。硬化後PETフィルムを剥がしてサンプルとした。得られたサンプルを動的粘弾性測定装置(DMS−6100:エスアイアイ・ナノテクノロジー株式会社製)引っ張りモードにてガラス転移温度を測定した。結果を表1に示す。
(Glass-transition temperature)
The obtained liquid crystal sealant was sandwiched between polyethylene terephthalate (PET) films and a thin film having a thickness of 100 μm was put into an oven and thermally cured at 120 ° C. for 1 hour. After curing, the PET film was peeled off to prepare a sample. The glass transition temperature of the obtained sample was measured in a dynamic viscoelasticity measuring apparatus (DMS-6100: manufactured by SII Nano Technology Co., Ltd.) in a tensile mode. The results are shown in Table 1.

(液晶汚染性の測定)
液晶に対する汚染性の指標である接触液晶の比抵抗の測定は、サンプル瓶に液晶シール剤を0.1g入れ、液晶(メルク製、MLC−6866−100)1mlを加えた後、120℃オーブンに1時間投入し、その後、0.5時間室温にて放置する。処理が終ったサンプル瓶から液晶のみを取り出し液体電極LE21(安藤電気製)に入れて、アドバンテスト製エレクトロメーターR−8340により測定電圧10Vで4分後の液晶の比抵抗を測定した。結果を表1に記す。
(Measurement of liquid crystal contamination)
The specific resistance of the contact liquid crystal, which is an index of contamination of the liquid crystal, is measured by adding 0.1 g of a liquid crystal sealant to a sample bottle, adding 1 ml of liquid crystal (MLC-6866-100), and then placing it in a 120 ° C. oven. Charge for 1 hour, then leave at room temperature for 0.5 hour. Only the liquid crystal was taken out from the sample bottle after the treatment and placed in the liquid electrode LE21 (manufactured by Ando Electric Co., Ltd.), and the specific resistance of the liquid crystal after 4 minutes was measured at a measurement voltage of 10 V with an electrometer R-8340 manufactured by Advantest. The results are shown in Table 1.

(液晶汚染性の評価)
○:比抵抗値が1.0×1012以上である。
×:比抵抗値が1.0×1012未満である。
(Evaluation of liquid crystal contamination)
A: Specific resistance value is 1.0 × 10 12 or more.
X: The specific resistance value is less than 1.0 × 10 12 .

Figure 2016109996
Figure 2016109996

表1の結果より、(a−1)ヒドロキシ基を有する(メタ)アクリレートと(a−2)ジイソシアネートを反応して得られる(A)ウレタンジ(メタ)アクリレートを含有しない比較例1〜3はガラス転移温度が低く、接着性、液晶汚染性に不具合を生じており、比較例1はガラス転移温度は高いものの接着性に不具合を生じている。これに対し、本願発明に係る実施例1については、ガラス転移温度が高く、接着性向上を実現しながら、液晶汚染性も優れるという結果を示している。この結果より、本願発明の液晶シール剤は、接着性に優れ、低液晶汚染性も良好であることから液晶表示セルの高信頼性を実現できることが言える。   From the results of Table 1, (a-1) Comparative Examples 1 to 3 containing (a) urethane di (meth) acrylate obtained by reacting (meth) acrylate having a hydroxy group and (a-2) diisocyanate are glass. The transition temperature is low, causing problems in adhesiveness and liquid crystal contamination, and Comparative Example 1 has a problem in adhesiveness although the glass transition temperature is high. On the other hand, about Example 1 which concerns on this invention, the glass transition temperature is high, and has shown the result that liquid-crystal contamination property is excellent, implement | achieving an adhesive improvement. From this result, it can be said that the liquid crystal sealant of the present invention has excellent adhesion and low liquid crystal contamination, so that high reliability of the liquid crystal display cell can be realized.

本願発明の液晶シール剤は、接着性、低液晶汚染性が良好な為、液晶表示セルの長期信頼性確保にも貢献するものである。   The liquid crystal sealing agent of the present invention contributes to ensuring long-term reliability of the liquid crystal display cell because of good adhesion and low liquid crystal contamination.

Claims (15)

(a−1)ヒドロキシ基を有する(メタ)アクリレートと(a−2)ジイソシアネートを反応して得られ、かつ原料としてポリオール成分を使用しない(A)ウレタンジ(メタ)アクリレートを含有する液晶滴下工法用液晶シール剤。 (A-1) obtained by reacting (meth) acrylate having a hydroxy group with (a-2) diisocyanate and not using a polyol component as a raw material (A) for liquid crystal dropping method containing urethane di (meth) acrylate Liquid crystal sealant. 前記成分(a−1)が2−ヒドロキシエチル(メタ)アクリレートである請求項1に記載の液晶滴下工法用液晶シール剤。 The liquid crystal sealing agent for a liquid crystal dropping method according to claim 1, wherein the component (a-1) is 2-hydroxyethyl (meth) acrylate. 前記成分(a−2)がトリレンジイソシアネート、イソホロンジイソシアネート、1,6−ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネートから選択される1種又は2種以上である請求項1又は2に記載の液晶滴下工法用液晶シール剤。 The liquid crystal dropping method according to claim 1 or 2, wherein the component (a-2) is one or more selected from tolylene diisocyanate, isophorone diisocyanate, 1,6-hexamethylene diisocyanate, and trimethylhexamethylene diisocyanate. Liquid crystal sealant. 更に、(B)熱ラジカル重合開始剤を含有する請求項1及至3のいずれか一項に記載の液晶滴下工法用液晶シール剤。 Furthermore, the liquid-crystal sealing compound for liquid crystal dropping methods as described in any one of Claim 1 to 3 containing (B) thermal radical polymerization initiator. 更に、(C)(メタ)アクリル化合物を含有する請求項1及至4のいずれか一項に記載の液晶滴下工法用液晶シール剤。 Furthermore, the liquid-crystal sealing compound for liquid crystal dropping methods as described in any one of Claim 1 to 4 containing (C) (meth) acrylic compound. 更に、(D)有機フィラーを含有する請求項1及至5のいずれか一項に記載の液晶滴下工法用液晶シール剤。 Furthermore, the liquid-crystal sealing compound for liquid crystal dropping methods as described in any one of Claims 1-5 containing (D) organic filler. 前記成分(D)が、ウレタン微粒子、アクリル微粒子、スチレン微粒子、スチレンオレフィン微粒子、及びシリコーン微粒子からなる群より選択される1又は2以上の有機フィラーである請求項6に記載の液晶滴下工法用液晶シール剤。 The liquid crystal for liquid crystal dropping method according to claim 6, wherein the component (D) is one or more organic fillers selected from the group consisting of urethane fine particles, acrylic fine particles, styrene fine particles, styrene olefin fine particles, and silicone fine particles. Sealing agent. 更に、(E)無機フィラーを含有する請求項1及至7のいずれか一項に記載の液晶滴下工法用液晶シール剤。 Furthermore, (E) The liquid-crystal sealing compound for liquid crystal dropping methods as described in any one of Claim 1 to 7 containing an inorganic filler. 更に、(F)シランカップリング剤を含有する請求項1及至8のいずれか一項に記載の液晶滴下工法用液晶シール剤。 Furthermore, the liquid-crystal sealing compound for liquid crystal dropping methods as described in any one of Claims 1-8 containing (F) silane coupling agent. 更に、(G)エポキシ化合物を含有する請求項1及至9のいずれか一項に記載の液晶滴下工法用液晶シール剤。 Furthermore, (G) The liquid-crystal sealing compound for liquid crystal dropping methods as described in any one of Claim 1 to 9 containing an epoxy compound. 更に、(H)熱硬化剤を含有する請求項1及至10のいずれか一項に記載の液晶滴下工法用液晶シール剤。 Furthermore, the liquid-crystal sealing compound for liquid crystal dropping methods as described in any one of Claim 1 to 10 containing the thermosetting agent (H). 前記成分(H)が有機酸ヒドラジド化合物である請求項11に記載の液晶滴下工法用液晶シール剤。 The liquid crystal sealant for a liquid crystal dropping method according to claim 11, wherein the component (H) is an organic acid hydrazide compound. 更に、(I)光ラジカル重合開始剤を含有する請求項1及至12のいずれか一項に記載の液晶滴下工法用液晶シール剤。 Furthermore, the liquid-crystal sealing compound for liquid crystal dropping methods as described in any one of Claims 1-12 containing (I) radical photopolymerization initiator. 2枚の基板により構成される液晶表示セルにおいて、一方の基板に形成された請求項1乃至13のいずれか一項に記載の液晶滴下工法用液晶シール剤の堰の内側に液晶を滴下した後、もう一方の基板を貼り合わせ、その後熱により硬化することを特徴とする液晶表示セルの製造方法。 In a liquid crystal display cell constituted by two substrates, after the liquid crystal is dropped inside the liquid crystal sealing agent weir for liquid crystal dropping method according to any one of claims 1 to 13 formed on one substrate. A method for producing a liquid crystal display cell, characterized in that the other substrate is bonded and then cured by heat. 請求項1乃至13のいずれか一項に記載の液晶シール剤を硬化して得られ、硬化物でシールされた液晶表示セル。 A liquid crystal display cell obtained by curing the liquid crystal sealing agent according to claim 1 and sealed with a cured product.
JP2014249663A 2014-12-10 2014-12-10 Liquid crystal sealant and liquid crystal cells using the same Pending JP2016109996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014249663A JP2016109996A (en) 2014-12-10 2014-12-10 Liquid crystal sealant and liquid crystal cells using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014249663A JP2016109996A (en) 2014-12-10 2014-12-10 Liquid crystal sealant and liquid crystal cells using the same

Publications (1)

Publication Number Publication Date
JP2016109996A true JP2016109996A (en) 2016-06-20

Family

ID=56123982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014249663A Pending JP2016109996A (en) 2014-12-10 2014-12-10 Liquid crystal sealant and liquid crystal cells using the same

Country Status (1)

Country Link
JP (1) JP2016109996A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018036468A (en) * 2016-08-31 2018-03-08 日本化薬株式会社 Liquid crystal sealant and liquid crystal display cell using the same
WO2022215708A1 (en) * 2021-04-07 2022-10-13 出光興産株式会社 Thermosetting composition, method for producing molded article using same, and cured product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018036468A (en) * 2016-08-31 2018-03-08 日本化薬株式会社 Liquid crystal sealant and liquid crystal display cell using the same
WO2022215708A1 (en) * 2021-04-07 2022-10-13 出光興産株式会社 Thermosetting composition, method for producing molded article using same, and cured product

Similar Documents

Publication Publication Date Title
JP6478313B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
JP6373181B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
JP6744167B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
JP6238850B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
JP2016109997A (en) Liquid crystal sealant and liquid crystal cells using the same
JP2016024243A (en) Liquid crystal sealant and liquid crystal cell using the same
JP6289372B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
JP6253638B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
JP6744168B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
JP6837781B2 (en) Liquid crystal sealant and liquid crystal display cell using it
JP2018036469A (en) Liquid crystal sealant and liquid crystal display cell using the same
JP2017027042A (en) Liquid crystal sealant and liquid crystal display cell using the same
JP2017027041A (en) Liquid crystal sealant and liquid crystal display cell using the same
JP2016109996A (en) Liquid crystal sealant and liquid crystal cells using the same
JP6643944B2 (en) Sealant for liquid crystal optical element and liquid crystal optical element using the same
JP2016038509A (en) Liquid crystal sealing agent and liquid crystal display cell having the same
JP2017027043A (en) Liquid crystal sealant and liquid crystal display cell using the same
JP6710125B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
JP6426050B2 (en) Liquid crystal sealing agent and liquid crystal display cell using the same
JP2015135444A (en) Liquid crystal sealant and liquid crystal cell using the same
JP6785281B2 (en) Liquid crystal sealant and liquid crystal display cell using it
JP6341603B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
JP2017198725A (en) Sealant for liquid crystal optical element and liquid crystal optical element using the same
JP2018105989A (en) Sealing agent for display device and display device using the same
JP2017219604A (en) Liquid crystal sealant and liquid crystal display cell using the same